
A Generalised Error Model and Schedulability Guarantees for
Dependable Real-Time Systems

Hüseyin Aysan and Sasikumar Punnekkat
Mälardalen Real-Time Research Centre, Mälardalen University, Västerås, Sweden

{huseyin.aysan, sasikumar.punnekkat}@mdh.se

Abstract

The fundamental requirement for the design of effective
and efficient fault-tolerance mechanisms in dependable
real-time systems is a realistic and applicable model of
potential faults, their manifestations and consequences.
Fault and error models also need to be evolved based on
the changes in the environments of usage or even based
on technological advances. In this paper we propose a
novel probabilistic burst error model in lieu of the com-
monly used simplistic fault assumptions. We introduce an
approach to reason about real-time systems schedulability
under the proposed error model in a probabilistic manner.
We first present a sufficient analysis that accounts for
the worst case interference caused by error bursts on the
response times of tasks scheduled under the fixed priority
scheduling (FPS) policy. Further, we identify potential
sources of pessimism in the calculations and propose an
algorithm that refines the results.

I. Introduction

Ubiquitous deployment of embedded systems is having
a great impact on our society since they interact and
control our lives in many critical real-time applications.
These systems are often characterized by high depend-
ability requirements, where fault tolerance techniques play
a crucial role towards achieving them. The fundamental
requirement for the design of effective and efficient fault-
tolerance mechanisms is a realistic and applicable model
of potential faults, their manifestations and consequences.
Fault and error models also need to be evolved based on
the changes in the environments of usage or even based
on technological advances. For eg., nano-level shrinking
of electronic devices are making them highly susceptible
to transient errors and a recent study [1] has shown that
even significantly low individual gate error probabilities

could produce many-fold higher output error probabilities.
Though single event upsets (SEU) traditionally were a
concern only in memory devices, increased clock fre-
quencies also increases the chance of a transient pulse
getting latched thus affecting the logic parts as well.
Increased sensitivity to noises results in an unacceptably
large number of soft-errors and timing faults and design
of appropriate fault-tolerant techniques and architectures
have become a recent reserch focus in the nano-electronics
community[2].

Traditionally, systems found in, e.g., aerospace, avionics
or nuclear domains, typically employed the preemptive
fixed priority scheduling (FPS) paradigm and were built
with high replication and redundancy, with the objective
to maintain the properties of correctness and timeliness
even under error occurrences. Additionally, these systems
typically work in harsh environments where they are
exposed to frequent transient faults such as power supply
jitter, network noise and radiation. [3] stated that, as per
the published statistics, the ratio between the frequencies
of transient and permanent faults is found to vary from 4
to 1000.

In order to provide real-time guarantees for fault toler-
ant systems, it is necessary to take into account the fault
hypothesis, as no system can cope with an arbitrary number
of faults over a bounded time interval. Pandya and Malek
[4] showed that single faults with a minimum inter-arrival
time of largest period in the task set can be recovered
if the processor utilization is less than 0.5 under Rate
Monotonic (RM) scheduling. Ramos-Thuel and Strosnider
[5] used Transient Server approach to handle transient
errors and investigated the spare capacity to be given to
the server at each priority levels. Ghosh et al. [6] presented
a method for guaranteeing that the real-time tasks will
meet the deadlines under transient faults, by resorting to
reserving sufficient slack in queue-based schedules. Burns
et. al. [7][8] provided exact schedulability analysis for
fault-tolerant task sets under specified failure hypothesis
and different fault tolerant strategies. Lima and Burns [9]

extended the uniprocessor scheduling analysis to the case
of multiple faults as well as for the case of increasing the
priority of a critical task’s alternate upon fault occurrences.
Han et al. [10] extended the last chance strategy described
by Chetto and Chetto [11] for fixed priority preemptive
scheduling. They assume an imprecise computation model,
and aim to guarantee either the primary or alternate
version of each task while trying to maximize primary
executions. The majority of the previous works assumed
a worst case error distribution, e.g., , single faults with a
minimum inter-arrival time of largest period in the task
set, or schedulability-centric approaches based on fault
assumptions modeled as stochastic events [12]. However,
once an error occurs, it is likely that the fault causing this
error will be in effect for a certain duration and will cause
more errors during that period.

