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Abstract

Modern embedded systems are evolving in the direction of increased adaptivity and
complexity. It is extremely important for a system with limited resource to be adaptive
in order to maximize its efficiency of resource usage while guaranteeing a high level
of fault tolerance and QoS. This report aims at exploring such a kind of system, i.e.
Adaptive Embedded System (AES), which is featured by dynamic reconfiguration at
runtime. Based on the investigation and analysis of a variety of case studies related with
AES, we proposed the conceptual view and overall architecture of an AES by highlighting
its predominant characteristics. We also made an incomplete but detailed summary of
the most popular techniques that can be used to realize adaptivity. Those techniques
are categorized into dynamic CPU/network resource re-allocation and adaptive fault
tolerance. A majority of adaptive applications resort to one or more of those techniques.
Besides, there is a separate discussion on dynamic reconfiguration and mode switch
for AES. Finally, we classify adaptivity into different modeling problems at a higher
abstraction level and build UPPAAL models for two different AESs, a smart phone and
an object-tracking robot. Our UPPAAL models provide clear demonstration on how a
typical AES works.
Keywords: adaptive,embedded systems,reconfiguration,modeling,UPPAAL
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Chapter 1

Introduction

Traditional embedded systems usually work in a known and fixed environment which
can be predicted and considered beforehand. However, in many cases, the operating
condition is frequently changing in an unpredictable manner. Resource allocation for
different applications has to be considered in worst cases for the sake of safety at design
time. Consequently, most of the time resources such as CPU cycles, memory and energy
cannot be efficiently utilized because their usage is overestimated. To guarantee a desired
fault tolerance level, the large amount of software and hardware redundancy gives rise to
excessive extra overhead of the entire system. Due to the increasing complexity and tight
cost constraints of embedded systems, static approaches are no longer feasible. Instead,
a system needs to be adaptive and flexible. An adaptive embedded system (AES) is
supposed to reconfigure itself dynamically and automatically to deal with the varying
operating environment or user requests. There is no doubt that numerous applications
could benefit from the support of AESs, including avionic systems, automotive systems,
robotics, multimedia, telecommunication, to name a few.

The adaptive behavior of an AES is reflected from its ability to dynamically recon-
figure itself. A system may have a multitude of combinations of configurations (e.g.
each combination of the worst-case computation times and periods of a task set can
be regarded as one configuration), each of which corresponds to some particular oper-
ational condition. An AES should be able to switch from the current configuration to
another one that is most or more suitable for the new working environment automati-
cally at runtime, in response to an operational condition change. One challenge is that
the number of configurations rises exponentially as the number of related parameters
increases, while only a subset of them makes sense. For instance, many combinations
of the worst-case computation times and periods of a task set are not schedulable. To
guarantee that only feasible configurations appear in the dynamic reconfiguration pro-
cess, some initial analysis can be done offline by extracting the schedulable subset from
all possible configurations [3].

Usually, systems with dynamic reconfiguration support do not have to be designed
from scratch. It is often possible to add the desired adaptive behaviors as a middleware
to the existing operating system and application. The common functional modules of
an operating system such as resource/energy/memory management can often be re-used
and modified if necessary. Even some de facto frameworks have been explored for the
development of AES such as the reflective architecture [35] [34] [24], the Hierarchical
Scheduling Framework (HSF) [5], the FRESCOR framework [31] and the AUTOSAR
architecture with organic middleware [46].

Generally speaking, the architecture and framework of the AES is quite dependent
upon the goals as well as expected functionalities of its applications. Nonetheless, they
more or less share some common characteristics. Herein we extract the abstract infor-
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Figure 1.1: The conceptual view of an adaptive embedded system

mation of typical AESs and present a conceptual view of its functionalities in Figure 1.1.
An AES is supposed to have a few key functional modules, which were also mentioned
in the MCA paradigm (monitor-controller-adapter) in [15]. The system can be divided
into monitor, controller and adapter. Logically speaking, the monitor is responsible for
detecting the events that may trigger an adaptive behavior. Adaptation mechanisms
are implemented in the controller and adapter, which are notified by the monitor and
take some adaptive actions accordingly. Adaptivity will eventually be represented by
the process of dynamic reconfiguration. For each running applications, any related event
that requires reconfiguration will be captured by the monitor and some adaptation ob-
jects linked with those applications will be altered somehow through reconfiguration.
The final goal is to satisfy the new requirements of the application. A successful re-
configuration will give rise to the abortion of those events currently generated from the
application. In some other literature [25], adapter and configurator are used instead of
the MCA paradigm. Although these terms are different, they still map each other well.
The adapter is equivalent to the monitor and controller in the MCA paradigm whilst
the configurator corresponds to the adapter in the MCA paradigm.

The conceptual view of the AES described in Figure 1.1 points out a clear direction
of the AES architecture design. First, we come up with a generic overall architecture of
a centralized AES in Figure 1.2. Without adaptive behaviors, the system has a normal
input such as the periodic sampling of a visual sensor, and a normal output such as to
display some videos or to actuate motors. The adaptive behavior must be triggered by
some stimulus, which is detected by the monitoring mechanism. The triggering source
can be an external environment change, or an internal event of the system itself, or a
user request that is related to reconfiguration (There may be also other user interactions
that are just normal inputs requiring no reconfiguration). For instance, the degradation
of the network bandwidth is typically a type of external environment change, while
the warning of low power supply in energy-constrained systems is an internal event
from the system. Alternatively, the triggering can be periodic and time-based, which
is relatively easier to handle. Different triggering sources may be detected by different
monitors [23]. Once a stimulus is detected, the corresponding monitor will activate
the adaptive mechanisms, which may focus on different objects with different technical
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Figure 1.2: The overall architecture of a centralized adaptive embedded system

backgrounds. Then the monitor will notify the ”Adaptation mechanisms” block, which is
expected to take some actions timely and properly so as to adapt the new condition, such
as resource re-allocation, algorithm parameter adjustment, operational mode switch,
task/application migration and hardware component re-composition. Besides, in order
to be able to communicate with other systems, a system should be equipped with certain
communication interfaces, no matter whether it is adaptive or not. The communication
interface module will be a potential source contributing to system internal events that
will trigger some adaptive behavior. For instance, in multimedia applications, if the
sender changes the encoding scheme and informs the receiver during the communication,
the receiver could adapt its decoding scheme to match the changed encoding scheme of
the sender.

By comparing Figure 1.1 and Figure 1.2, we can see that the overall architecture
of a centralized AES is designed in the same pattern as the conceptual view. While
the monitor is explicitly presented in both graphs, the ”Adaptation mechanisms” block
in Figure 1.2 functions as the controller and adapter in Figure 1.1. The controller and
adapter could be middleware components. Their absence will not affect the functionality
of an ordinary system, however, they are vital to an AES. Sometimes, they need more
complex mechanisms such as effective QoS (Quality of Service) management in highly
dynamic environments, where the assistance of feedback control is usually recommended.
Actually, the feedback control mechanism is one distinctive feature of the AES because
it borrows techniques from control theory to realize more advanced adaptive features.
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Figure 1.3: The network architecture of a distributed adaptive embedded system

The design of a feedback controller is quite flexible, as it can be integrated into the
existing monitor and controller, or it can be another functional module, or it can even
reside in another independent hardware component.

The conceptual view brings more flexibility for the architecture design of distributed
AESs. Figure 1.3 presents a network with N nodes, which are connected through their
communication interfaces and can communicate via wireless channels, buses, or other
types of communication media. The distribution of different functional modules in
the conceptual view becomes more principal here due to the diversity of solutions. For
instance, in a peer-to-peer network where all nodes have the same behavior, each node is
an AES described in Figure 1.2. Functional modules are evenly distributed among these
nodes. In extreme cases, we can put all the functional modules concerning adaptivity
in one node while the other nodes are normal systems without adaptive behaviors. This
could be applied in a master-slave network structure. Or we can spread these functional
modules among different nodes so that no single node is a complete AES and adaptivity
can only be achieved by their coordination and cooperation. Actually even different
monitors can be allocated to different nodes. This distribution decision should be made
after thorough consideration of contributing factors such as network structure, number of
nodes, hardware performance and software support of each node, desired functionalities
and adaptivity.

It is not trivial to design an AES due to several reasons. First, even a simple
adaptive behavior will affect quite a lot of software modules at different levels of the
system. Sometimes, even the co-design of software and hardware has to be involved.
In order to realize adaptivity, all the related modules need to be synchronized and
cooperate with each other in a consistent manner. Second, the unpredictable working
environment makes it almost unfeasible to test and verify the system in all possible
cases, whereas for safety-critical applications, it is extremely significant to guarantee that
any malfunction of additional adaptivity won’t jeopardize the system. Finally, there is
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always a tradeoff between adaptivity and QoS degradation. Adaptivity makes a system
more flexible, yet higher complexity and additional overhead is inevitable. However, an
appropriate adaptive mechanism will try to minimize the negative influence upon the
system performance while maximizing adaptivity.

The remainder of this report will be organized as follows. In Section 2, we discuss a
few existing techniques for AESs in terms of dynamic resource re-allocation and adaptive
fault tolerance. In Section 3, we analyze mode switch problems so as to get a better
understanding of dynamic reconfiguration. We come up with five types of AESs and
express them by abstract models respectively in Section 4. As two case studies, a smart
phone model and an object-tracking robot model built by UPPAAL are explained in
Section 5. Related work is in Section 6 and we make our conclusion in Section 7.
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Chapter 2

Existing techniques for adaptive
embedded systems

AESs themselves do not yield new technology. Instead, various currently existing tech-
niques have been adopted for their realization. Adaptivity can be achieved in terms
of both hardware and software. Some hardware platforms such as FPGA supporting
partial dynamic reconfiguration [42] are especially suitable for the development of AES.
Moreover, techniques such as Dynamic Voltage/Frequency Scaling (DVFS) and Dynamic
Power Management (DPM) have also built a technical basis for AES at hardware level.
Nevertheless, our focus will be software techniques that are much more versatile than
hardware.

There are three main questions deserving our consideration: The reason to adapt,
how to adapt (technique to adapt), and what to adapt (adaptation object). Table 2.1
lists a number of examples with possible answers to these three questions. The reason
to adapt is typically related to the triggering source of the system, always detected by
corresponding monitors. So far there is no unified standard specifying how to adapt.
Various adaptive techniques have been proposed and implemented in different situations.
For instance, techniques such as imprecise computation and the elastic task model can
be used to get over an overloaded condition. The applicability of these techniques vary a
lot. Some techniques are feasible for both centralized systems and distributed systems,
whereas some others can only be applied in one of them. The object to adapt may be
at different levels, as it can be a task parameter, or a software component, or even an
application. One adaptive technique can focus on one or more objects to adapt. And
one single object can be concerned by multiple adaptive techniques.

Table 2.1 cannot cover all the possible scenarios that may take place in AESs. As a
matter of fact, it is barely practical to make a complete index of them by virtue of the
highly unpredictable external environment and diversified adaptive techniques. How-
ever, the most common events, both internal and external, which act as the triggering
source of reconfiguration, can be captured and considered beforehand at design time.
In addition, the reasons to adapt in different rows are sometimes strongly correlated
but not independent of each other. For example, when an application is running out of
CPU resource, faults may occur if no proper adaptive actions are taken in time. This
implies that some adaptive techniques can solve multiple problems even without that
intention. The CPU resource re-allocation prevents critical applications from stepping
into error states, meanwhile, fault tolerance is achieved as well. Table 2.1 can be re-
garded as an initial guidance for the AES development and can also be extended along
with the evolution of AESs. In the subsequent subsections, we shall introduce some of
the most representative techniques with regard to dynamic resource allocation and fault
tolerance.
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Reason to adapt Technique to adapt Object to adapt

Out of CPU resource

Imprecise computation
Task parameters (e.g. period

and execution time)Elastic task model

Hardware techniques
(e.g. DVFS)

Hardware parameters

Out of network resource FTT protocol Network bandwidth

Fault tolerance/ Unbal-
anced load distribution

Migration technique
Task, HW/SW component,

or even application
Redundancy+dynamic
HW/SW component

composition
HW/SW component

New position of mobile
nodes

Routing configuration Routing table

MCR Mode switch protocol
User-defined parameters for

each mode
- DVFS: Dynamic Voltage/Frequency Scaling
- FTT: Flexible Time/Triggered
- MCR: Mode Change Request

Table 2.1: Representative adaptive techniques

2.1 Dynamic CPU resource re-allocation

One of the most important system resources is the CPU cycle. It is the predominant
obligation for the scheduler to assign CPU cycles to all the running tasks timely and
properly, assuring that no hard real-time tasks miss their deadlines and that a minimal
number of soft real-time tasks miss their deadlines. Any change of the working environ-
ment will alter the resource demand of a few tasks, making dynamic resource allocation
necessary. Although mechanisms dealing with dynamic CPU resource allocation are
quite flexible and can differ a lot from each other, most of them fall into one of the two
following categories:

• The first one is to transfer the resource released by idle tasks to those tasks cur-
rently requiring extra resource. For instance, consider an automotive system, in
which the ABS (Anti-lock Braking System) and cruise control subsystems cannot
be active at the same time. Upon an environment change, idle tasks should release
some resource which can supplement other active tasks on the verge of running
out of their own resource shares.

• The second one is graceful degradation of QoS, used when the first mechanism
fails to produce a satisfying result, i.e. some tasks still cannot get enough resource
even after the resource re-allocation. Many applications are associated with some
kind of QoS level that can be adjusted flexibly within a certain range. Therefore,
a graceful degradation of QoS level without jeopardizing the entire application is
indeed an efficient way to survive from running out of resources.

A technical report [12] has proposed the Adaptive Resource Allocation (ARA) in-
frastructure, summarizing the general and common mechanism of different resource
re-allocation approaches and providing metrics to evaluate their performance. We will
discuss ARA in the next subsection, and then we will introduce two popular techniques
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respectively from the above two categories which have been implemented in real appli-
cations: imprecise computation and elastic task model.

2.1.1 The Adaptive Resource Allocation (ARA) infrastructure

The ARA infrastructure can be used to adjust the resource allocation, whenever there
is a risk of failing to satisfy the application’s timing constraints. This eliminates the
need for ”over-sizing” real-time systems to meet worst-case application needs.

The ARA infrastructure should integrate mechanisms for:

• Collecting information about application resource usage and resource availability

• Detecting significant variations in application resource usage

• Inferring the cause of observed variations and assessing the necessity of an auto-
matic adjustment of the resource usage

• Making decisions about automatic adjustments and resource allocation

• Notifying the application about significant changes in its resource usage

• Notifying the application and resource providers about changes in resource allo-
cation

• Assisting them in the enactment of these changes

In order to demonstrate how ARA works in real-time applications, let’s consider a
radar system as an example [11]. In Figure 2.1, Detection,Track Init (Track initiation)
and Track Identif (Track identification) are computationally intensive tasks suited for
parallel implementation. Over time, their processing and communication needs vary
with the number and characteristics of the input data (e.g. the number, amplitude and
direction of dwells). Besides, the computation is driven by several event streams: (1) the
input from the radar, (2) the input from the missile tracking device, and (3) the missile
control requirements. Timing constraints concern event rates and processing latencies.
For instance, the required rate of the radar input is 1500Hz, and the required missile
control rate is 4Hz. Latency constraints are: a 0.2 second-bound between the detection
of a potential missile (Detect) and activating the Search Control and a 0.5 second-bound
on the execution of Engage. Given the nature of their computation, the aforementioned
three tasks can adapt by changing their internal levels of parallelism. Therefore, the
timing constraints can remain unaffected by an increase in the computation requirements
if a new thread is started for the task on another processor. A typical example is when
the system is faced with a new set of spurious tracks, the computation requirements of
Track Init increase rapidly. However, at the same time, the requirements of Track Identif
and Engage remain stable or might even decrease because no new task is produced by
Track Init for a while. Thus as long as the load of Track Identif and Engage is low
enough to avoid violation of their own timing constraints, ARA is capable of transferring
their idle resources to Track Init, whose temporal load increase might be overcome then.

The performance of ARA is determined both by the appropriateness of its resource
allocation decisions and by the delay with which it responds to unexpected changes.
A set of metrics can be considered as the criteria to evaluate the performance of ARA
quantitatively (See Figure 2.2):

• Reaction time: The interval between the occurrence of a critical variation and the
completion of the correcting re-allocation enactment.
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Figure 2.1: Radar application

• Recovery time: The interval between enactment completion and the restoration of
an acceptable performance level.

• Performance laxity: The difference between the acceptable upper bound of the
required performance and the steady state performance after re-allocation.