Burton and Sullivan defined error bursts consisting of
errors that are occurring during the period that a fault is in
effect and if two successive errors within that duration does
not exceed a certain maximum error-free period [13]. As
the errors in a burst are caused by a single fault source,
they will have a different probability of occurrence than
the errors caused by independent faults. This probability
depends on several factors, such as the type and the
severity of the fault, the resistance of the hardware to
the fault, and the reaction of the fault detection and fault
tolerance mechanisms to the fault. Furthermore, the error
bursts can have different durations due to various reasons.
For example, if we imagine a vehicle as our system under
observation, which passes through a field with strong
electromagnetic interference (EMI), the duration of the
exposure to this fault is related to the area of this field
as well as the velocity of the vehicle. [14] show that
90% of the errors occurring in a network, e.g., Controller
Area Network (CAN), are in the form of error bursts with
an average length of 5µsec in an aggressive environment
(factory conditions). However, the probability distribution
of the burst length is highly dependent to the environment
and more experimental studies are required in order to
determine valid distributions for different domains. An
example of such a study was performed by [13] for
telecommunication systems. Punnekkat et. al. [15] proosed
an approach to schedule real-time messages on CAN in a
fault-tolerant manner using fixed priority scheduling (FPS).
Later on, Broster [16] addressed the reliability of message
transmission on CAN assuming probabilistic fault models.
[17] presented an approach to reduce the response time
of multi-frame messages by using the Priority Inheri-
tance Protocol. However, none ot the previous works on
networks have taken explicitly into account the complex
effects of error bursts.

In this paper, we introduce a novel probabilistic burst
error model and propose the associated schedulability

analysis for real-time tasks scheduled under the FPS policy.
In particular, we are interested in the probabilities of
the tasks meeting their deadlines based on the error rate
assumptions. Due to the stochastic nature of the error
occurrences as well as the complex effects due to the
variations in the multiple error parameters, we propose
an approach that combines schedulability analysis with
sensitivity analysis to provide probabilistic schedulability
guarantees.

The rest of the paper is organized as following: in
Section II we introduce the task and error model, followed
by the proposed methodology in Section III where we
present the schedulability analysis. Finally, section IV
concludes the paper.

II. System model

A. Real-time task model

We assume a sporadic task set, Γ = {τ1, τ2, .., τn},
scheduled by a preemptive FPS paradigm where each task
represents a real-time thread of execution. Each task τi has
a period (or a minimum inter-arrival time) Ti, a known
worst-case execution time (WCET) Ci, a deadline Di and
a priority Pi. We assume a single processor platform and
that the tasks have deadlines equal to or less than their
periods.

We assume that, upon a task failure, each task τi
executes an alternate task with a worst-case execution time
equal to the original worst-case execution time Ci and a
deadline equal to the original deadline Di. This alternate
can typically be a re-execution of the same task, a recovery
block, an exception handler or an alternate with imprecise
computations. We assume that each task failure is detected
before the completion of the failed task instance. Although
somewhat pessimistic, this assumption is realistic since in
many implementations, errors are detected by acceptance
tests which are executed at the end of task execution or
by watchdog timers that interrupt the task once it has
exhausted its budgeted worst case execution time. In case
of tasks communicating via shared resources, we assume
that an acceptance test is executed before passing an output
value to another task to avoid error propagations and
subsequent domino effects.

B. Error model

Our error model consists of the following parameters:
1) TE: The minimum inter-arrival time between inde-

pendent error bursts.
2) T burstE : The minimum inter-arrival time between

errors within a burst.

3) l: The length of the error burst.

Consequently, we obtain the following probability func-
tions:

1) Prerror(t): The probability of an error occurrence
within a time interval of length t can be calculated
by using the Poisson probability distribution as de-
scribed by Burns et al. [12]. Poisson distribution is
a discrete probability distribution used for finding
the probability of a number of events occurred in a
fixed time period, assuming that the events occur at
a constant rate and their occurrences are indepen-
dent. In our case, the events are error occurrences,
hence the error occurrence rate for transient errors
is assumed to be constant. This rate (the expected
number of events in a unit time as denoted by λ)
not only depends on the system but also on the type
of environment. For a given system, the common
values for λ range from 102 errors per hour in
aggressive environments to 10−2 errors per hour in
lab conditions as presented by Ferreira et al. [14]
and Rufino et al. [18].
The probability of m events during a time period of
t is calculated as shown below.

Prm(t) =
e−λt(λt)m

m!

If we assume that the event is an error, then the
probability of no error during the lifetime or mission
time (L) of the system is given by

Prno error(t = L) = e−λL

Thus, the probability of at least one error during L
is

Prat least one error(t = L) = 1− e−λL

Lifetime or a mission time of a system can vary
largely depending on the domain, typically ranging
from 1 hour for a plane to take a short trip to 15
years for a satellite to complete its lifetime.

2) f(l): The probability mass function for the error
burst length l which is a function that gives the
probability that an error burst length is exactly equal
to a specified value of l .

3) Prerror|burst(t): The probability of an error under
an error burst during a time interval of length t which
is a function of the error burst length l.

In this paper, we assume that Prerror|burst = 1,
and hence T burstE = 0. This will mean that any task
scheduled even partially under the error burst period will
be considered as failed.

III. Schedulability Analysis under Error
Bursts

The schedulability analysis given in this section will
show us whether the task set is schedulable under a com-
bination of error inter-arrival time thresholds (minimum
inter-arrival time of independent errors TE and errors
within a burst T burstE) and a burst length (l).

Our ultimate goal is to find the probability that the given
task set is schedulable. In order to compute this probability,
we need to perform a set of sensitivity analyses to derive
the minimum inter-arrival times of independent errors
(TE), for each discrete l value. These TE values and the
burst lengths (l) will then be used to find the probability of
schedulability for each l. Finally the cumulative probability
of schedulability will be calculated using the probability
mass function f(l).

In the scope of this paper, we present a schedulability
analysis under burst errors which is the main tool to
perform the sensitivity analysis, as well as a method for
calculating the probability of schedulability from TE , λ
and l values. The response-time calculations will differ in
the following scenarios:

1) l ≥ TE : The burst length is greater than or equal
to the minimum inter-arrival time between bursts.
In this case, every burst can start before the end
of the previous one, hence affecting the duration of
the whole mission. Therefore, the analysis assumes
that no task can successfully complete before its
deadline.

2) l < TE and l > Ti − Ci: The burst length
is shorter than the minimum inter-arrival between
bursts, but exceeds the threshold that guarantees task
τi’s completion before its deadline.

3) l < TE and l ≤ Ti−Ci: The burst length is shorter
than the minimum inter-arrival time between bursts,
as well as it allows task τi to feasibly complete
before its deadline.

In Scenarios 1 and 2, the worst-case response time
calculations are similar to the method we proposed in [19],
except that the minimum inter-arrival time of independent
errors TE is replaced with the minimum inter-arrival time
of the errors within a burst T burstE 6= 0. In the scope of this
paper, we focus on Scenario 3, since in Scenarios 1 and
2, no task can be guaranteed to meet its deadline under
the assumption T burstE = 0. In Scenario 3, the minimum
inter-arrival times (TE and T burstE), the burst length (l), as
well as the task attributes should be taken into account in
the calculations. A simple example is shown in Figure 1
where Apri denotes the primary execution of task A, and
similarily Aalt denotes one of its alternate executions.

The worst-case response time Ri for each task τi is
computed by using the following equation assuming that

l l

priA altA altA altA

ET burst
ET

Fig. 1. FT execution under error bursts

there are no task failures and no recovery attempts [20]:

Ri = Ci +Bi +
∑

j∈hp(τi)

⌈
Ri
Tj

⌉
Cj (1)

where hp(τi) is the set of higher priority tasks than
task τi, Bi is the maximum blocking time caused by
the concurrency protocols used for accessing the shared
resources.

The following recurrence relation is used for solving
Equation 1:

rn+1
i = Ci +Bi +

∑
j∈hp(τi)

⌈
rni
Tj

⌉
Cj (2)

where r0i is assigned the initial value of Ci. rn is a
monotonically non-decreasing function of n and when
rn+1
i becomes equal to rni then this value is the worst-case

response time Ri for task τi. If the worst-case response
time Ri becomes greater than the deadline Di, then the
task cannot be guaranteed to meet its deadline, and the
task set is therefore unschedulable.

If we assume an FT scheduler where the failed tasks
are re-executed, then the execution of task τi will be
affected by errors in task τi or any higher priority task.
Based on this assumption, the worst-case response times
are computed [7] by using the following equation:

Ri = Ci +Bi +
∑

j∈hp(τi)

⌈
Ri
Tj

⌉
Cj +

⌈
Ri
TE

⌉
max

k∈hep(τi)
(Fk)

(3)
where Fk is the extra computation time needed by task
τk, TE is a known minimum inter-arrival time for errors
and hep(τi) is the set of tasks with priority equal to or
higher than the priority of task τi (hep(τi) = hp(τi)∪ τi).
The last term calculates the worst-case interference arising
from the recovery attempts.