Recovery time and performance laxity denote the quality of resource re-allocation of
ARA, while reaction time denotes how fast ARA is to respond to a change and make
a decision. According to the metrics above, high performance can be implied by short
reaction time, short recovery time and larger performance laxity. However, a tradeoff
exists between reaction time and performance laxity. Shorter reaction time often fails to
achieve the optimal solution to resource re-allocation, whereas optimality is inevitably
obtained at the sacrifice of longer reaction time due to the considerable overhead. Even
though optimality is a prominent goal deserving great efforts, it also increases the like-
lihood of failing to satisfy the application’s timing constraints. It has been proved [12]
that sometimes prompt reactivity is even more important than optimality. This tradeoff
must be carefully balanced. For example, in the radar system mentioned above with
strict timing constraints, it must be guaranteed that a successful resource re-allocation
is completed in time. The optimal resource re-allocation failing to meet these timing
constraints should not be expected here.

Figure 2.2: Metrics for ARA performance

2.1.2 Imprecise computation

The imprecise computation technique [27] is a way to avoid timing faults during transient
overloads with graceful degradation of QoS. A system based on this technique is called
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an imprecise system. The key idea is to divide a task into mandatory and optional
parts. The mandatory part always has to be completed. Under normal operating
conditions, the optional part is completed and produces a precise result. In contrast,
under overloaded conditions, the optional part is either skipped or executed partially,
producing an imprecise result. In some applications such as image processing and object
tracking, timely imprecise results are quite preferred compared with late precise results.
After all, fuzzy images and rough estimates of target locations are more acceptable than
delayed clear images and delayed accurate target locations.

Imprecise computation distinguishes three types of tasks:

• Optional task satisfying 0/1 constraint : It is either executed to completion before
its deadline or skipped entirely. This type of task offers no flexibility in scheduling.

• Monotone task: It produces nondecreasing intermediate results throughout its ex-
ecution. Hence it can be decomposed into a mandatory task and an optional task.
We have the maximum flexibility in scheduling for monotone tasks because it is
possible to dynamically decide how much of each optional task is scheduled. Un-
derlying computational algorithms enabling monotone tasks are available in many
domains, including numerical computation, statistical estimation and prediction,
heuristic search, sorting and database query processing [26].

• Multiple-version task: This type of task has at least two versions: the primary
version and alternate version(s). The primary version of each task produces a
precise result yet with longer processing time. An alternate version has a shorter
processing time but produces an imprecise result. When multiple versions are
used, it is necessary to decide which version will be executed before the task
starts. During a transient overload, when the primary version of each task cannot
be completed before the deadline, the system can choose to schedule the alternate
versions of some tasks. As a matter of fact, if we use M and O to express the
mandatory and optional part respectively, we can consider the alternate version as
a mandatory task and the primary version as a mandatory task plus an optional
task:

Primary version:M +O

Alternative version:M
(2.1)

The optional task is fully scheduled in the primary version and entirely skipped
in the alternate version. Therefore, algorithms for scheduling tasks with the 0/1
constraints can also be used for two-version tasks.

The imprecise computation model can be easily built. Each task τi is decomposed into
the mandatory task Mi and the optional task Oi. If we define mi, oi and Ci as the
processing times of Mi, Oi and τi respectively, then mi + oi = Ci. The classical deter-
ministic model and the traditional soft-real-time workload model will be both special
cases of this imprecise computation model, oi = 0 in the former case and mi = 0 in the
latter case.

In a more general sense, imprecise computation is also allowed to have multiple-
version tasks without mandatory or optional parts. For instance, there may be two
different algorithms realizing the same functionality. They have the same input and
similar outputs and only one of them is selected to run. One of these two algorithms
can produce a more precise result than the other, yet with more computation time. We
call them HP (High precision) and LP (Low precision) respectively. If the schedulability
is known beforehand, in normal conditions, HP is used for better results. whereas in
overloaded conditions where HP may fail to be completed, LP is used to produce an
imprecise but acceptable result. If the schedulability is unknown, for the sake of safety,
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LP should always be first executed because it is uncertain whether HP can be completed
or not. If there is still room for HP after the completion of LP, HP can be executed
for a precise result. However, there is a high risk that HP will be aborted before its
completion because the total execution time is the sum of the computation time of LP
and HP. Yet this is still the most reasonable solution in such situation. In comparison
with the multiple-version task above, HP and LP are totally independent of each other.
Therefore, they don’t have the mandatory part in common. Table 2.2 summarizes the
different options concerning multiple-version tasks.

Independent Interdependent
multiple-version tasks multiple-version tasks

Schedulability known
HP M+O
LP M

Schedulability unknown LP(+HP) M+O

Table 2.2: Imprecise computation options concerning multiple-version tasks

2.1.3 Elastic task model

The assumption of fixed computation time (C) and period (T) of each task is reason-
able for most real-time systems, nevertheless, this could be too restrictive for some
applications. In multimedia systems, the time for coding/decoding each frame can vary
significantly. Hence the worst execution time (WCET) of a task can be much bigger
than its mean execution time. This can cause a CPU resource waste if C and T are both
rigid. Besides, sometimes periodic tasks are required to be executed at different rates in
different operating conditions. For instance, in a flight control system, the sampling rate
of the altimeter could change with the altitude. The lower altitude, the higher sampling
frequency. Likewise, when a robot is approaching to an obstacle, the acquisition rate of
its sensors may need to be increased.

Elastic task model [9] considers each task as flexible as a spring with a given rigidity
coefficient and length constraints so that periodic tasks can be executed at different
rates. Usually, elastic task model assumes fixed computation time and only adjusts the
task period (flexible computation time is the focus of imprecise computation). As a
result, resource re-allocation is realized every time the change of task period(s) occurs.
When the utilization of a task is compressed due to increased period, it releases the CPU
resource of its own share to other tasks. In a formal way, each task τi can be characterized
by five parameters: computation time Ci, a nominal period Ti0 , a minimum period Timin ,
a maximum period Timax , and an elastic coefficient ei ≥ 0 which specifies the flexibility
of the task to vary its utilization for adapting the system to a new feasible configuration.
Greater ei implies a more elastic task.

Elastic task model plays a key role in the following scenarios:

• It provides a more general admission control mechanism. When a new task arrives
leading to the unschedulable status of the system, the utilizations of other tasks
can be reduced (by increasing their periods) to accept this new task.

• While suffering from an overloaded condition, the system can compress the uti-
lization of less important tasks with graceful QoS degradation by expanding their
periods, as long as the periods of those tasks are still below their maximum periods.

• As the overloaded condition goes back to normal, those tasks with compressed
utilization can restore their nominal periods accordingly.
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• Whenever a running task terminates, other tasks can increase their utilizations
if possible. In particular, tasks with compressed utilization will approach their
nominal periods.

From the description above, it is not difficult to note the advantages of elastic task
model:

• It allows tasks to intentionally change their execution rate to provide different QoS
levels.

• It can handle overloaded situations in a flexible way.

• It provides a simple and efficient method for controlling the QoS level of the system
as a function of the current load.

2.2 Dynamic network resource re-allocation

While CPU and memory resources are the key concerns in centralized systems, network
resource is of equivalent importance in distributed systems. Various factors such as
package collision, external disturbance, and the irregular fluctuation of bandwidth can
all lead to highly dynamic network condition. This problem is particularly common in
wireless communication with limited bandwidth. Therefore, some dynamic network re-
source allocation mechanism is indispensable to achieve efficient communication among
different nodes. Here we mainly introduce a generic communication paradigm named
Flexible Time-Triggered (FTT) [2] [36], which is abstracted from two popular commu-
nication protocols: FTT-CAN [4] and FTT-Ethernet [37]. FTT supports dynamic QoS
management and can meet the timing constraints of message passing without losing
flexibility.

The FTT paradigm uses an asymmetric synchronous architecture, comprising one
master node and several slave nodes. The master node is in charge of the management
and coordination of the communication activities. Communication requirements, mes-
sage scheduling policy, QoS management and online admission control are all localized
in the single master node. And the scheduling decisions taken in the master node are
broadcast to the network using a special periodic control message called Trigger Message
(TM) that controls the behavior of slave nodes.

The FTT paradigm boasts a time-triggered pattern in that its communication uses
Elementary Cycles (ECs), which are consecutive time-slots with fixed duration. As is
depicted in Figure 2.3, the EC starts with the reception of the TM and all slave nodes
are synchronized by the reception of this message without the support of any global
clock. Each EC consists of two consecutive windows: synchronous window and asyn-
chronous window. The synchronous window conveys the time-triggered traffic specified
by the TM. Its length depends on the number and size of messages scheduled for the
corresponding EC. Usually it has a maximum window size in order to guarantee a mini-
mum bandwidth share for the asynchronous window. The asynchronous window conveys
event-triggered traffic that is not resolved by the master node. Instead, the asynchronous
traffic is handled by a best-effort policy. A minimum bandwidth for asynchronous traffic
can be guaranteed so that real-time asynchronous messages can meet their deadlines in
worst-case conditions.

Any guarantee of the FTT paradigm, either concerning timeliness or safety, relies on
the communication requirements, which are stored in the Communication Requirements
Database (CRDB)(In some other literatures [36] it is also called System Requirements
Database-SRDB) of the master node. CRDB is a data structure containing the de-
scription of the message streams currently flowing in the system. For each message
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Figure 2.3: The Elementary Cycle structure

stream, the CRDB includes information such as message identification, group identi-
fication, data length, type, period or minimum inter-arrival time, relative phasing for
periodic streams, timing constraints, safety constraints and a set of change attributes.
CRDB supports the requirements verification upon change requests. It is dynamically
scanned by a traffic scheduler (TS) so that any change in its structure can be detected
at runtime. However, any change request must be handled by an online admission con-
trol before it gets accepted. If any change request would lead to an unfeasible message
set, the dynamic QoS management is carried out to re-allocate the network resource.
There are two typical kinds of dynamic QoS managements: using the priority-based
QoS manager and using the elastic task model QoS manager. If the network resource is
still insufficient after dynamic QoS management, the change has to be rejected and the
CRDB remains unchanged. The overall structure of the FTT paradigm is presented in
Figure 2.4, from which the relationship between the master node, slave nodes, CRDB
and TS can be clearly observed.

Figure 2.4: The FTT paradigm with master-slave structure

What is potentially threatening the FTT paradigm is the fault-tolerance issue. Once
the master node fails, no more TMs with EC schedules are issued and the communication
will be terminated. However, this problem can be tackled by hardware redundancy, such
as replication with a few master node backups.

2.3 Fault tolerance

Fault tolerance is vital for safety-critical systems. Since adaptivity makes a system even
more complex, fault tolerance must be concerned even more carefully [22] in an AES.
One of the most recommended solutions to fault tolerance is hardware and software
redundancy. Once a HW/SW module fails to work normally, the system should switch
to the backup modules immediately as if nothing wrong has happened. Hardware fault-
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tolerant systems tend to use a multiplex or multiplicated approach [17]. In multiplex
systems, redundant components are always active and provide multiple processing paths
whose results are then voted to derive a final result. In multiplicated systems, redun-
dant components act as passive standbys that can be promoted to active status when
a fault occurs. Later we will see that adaptive behaviors can be added to the multi-
plex approach. Unfortunately, redundancy, especially hardware redundancy, inevitably
entails high cost. Hardware backup modules take up extra space and consume more
energy while software backup modules raise the memory demand and make the software
system more complex. Consequently, plenty of resource is wasted if no faults are found
at runtime. Some adaptive techniques aim at achieving fault tolerance with dynamic
reconfiguration, consuming as little resource as possible. For instance, migration and
hardware reconfiguration in multiplex systems are two representative alternatives.

2.3.1 Migration technique

The major idea of migration techniques is to migrate a running object from a faulty
source to another suitable location. Basically, four questions need to be answered: When
is migration triggered? Which object is to be migrated? Where will it be migrated?
Who makes the decision? These four questions have been well answered in [16]. The
flexibility of migration technique is attributed to two properties: One is that the running
object to be migrated can be a task, a process, or even an entire application. Hence
the migration granularity is tunable. This granularity will impact the migration result
or even the system scalability. The other is that there might exist quite a few options
concerning the target location of the running object to be migrated [7]. Maybe the new
location of the running object still resides in the same node in a distributed system,
or it could belong to another remote node, depending on the current situation. This
does not require all devices to have the same structure. A higher level abstraction will
hide the hardware details so that the running object is supported by different operating
systems or even different hardware platforms. A delicate migration design will enhance
the overall performance, take good advantage of limited resources, and make the system
more robust.

Apart from the purpose of fault tolerance, migration technique is also effective on
load balancing [39]. If some nodes are temporarily in an overloaded status, some running
objects on them can be migrated to other idle nodes, even if no fault occurs. Since
migration is dynamically executed at runtime, each migration corresponds to a round
of dynamic reconfiguration, both for the source node and the target node.

Migration technique is more suitable for permanent faults [43]. For transient faults,
the migration overhead becomes non-trivial, and instead, other solutions such as check-
pointing with rollback recovery might be more suitable.

2.3.2 Hardware reconfiguration in multiplex systems

In multiplex systems, redundant components work simultaneously to ensure accurate
result and fault tolerance. A typical example of the multiplex approach is the sensor
fusion technique where sensors are redundant hardware components. The sensor fusion
technique uses a set of sensors instead of a single sensor due to the fact that multiple
sensor values bring higher accuracy. Not only can the performance be improved like
this, but also fault tolerance is realized because the failure of one sensor will not ruin
the result. Nevertheless, each sensor contributes its own share to the final result. Faulty
sensors may negatively influence the expected accuracy. An AES is supposed to isolate
those faulty sensors for the sake of accuracy and energy consumption. The system
should be capable of detecting faulty sensors quickly from their exceptional outputs.
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More importantly, the system should have a clear overview of the availability status of
each sensor. Once a faulty sensor is detected, a reconfiguration should be made to make
sure only non-faulty sensors are working [28]. Of course, these sensors can be extended
to any hardware components with redundancy in other similar multiplex systems.
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Chapter 3

Mode switch analysis

Mode switch has a tight relationship with dynamic reconfiguration and it is absolutely
one of the top concerns of an AES. For adaptive embedded real-time systems, it is quite
necessary to analyze the mode switch mechanism. In this section, we shall delve into
the fundamental problems associated with mode switch.

3.1 Mode switch and dynamic reconfiguration

From the introduction in the previous section, it is self-evident that dynamic reconfig-
uration plays an essential role in achieving adaptivity. Reconfiguration covers a wide
range of possible behaviors, however, it can be mainly characterized by mode switch
(or mode change), which concurrently takes place with reconfiguration in most cases.
Reversely, reconfiguration must be done during a mode switch. For instance, an aircraft
control system usually supports taking off mode, flight mode and landing mode [18].
The transition between different modes is realized via reconfiguration.

In the real-time systems domain, each mode is distinguished by a set of tasks, a
particular scheduling policy, and many other factors. One example is a smart phone
which is able to play audio/video streams as well as make and receive phone calls. If
an incoming call is received while a video application is running, a mode switch request
could be triggered and the priorities of different tasks may be changed, or certain tasks
may be inactivated or even terminated [40].

We already know that dynamic reconfiguration must be a consequence of an event
or a request that triggers the adaptive behavior. We call this triggering Mode Change
Request (MCR) if mode switch is also required during reconfiguration [41]. For example,
when an alarm sensor indicates an abnormal value, a related monitoring task will decide
to issue an MCR so that the system transits into alarm mode from normal mode. An
MCR can be either time-triggered or event-triggered and it is common that both time-
triggered and event-triggered MCRs exist in a multi-mode system.

3.2 Mode switch problems

Although mode definition and mode switch are both dependent upon specific appli-
cations, any kind of mode switch can be represented by one or some of the following
scenarios:

• The deletion of one or more existing tasks.

• The arrival of one or more new tasks.
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• The parameter change of one or more existing tasks, such as period and worst-case
execution time.

• The change of scheduling policy.

Since the change of scheduling policy is less common, we will here assume that the
same scheduling policy is implemented during a mode switch, which will then boil down
to the change of a given task set. In order to clearly illustrate how the task set changes
during a mode switch, Pedro and Burns [38] propose five classes of tasks (see Figure
3.1):

• Old mode completed task: It is released ahead of the arrival of an MCR. If an
MCR arrives during its execution, this task should continue till its completion.
One typical example is a task with safety-critical functionalities. The system
still delivers the old functionality during a mode switch so as to maintain a safe
condition.

• Old mode aborted task: It is also released ahead of the arrival of an MCR. If
an MCR arrives during its execution, it is allowed to be aborted immediately.
Sometimes it may incur interference over the remaining tasks and impair the per-
formance if it is not aborted in time. Usually this type of task is not safety-critical
but related to QoS. Its abortion may lead to QoS degradation, yet without any
severe consequence.

• Wholly new mode task: A task containing new added functionalities to the system.
It can only be introduced after an MCR, either with or without any offset.

• Changed new mode task: This type of task represents the changed functionality
of a system. It is always preceded by a corresponding old mode task whose pa-
rameters are modified during the mode switch. Sometimes an offset is added to
let the old mode task run to completion.

• Unchanged new mode task: It is also preceded by a corresponding old mode task,
but it is exactly the same as its preceding old mode task. An offset could be
necessary for the sake of schedulability.

Figure 3.1: Mode switch and task classification
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The above-mentioned task classification is extremely helpful for the design of mode
switch protocols and schedulability analysis during mode switch.

3.3 Mode switch protocol

A mode switch protocol defines rules for the deletion or modification of existing tasks
and the addition of new tasks. A number of mode switch protocols have already been
proposed in existing literatures. Despite the variety of those different protocols, they
mainly differ in three aspects. First, regarding unchanged tasks, there are two types of
protocols [41]:

• Protocols with periodicity: Unchanged tasks preserve their activation pace and
are not allowed to be delayed by any mode switch.

• Protocols without periodicity: An offset may be added to some unchanged tasks
during the mode switch, leading to the loss of their periodicity. Sometimes this is
necessary to guarantee schedulability and data consistency.

Apparently, the fundamental difference between the two types of protocols above lies
in the offset of unchanged tasks. As a matter of fact, this offset can even be extended to
all new mode tasks. The introduction of offset to new mode tasks is a very simple and
effective approach to increase schedulability during mode switch. When the release of a
new mode task is delayed by an offset, some old mode completed tasks will have a higher
chance to be completed and the interference between old and new mode tasks can also
be decreased or even eliminated in this way. However, offsets incur long latency of the
mode switch, thus offsets must be chosen carefully to minimize this negative effect. It is
a key design issue of the mode switch protocol to specify these offsets of the unchanged
old mode tasks and different new mode tasks. More details can be found in [41].

Second, regarding both old and new mode tasks, we get the following two types of
protocols [41]:

• Synchronous protocols: New mode tasks are never released until all the old mode
tasks have completed their last activation. This type of protocol does not require
any schedulability analysis during the mode switch because the mode switch will
not result in overloaded condition. Nevertheless, the potential problem is that the
mode switch process may be too long.

• Asynchronous protocols: Both old and new mode tasks are allowed to be executed
during the mode switch. This protocol can shorten the time required for the
completion of a mode switch, yet additional schedulability analysis is required
because the workload of the system will possibly be higher than stable states
during the mode switch when both old and new mode tasks are executed.

The last concern is when a mode switch is supposed to take place. An MCR is
essentially a sporadic event that can only be served while the system is running in the
steady state. In [41], Idle Time Protocol was introduced, specifying that mode switch can
only happen at an idle instant. This idea is simple and easy to be applied. No additional
schedulability is required. However, the poor promptness is a severe disadvantage for a
high-utilization task set. In contrast, major period has been mentioned in [38] as the
least common multiple of the task periods. Mode switch is performed at the end of this
major period. Yet, long response is still a potential problem. Better solutions need to
be further explored.

Based on these three factors (periodicity; synchronous or asynchronous; mode switch
instant), a variety of combinations of them are allowed to make an appropriate mode
switch protocol for a given application.
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3.4 Schedulability concerns during the mode switch

A mode switch may increase or decrease the processor’s utilization. After the mode
switch, if one or more new mode tasks arrive, or the execution time of a task is increased,
or the period of a task is decreased, the system schedulable in the old operational mode
may become unschedulable. Furthermore, while asynchronous mode switch protocols
are used, due to the co-existence of both old and new mode tasks, mode switch may
lead to transient overload. Consequently, a system that is schedulable both in its old
and new operational modes may not be schedulable during the mode switch. Hence
additional schedulability analysis during the mode switch is required to guarantee that
the timing constraints of all old and new mode tasks are met.

An exact schedulability analysis approach was described in [38], as the worst-case
response time (WCRT) of each old or new mode task is calculated considering all possible
interferences. Figure 3.2 depicts a scenario where a low priority old mode completed
task is preempted by three different types of tasks, i.e. three sources of worst-case
interference:

• Interference from higher priority old mode completed tasks

• Interference from higher priority old mode aborted tasks

• Interference from higher priority new mode tasks

Figure 3.2: WCRT of an old mode task i

Similarly, Figure 3.3 depicts a scenario where a low priority new mode task is pre-
empted by three sources of worst-case interference:

• Interference from higher priority old mode completed tasks

• Interference from higher priority new mode tasks

• The computation time of its preceding old mode completed task, which is released
just upon an MCR as the worst case. If this task is associated with an offset, it
should be also taken into account.

Once the WCRT of each task is calculated, considering all possible interference
resources, schedulability can be determined by comparing the WCRT of each task with
its own deadline. This is exactly the same as traditional response time analysis. If any
task misses its deadline after the offline analysis, proper offsets can be added to one or
more new mode tasks to ensure schedulability and minimize mode switch latency.
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Figure 3.3: WCRT of a new mode task i

3.5 Other related issues

The analysis of mode switch becomes more complex whilst shared resource is considered.
The most common way to achieve mutual exclusion is the usage of semaphore, which
permits only one task to access the shared resource at a time. Semaphore brings block-
ing factors into the schedulability analysis in single mode systems, and mode switch can
be treated in the same way for multi-mode systems. For example, in [45], the schedu-
lability analysis during mode switch is extended by including blocking factors with the
assumption that semaphores are locked and unlocked according to the priority ceiling
protocol (PCP).

Besides, mode switch becomes more interesting in distributed systems due to the
inter-communication problem. In order to communicate with other systems, each pro-
cessor can have a ”transmit” task and a ”receive” task. Suppose TDMA is applied in a
distributed network. The periods and computation times of the ”transmit” task and the
”receive” task may change after mode switch. As a consequence, probably the TDMA
slots need to be reconfigured.

Another problem of mode switch in distributed systems is consistency, i.e. how to
synchronize the MCRs. For instance, some functionality can only be achieved by the
synchronization of two tasks residing in different processors. When the same MCR is
delivered to these two tasks, they may not receive it simultaneously. Suppose the MCR
occurs before the release of Task A at Processor 1 so that the new version of Task A
is running. However, the same MCR occurs after the release of Task B at Processor
2 so that the old version of Task B is running. The synchronization of Task A and B
will not be desired due to their inconsistent versions. One typical method to avoid this
consistency problem is to introduce global time.
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Chapter 4

Application modeling

There exist a vast range of applications regarding AESs. In this section, we enumerate a
few exemplary scenarios of those applications and build generic models for them. Since
these models are built at an abstraction level, each of them is able to present the key
behaviors of numerous different applications.

4.1 Operational mode switch

Figure 4.1: Operational mode switch

This type of adaptivity has been widely developed in modern embedded real-time
systems. During system design, the most common operational conditions can be con-
sidered in advance. Since different configurations are required in different operational
modes [13] [33] [8] [22], one typical straightforward way is to predefine all possible op-
erational modes at design time. At runtime, the operational condition, i.e. the ambient
environment and the system status are monitored by different sensors. If the system
encounters a severe operational condition change or receives a mode change request from
the operator, the current operational mode should be switched to another predefined
one which is the most suitable for the new condition. This process is shown in Figure
4.1. As a matter of fact, this is still not flexible enough in that predefined modes re-
quires too much memory and substantial offline work is involved. A future tendency is
to move this offline work (predefining operational modes) to dynamic reconfiguration
at runtime. That is to say, we expect that the system can reconfigure itself into a new
operational mode which is not predefined but automatically generated according to the
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new condition.
If we compare Figure 4.1 with the overall system architecture in Figure 1.2, we may

notice some commonalities. The ”Environment and system status monitor” belongs to
the ”Monitors” component of the overall architecture. The set of predefined operational
modes are actually the ”Adaptation Objects”. The mode switch corresponds to the
”Dynamic reconfiguration”.

4.2 Migration for fault tolerance and load balancing

Figure 4.2: Migration for fault tolerance and load balancing in distributed systems

In Section 2.3.1, we introduced migration techniques, which can be used for fault
tolerance and load balancing in an AES. Here we create a general application model
demonstrating migration technique in adaptive distributed systems. As is illustrated
in Figure 4.2, each single node in a distributed system consists of several functional
modules. Several applications can run in each single module. All applications are
monitored for the purpose of fault or overload detection. If one application is detected
to be faulty or overloaded, migration techniques can be applied to solve this problem.
In distributed systems, there are four options:

• This single application is migrated from the current module to another module in
the same node.

• Several applications or even all the applications in the current module are migrated
to another module in the same node.

• This single application is migrated from the current module to another module in
another node.

• Several applications or even all the applications in the current module are migrated
to another module in another node.

It is vital to note that the latter two cases will lead to more communication overhead [7].
And usually it is preferred to migrate only faulty or overloaded applications. However,
in particular cases, the costly migration must be considered. For instance, when a faulty
application inevitably affects other related applications, all of them should be migrated.
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Moreover, The remote migration to another node must be considered when the local
migration becomes unfeasible due to some reason. In addition, migration techniques are
also applicable to centralized systems, however, only the first two cases out of the four
options above may happen.

Actually, Figure 4.2 maps Figure 1.2 and 1.3 well while the application monitor
corresponds to the ”Monitors” in Figure 1.2 and the communication between Node 1
and Node 2 corresponds to the communication medium in Figure 1.3.

4.3 Multimedia communication with stable streaming

Figure 4.3: Multimedia communication with stable streaming

Multimedia communication often needs to adopt some sort of adaptive encoding/de-
coding schemes in variable network conditions. If only static encoding/decoding algo-
rithms are implemented, the changing network condition will cause unstable streaming
rate during the communication between the sender and the receiver. However, an adap-
tive system can dynamically adjust the encoding/decoding schemes according to the
current network condition [14], as is demonstrated in Figure 4.3. The bandwidth of the
network can be monitored by the sender. No matter what encoding/decoding scheme
we use, it should be able to satisfy different QoS levels. To keep a stable streaming rate,
the decreasing bandwidth can be compensated by the degraded QoS, such as the lower
quality of pictures, videos or audios. This requires flexible encoding/decoding schemes.
Besides, the decoding process on the receiver side should be notified and synchronized
by the sender in time. Otherwise, the receiver won’t be able to successfully decode the
correct raw data. For the receiver, this synchronization can be notified as an internal
event from the communication interface. However, for the sender, the bandwidth change
is an external event.

Figure 4.3 has the same pattern as the architecture in Figure 1.2 and 1.3. The
”Bandwidth monitor” plays the role of the ”Monitors” component. The multimedia
communication diagram also contains ”Controller & adapter” and ”Communication in-
terface”. The ”Encoding/Decoding scheme” is the ”Adaptation Object”.
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4.4 Adaptive resource management and QoS degradation

In resource limited systems, it is important to allocate resources to different applica-
tions appropriately. There is no doubt that in many cases fixed resource allocation will
waste too many resources. For instance, the required CPU cycles and memory of a task
vary from time to time. In particular, when a system becomes more complex, it will
be fairly common that some applications suffer from running out of resource. This phe-
nomenon should be monitored and some kind of adaptive resource management mecha-
nism [12] [44] is needed to reallocate resource for related applications dynamically. We
prefer to keep the desired QoS level during the resource reallocation. However, when the
re-allocated resource is still not sufficient for some applications, the system has to de-
grade the QoS level of less important applications so that the system won’t crash. This
is called graceful QoS degradation. Figure 4.4 is an abstract expression of the work-
flow of adaptive resource management and QoS degradation. Currently, graceful QoS
degradation technique has already been widely implemented in many areas [21] [1] [20],
among which the most representative one is multimedia application.

Figure 4.4 matches the architecture in Figure 1.2 quite well. The ”Resource mon-
itor” functions as the ”Monitors” component. The ”Resource management” can be
considered to be the ”Controller & adapter”. Resource and application are the ”Adap-
tation Object”. The dynamic reconfiguration can be realized by two actions: Reallocate
resource and degrade QoS.

Figure 4.4: Adaptive resource management and QoS degradation

4.5 Dynamic HW/SW module composition

HW/SW redundancy is an extremely common way to realize fault tolerance. Here we
mainly discuss how hardware redundancy contributes to adaptive fault tolerance. At
runtime, the status of each hardware module (or component) should be monitored.
If one hardware module is broken due to some unexpected reason, the system should
immediately do a hardware reconfiguration by replacing the broken hardware module by
backups [10]. This scenario is expressed in Figure 4.5. A special case is that in multiplex
systems, multiple identical hardware modules can be used simultaneously. For instance,
to achieve both high accuracy and fault tolerance, we would like to obtain the average
value of ten temperature sensors using sensor fusion technique [28]. If one sensor becomes
faulty, it won’t jeopardize the system, yet it will lower the overall accuracy if it is not
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isolated from the system. We should make sure that only non-faulty sensors are in
operation. Therefore, hardware module composition is taken every time a faulty sensor
is detected.

Figure 4.5 is consistent with the architecture in Figure 1.2. The ”HW status monitor”
and ”Controller & adapter” is in line with the MCA paradigm that derives from the
conceptual view in Figure 1.1. The ”HW module composition” together with ”HW
module availability change” is one type of dynamic reconfiguration. The hardware
modules are ”Adaptation Objects”.

Figure 4.5: Dynamic HW/SW component composition
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Chapter 5

The modeling of AESs and case
study

AESs cover a wide range of application fields, such as avionics, automobile, multimedia
and robotics. Despite the variety of those applications, the modeling of an AES can
extract their common features and represent them at a higher level so that a cluster of
applications can be described by one generic model. This chapter is about the modeling
of AESs, based on two case studies: a smart phone and an object-tracking robot. The
two models are designed and developed in UPPAAL, a tool for modeling, validation
and verification of real-time systems. In the following sections, we first give a basic
introduction of UPPAAL and then explain our two models in detail.

5.1 The modeling tool: UPPAAL

UPPAAL is a popular academic modeling tool for real-time systems. A complete UP-
PAAL model consists of a declaration of global variables and a few templates. Each
template can be regarded as a component of the system, represented by an automaton
(or a timed automaton sometimes) and a declaration of its own local variables.

A template may contain one or more input parameters, whose combination gives rise
to multiple instances of the same template. For instance, in our smart phone model,
the CPU and network resources have a lot of similar features, thus sharing the same
Resource template with one input parameter as the resource index. Resource(0) is the
CPU resource instance while Resource(1) is the network resource instance. And in our
robot model, three sensors share the same Sensor template, distinguished by the input
parameter const sensorIndex s id.

An automaton functions as a state-machine with locations (states) and edges (transi-
tions). A UPPAAL model can simulate a system’s behavior by running all its automata
concurrently. The model correctness is validated by verifying all kinds of properties.
The satisfaction of a group of well-designed properties makes a model more reliable.

For real-time systems with timing constraints, UPPAAL uses timed automata fea-
tured by clocks. A clock can add a timing guard to a transition which cannot be taken
until this timing guard is satisfied. A clock also allows a location to have its own invari-
ant, which forces the automaton to change state after a specified interval. Both our two
models are based on timed automata due to the existence of some real-time behaviors.

Since this report is not a manual of UPPAAL, we would like to skip other details
and save more words for our two models. The thorough introduction of UPPAAL can
be found in [6].
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5.2 Case study 1: The UPPAAL modeling of a smart
phone

In this section, we are going to present the UPPAAL modeling of an example of an
AES, a smart phone. Its main adaptivity is dynamic resource re-allocation and graceful
QoS degradation, which has been mentioned in Section 4.4. Next we shall focus on the
UPPAAL model design of the smart phone, its main functionalities, resource alloca-
tion mechanisms and other related issues. The model fits the smart phone quite well,
moreover, it is generic enough to simulate the behavior of other similar AESs.

5.2.1 Functionalities of the smart phone

Modern cellphones are becoming more and more versatile with respect to their function-
alities. To simplify the model, we only consider three typical functions which may be
associated with adaptive behaviors. Each function corresponds to an application, whose
detail information is listed in Table 5.1. Each application requires a particular mix of
resources which can be categorized in many types, e.g. CPU cycles, network bandwidth,
memory and power. Here we will mainly consider the CPU and network resources, i.e.
CPU cycles and network bandwidth. The smart phone supports three typical functions
which are illustrated in Table 5.1:

• Phone call: The smart phone should be able to make and receive phone calls. The
CPU and bandwidth consumption of a phone call is fixed. Since the phone call
is the fundamental function of a smart phone, it should be assigned the highest
priority and it is non-stoppable, meaning that it cannot be interrupted by other
applications.

• Video chatting (Online): The smart phone has a camera which can be used for
online video chatting or recording. Its resource consumption is also fixed. The
video chatting is less urgent than the phone call, thus it has lower priority and it
is stoppable, i.e. it can be interrupted by other applications.

• Multimedia online: This function is completely for entertainment. The user is able
to watch online video and audio by launching the multimedia application. The
multimedia application consumes much resource mainly due to the large amount
of video and audio streams. However, its resource consumption is adjustable as
it has three QoS levels regarding CPU consumption and two QoS levels regarding
bandwidth consumption. In Table 5.1, ”Level A|B” means Level A for CPU con-
sumption and Level B for bandwidth consumption and the default levels are ”Level
3|2”. The higher level, the better video and audio quality. When the system is
overloaded, QoS degradation is allowed.