This equation can again be solved by a recurrence
relation as in the previous case. If all Ri values are less
than or equal to the corresponding Di values, then the task
set is guaranteed to be scheduled under the condition that
no two errors occur closer than the TE value.

The main differences between the error characteristics
in the single error model and our burst error model are:
• A burst error contains multiple errors within itself
• A burst error can affect multiple tasks

Hence, the worst case scenario required for calculating the
worst case response times is not the same in case of a burst
errors as compared to the model introduced in [12].

We define worst-case erroneous section WCESi for
task τi as the largest interference for task τi in which the
effects of a burst error can stop the system from performing
any ’meaningful’ execution of any task. This can be viewed
as the wasted time, which includes the incomplete task
executions hit by an error and the burst durations.

Lemma III.1. The worst case erroneous section for task
τi caused by an error burst with a length l is:

WCESi = max(2 max
k∈hep(i)

(Ck),
∑

j∈hep(i)

Cj) + l − ε (4)

where ε is an arbitrarily small positive real number.

Proof: An error burst of length l will interfere with τi
either directly (i.e., the burst starts during τi’s execution),
or indirectly, i.e., the burst starts during the execution of
a task with a higher priority than τi, which preempts τi.
Hence, the task set under observation is {τk|k ∈ hep(i)}.
We have only two cases:
• Case 1: The burst affects only one task during its

length. In this case, the worst case scenario occurs
when the burst affects the task with the longest
execution requirement among the tasks with higher
or equal priority than τi, , i.e., maxk∈hep(i)(Ck), and
it starts very close (ε) to the completion of the task,
and it ends right after the start of the execution of
an alternate. The scenario is illustrated in Figure 2
where the sum of the computation requirements of
all alternates except last one equals l − ε. Hence,
WCESi = 2 maxk∈hep(i)(Ck) + l − ε. (In figure 2,
ε = ε1 + ε2)

l

ε

pri
A A

alt
A

alt
A

alt
A

alt
A

alt

t1 t2

1
ε

2
ε

Fig. 2. Worst case erroneous section when
the burst affects a single task

• Case 2: The burst affects more than one task during
its length. In this case, the only possible scenario is

when the burst affects tasks preempting each other,
thus executing in increasing priority order. In this
case, the worst case occurs when all tasks of higher or
equal priority than τi are involved in the preemption
during the burst. The scenario is illustrated in Figure
3. Hence, WCESi =

∑
j∈hep(i) Cj + l− ε. (in figure

3, ε = ε1 + ε2)

A

l2

B

t2
1

P
ri
o
ri
ty

C

t1
11

Fig. 3. Worst case erroneous section when
the burst affects several tasks

The total interference Ii experienced by a task τi as the
sum of the maximum interference caused by the higher
priority tasks, Ihpi and the maximum (i.e., the longest)
interference caused by error bursts Ierri .

∀τi ∈ Γ, Ii = Ihpi + Ierri (5)

Note that Ihpi is given by the traditional response time
analysis [21], [20]:

Ihpi =
∑

j∈hp(τi)

⌈
Ri
Tj

⌉
Cj

Lemma III.2. The maximum interference caused by an
error burst of length l and minimum interarrival time TE
on a task τi ∈ Γ in the interval (0, Ri] is,

Ierri =

⌈
Ri
TE

⌉
WCESi (6)

Proof: In case of a single burst, the worst case
interference on τi is given by the longest erroneous section
encountered by any of the higher or equal priority tasks,
i.e., Ierri = WCESi. In case the bursts are separated by
TE , then the maximum number of times τi can get hit in
the interval (0, Ri] is given by

⌈
Ri

TE

⌉
.

Theorem III.3. The worst case response time of a task
τi ∈ Γ under error bursts with minimum interarrival time

TE and length l, is given by the relation:

Ri = Ci +Bi +
∑

j∈hp(τi)

⌈
Ri
Tj

⌉
Cj +

⌈
Ri
TE

⌉
WCESi (7)

Proof: The proof follows directly from Lemmas III.1
and III.2

While the above test is sufficient, it may provide pes-
simistic results, as it assumes that during each error burst,
an erroneous section equal to the WCESi will contribute
to the interference. However, depending on the relation
between the period of the tasks and the minimum error
interarrival time, this can be highly improbable. In the
next section we present a refinement to the response time
calculation that eliminates this pessimism.

A. Refined response time analysis under
error bursts

We use a simple example throughout the description of
the refined approach. Let our task set consists of 3 tasks, as
shown in Table I where columns P, T,C,D represent the
priority, period, worst case execution time and the deadline
respectively. Priorities are ordered from 1 to 3 where 3 is
the lowest priority. Let us also assume that TE = 12 and
l = 2 + ε.

Task P T C D
A 1 50 4 50
B 2 50 2 50
C 3 25 1 25

TABLE I. Example Task Set 1

From Equation 7, the worst case response time of Task
C in the above task set is calculated as RC = 34 which
indicates that the task set is unschedulable. However, the
actual worst case response time RC of Task C is 23 as
shown in Figure 4.

One source that leads to this pessimism is the relation
between the task periods and the minimum interarrival
time of the error bursts. In this example, during the actual
response time RC = 23 of Task C, maximum two error
bursts can occur. However, not both of them can cause an
error section equal to WCESC = 10 to interfere Task C’s
execution. This is because period of Task A is greater than
the minimum error interarrival time TE , hence there is no
execution requirement for Task A when the second burst
arrives. Note that we assume that all tasks are recoverable
even under the worst case error scenario if executed alone,
i.e., the recovery of the Task A is assumed to be possible
before a second error burst arrives.

TE =12 TE =12E

l = 2 +

A

E

l = 2 + 6 10 14

22

B

14

4

2214

C

23 25

BCETA < l
Notes: Notes:
1. Max (I^err) is not 2*10 but 10 + 6

Fig. 4. Actual worst case response time for
task C

Task P T C D
A 1 50 4 50
B 2 50 2 50
C 3 25 3 26

TABLE II. Example Task Set 2

Another source of the pessimism is the assumption of
error bursts occurring with an exact interarrival time of TE .
Let us assume the task set shown in table II as an example
to demonstrate this source of pessimism.

TE =12 TE =12

A

l = 2 + + +2 31

B
3

l
10+ +1 2

12+

C

26

20+

0
1

2 1 1

23
1

Fig. 5. Pessimism reduction in the assump-
tion of the maximum number of bursts

The worst case erroneous section is calculated to
WCESC = 11 from Equation 4. Here, again, only one
error burst (instead of two) can occur during the response
time of Task C, and can cause an error section equal to
WCESC = 11 that interferes with Task C’s execution.
Figure 5 shows the execution scenario that gives the worst

case response time for Task C, i.e., 26. Note that, in order
to cause the longest possible erroneous section, the second
burst must arrive with an interarrival time larger than
TE = 12 (Figure 6 shows the scenario where the error
bursts arrive with an interarrival time of TE = 12, and
the response time of Task C is less than 26). In the worst
case response time scenario (Figure 5), the term

⌈
Ri

TE

⌉
in Equation 6 calculates the maximum number of error
burst arrivals to three, however, we can see that this is
a pessimistic number as there are only two errors in the
execution scenario that give the largest erroneous section.

TE =12 TE =12

A

l = 2 + + +2 31

B
3

l
10+ +1 2

12+

C

24

18+

0
1

2 1 1

21
1

Fig. 6. Shorter response time when error
bursts’ interarrival time equals TE

In this section, we present Algorithm 1, that computes
the worst-case interference arising from the recovery at-
tempts, during the execution of task τi for Ri, while
reducing the pessimism described above.

Inputs to the algorithm are the task τi, the task set
hep(τi), the response-time Ri in the current iteration of
the recurrence relation, the minimum interarrival time TE
between error bursts and the assumed length l of the bursts.
Set S on Line 3 is the set of tasks that can potentially be
affected by errors. On Line 4, the algorithm calculates the
maximum number of error bursts that can occur during the
response-time Ri in the current iteration of the recurrence
relation, which is the number of times that the largest
erroneous sections for each burst will be added to the sum
Ierri . On Line 8, the algorithm adds the tasks that have
been released after the previous burst to S which were
previously removed from this set due to the completion of
their previous instances. Line 9, computes the maximum
erroneous section that can occur among the tasks within S.
Line 10 removes the tasks from S that will be completed
before the earliest arrival of the next error burst. If the
minimum interarrival time between the (i − 1)th and the
ith error burst that generates the longest erroneous section
for the ith error burst is greater than TE (as in the example