Application
CPU Bandwidth

Priority Stoppable
consumption consumption

Phone call 2 1 1 No

Video chatting (Online) 2 1 2 Yes

Multimedia online-Level 3|2 4 3
Multimedia online-Level 2|1 3 2 3 Yes
Multimedia online-Level 1|1 2 2

Table 5.1: The application description of the smart phone example
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Resource CPU Bandwidth

Level 1 5 3

Level 2 7 4

Level 3 9 5

Table 5.2: The available CPU and network resources at different QoS levels of the smart
phone example

One typical feature of an AES is that some types of resources may change dynami-
cally. For example, the bandwidth of a wireless communication may be unstable. The
CPU resource is relatively more stable, however, the CPU resource could have different
levels for different operating modes. In particular, some advanced hardware is able to
adjust voltage and frequency, leading to the changing availability of CPU resource. In
this smart phone example, we define three levels for the CPU and network resources
respectively. Table 5.2 lists the total available CPU and network resources at different
levels, with Level 2 as the default level for both resources. Please note that the values
in both Table 5.1 and 5.2 are conceptual. They are not absolute values but relative
to each other. Maybe they seem to make no sense in a real smart phone, yet these
values are properly defined to demonstrate all kinds of interesting scenarios. We could
have specified that there is sufficient CPU and network resource even when all three
applications are active, with the multimedia application running at the top QoS level.
This is not what we are interested in because the resource allocation mechanism to deal
with tradeoffs becomes trivial if the resource is always sufficient.

5.2.2 Resource allocation mechanism and scheduling policy

Any one or more applications of this smart phone could run at any time. The multi-
ple multimedia QoS levels and different CPU and network resource levels bring much
flexibility to the system, yet giving rise to much unpredictability at the same time. An
appropriate resource allocation mechanism and scheduling policy is required to bring
the maximal benefit for the system. This is independent of the modeling of AES, be-
cause it can be designed separately. In our smart phone model, the resource allocation
mechanism and scheduling policy is guided by the following principles:

• The phone call application has the highest priority and it shouldn’t be interrupted
by any other applications.

• When the system load is not high and there are sufficient CPU and network
resources, the multimedia application should run at the top QoS level. If an
overloaded condition occurs while the multimedia application is still running, its
QoS degradation is first considered before the termination of any application by
force. Likewise, when the system restores the normal condition from an overloaded
condition, the QoS level of the multimedia application should be raised accordingly
to make full use of the resources.

• The admission control of a new application is based on the sufficiency of both
CPU and network resources. The new application is only accepted directly if both
resources are sufficient. Otherwise, even if one type of resource is insufficient, the
new application cannot be accepted without affecting other running applications.
To handle this issue, first the possibility of QoS degradation is checked. If the
currently running applications are not associated with QoS levels, or the resources
are still insufficient even after the maximal possible QoS degradation, we must
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terminate applications by force. The termination sequence starts from low priority
and stoppable running applications.

• The CPU level change is requested by the user. If the CPU level is raised from a
lower level, more CPU resource will be provided. This request is surely accepted
and what can be done further is that the QoS level can also be raised if possible.
Conversely, if the CPU level is lowered from a higher level, a potential problem is
that the currently occupied CPU resource by running applications may be even
more than the total available CPU resource at the new level. This problem might
be solved by QoS degradation, however, if there is no chance for QoS degradation
or QoS degradation fails to release enough resource, the CPU level change request
by the user has to be rejected.

• The network condition cannot be decided by the user, therefore the bandwidth may
change at any time. It may automatically fall into a lower level or reach a higher
level. Different from the CPU change request, the bandwidth change request must
be accepted because it is out of the user’s control. When the bandwidth level is
raised, QoS upgrade possibility will be checked. When the bandwidth level is low-
ered, leading to the overloaded condition, QoS degradation possibility is checked
first. If QoS degradation is not feasible or fails to release enough resource, some
applications may need to be terminated. In the worst case, even non-stoppable
applications should be forced to terminate to adapt the deteriorated network con-
dition.

5.2.3 The UPPAAL model of the smart phone

In this subsection, we shall delve into the modeling of the smart phone example by
UPPAAL. The resource allocation mechanism and scheduling policy explained in the
previous subsection will be implemented in the model. In our smart phone model,
five templates are involved to simulate different parts of the system: user, application,
resource, admission control and the main controller. First we give a basic introduction
of the architecture of our UPPAAL model. Next, the key global variables and each
template will be explained in sequence.

The model architecture

Our model consists of five components, user, application, resource, admission control
and the main controller, with each component as one template. There are frequent
interactions and tight relationship between these components. Figure 5.1 depicts the
model architecture, showing how different components are connected with each other.
”CPU resource” and ”Network resource” in Figure 5.1 belong to the same ”Resource”
component. There are two main scenarios initiated by the user. The user can either start
an application (marked in blue) or stop an application (marked in red). If an application
is started, it consumes CPU and network resources, whose availability will be checked
and then reported to the admission control. Then based on the availability reports,
the admission control may accept the application directly, or refuse the application
temporarily and let the main controller make the final decision. Particular scheduling
policies are implemented in the main controller. In our model, it is allowed to terminate
other running applications of less importance to increase the possibility to accept a new
application. And the main controller is responsible to reject the new application if no
more available resources can be released. If an application is stopped, both the CPU
and network resources previously occupied by it will be released. The admission control
does not have to know this event. However, the main controller should be informed
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Figure 5.1: The architecture of the smart phone model

because it needs to know how many applications are running. The detail relationship
between the application and the main controller will be explained in later subsections.

Key global variables

The global variables will be shared and accessed by the entire model. Table 5.3 enu-
merates the most important global variables of the smart phone model together with
corresponding short explanations. More details and all the global variables can be found
in the appendix and the source code.

A few more comments deserving to be mentioned for Table 5.3:

• The programming language supported by UPPAAL resembles the C language to a
large extent. However, UPPAAL has its own syntax, such as int[1,3] that defines
an integer type within the range of [1,3].

• The appNo type is a user-defined type, equivalent to int[0,2] here. Since it is used
as the index of one element in an array related with applications, its range is from
0 to 2 instead of from 1 to 3. Another type not mentioned in Table 5.3 is R type,
equivalent to int[0,1]. R type functions in the same way as appNo except that it
is used to distinguish CPU and network resource types.

• In the arrays with two elements such as totalResource[2], enough[2] and vide-
oLevel[2], the first element corresponds to the CPU resource while the second
element corresponds to the network resource.

• For CPU occupy[3] and BW occupy[3], the last element in the array corresponds
to the last application, i.e. the multimedia application. Since the multimedia
application consumes different resources at different QoS levels, the value of the
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Global variable Type Additional notes

OnApp[3] bool The on/off status of each application

appID appNo
To indicate the most recent application examined by

the admission control
priorityApp[3] const int The priority of each application

stoppableApp[3] const bool To tell whether each application is stoppable or not

CPU Level int[1,3] To indicate the current CPU resource level

CPU R[3] int The total CPU resource at each level

BW Level int[1,3] To indicate the current bandwidth level

BW R[3] int The total network resource at each level

totalResource[2] int The currently available CPU and network resource

enough[2] bool
To indicate if the CPU or network resource is

sufficient or not currently

CPU occupy[3] int The CPU resource consumption of each application

BW occupy[3] int The bandwidth consumption of each application

videoLevel[2] int[1,3]
To indicate the QoS level of the multimedia

application. 3 levels regarding CPU consumption
and 2 levels regarding bandwidth consumption

Table 5.3: The key global variables of the smart phone model

last element represents the resource consumption at the current QoS level. Thus
the two elements CPU occupy[3] and BW occupy[3] should be updated during the
QoS level change.

• priorityApp[3] and stoppableApp[3] are constant type variables because they should
never be updated but remain their initial value all the time.

The User template

Figure 5.2: The User automaton of the smart phone model
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The User template simulates the smart phone user’s behavior, with Figure 5.2 illus-
trating its automaton. A smart phone user toggles between two states: On and Off.
The initial state is Off. As the user turns on the smart phone, both the user and the
phone step into state On, which can go back to Off when the user turns off the smart
phone. turnOn! and turnOff! are two channels in UPPAAL for the synchronization
between different templates. Clock x is used as timing guards. For instance, x>=20
&& OnApp[ID] guarantees that the associated transition will not be taken until clock x
reaches 20 time units and OnApp[ID] should be true simultaneously. The main purpose
of setting these timing guards is to prevent the user’s actions from interrupting the sys-
tem scheduling. After the user launches a new application, it takes some time for the
system to either accept or reject this application. We can assume that this interval is
short enough to make it atomic. Two reasons are backing up the validity of this assump-
tion. First, a user with normal behavior seldom turns on or off different applications so
frequently. Second, even if a user with lunatic mind has the inclination to switch the
running status of each application as frequently as possible, the CPU is still much faster
as it has enough time to process a new application and finish the resource allocation
between two consecutive actions of the user.

The user’s operation on the smart phone becomes a sporadic event due to the timing
guards. Each time the user randomly selects one of those three applications and changes
its running status. That is to say, if the selected application is running, the user stops it
and if the selected application is not running, the user starts it. Different from standard
C language, UPPAAL does not support random number generation. Instead, we use
the select syntax to simulate the user’s random behavior. A local variable ID is defined
as the index of each application. It is assigned a value, which could be 0, 1 or 2, when
the clock x is bigger than 12. startA[ID]! and stopA[ID]! are two channels to start or
stop the selected application.

Moreover, sometimes the user may also change the CPU resource level. A local
variable level is assigned 1, 2 or 3 in the same way as ID. When the user tries to change
the CPU resource level, the value of level is assigned to a temporal global variable
newCPULevel, which is temporal because the user’s CPU resource level change request
may be denied and its value is finally assigned to another global variable CPU Level
introduced in Table 5.3 if the request is accepted.

Notice that the two channels, turnOn! and turnOff!, are not limited by any timing
guards. The reason is that they are top priority actions in most systems. Therefore,
any process can be interrupted by turning off the smart phone. This problem must be
always considered in all the automata except for committed locations.

The Application template

The Application template is a generic template with an input parameter, simulating
different applications of the smart phone or other similar systems. The automaton in
Figure 5.3 shows that each application has three states: Off, Wait and On. Off is
the initial state. It goes to state Wait when it is started by the user. startA[e]? in
Figure 5.3 is synchronized by startA[ID]! of the user, or the main controller which will
be introduced later. e is an appNo type variable to specify the current application to
be processed. Before an application goes to state Wait from state Off, it updates the
global variable appID to its own ID so that all the other parts of the system know
which application is in process. Then the application will wait for the feedback from
the admission control, which will be discussed later. The application could be either
accepted or refused due to limited resource, and it is able to reach state On only when it
is accepted. An application cannot transit from On to Wait. Instead, only On->Off is
possible when the application is stopped or the smart phone is turned off. The running
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Figure 5.3: The Application automaton of the smart phone model

status of each application is stored in the global variable onApp[3], where ”true” means
the corresponding application is on and ”false” means the corresponding application is
off.

The Resource template

Figure 5.4: The Resource automaton of the smart phone model

The Resource template is designed in a generic way in order to fit all types of re-
sources. It is the core of the entire UPPAAL model of the smart phone example because
the major part of the resource allocation mechanism is integrated in the Resource tem-
plate.

Figure 5.4 depicts the Resource automaton, which is the most complex one among all
the automata of this smart phone model. As was mentioned before, the input parameter
R id distinguishes the CPU and network resources (0 for CPU resource and 1 for network
resource). Despite the complexity, each resource switches only between two stable states:
Sufficient and Insufficient. Sufficient is the initial state for no applications are
occupying any resource before the system starts. When a new application starts running,
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each type of resource will be informed and checks its availability, stepping into the
committed location CheckResource. The function resourceChecking(e,R id) in Figure
5.4 considers three different cases:

• If the multimedia is neither running nor the new application, the feasibility of
QoS degradation becomes out of consideration. For each type of resource, the
new application is accepted if it consumes less than its total amount of available
resource.

• If the multimedia is the new application and its current QoS level of CPU or
bandwidth is higher than the minimum, there will be a higher chance for it to
be accepted. If one type of resource is not sufficient to accept the multimedia
application, we check the resource for another round by applying QoS degradation.
The multimedia application is refused only when the resource is still insufficient
and no further QoS degradation can take place.

• If the new application is not the multimedia, which yet is a currently running appli-
cation, the QoS degradation of the multimedia application increases the likelihood
of accepting the new application.

After checking the resource availability, each type of resource will report its own
status to the Admission Control (AC) which will then make a decision to either accept
or temporarily reject this new application. In Figure 5.4, ROK![R id] means the re-
source indexed by R id is sufficient for this new application while RNOK![R id] implies
insufficiency. Once a type of resource reports its insufficient status, it falls into state In-
sufficient. If the resource is sufficient for a new application, it may receive the ”pass”
signal from the AC soon. Then the new application is accepted, consumes resources
(realized by the function resourceTaking(e,R id) in Figure 5.4) of different types and
starts running.

In previous subsections, we have mentioned that both the CPU and network re-
sources have three levels. The CPU resource level is changed by the user and the
network resource level changes automatically in an unpredictable manner. The channel
changeLevel? in Figure 5.4 is synchronized together with the user. The guard R id==0
makes sure that only the CPU resource responds to this synchronization. The function
CPUlevelAdjust(), which is line with the resource allocation mechanism described in
Section 5.2.2, examines four cases:

• If the CPU level is raised, the change request is undoubtedly accepted. Meanwhile,
the possibility of QoS upgrade of the multimedia application is checked due to the
increased CPU resource.

• The CPU level is lowered, but the currently occupied CPU resource by running
applications are no more than the total available CPU resource at the new level.
Then the change request is also accepted without affecting any running applica-
tions.

• The CPU level is lowered and the currently occupied CPU resource by running
applications are more than the total available CPU resource at the new level.
However, the multimedia application is running at a high QoS level. The change
request is only rejected when the QoS degradation still fails to release enough CPU
resource.

• If none of the above three cases are encountered, the change request is rejected at
once.
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The bandwidth change is simulated as a sporadic event with a minimal interval of 50
time units. It is realized by assigning a local variable level (an integer ranging from 1 to
3) to the global variable BW Level. The function BWlevelAdjust(level) implements the
resource allocation mechanism to adapt the changing bandwidth and it is very similar to
CPUlevelAdjust() as also four cases are considered. Nevertheless, the bandwidth change
request can never be rejected. If the system becomes devoid of network resource after
the bandwidth level is lowered, in the worst case, no resource allocation mechanism
being able to overcome this situation, one or even more running applications must be
terminated by force. This corresponds to the loop linked with two committed locations
Temp1 (or Temp3 in the other loop) and Temp2 (or Temp4 in the other loop). The
network resource is checked again every time a running application is terminated until
BWchangeOK is true, indicating enough network resource is released.

The AdmissionControl template

Figure 5.5: The AdmissionControl automaton of the smart phone model

The AdmissionControl template is in charge of the admission of a new application.
An AC may adopt different policies to decide whether a new application should be
accepted or not. In our model, the policy is fairly simple. The AC awaits the reports
from all types of resources. The new application is accepted only if all these reports
indicate the resource sufficiency. Otherwise, the new application will be temporarily
refused. To implement this strategy, only three states suffice to consider all possible
cases. These three states are Normal, RChecking and Reject in Figure 5.5. As a
matter of fact, only Normal is the stable state while the other two are intermediate
states. Once a new application arrives, a local counter of the AC will keep track of the
number of reports to determine if all the resources have reported their own statuses.
In our model, we assumes that the reports from all resources to the AC can never get
lost. Reject is a state which indicates that at least one type of resource is insufficient
after the arrival of the new application. RChecking is a state which indicates that
all the reports already received are positive. However, state RChecking does not
guarantee the acceptance of the new application. Before receiving the reports from all
the resources, RChecking may transit to state Reject as the AC receives the first
negative report. When the counter reaches the number of resource types, the AC makes
its decision by either accepting or temporarily refusing the new application, based on
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which temporal state it belongs to. Only the transition RChecking->Normal will lead
to the acceptance of the new application. Nevertheless, the AC does not have the final
saying of the rejection of a new application. If the resource is still insufficient even after
QoS degradation, the new application is refused temporarily, indicated by the channel
refuseTemporal[appID]! in Figure 5.5. Later on we shall see that a new application that
has been temporarily rejected may still be accepted eventually.

The Controller template

Figure 5.6: The Controller automaton of the smart phone model

The Controller template simulates the scheduling policy of the main controller. In
Figure 5.6, we distinguish three main states: Off, Idle and Occupied. The main
controller is in state Off when the smart phone is off. State Idle implies that the
smart phone is on but none of the three main applications is running. If at least one of
these three applications is running, the controller must be in state Occupied. A local
variable counter keeps tracking the number of running applications so that the controller
state can switch between Idle and Occupied. The consistency between counter and
the controller state should be guaranteed. Every time a new application passes the
admission control or an old application terminates, the counter is updated accordingly.
Obviously, counter should be 0 while the controller is in state Idle.

A special case is that when the AC refuses a new application temporarily, the main
controller explores further chances to accept it. This corresponds to the function schedul-
ing(e) in Figure 5.6. scheduling(e) implements a priority-based and non-preemptive
scheduling policy. After a new application is temporarily rejected, the main controller
first tries to find whether a stoppable application with lower priority is running. Simul-
taneously, a local boolean variable stillRefuse is updated by the function scheduling(e).
If such an application does not exist, the new application must be rejected at once. If
such an application exists, that application is terminated due to less importance and
stillRefuse is set to false. This case is presented by the switch from state Scheduling to
state Retry. While an application is terminated in this way, the main controller checks
if there is still any running application via the function CheckIdle(). This information
is required to know the next state, either Idle or Occupied. Actually the state loop
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formed by Occupied, Scheduling and Retry contains an iterative procedure. The
resource availability is examined after a low-priority stoppable running application is
terminated until the new application is accepted or rejected. The channel startA[appID]!
initiated by the main controller enables the next round of scheduling. We should notice
that startA[appID]! can be initiated by both the user and the main controller. They
have different purposes, yet for each application and each type of resource, the origin of
startA[appID]! does not matter.

5.2.4 Property verification

A model is built to satisfy the requirements on the object that is being modeled. There-
fore, the correctness of a model must be checked during its design. UPPAAL uses a
simplified version of CTL (Computation Tree Logic) [6] to describe model properties
which will be verified by the built-in model checker. The most common properties can
be classified into reachability, safety, and liveness.

Our smart phone model has been validated through the verification of quite a number
of properties. Due to the model complexity, there is no guarantee that the model is
completely free of any potential problem. However, most desired functionalities of the
smart phone are correctly verified in our model according to the following properties.

Property 1: A[] not deadlock Satisfied
There is no deadlock in this UPPAAL model. It is an essential property that should
be verified before all the other properties. This property must be satisfied without any
compromise.

Property 2: E<> Resource(1).Temp2 Satisfied
This is a typical reachability property. We have proved that the state Temp2 in Fig-
ure 5.4 is reachable for the network resource. As we already mentioned, Resource(0)
corresponds to the CPU resource and Resource(1) corresponds to the network resource.
Let’s consider one possible scenario leading to the state Temp2 of Resource(1). The
bandwidth level degrades from 2 to 1 while all the three applications are running. As a
consequence, the network resource becomes insufficient and the multimedia application
must be terminated to adapt the new bandwidth level. As the multimedia application
is terminated, Resource(1) reaches state Temp2.

Property 3: E<> Resource(1).Temp3 Satisfied
Similar to Property 2, this property tests whether the state Temp3 of Resource(1) can
be reached. Its satisfaction is evident from Figure 5.4.

Property 4: E<> Resource(1).Temp4 Not satisfied
This property is interesting because the state Temp4 of Resource(1) turns out to be
unreachable. However, this does not imply any model design error. Instead, the rea-
son derives from the parameters of the smart phone model, listed in Table 5.1 and
5.2. The network resource, i.e. Resource(1), only goes to state Insufficient while the
bandwidth level is 1. Hence, the bandwidth level cannot decrease further as long as Re-
source(1) is in state Insufficient. And the increase of the bandwidth level will not lead
to the termination of any running application. As a result, Resource(1) will never reach
Temp4. Nevertheless, if the values in Table 5.1 and 5.2 are modified with thoughtful
consideration, Temp4 may be reachable for the network resource.

Property 5: A[] totalResource[0]<=9 Satisfied
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The available CPU resource is always no more than 9. From Table 5.2, we notice that
the upper bound of the available CPU resource is 9, which can never be exceeded.

Property 6: A[] totalResource[1]<=5 Satisfied
The available network resource is always no more than 5. From Table 5.2, we notice that
the upper bound of the available network resource is 5, which can never be exceeded.

Property 7: E<> (OnApp[0] & OnApp[1] & OnApp[2])==true Satisfied
It is possible that all the three applications run simultaneously. By referring Table 5.1
and 5.2, we know that all the three applications can run at the same time as long as the
CPU level and bandwidth level are both higher than 1.

Property 8: A[] forall (i:appNo) Application(i).Wait imply appID==i Satisfied
Whilst an application is waiting for the answer from the AC, the global variable appID
indicates its own application ID. For the AC, only one application is in process at a
time.

Property 9: A[] Controller.Idle imply (OnApp[0] |OnApp[1] |OnApp[2])==false Satisfied
While the main controller is in state Idle, no application should be running. Otherwise,
if at least one application is running, the main controller will be in state Occupied.

Property 10: A[] Controller.Idle imply Controller.counter==0 Satisfied
This property checks the consistency between the state and the local counter of the
main controller. The satisfaction of Property 9 indicates that no application is running
if the main controller is in state Idle. Property 10 offers a supplement, claiming that
the local counter of the main controller is zero in state Idle.

Property 11: A[] AdmissionControl.counter<=2 Satisfied
The local counter of the AC should never exceed 2. This counter expresses how many
types of resources have reported their availability for the new arriving application. In
this smart phone example, there are only two types of resources, the CPU resource and
network resource. Therefore, the local counter of the AC is always no more than 2.

Property 12: E<> Controller.counter==3 Satisfied
As a matter of fact, this property is equivalent to Property 7. The local counter of the
main controller expresses how many applications are running. Since it is possible that
all the three applications can run at the same time as per Property 7, the local counter
of the main controller can be 3 as well.

Property 13: Application(0).Wait –> Application(0).On Not satisfied
This is a liveness property. If an application is in state Wait, will it eventually reach
state On? In other words, if a new application is waiting for the answer from the AC,
will it be accepted sooner or later? This property is not satisfied due to the ”Turn
off” command of the user. In Figure 5.3, the channel turnOff? from Wait to Off can
prevent an application from reaching state On.

Property 14: A[] forall (i:R type) Resource(i).Sufficient imply enough[i]==true Satisfied
For either the CPU resource or the network resource, state Sufficient implies the re-
source sufficiency of that type. The global variable enough[2] has been introduced in
Table 5.3.
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Property 15: A[] forall (i:R type) Resource(i).Insufficient imply enough[i]==false Satisfied
Similar to Property 14, for each type of resource, state Insufficient implies resource
insufficiency.

Property 16: A[] Controller.Scheduling imply (enough[0] & enough[1])==false Satisfied
If the main controller is in state Scheduling, at least one type of resource is insufficient
for the new arriving application. Apparently, if at least one of enough[0] and enough[1]
is false, (enough[0] & enough[1]) will be false. It is not hard to predict the verification
result of this property. The main controller goes to state Scheduling because a new
application is temporarily refused by the AC. And this temporal rejection is due to the
insufficient resource.

Property 17: E<> Resource(1).Insufficient and (forall (i:appNo) OnApp[i]==false) Not
satisfied
Is it possible that the network resource is in state Insufficient while no application is
running? This property is not satisfied because any type of resource is in state Suf-
ficient if no application is running. We will get the same verification result even if
”Resource(1)” is replaced by ”Resource(0)”.

Property 18: AdmissionControl.Reject –> AdmissionControl.Normal Satisfied
If the AC is in state Reject, it will eventually reach state Normal. From Figure 5.5,
we notice that all outgoing edges from Reject lead to either Reject itself or Normal.
Once the AC receives the reports from both the CPU and network resources, it will
eventually go to state Normal from state Reject.

Property 19: AdmissionControl.RChecking –>AdmissionControl.Normal Satisfied
If the AC is in state RChecking, it will eventually reach state Normal. From Figure
5.5, we notice that all outgoing edges from RChecking lead to RChecking itself, Re-
ject or Normal. If both reports from the CPU and network resources are positive, the
AC will go to state Normal from RChecking eventually. If the AC transits to state
Reject due to a negative resource report, the AC will eventually go to Normal, too.
This has been proved in Property 18.

Property 20: E<> (forall (i:appNo) OnApp[i]==true) and videoLevel[0]==3 and
videoLevel[1]==2 Satisfied
It is possible that all the three applications are active with the multimedia application
running at highest QoS level, i.e. Level 3 for the CPU resource and Level 2 for the
network resource. After the analysis of Table 5.1 and 5.2, we come to know that this
scenario can happen while both the CPU resource level and the network resource level
are upgraded up to 3.

Property 21: A[] ((forall (i:appNo) OnApp[i]==true) and videoLevel[0]==3 and vide-
oLevel[1]==2) imply (CPU Level==3 and BW Level==3) Satisfied
This property follows Property 20 directly. If the scenario described in Property 20
really exists, does it mean that both the CPU and network resource levels must be 3?
The verification result tells us that this is true. Only top resource levels will satisfy
Property 20.
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5.2.5 Discussion

We have modeled a smart phone in UPPAAL, aiming at demonstrating how an AES
typically behaves. The smart phone model presents techniques such as dynamic re-
source re-allocation and graceful QoS degradation. We should remember that the smart
phone is just a case study in our model, whose generality enables it to describe many
other similar systems with arbitrary number of applications and resource types. The
resource allocation mechanism and scheduling policy can be easily altered to generate
various versions of this model. The model complexity is not sensitive to the number of
applications and resource types because all the automata remain almost unchanged. In
contrast, only global variables and the values in Table 5.1 and 5.2 need to be modified.
However, the property verification time grows exponentially as the application number
and resource type rise. Any kind of possible model simplification will be desired.

5.3 Case study 2: The UPPAAL modeling of an object-
tracking robot

In this section, we turn to another UPPAAL model: an object-tracking robot. As an-
other typical AES, the robot model demonstrates how hardware redundancy contributes
to adaptive fault tolerance as well as other issues concerning adaptivity. Section 4.5 has
already described this problem, but the robot model will be much more concrete. Next
we shall focus on the main functionalities of the robot and its UPPAAL model design.
Just like the smart phone model, the robot model possesses certain generality so that it
is able to simulate other similar AESs.

5.3.1 Functionalities and adaptivity of the robot

The robot may be capable of fulfilling various missions, but our focus here is its object
tracking function. The robot is equipped with a group of localization sensors in order
to keep track of moving objects. These localization sensors are identical and work
simultaneously. We typically call this sensor fusion technique. The purpose of this
type of hardware redundancy is to achieve both fault tolerance and high accuracy. The
final sensor value is the average of all sensor readings. On the one hand, this improves
accuracy. On the other hand, if one sensor is broken due to some reason, the other
sensors can still provide a decent result. Since the reading of the broken sensor may
deviate a lot from the readings of other normal sensors, it will negatively affect the final
result. As an AES, the robot should immediately notice this anomaly and isolate it
from the system by deactivating the faulty sensor. Once we turn off a faulty sensor, its
wrong reading will not jeopardize the final result, and another benefit is that the power
consumption will be reduced.

The robot works in different modes. What we concern most is the object tracking
mode. We assume that none of those localization sensors are used in any other mode
rather than the object tracking mode and they should be turned off automatically to
save power. The adaptivity is reflected from the dynamic switch of hardware component
availability due to the malfunction of a single sensor or mode switch.

Furthermore, the sampling rate of each localization sensor can also be adaptive.
While the moving object is far away, low sampling rate is preferred to save power. In
contrast, as the robot is approaching to the moving object, higher sampling rate is
expected because tracking the object becomes more urgent at a closer distance.
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5.3.2 The UPPAAL model of the robot

Our robot model is composed of four templates: user, robot, sensor, and controller.
First it is necessary to present the architecture of our robot model. The architecture
denotes how these four templates relate to each other. Then we introduce the key global
variables, each template, and the property verification, respectively.

The model architecture

Figure 5.7: The architecture of the object-tracking robot model

Our model consists of four components, user, robot, sensor and controller, with
each component as one template. There are frequent interactions and tight relationship
between these components. Figure 5.7 illustrates the model architecture, showing how
different components are connected with each other. There are altogether N sensors
(N=3 here) and they all belong to the same ”Sensor” component. The user can turn
on or turn off the robot and change its operational mode. Since our focus is the object
tracking mode, other modes are invisible in Figure 5.7. In the object tracking mode,
each non-broken sensor reports its own reading to the controller periodically. Then the
controller will calculate the final value, i.e. the average of all available sensor readings in
our model, and tell the robot to enter the next sampling period. The average obtained
from the controller is the criterion to find out the faulty sensor with too much deviation.
In our model, we can pick up at most one faulty sensor each time and this faulty sensor
must be isolated from the rest of the system.

Key global variables

The global variables will be shared and accessed by the entire model. Table 5.4 enumer-
ates the most important global variables of the robot model together with some short
explanations. More details and all the global variables can be found in the appendix
and the source code.

There are a few more comments deserving to be mentioned for Table 5.4:

45



Global variable Type Additional notes

initSV int[1,3]
This global variable will be explained in the following

paragraph.

Svalues[3] sensorValue The readings of all localization sensors.

sensorStatus[3] int[0,2] The status of each sensor. 0: Off; 1: On; 2: Broken

sampling[3] bool
To specify if a sensor can report its reading during

each sampling period.

samplingRate[3] int[0,12]
The sampling rate of each sensor, depending on how

far the moving object is.

distance int[8,10] The distance between the robot and the moving object.

Table 5.4: The key global variables of the object-tracking robot model

• As the UPPAAL syntax denotes, int[1,3] defines an integer type within the range
of [1,3]. This has also been explained in the smart phone model.

• The sensorValue type is a user-defined type, equivalent to int[0,5] here, specifying
the range of the sensor readings.

• In our model, only three localization sensors are used to simplify the model com-
plexity. Therefore, in the arrays with three elements such as Svalues[3], sensorSta-
tus[3] and samplingRate[3], each element corresponds to one sensor. There could
be more sensors in real applications, but the principle is the same as in this simple
model.

• Due to the fact that there exist slight differences among those sensor readings, we
should simulate those similar but different values in our model. This is realized
by a common base value and a variable offset for each sensor. All sensors have the
same base value but different offsets. Both the base value and offset can change
within their own ranges during each sampling period. initSV is the base value,
from 1 to 3. Although in reality this range is definitely too small, it is preferred
for a model where complexity is not favored. In later sections, we shall see that
the offset for each sensor ranges from -1 to 2. By combining initSV and the offset,
we figure out that the range of each sensor reading falls between 0 and 5.

• The actual range of samplingRate[3] is from 10 to 12 for a normal sensor. However,
once a sensor is broken, its sampling rate becomes 0. Thus the possible sampling
rates are 0, 10,11 and 12.

• Just like the smart phone model, all the values of these variables are conceptual
as they are only used to demonstrate adaptive scenarios.

The User template

The User template simulates how the user manipulates the robot, with Figure 5.8 illus-
trating its automaton. The user can start or stop running the robot by turning it on
or off. Besides, the user can also manually change the operational modes of the robot.
The robot may have lots of different operational modes, however, in our model we only
consider those activities taking place in the object tracking mode. That is why the User
automaton only has four states. Apart from states Off, Idle, and TrackingMode, all
the other modes belong to OtherModes. The activities in other modes and the mode
switch among them will not be considered here. The clock x and the timing guard
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Figure 5.8: The User automaton of the object-tracking robot model

x>=300 are used to make sure that the duration of the object tracking mode for the
robot is long enough. Now that we only concern this mode, we don’t expect this mode
to be interrupted by other modes too frequently.

The Robot template

Figure 5.9: The Robot automaton of the object-tracking robot model

The robot has direct interactions with the user. Especially, it has exactly the same
states as the user, as is indicated by the Robot automaton in Figure 5.9. n:int[1,3]
generates an integer from 1 to 3 at random and assigns this integer to the global variable
initSV. The value of initSV is updated in this way after each sampling period. The
sampling period is defined as the interval during which all non-broken sensors report
their readings to the controller. We shall see that nextPeriod? is a signal issued from
the controller when we explain the Controller template later. This signal forces the
robot and all non-broken sensors to enter the next sampling period. Furthermore, the
robot is responsible for telling the sensors to adapt their sampling rates to the changing
distance between itself and the object being tracked. The closer distance, the higher
sampling rate and the other way round. When the distance is changed, the robot will
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notify the sensors through the channels closer! and farther!. The frequency of the
distance change is unpredictable in reality, nonetheless, we specify that the distance can
increase or decrease at most once during each sampling period. This is realized by the
boolean variables closerP and fartherP. The guards in Figure 5.9 also guarantee that
the distance won’t exceed the range [8,10].