Algorithm 1: Ierri

input : τi, hep(τi), Ri, TE , l
output: worst case error interference for task τi in

response time Ri

begin1
output← 0;2
S ← hep(τi) ;3

n←
⌈

Ri
TE

⌉
; // number of bursts4

i← 1 ; // burst index5
delays← 0 ;6
while i <= n do7

S
⋃
set of new arrivals;8

output← output+ longest error section for the9
ith error burst;
S − set of completed tasks;10
T i
E ← minimum interarrival time between the11

(i− 1)th and the ith error burst that generates the
longest erroneous section for the ith error burst ;
if T i

E − TE > 0 then12
delays← delays+ T i

E − TE ;13

if
⌈

Ri−delays
TE

⌉
< n then14

n←
⌈

Ri−delays
TE

⌉
;15

end16
end17
i← i+ 1 ;18

end19
return output;20

end21

in Figure 5), the algorithm checks if the number of bursts is
less than the previously calculated value. If this is the case,
the maximum number of error bursts is updated before
going into the next loop or termination of the algorithm.
Finally, the algorithm outputs the accumulated worst case
error interference Ierri for task τi in response time Ri.

B. Probabilistic schedulability bounds

In this paper, we make the similar assumption as in
[12] that during a mission, if the actual shortest interval
between two errors W is less than the assumed minimum
interarrival time of error bursts TE , then the task set is
unschedulable. Hence, the probability of unschedulability
Pr(U) is equal to Pr(W < TE). By using the Poisson
probability distribution, in [12], Burns et al. show the upper
and lower bounds for Pr(W < TE) as shown below:

a) Upper bound:: If L/(2TE) is a positive integer
then

Pr(W < TE) < 1 + [e−λTE (1 + λTE)]
L

TE
+1

−2[e−2λTE (1 + 2λTE)]
L

2TE (8)

b) Lower bound:: If L/(2TE) is a positive integer
then

Pr(W < TE) > 1− [e−λTE (1 + λTE)]
L

TE (9)

Burns et al. [12] also derived the following two useful
approximations for the upper and lower bounds:

c) Approximate upper bound:: An approximate the
upper bound for Pr(W < TE) as given by Equation 8 is

Pr(W < TE) .
3

2
λ2LTE (10)

provided that λTE , λ2LTE are small and L >> TE .
d) Approximate lower bound:: An approximate

lower bound for Pr(W < TE) as given by Equation 9
is

Pr(W < TE) &
1

2
λ2LTE (11)

provided that λTE , λ2LTE are small.
We propose to use a similar approach to find the

probability of schedulability of a given task set under
burst errors. We first use the schedulability test proposed
in Section III to perform a series of sensitivity analyses
for each error burst length in the the probability mass
function f(l). These analyses give us the minimum error
interarrival time TE values for each error burst length
l in the probability mass function f(l). Then, by using
Equation 10, we calculate the approximate probability of
having no anomalies (1−Pr(W < TE)). Finally based on
this probability values and the probability values for each
l extracted from f(l), it is straightforward to calculate the
cumulative probability of the schedulability of the given
task set.

IV. Conclusions

In this paper, we have introduced a burst error model to-
gether with the associated schedulability analysis for real-
time tasks scheduled under FPS. We presented a sufficient
test that accounts for the worst case interference caused
by error bursts on the response times of tasks scheduled
under the fixed priority scheduling (FPS) policy, which
we further refined by addressing the potential sources
of pessimism in the calculations. We have outlined a
method to derive probabilistic scheduling guarantees from
the stochastic behavior of errors by performing a joint
schedulability– and sensitivity analysis.

Our ongoing research includes extending this approach
to handle with error probabilities that are less than 1
within an error burst, as well as consideration of multiple
criticality levels of real-time tasks for efficient usage of
resources.

References

[1] K. Lingasubramanian and S. Bhanja, “An error model to study the
behavior of transient errors in sequential circuits,” VLSI Design,
International Conference on, vol. 0, pp. 485–490, 2009.