The Sensor template

Figure 5.10: The Sensor automaton of the object-tracking robot model

The Sensor template simulates a group of localization sensors of the robot. It has
one input parameter const sensorIndex s id, which distinguishes each sensor from the
other sensors. A Sensor automaton typically has three states, Off, On and Temp,
shown in Figure 5.10. State Temp, which is also a committed location, expresses no
substantial meaning but is only used for UPPAAL model design. The global variable
sensorStatus[3] in Table 5.4 has clarified that a sensor has three statuses: Off, On and
Broken. This may imply inconsistency because no Broken state exists in the Sensor
automaton. However, the Broken status is actually included in state Off. We do it in
this way for the sake of model simplicity as each extra state may make the verification
time grow exponentially.

The switch from Off to On is quite straightforward. The initial sate is Off. While
the sensor is informed that the robot enters the object tracking mode, it switches to
state On as long as it is not broken. The guard sensorStatus[s id]==0 guarantees that
a broken sensor will not be activated. In the object tracking mode, all non-broken
sensors work according to the uniform sampling period. During each sampling period,
we assume that a non-broken sensor must report its reading to the controller once. The
guard sampling[s id] makes use of the global boolean variable sampling[3] explained in
Table 5.4. The purpose is to avoid the case that a sensor reports its reading to the
controller more than once during each sampling period. Once a sensor has reported its
reading to the controller during the current sampling period, sampling[s id] will be set
to false. In fact, sampling[3] functions in the same way as fartherP and closerP in the
Robot automaton.

The function sensorValue(s id,n) generates a sensor reading randomly within a spec-
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ified range. A sensor reading is the sum of the common base value initSV (ranging from
1 to 3) and the offset (ranging from -1 to 2). Since the offset of each sensor may differ,
all non-broken sensors will usually report similar but slightly different readings. This is
how our model simulates the real sensor readings.

Besides reporting the reading to the controller, a sensor may also change its own
sampling rate when the robot informs it that the distance to the moving object is
changing. The functions increaseSR(s id) and decreaseSR(s id) are in charge of ad-
justing the sampling rate of a sensor according to the updated distance. We have a
different assumption of the sampling rate adjustment compared with the sensor reading
report. During each sampling period, while a sensor reading report is compulsory for a
non-broken sensor, the sensor sampling rate can be updated once due to the changing
distance or not updated at all.

The switch from On to Off can be triggered by different conditions. When the
entire system is deactivated, or the robot starts working in another operational mode,
all the localization sensors will be turned off to save power. In addition, if a sensor is
detected to be faulty, it also enters state Off. The key difference is that its status will
be Broken and its sampling rate is reset to 0. Once a sensor is broken, it will never be
used again in our model, which yet can be extended by introducing some fault recovery
policy so that a faulty sensor can be reused.

The Controller template

Figure 5.11: The Controller automaton of the object-tracking robot model

The Controller template is the most intelligent part of the robot. It collects the
readings from all non-broken sensors, calculates the final sensor value and detects faulty
sensors in time. Figure 5.11 presents the Controller automaton. Normal is the initial
and steady state. The controller should always be in this state at the beginning of each
sampling period. Upon receiving the first reading report from a localization sensor, the
controller changes its state to Waiting and waits for the reading reports from the other
non-broken sensors. A local counter records the number of reading reports that have
been received. In our model, we assume that the reading report from each sensor to
the controller can never get lost. When the local counter denotes that all the expected
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reading reports have been received, it is time for the controller to calculate the average
value and detect the potential faulty sensor. The function fusion() decides what policy
is adopted to get the final sensor value based on these readings. The current policy here
is quite straightforward. The final sensor value is the average of all readings during each
sampling period. Then each reading is compared with this average, and their difference
is stored as an offset in an array. The maximal offset will be selected, however, since at
most one faulty sensor can be detected each time, we ignore the case where two or more
equivalent maximal offsets are found. If we indeed discover the single maximal offset, we
realize that the corresponding sensor has reported the least accurate reading during this
sampling period. Nevertheless, this does not necessarily imply that this sensor is faulty.
We still need to check if this maximal offset is above a pre-defined threshold, which is
1 in our model. If the offset being checked is bigger than the threshold, the reading
error will be beyond the tolerance of the system and this sensor will be considered to
be faulty.

In Figure 5.11, there are two outgoing branches from state Temp. The local boolean
variable normal decides which branch the controller should take after processing fu-
sion(). On most occasions, no faulty sensor is found and normal is true. Thereafter
the controller informs the robot to enter the next sampling period and all non-broken
sensors will be aware of this at once. In case that a faulty sensor is detected, normal
will be false and the signal broken[BsensorNo]! in Figure 5.11 will be sent from the
controller to the faulty sensor. After this faulty sensor is shut down, the robot enters
the next sampling period.

5.3.3 Property verification

Compared with the smart phone model, the robot model is relatively less complex. We
have verified 13 properties and except for the last one, all the other 12 properties are
satisfied.

Property 1: A[] not deadlock Satisfied
There is no deadlock in this UPPAAL model. This property must be satisfied.

Property 2: E<> Controller.Temp2 Satisfied
This is a typical reachability property. State Temp2 of the Controller automaton
implies a faulty sensor is detected. If this state is reachable, it will be certain that some
scenarios can lead to the discovery of a faulty sensor. The satisfaction of this property
is desired because it is impossible to demonstrate the major adaptivity of the robot
without detecting a faulty sensor.

Property 3: A[] M>=2 && M<=3 Satisfied
This property is based on our assumption: When there are only two non-broken sensors
left, we would never be able to know which one is faulty. Hence neither of them should
be turned off. Instead, both of them are considered to be in good condition and their
average is the final sensor value. The global variable M here is the number of non-
broken sensors. In our model, we define three localization sensors. Therefore, M should
be either 3 or 2. In other words, at most one sensor can be faulty.

Property 4: A[] (sensorStatus[0]+sensorStatus[1]+sensorStatus[2])<5 Satisfied
This property essentially has the same purpose as Property 3. Out of the three sensors,
at most one can become faulty. The global variable sensorStatus[3] has been shortly
explained in Table 5.3. For a sensor indexed by i, sensorStatus[i]==0 means off, sen-
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sorStatus[i]==1 means on and sensorStatus[i]==2 means broken. Then we are sure
that the maximal value of sensorStatus[i] is 2. Property 4 verifies the upper bound of
(sensorStatus[0]+sensorStatus[1]+sensorStatus[2]). The verification result tells us their
sum will never reach 5. When two sensors are working and the third sensor is broken,
the sum is 4. Yet 5 requires that at least two sensors are broken. According to Property
3, this is impossible in our model. Therefore, Property 4 does not break the consistency
with Property 3.

Property 5: A[] Controller.counter>=0 && Controller.counter<=3 Satisfied
The local counter of the controller always falls into the interval [0,3]. In Section 5.3.2,
we ever mentioned that the local counter of the controller increases by 1 as one sensor
reading report is received. When the number of received reading reports reaches the
number of non-broken sensors, i.e. M, the controller will no longer wait for any reading
report during the current sampling period. As a matter of fact, what the controller
will do next is to calculate the final sensor value and set the local counter to 0. We can
deduce that the upper bound of Controller.counter is M. Property 3 has proved that the
upper bound of M is 3, thus Controller.counter<=3 should always hold. Besides, the
increment of Controller.counter starts from 0. Our analysis is proved via the verification
of Property 5.

Property 6: A[] Controller.Normal imply Controller.counter==0 Satisfied
This property directly follows Property 5. The local counter should always be 0 whilst
the controller is in state Normal. The reason is that once the counter becomes 1 from
0, the controller must go to state Waiting upon receiving the first reading report.

Property 7: Controller.Waiting –> Controller.Normal Satisfied
This is the only one liveness property in our model. When the controller is in state
Waiting, it will eventually go to state Normal. This can be analyzed by observing
the Controller automaton in Figure 5.11. Starting from state Waiting, three outgoing
edges directly lead to state Normal. The invariant x<=4 ensures that the controller
will not stay in state Waiting forever. When all the reading reports are received, the
controller will be forced to go to state Temp, which is a committed location and will
go back to state Normal sooner or later.

Property 8: A[] (distance==8 && sensorStatus[0]==1) imply (samplingRate[0]==12) Satisfied
In our model, there is a clear mapping between the distance towards the moving object
and the sampling rate of each non-broken sensor. The initial distance is 10 and the
sampling rate associated with this distance of an active sensor is 10. When the distance
is decreased by 1, the sampling rate will be increased by 1 accordingly. To simplify the
model, the minimal distance is set to 8 here. From the given mapping, the corresponding
sampling rate should be 12. If this property were denied somehow, there would be some
potential mapping problem. Fortunately, we did not encounter such a problem. Here
we only tested the sensor indexed by 0. The verification result will be exactly the same
for the other two sensors.

Property 9: E<> distance==8 Satisfied
This property is complementary to Property 8. Property 8 assumes that distance==8
can happen, but is it really possible? Property 9 confirms this assumption. The desired
behavior is that distance can fluctuate between 8 and 10.

Property 10: A[] (Robot.Off‖Robot.Idle‖Robot.OtherModes) imply (forall (i:sensorIndex)
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sensorStatus[i]!=1) Satisfied
This property intends to demonstrate one type of adaptivity. While the robot is not
in the object tracking mode, no localization sensors should be active because they only
work to track objects. The robot is supposed to be adaptive enough to switch the opera-
tional status of its localization sensors automatically during a mode switch, contributing
to much less power consumption without compromising any functionality.

Property 11: A[] User.TrackingMode imply Robot.TrackingMode Satisfied
The User automaton (Figure 5.8) and the Robot automaton (Figure 5.9) exactly share
the same states. That is to say, the robot is always synchronized to the state where
the user stays. Property 11 examines their consistency in state TrackingMode, which
represents the object tracking mode and deserves most attention. The synchronization
between the user and the robot is rather simple, i.e. by UPPAAL channels.

Property 12: A[] sensorStatus[0]==2 imply Sensor(0).Off Satisfied
When a sensor is faulty, it will stay in state Off forever. This property checks the
consistency between the global variable sensorStatus[3] and state Off of the Sensor
automaton. The same is true of the other two sensors.

Property 13: A[] sensorStatus[0]==2 imply (Controller.average==(Svalues[1]+Svalues[2])/2) Not
satisfied
This is the only one property that is not satisfied. Yet the reason does not lie in the
model design problem. If a sensor is faulty, the final sensor value will be the average
of the other two non-broken sensors. This seems to make sense, however, there is still
one exception. Controller.average, Svalues[1] and Svalues[2] are all variables which are
updated at different moments. Since the update of different variables must follow some
sequence, there is always an intermediate moment when en equation with variables on
both sides does not hold. For instance, when the variables on the left side are updated
but the variables on the right side are not, the balance of an equation will be temporar-
ily broken due to inconsistency problems. Controller.average is calculated at the end
of each sampling period. When a sensor is found to be faulty, its status is changed but
Controller.average will not be updated until the next sampling period. Anyway, our
purpose is to ensure that a faulty sensor will not contribute to the final sensor value any
more. Property 12 has verified this indirectly. Now that a faulty sensor will always stay
in state Off, it will not report its reading to the controller, thus the final sensor value
will only depend on the other two sensors.

5.3.4 Discussion

We have modeled an object-tracking robot by UPPAAL, demonstrating another type of
AES. This model is generic enough to describe many other similar systems with hardware
redundancy and multi-operational modes. The localization sensors can be replaced by
any other type of sensors or even other hardware components for similar usage. And
the model allows arbitrary number (the minimum is 3) of sensors or other substitutes.
However, although three sensors work fine in our model, even one extra sensor will give
rise to a state explosion as a consequence. We have tested four sensors in the Windows
version of Uppaal-4.0.11 whose Hash table is set to maximum, yet we still ran out of
memory during the verification of the ”No deadlock” property. Theoretically speaking,
the model structure remains when the number of sensors increases, whereas much more
memory is required.
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In our model, we calculate the average of multiple sensor readings. This can be
extended to any other more complex algorithms and policies without affecting the model
structure. Many different criteria can be taken into consideration to find out a faulty
sensor.

Moreover, there is still some leeway for the robot to become more intelligent. For
example, in order to be robust against faults and errors, some kind of fault recovery
mechanism can be implemented so that a faulty sensor still has the chance to serve the
system.

53



Chapter 6

Related work

Besides the topics discussed in this report, quite a lot of other issues of AES have
been concerned in other publications. de Oliveira et al. [13] consider each reconfigu-
ration option as an optimization problem whose objective is to maximize the overall
system benefit. Two different models, the Integer Programming (IP) and the Linear
Programming (LP), are formulated and analyzed. Haase et al. [19] use SDVM (the scal-
able dataflow-driven virtual machine) as a virtualization layer for multicore-FPGAs with
support of dynamic reconfiguration. Noguera and Badia [32] present a dynamic schedul-
ing algorithm for multi-context platforms based on DRL (Dynamically Reconfigurable
Logic) architectures.

There is a growing trend for AESs to borrow techniques from control theory: Lu et
al. [30] present a Feedback Control real-time Scheduling (FCS) framework for adaptive
real-time systems. Lu et al. [29] also propose a framework based on control theory for
the design of adaptive, real-time software systems, whose performance is evaluated by
a few metrics borrowed from control systems. As an improvement of FC-EDF, a new
scheduling algorithm FC-EDF2 is designed by integrating two PID feedback controllers
with an EDF scheduler. Simões et al. [33] implement a Generic Algorithm, which is also
from control theory, to gradually adapt the system to environmental changes. Persson
et al. [39] analyze dynamic load balancing as a control problem while both feedforward
and feedback controllers are considered as load balancers. Shankaran et al. [44] explore
an adaptive resource management architecture with two feedback loops for both fine-
grained and coarse-grained adaptation levels.
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Chapter 7

Conclusion

We have carried out a research on Adaptive Embedded Systems (AESs) in this re-
port. After studying numerous adaptive applications, we concluded that an AES is
characterized by dynamic reconfiguration. Even though AESs can be demarcated into
miscellaneous types which differ a lot from each other, they are more or less related.
We proposed a conceptual view pointing out the key functional modules of a typical
AES, which must include monitor, controller and adapter. Following the same pattern
as the conceptual view, we also presented the overall architecture of both centralized
and distributed AESs.

we looked into a few existing techniques that made AESs possible. Our focus is
dynamic resource re-allocation and adaptive fault tolerance, which probably could be
implemented in a majority of AESs. A concurrent event that happens together with
dynamic reconfiguration is the mode switch. We additionally investigated the mode
switch problem at task levels, summarized the most common mode switch protocols
and analyzed schedulability during mode switch.

We have distinguished five types of AESs and come up with a general model for each
of them. The five types are:

• Operational mode switch

• Migration for fault tolerance and load balancing

• Multimedia communication with stable streaming

• Adaptive resource management and QoS degradation

• Dynamic HW/SW module composition

Actually, each type above is an instantiation of our conceptual architecture of AESs.
All five types share the same structure but represent different adaptive problems.

At the final stage of our research, we built concrete models for the last two types of
AESs, i.e. dynamic resource re-allocation and graceful QoS degradation, and dynamic
hardware component composition. The two models were both built by UPPAAL and
based on real case studies.

The first model simulates the adaptive behavior of a smart phone. Its dynamic re-
source allocation mechanism makes the system adaptive to its unstable resources that
can be utilized most efficiently. The graceful QoS degradation of its multimedia appli-
cation turns out to be an effective way of dealing with limited resources. The model is
built in a generic fashion so that it is not just dedicated to the smart phone example.
Instead, the model is able to represent a cluster of AESs where resources may change
dynamically online.
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The second model is an object-tracking robot. Its adaptivity lies in three aspects.
First, its localization sensors only work in the object tracking mode and are deactivated
automatically in other modes to save power. Second, the sampling rate of each local-
ization sensor is adjusted properly as the distance between the robot and the object
changes to some extent. The last type of adaptivity, also the most important one, is
that a faulty sensor can be detected and shut down immediately. For a system where
multiple redundant sensors are working simultaneously, this adaptive behavior can save
power and provide better results in comparison with ordinary systems. By virtue of the
model generality, the model is not just dedicated to the object-tracking robot. Instead,
it can also represent other similar AESs with homogeneous hardware redundancy.