[2] W. Rao, A. Orailoglu, and R. Karri, “Towards nanoelectronics
processor architectures,” J. Electron. Test., vol. 23, pp. 235–254,
June 2007. [Online]. Available: http://dx.doi.org/10.1007/s10836-
006-0555-7

[3] M. Pizza, L. Strigini, A. Bondavalli, and F. D. Giandomenico,
“Optimal discrimination between transient and permanent faults,”
3rd IEEE International Symposium on High-Assurance Systems
Engineering, pp. 214–223, 1998.

[4] M. Pandya and M. Malek, “Minimum achievable utilization for
fault-tolerant processing of periodic tasks,” IEEE Transactions on
Computers, vol. 47, no. 10, 1998.

[5] S. Ramos-Thuel and J. Strosnider, “The transient server approach
to scheduling time-critical recovery operations,” in IEEE Real-Time
Systems Symposium, December 4-6 1991, pp. 286–295.

[6] S. Ghosh, R. Melhem, and D. Mosse, “Enhancing real-time sched-
ules to tolerate transient faults,” IEEE Real-Time Systems Sympo-
sium, 1995.

[7] A. Burns, R. I. Davis, and S. Punnekkat, “Feasibility analysis of
fault-tolerant real-time task sets,” Euromicro Real-Time Systems
Workshop, 1996.

[8] S. Punnekkat, A. Burns, and R. I. Davis, “Analysis of checkpointing
for real-time systems.” Real-Time Systems, vol. 20, no. 1, pp. 83–
102, 2001.

[9] G. Lima and A. Burns, “An optimal fixed-priority assignment
algorithm for supporting fault-tolerant hard real-time systems,”
IEEE Transactions on Computers, vol. 52, no. 10, pp. 1332–1346,
October 2003.

[10] C.-C. Han, K. G. Shin, and J. Wu, “A fault-tolerant scheduling
algorithm for real-time periodic tasks with possible software faults.”
IEEE Trans. Computers, vol. 52, no. 3, pp. 362–372, 2003.

[11] H. Chetto and M.Chetto, “Some results of the earliest deadline
scheduling algorithm,” IEEE Transactions on Software Engineering,
vol. 15, no. 10, pp. 1261–1269, 1989.

[12] A. Burns, S. Punnekkat, L. Strigini, and D. Wright, “Probabilistic
scheduling guarantees for fault-tolerant real-time systems,” Depend-

able Computing for Critical Applications 7, 1999, pp. 361–378, Nov
1999.

[13] H. Burton and D. Sullivan, “Errors and error control,” Proceedings
of the IEEE, pp. 1293–1301, 1972.

[14] J. Ferreira, “An experiment to assess bit error rate in can,” 3rd
International Workshop of Real-Time Networks, pp. 15–18, 2004.

[15] S. Punnekkat, H. Hansson, and C. Norström, “Response time
analysis under errors for CAN,” in Proceedings of the 6th IEEE
Real-Time Technology and Applications Symposium (RTAS’00).
Washington DC, USA: IEEE Computer Society, May-June 2000,
pp. 258–265.

[16] I. Broster, “Flexibility in dependable real-time communication,”
Ph.D. dissertation, Department of Computer Science, University of
York, 2003.

[17] C. Bartolini, G. Lipari, and L. Almeida, “Using priority inheritance
techniques to override the size limit of CAN messages,” Proceed-
ings of the 7th IFAC International Conference of Fieldbuses and
Networks in Industrial and Embedded Systems (FET), 2007.

[18] J. Rufino, P. Verissimo, G. Arroz, C. Almeida, and L. Rodrigues,
“Fault-tolerant broadcasts in can,” Twenty-Eighth Annual Interna-
tional Symposium on Fault-Tolerant Computing, 1998. Digest of
Papers., pp. 150–159, 1998.

[19] H. Aysan, R. Dobrin, and S. Punnekkat, “Task-level proba-
bilistic scheduling guarantees for dependable real-time systems
- a designer centric approach,” IEEE International Workshop
on Object/component/service-oriented Real-time Networked Ultra-
dependable Systems, 2011.

[20] M. Joseph and P. Pandya, “Finding response times in a real-time
system,” The Computer Journal - British Computer Society, vol. 29,
no. 5, pp. 390–395, October 1986.

[21] N. C. Audsley, A. Burns, M. Richardson, K. Tindell, and
A. Wellings, “Applying New Scheduling Theory to Static Priority
Pre-emptive Scheduling,” Software Engineering Journal, vol. 8,
no. 5, pp. 284–292, September 1993.