In a word, AES is a new researching area and for sure it will be a future trend
deserving our great concern.
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Chapter 8

Appendix A: The complete
UPPAAL model of the smart
phone example

8.1 The global variable declaration

// This i s a model o f a smart phone . Three t y p e s o f f u n c t i o n s
are ana lyzed : the phone c a l l , the camera to record v ideo and

the mult imedia . Usua l l y the camera i s used o f f−l i n e and
does not consume any network resource , but we assume i t i s
used o n l i n e f o r the sake o f our a n a l y s i s . The mult imedia
c o n s i s t s o f o n l i n e v ideo and audio f u n c t i o n s . The d e t a i l o f
t h e s e a p p l i c a t i o n s i s summarized in the t a b l e be low :

// |CPU|BW | p r i o r i t y | s t o p p a b l e |
// C a l l | 2 | 1 | 1 | no |
//Camera( record v ideo ) | 2 | 1 | 2 | yes |
// Multimedia−−Leve l 3 |2 | 4 | 3 | 3 | yes |
//The d e f a u l t l e v e l f o r the v ideo a p p l i c a t i o n
// Multimedia−−Leve l 2 |1 | 3 | 2 |
// Multimedia−−Leve l 1 |1 | 2 | 2 |
// Tota l | 9 | 5 |−−−−Leve l 3
//The t o t a l a v a i l a b l e resource in terms o f CPU and network

bandwidth
// Tota l | 7 | 4 |−−−−Leve l 2
// Tota l | 5 | 3 |−−−−Leve l 1
const int M = 2 ; // resource t y p e s
const int N=3; //number o f a p p l i c a t i o n s
typedef int [ 0 ,M−1] R type ;
typedef int [ 0 ,N−1] appNo ;
bool OnApp [N]={ f a l s e , f a l s e , f a l s e } ; // the on/ o f f s t a t u s o f

each a p p l i c a t i o n
appNo appID=0;
const bool stoppableApp [N]={ f a l s e , true , t rue } ; //The phone

c a l l a p p l i c a t i o n i s non−s t o p p a b l e so t h a t i t cannot be
i n t e r r u p t e d by o t her a p p l i c a t i o n s

const int pr ior i tyApp [N]={1 ,2 ,3} ; //1 has the h i g h e s t p r i o r i t y
, f o r the phone c a l l

61



int [ 1 , 3 ] CPU Level=2; //The CPU resource i s a s s o c i a t e d wi th
t h r e e l e v e l s and the d e f a u l t l e v e l i s 2 . The CPU l e v e l can
be manually s w i t c hed by the user , but the user r e q u e s t cou ld

be denied i f too much CPU resource i s occupied .
int [ 1 , 3 ] newCPULevel ; //Only f o r programming purpose . I t i s

updated during the s y n c h r o n i z a t i o n between the user and
resource (0) .

int CPU R[N]={5 ,7 ,9} ; //The a v a i l a b l e CPU resource at each
l e v e l

int [ 1 , 3 ] BW Level=2; // S im i lar to the CPU resource , the
bandwidth resource a l s o has t h r e e l e v e l s and the d e f a u l t
l e v e l i s 2 .

int BW R[N]={3 ,4 ,5} ; //The a v a i l a b l e bandwidth resource at
each l e v e l

const int CYCLE=7; //The amount o f a v a i l a b l e CPU resource
at the d e f a u l t l e v e l

const int BANDWIDTH=4; //The amount o f a v a i l a b l e network
resource , i . e . bandwidth at the d e f a u l t l e v e l

int to ta lResource [M]={CYCLE,BANDWIDTH} ; // This array i s used
to s t o r e the c u r r e n t l y a v a i l a b l e r e s o u r c e s o f each type

bool enough [M]={ true , t rue } ; //To i n d i c a t e i f the CPU or
network resource i s s u f f i c i e n t or not c u r r e n t l y

int CPU occupy [N]={2 ,2 ,4} ; //CPU resource ID=0. Each element
corresponds to the consumption o f each a p p l i c a t i o n .

int BW occupy [N]={1 ,1 ,3} ; // Bandwidth resource ID=1. Each
element corresponds to the consumption o f each a p p l i c a t i o n .

const int CPUL MAX=3; //The maximal v ideo l e v e l r e g a r d i n g
CPU consumption

const int BWLMAX=2; //The maximal v i edo l e v e l r e g a r d i n g
bandwidth consumption

int [ 1 , 3 ] v ideoLeve l [M]={CPUL MAX,BWLMAX} ; // f o r M==0−−Leve l
1 : consumes 1 CPU u n i t ; Leve l 2 : consumes 2 CPU u n i t s ; Leve l

3 : consumes 3 CPU u n i t s
// f o r M==1−−Leve l 1 : consumes 1 bandwidth u n i t ; Leve l 2 :

consumes 2 bandwidth u n i t s
//The audio a p p l i c a t i o n always t a k e s 1 CPU u n i t and 1 bandwidth

u n i t . No QoS l e v e l i s r e l a t e d .
int [ 1 , 3 ] newVideoLevel [M]={CPUL MAX,BWLMAX} ; //Only f o r

programming purpose

chan turnOn ,ROK[M] ,RNOK[M] , re fuseTemporal [N] , r e f u s e [N] ,
changeLevel ;

broadcast chan turnOff , startA [N] , stopA [N] , pass [N ] ;

8.2 The User template

c l o ck x ;
appNo ID=0; //The user randomly s e l e c t s one a p p l i c a t i o n and

turns i t on/ o f f , depending on i t s s t a t u s .
int [ 1 , 3 ] l e v e l =2; //The user randomly s w i t c h e s the CPU l e v e l
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Figure 8.1: The User automaton of the smart phone model

from 1 to 3 . The i n i t i a l l e v e l i s 2 . This i s j u s t a temporal
v a r i a b l e and only the g l o b a l v a r i a b l e CPU Level p r e s e n t s

the current CPU l e v e l .

8.3 The Application template

Figure 8.2: The Application automaton of the smart phone model

There is no local declaration for the Application template.

8.4 The Resource template

c l o ck y ; //The bandwidth may change sometimes . We s i m u l a t e
t h i s as a s p o r a d i c event , whose minimal a r r i v i n g i n t e r n a l i s
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Figure 8.3: The Resource automaton of the smart phone model

l i m i t e d by the c l o c k .
int l e v e l =2; // This i s j u s t a temporal v a r i a b l e and only the

g l o b a l v a r i a b l e BW Level p r e s e n t s the curren t bandwidth
l e v e l .

bool BWchangeOK=true ; //To p r e s e n t i f the bandwidth change i s
OK wi thout a f f e c t i n g c u r r e n t l y running a p p l i c a t i o n s

appNo re l e a s e ID =2; // Since a bandwidth change r e q u e s t must
be accepted , some running a p p l i c a t i o n s may be terminated by
f o r c e to r e l e a s e some bandwidth resource to accommodate t h i s

degradat ion . This v a r i a b l e s p e c i f i e s which running
a p p l i c a t i o n i s go ing to be terminated .

bool degradeOK ( R type R id ) // I f the new a p p l i c a t i o n i s
mult imedia and the curren t v ideo l e v e l i s h i g h e r than the
minimum 1 , c a l l t h i s f u n c t i o n

{
int i=newVideoLevel [ R id ] ;
int temp ;
i f ( R id==0)
{

temp=CPU occupy [ 2 ] ;
}
else
{

temp=BW occupy [ 2 ] ;
}
while ( i >0)
{

i f ( to ta lResource [ R id]>=temp ) // There i s
enough resource l e f t f o r the c u r r e n t l y pending
a p p l i c a t i o n

{
return t rue ;

}
else // Degrade the v ideo l e v e l u n t i l the

resource i s enough or the v ideo l e v e l f a l l s to 1 .
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{
i f ( newVideoLevel [ R id ]>1)
{

newVideoLevel [ R id ]−−;
temp−−;

}
}
i−−;

}
return f a l s e ;

}

bool degradeOK2 (appNo A id , R type R id ) //Used i f the new
a p p l i c a t i o n i s not mult imedia and the mult imedia i s running
at l e v e l s h i g h e r than the bottom l e v e l s f o r d i f f e r e n t
r e s o u r c e s .

{
int i ;
int temp ;
int temp2=tota lResource [ R id ] ;
i f ( R id==0)
{

temp=CPU occupy [ A id ] ;
}
else
{

temp=BW occupy [ A id ] ;
}
for ( i=newVideoLevel [ R id ] ; i >0; i−−)
{

i f ( temp2>=temp )
{

return t rue ;
}
else
{

i f ( newVideoLevel [ R id ]>1)
{

newVideoLevel [ R id ]−−;
temp2++; // I s t h e r e enough resource

i f the v ideo l e v e l i s lowered ?
}

}
}
return f a l s e ;

}

void resourceCheck ing (appNo A id , R type R id ) //To check i f
the resource i s enough f o r a new a p p l i c a t i o n . I t updates

enough [ R id ] .
{
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int temp ;
i f ( R id==0)
{

temp=CPU occupy [ A id ] ;
}
else
{

temp=BW occupy [ A id ] ;
}
newVideoLevel [ R id ]= v ideoLeve l [ R id ] ;
i f ( A id==2 && newVideoLevel [ R id ]>1) // I f the new

a p p l i c a t i o n i s mult imedia and the current v ideo l e v e l i s
h i g h e r than the minimum 1

{
enough [ R id ]=degradeOK ( R id ) ; // Degradation can

be a p p l i e d i f necessary
}
else i f ( A id !=2 && OnApp [ 2 ] ) // I f the new a p p l i c a t i o n i s

not mult imedia but the mult imedia a p p l i c a t i o n i s
running

{
enough [ R id ]=degradeOK2 ( A id , R id ) ;

}
else // I f no mult imedia a p p l i c a t i o n i s i nvo l ve d , no

QoS degradat ion i s cons idered .
{

i f ( to ta lResource [ R id]>=temp )
{

enough [ R id ]= true ;
}
else
{

enough [ R id ]= f a l s e ;
}

}
}

void resourceTaking (appNo A id , R type R id ) // I f a l l t y p e s
o f r e s o u r c e s are enough f o r the new a p p l i c a t i o n a f t e r the
check ing process , t h i s new a p p l i c a t i o n i s accepted and the
corresponding r e s o u r c e s are consumed .

{
int l eve lChange=videoLeve l [ R id ]−newVideoLevel [ R id ] ; //

I f the l eve lChange i s not 0 , v ideo l e v e l must be lowered
.

i f ( R id==0) //CPU resource
{

i f ( A id==2 && leve lChange !=0)
{

v ideoLeve l [ R id ]=newVideoLevel [ R id ] ;
CPU occupy[2]−= levelChange ;
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to ta lResource [ R id]−=CPU occupy [ 2 ] ;
}
else i f ( A id !=2 && OnApp [ 2 ] ) //By d e f a u l t we

assume the v ideo l e v e l i s lowered , but i f i t i s
not , l eve lChange ==0. This branch s t i l l h o l d s .

{
v ideoLeve l [ R id ]=newVideoLevel [ R id ] ;
CPU occupy[2]−= levelChange ;
to ta lResource [ R id]+=levelChange ;
to ta lResource [ R id]−=CPU occupy [ A id ] ;

}
else
{

to ta lResource [ R id]−=CPU occupy [ A id ] ;
}

}
else // Network resource R id==1 Sim i lar s t e p s are

taken compared wi th CPU resource
{

i f ( A id==2 && leve lChange !=0)
{

v ideoLeve l [ R id ]=newVideoLevel [ R id ] ;
BW occupy[2]−= levelChange ;
to ta lResource [ R id]−=BW occupy [ 2 ] ;

}
else i f ( A id !=2 && OnApp [ 2 ] )
{

v ideoLeve l [ R id ]=newVideoLevel [ R id ] ;
BW occupy[2]−= levelChange ;
to ta lResource [ R id]+=levelChange ;
to ta lResource [ R id]−=BW occupy [ A id ] ;

}
else
{

to ta lResource [ R id]−=BW occupy [ A id ] ;
}

}
y=0;

}

void r e s ou r c eRe l ea s e (appNo A id , R type R id )
{

int temp ;
i f ( R id==0) //CPU resource
{

to ta lResource [ R id]+=CPU occupy [ A id ] ;
enough [ R id ]= true ;
i f ( A id !=2 && OnApp [ 2 ] ) //When an a p p l i c a t i o n r a t h e r

than the mult imedia i s terminated , the
mult imedia t r i e s to r e s t o r e the h i g h e s t v ideo
q u a l i t y
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{
temp=CPUL MAX−v ideoLeve l [ R id ] ;
temp=((temp<=tota lResource [ R id ] ) ?temp :

to ta lResource [ R id ] ) ;
v ideoLeve l [ R id]+=temp ;
CPU occupy[2]+=temp ;
to ta lResource [ R id]−=temp ;

}
}
else // Network resource R id==1
{

to ta lResource [ R id]+=BW occupy [ A id ] ;
enough [ R id ]= true ;
i f ( A id !=2 && OnApp [ 2 ] )
{

temp=BWL MAX−v ideoLeve l [ R id ] ;
temp=((temp<=tota lResource [ R id ] ) ?temp :

to ta lResource [ R id ] ) ;
v ideoLeve l [ R id]+=temp ;
BW occupy[2]+=temp ;
to ta lResource [ R id]−=temp ;

}
}
y=0;

}

void r e l e a s e A l l ( ) // This i s a ” r e s e t ” f u n c t i o n a p p l i e d when
the user turns o f f the smart phone . Some v a r i a b l e s shou ld be

s e t to the i n i t i a l v a l u e .
{

to ta lResource [0 ]=CYCLE;
to ta lResource [1 ]=BANDWIDTH;
CPU Level=2;
BW Level=2;
enough [0 ]= true ;
enough [1 ]= true ;
v ideoLeve l [0 ]=CPUL MAX;
v ideoLeve l [1 ]=BWLMAX;
CPU occupy [ 2 ] = 4 ;
BW occupy [ 2 ] = 3 ;
l e v e l =2;
// counter =0;
y=0;

}

void CPUlevelAdjust ( ) //The user can manually a d j u s t CPU
l e v e l

{
int occupiedCPU ; //To i n d i c a t e how much CPU resource has

been occupied
int temp , temp2 , temp3 ;
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int change=newCPULevel−CPU Level ;
occupiedCPU=CPU R[ CPU Level−1]− to ta lResource [ 0 ] ;
y=0;
i f ( change>0) // I f the CPU l e v e l i s r a i s e d and mult imedia

i s running , we can r a i s e i t s QoS l e v e l
{

CPU Level=newCPULevel ; //The l e v e l change r e q u e s t
i s accepted

to ta lResource [0 ]=CPU R[ newCPULevel−1]−occupiedCPU ;
//The c u r r e n t l y a v a i l a b l e CPU resource i s

updated due to the l e v e l change
i f (OnApp [ 2 ] && videoLeve l [0]<CPUL MAX)
{

temp=CPUL MAX−v ideoLeve l [ 0 ] ;
temp=((temp<=tota lResource [ 0 ] ) ?temp :

to ta lResource [ 0 ] ) ;
v ideoLeve l [0]+=temp ;
CPU occupy[2]+=temp ;
to ta lResource [0]−=temp ;

}
}
else i f ( occupiedCPU<=CPU R[ newCPULevel−1]) // I f CPU

l e v e l i s lowered and l e s s CPU resource has been occupied
than the t o t a l amount o f CPU resource at the new l e v e l

{
CPU Level=newCPULevel ; //The l e v e l change r e q u e s t

i s accepted
to ta lResource [0 ]=CPU R[ newCPULevel−1]−occupiedCPU ;

//The c u r r e n t l y a v a i l a b l e CPU resource i s
updated due to the l e v e l change

}
else i f (OnApp [ 2 ] && videoLeve l [0 ]>1)
// I f CPU l e v e l i s lowered and more CPU resource has been

occupied than the t o t a l amount o f CPU resource at the
new l e v e l and i t i s p o s s i b l e to degrade QoS l e v e l

{
temp=videoLeve l [ 0 ] ;
temp2=occupiedCPU ;
temp3=CPU occupy [ 2 ] ;
while ( temp>1)
{

temp−−;
temp2−−;
temp3−−;
i f ( temp2<=CPU R[ newCPULevel−1])
{

v ideoLeve l [0 ]= temp ;
occupiedCPU=temp2 ;
CPU Level=newCPULevel ;
t o ta lResource [0 ]=CPU R[ newCPULevel−1]−

occupiedCPU ;
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CPU occupy [2 ]= temp3 ;
}

}
}
else //The CPU l e v e l r e q u e s t i s r e f u s e d
{

newCPULevel=CPU Level ; //The CPU l e v e l remains the
same . The l e v e l change r e q u e s t i s denied

}
}

void BWlevelAdjust ( int newBWLevel ) //The bandwidth may change
i t s l e v e l s a u t o m a t i c a l l y due to the u n s t a b l e network

c o n d i t i o n
{

int l eve lChange=newBWLevel−BW Level ; // I t i s p o s i t i v e i f
the bandwidth c o n d i t i o n i s g e t t i n g b e t t e r , i . e . the
l e v e l i s r a i s e d

int occupiedBW=BW R[ BW Level−1]− to ta lResource [ 1 ] ; //To
i n d i c a t e how much bandwidth resource has been occupied

int i =2;
int temp , temp2 , temp3 ;
i f ( levelChange>=0)
// I f the network c o n d i t i o n i s g e t t i n g b e t t e r or l e s s

bandwidth resource i s occupied than the t o t a l amount o f
bandwidth resource at the new l e v e l

{
BWchangeOK=true ; //The bandwidth change i s

d i r e c t l y accepted , no running a p p l i c a t i o n s are
a f f e c t e d

BW Level=newBWLevel ;
t o ta lResource [1 ]=BW R[ newBWLevel−1]−occupiedBW ; //

The c u r r e n t l y a v a i l a b l e bandwidth resource i s
updated due to the l e v e l change

i f (OnApp[2]&& videoLeve l [1]<BWLMAX)
{

temp=BWL MAX−v ideoLeve l [ 1 ] ;
temp=((temp<=tota lResource [ 1 ] ) ?temp :

to ta lResource [ 1 ] ) ;
v ideoLeve l [1]+=temp ;
BW occupy[2]+=temp ;
to ta lResource [1]−=temp ;

}
return ;

}
else i f ( occupiedBW<=BW R[ newBWLevel−1])
{

BWchangeOK=true ;
BW Level=newBWLevel ;
t o ta lResource [1 ]=BW R[ newBWLevel−1]−occupiedBW ;
return ;
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}
i f (OnApp [ 2 ] && videoLeve l [1 ]>1) // I f the degraded

bandwidth must a f f e c t the running a p p l i c a t i o n s , check i f
the QoS l e v e l can be lowered f i r s t

{
temp=videoLeve l [ 1 ] ;

temp2=occupiedBW ;
temp3=BW occupy [ 2 ] ;
while ( temp>1)
{

temp−−;
temp2−−;
temp3−−;
i f ( temp2<=BW R[ newBWLevel−1])
{

v ideoLeve l [1 ]= temp ;
occupiedBW=temp2 ;
BW Level=newBWLevel ;
t o ta lResource [1 ]=BW R[ newBWLevel−1]−

occupiedBW ;
BW occupy [2 ]= temp3 ;
BWchangeOK=true ;
return ;

}
}

}
//The network c o n d i t i o n change cannot be denied , and some

running a p p l i c a t i o n s must be terminated to adap i t i f
necessary

BWchangeOK=f a l s e ;
while ( i>=0)
{

i f (OnApp [ i ] && stoppableApp [ i ] ) // low p r i o r i o t y
s t o p p a b l e running a p p l i c a t i o n s are p r e f e r r e d to be
terminated
{

r e l e a s e ID=i ;
i =−1;
return ;

}
i−−;

}
i f ( i !=−2) // I f no s t o p p a b l e running a p p l i c a t i o n s are

found , even s t o p p a b l e running a p p l i c a t i o n s shou ld be
terminated

{
i =2;
while ( i>=0)
{

i f (OnApp [ i ] )
{
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r e l e a s e ID=i ;
return ;

}
i−−;
}

}
}

8.5 The AdmissionControl template

Figure 8.4: The AdmissionControl automaton of the smart phone model

int counter =0; //The counter i s i n c r e a s e d by one each time i t
r e c e i v e s the OK/NOK r e p o r t from a resource

c l o ck x ;

8.6 The Controller template

// I f t h e r e i s no way o f r e l e a s i n g enough resource to accep t the
new a p p l i c a t i o n accord ing to the s c h e d u l i n g p o l i c y , t h i s

a p p l i c a t i o n must be r e j e c t e d .
bool s t i l l R e f u s e=true ;
appNo abortID ;
int [ 1 , 3 ] i=N;
int counter =0;
bool mark=true ;
bool i d l e=f a l s e ; //From l o c a t i o n ” Schedu l ing ” to ” Retry ” , an

a p p l i c a t i o n i s terminated . Then we shou ld check i f no
a p p l i c a t i o n i s running . This i s not necessary most ly because

i t on ly happens i f the system i s over loaded by j u s t two
a p p l i c a t i o n s .

//The s c h e d u l i n g p o l i c y implemented in t h i s model : I t i s
p r i o r i t y−based non−preempt ive s c h e d u l i n g . I f t h e r e i s no
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Figure 8.5: The Controller automaton of the smart phone model

enough resource f o r a new a p p l i c a t i o n , we f i r s t check i f
t h e r e are any running a p p l i c a t i o n s wi th lower p r i o r i t i e s ,
and then check i f they are s t o p p a b l e . I f the check ing r e s u l t

i s not empty , we can s t op t h o s e a p p l i c a t i o n s to r e l e a s e
resource . Each time only one a p p l i c a t i o n i s a l l o w e d to be
s topped and the lowes t−p r i o r i t y s t o p p a b l e running
a p p l i c a t i o n i s cons idered f i r s t .

// This s c h e d u l i n g p o l i c y i s not opt imal . There i s a r i s k t h a t
t h e r e i s s t i l l no enough resource f o r a new a p p l i c a t i o n even

a f t e r many oth er a p p l i c a t i o n s are s topped . However , t h i s
p o l i c y i s s t r a i g h t f o r w a r d and s imple to be implemented .

void s chedu l ing (appNo ID)
{

s t i l l R e f u s e=true ;
mark=true ;
i=N;
abortID=appID ;
i f ( pr ior i tyApp [ ID]<N)
{

while ( i>pr ior i tyApp [ ID ] && mark)
{

i f (OnApp [ i −1] && stoppableApp [ i −1])
{

abortID=i −1;
s t i l l R e f u s e=f a l s e ;

mark=f a l s e ; // break the i t e r a t i o n w h i l e ”
break ” syntax i s not suppor ted y e t

}
i−−;
}
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}
}

void CheckIdle ( )
{

i f (OnApp [ 0 ] | OnApp [ 1 ] | OnApp [ 2 ] )
{

i d l e=f a l s e ;
}
else
{

i d l e=true ;
}

}

8.7 Properties and verification results

Index Property
Verification

result

1 A[] not deadlock Satisfied

2 E<> Resource(1).Temp2 Satisfied

3 E<> Resource(1).Temp3 Satisfied

4 E<> Resource(1).Temp4 Not satisfied

5 A[] totalResource[0]<=9 Satisfied

6 A[] totalResource[1]<=5 Satisfied

7 E<> (OnApp[0] & OnApp[1] & OnApp[2])==true Satisfied

8 A[] forall (i:appNo) Application(i).Wait imply appID==i Satisfied

9
A[] Controller.Idle imply (OnApp[0] | OnApp[1] | On-
App[2])==false

Satisfied

10 A[] Controller.Idle imply Controller.counter==0 Satisfied

11 A[] AdmissionControl.counter<=2 Satisfied

12 E<> Controller.counter==3 Satisfied

13 Application(0).Wait –> Application(0).On Not satisfied

14
A[] forall (i:R type) Resource(i).Sufficient imply
enough[i]==true

Satisfied

15
A[] forall (i:R type) Resource(i).Insufficient imply
enough[i]==false

Satisfied

16
A[] Controller.Scheduling imply (enough[0] &
enough[1])==false

Satisfied

17
E<> Resource(1).Insufficient and (forall (i:appNo) On-
App[i]==false)

Not satisfied

18 AdmissionControl.Reject –> AdmissionControl.Normal Satisfied

19 AdmissionControl.RChecking –> AdmissionControl.Normal Satisfied

20
E<> (forall (i:appNo) OnApp[i]==true) and vide-
oLevel[0]==3 and videoLevel[1]==2

Satisfied

21
A[] ((forall (i:appNo) OnApp[i]==true) and
videoLevel[0]==3 and videoLevel[1]==2) imply
(CPU Level==3 and BW Level==3)

Satisfied

Table 8.1: The properties and verification results of the smart
phone model
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Chapter 9

Appendix B: The complete
UPPAAL model of the
object-tracking robot

9.1 The global variable declaration

// This i s a UPPAAL model f o r an o b j e c t−t r a c k i n g rob o t . The
purpose i s to demonstrate a t y p i c a l Adaptive Embedded System

(AES) . The rob o t i s equipped wi th a group o f l o c a l i z a t i o n
se nsor s which work t o g e t h e r to t r a c k the moving o b j e c t in
the d i s t a n c e . The a d a p t i v i t y o f t h i s ro bo t l i e s in t h r e e
a s p e c t s .

// Firs t , the l o c a l i z a t i o n s ens ors on ly work in the o b j e c t
t r a c k i n g mode and are d e a c t i v a t e d a u t o m a t i c a l l y in o the r
modes to save power . Second , the sampling r a t e o f each
l o c a l i z a t i o n sensor i s a d j u s t e d p r o p e r l y as the d i s t a n c e
between the ro bo t and the o b j e c t changes to some e x t e n t .
Third , a f a u l t y sensor can be d e t e c t e d a u t o m a t i c a l l y and
shut down immediate ly to save power and mainain accuracy .

int M = 3 ; //Number o f l o c a l i z a t i o n s ens ors t h a t are not broken
const int N=3; //Number o f t o t a l l o c a l i z a t i o n s enso rs
//We s h a l l c a l l s ens ors f o r s h o r t from now on , i n s t e a d o f

l o c a l i z a t i o n sen sors .
typedef int [ 0 ,N−1] sensor Index ; //The index o f each sensor : 0−2
typedef int [ 0 , 5 ] sensorValue ; //The v a l u e d e t e c t e d by each

sensor f a l l s between 0 and 5
int [ 1 , 3 ] in i tSV =2; //We assume the i n i t i a l v a l u e o f each

sensor i s 2 and i t w i l l be updated as a common base v a l u e
f o r a l l s ens ors

sensorValue Svalues [N]={0 ,0 ,0} ; //The i n i t i a l v a l u e o f each
sensor , a l l 0

int [ 0 , 2 ] s en so rS ta tu s [N]={0 ,0 ,0} ; // Sensor s t a t u s 0 : Off ;
1 : On; 2 : Broken

bool sampling [N]={ true , true , t rue } ;
int [ 0 , 1 2 ] samplingRate [N]={10 ,10 ,10} ; // Sensor sampling r a t e ;

can change wi th the d i s t a n c e from the o b j e c t Normal :
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10−12 Broken : 0
int [ 8 , 1 0 ] d i s t anc e =10; //We assume the d i s t a n c e between the

ro bo t and the moving o b j e c t i s from 8 to 10. 10 i s the
i n i t i a l d i s t a n c e . I f the d i s t a n c e i s f a r t h e r than 10 , the
ro bo t w i l l not be a b l e to d e t e c t the o b j e c t .

chan turnOn , sensorV [N] , broken [N] , nextPer iod ;
broadcast chan turnOff , t o Id l e , toOtherModes , toTrackingMode ,

c l o s e r , f a r t h e r ;

9.2 The User template

Figure 9.1: The User automaton of the object-tracking robot model

c l o ck x ;

9.3 The Robot template

Figure 9.2: The Robot automaton of the object-tracking robot model
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bool c l o s e rP=true ; //To make sure t h a t d i s t a n c e from the
o b j e c t can g e t f r a t h e r or c l o s e r at most once during each
sampling per iod .

bool fa r therP=true ;

void nextRound ( ) //To e nte r the next sampling per iod
{

int i ;
for ( i =0; i<N; i++)
{

sampling [ i ]= true ;
}
c l o s e rP=true ;
f a r therP=true ;

}

9.4 The Sensor template

Figure 9.3: The Sensor automaton of the object-tracking robot model

void sensorValue ( sensor Index s id , int o f f s e t ) //The read ing o f
each sensor i s the combination o f the common base v a l u e and
i t s own o f f s e t

{
Svalues [ s i d ]= initSV+o f f s e t ;

}

void sensorBroken ( sensor Index s i d ) //When a sensor i s found to
be f a u l t y

{
s en so rS ta tus [ s i d ]=2;
M−−; //The number o f a v a i l a b l e se nsor s i s decreased

77



Svalues [ s i d ]=0;
sampling [ s i d ]= f a l s e ;
samplingRate [ s i d ]=0;

}

void s en so rOf f ( sensor Index s i d ) //When a sensor i s
d e a c t i v a t e d due to mode s w i t c h or power o f f

{
s en so rS ta tus [ s i d ]=0;
Sva lues [ s i d ]=0;
sampling [ s i d ]= true ;

}

void increaseSR ( sensor Index s i d ) // Increase the sampling
r a t e o f the corresponding sensor

{
samplingRate [ s i d ]++;

}

void decreaseSR ( sensor Index s i d ) // Decrease the sampling
r a t e o f the corresponding sensor

{
samplingRate [ s i d ]−−;

}

9.5 The Controller template

Figure 9.4: The Controller automaton of the object-tracking robot model

c l o ck x ;
int counter =0; //The l o c a l counter to count how many reading

r e p o r t s the c o n t r o l l e r has r e c e i v e d
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bool normal=true ; // I f no f a u l t y sensor i s found a f t e r each
sampling period , i t i s t r u e . Otherwise , i t i s f a l s e .

sensor Index BsensorNo=0; //The index o f the f a u l t y sensor

int brokenSensorIndex ; //The index o f the sensor whose
read ing d e v i a t e s most from the average . I t i s not
n e c e s s a r i l y the index o f a f a u l t y sensor

sensorValue average =0; //The average o f a l l r e a d i n g s
int sum=0; //The sum of a l l r e a d i n g s
int o f f s e t s [N]={0 ,0 ,0} ; // This array s t o r e s the o f f s e t s o f

t h o s e sens ors from the average v a l u e

sensorValue abs ( int a ) //A f u n c t i o n to c a l c u l a t e the a b s o l u t e
v a l u e o f an i n t e g e r

{
sensorValue new=a>=0?a:−a ;
return new ;

}
//A f u n c t i o n to c a l c u l a t e the maximal a b s o l u t e v a l u e o f a g iven

array . I f two or more e q u i v a l e n t maximal i tems are found ,
i t r e t u r n s −1.

int max( sensorValue a [N] )
{

int i ;
int j ;
sensorValue maximal=a [ 0 ] ;
bool unique=true ; // I f t h e r e i s on ly one maximal

item , i t i s t r u e .
j =0;
for ( i =1; i<N; i++)
{

i f ( maximal<a [ i ] )
{

maximal=a [ i ] ;
j=i ;
unique=true ;

}
else
{

i f ( maximal==a [ i ] )
{

unique=f a l s e ;
}

}
}
i f ( unique )
{

return j ;
}
else
{
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return −1;
}

}

void f u s i o n ( )
{

int i ;
sum=0;

i f (M==2) // I f t h e r e are on ly two non−broken sen sors
l e f t , we no l o n g e r d e t e c t f a u l t y s enso rs but j u s t
c a l c u l a t e the average .

{
normal=true ;
counter =0;
for ( i =0; i<N; i++)
{

sum+=Svalues [ i ] ; // Please note t h a t
the the r e a d i n g s o f f a u l t y s ens ors
are 0 .

}
average=sum/2 ;
return ;

}

for ( i =0; i<N; i++)
{

sum+=Svalues [ i ] ;
}
average=sum/M; //To c a l c u l a t e the average o f a l l

r e a d i n g s
for ( i =0; i<N; i++)
{

i f ( s en so rS ta tus [ i ]==1)
{

o f f s e t s [ i ]=abs ( Sva lues [ i ]−average ) ; //
To c a l c u l a t e the o f f s e t o f a non−
broken sensor from the average

}
else
{

o f f s e t s [ i ]=0; //The o f f s e t o f the
f a u l t y sensor i s 0 .

}
}
brokenSensorIndex=max( o f f s e t s ) ; //To f i n d out the

s i n g l e sensor wi th the maximal o f f s e t
i f ( brokenSensorIndex==−1) // I f no s i n g l e sensor wi th

the maximal o f f s e t i s found
{

normal=true ;
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}
else // I f the s i n g l e sensor wi th the maximal o f f s e t

i s indeed found
{

i f ( o f f s e t s [ brokenSensorIndex ]>1) //To check
i f t h i s maximal o f f s e t i s above a pre−
d e f i n e d t h r e s h o l d

{
normal=f a l s e ;
BsensorNo=brokenSensorIndex ; // This

sensor i s f a u l t y .
}
else
{

normal=true ; // This sensor i s s t i l l
not f a u l t y d e s p i t e i t s maximal
o f f s e t .

}
}
counter =0;

}

9.6 Properties and verification results

Index Property
Verification

result

1 A[] not deadlock Satisfied

2 E<> Controller.Temp2 Satisfied

3 A[] M>=2 && M<=3 Satisfied

4 A[] (sensorStatus[0]+sensorStatus[1]+sensorStatus[2])<5 Satisfied

5 A[] Controller.counter>=0 && Controller.counter<=3 Satisfied

6 A[] Controller.Normal imply Controller.counter==0 Satisfied

7 Controller.Waiting –> Controller.Normal Satisfied

8
A[] (distance==8 && sensorStatus[0]==1) imply
(samplingRate[0]==12)

Satisfied

9 E<> distance==8 Satisfied

10
A[] (Robot.Off‖Robot.Idle‖Robot.OtherModes) imply
(forall (i:sensorIndex) sensorStatus[i]!=1)

Satisfied

11 A[] User.TrackingMode imply Robot.TrackingMode Satisfied

12 A[] sensorStatus[0]==2 imply Sensor(0).Off Satisfied

13
A[] sensorStatus[0]==2 imply (Con-
troller.average==(Svalues[1]+Svalues[2])/2)

Not satisfied

Table 9.1: The properties and verification results of the
object-tracking robot model
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