
Extending the Response-Time Analysis of Controller
Area Network (CAN) for Mixed Messages

Saad Mubeen∗, Jukka Mäki-Turja∗† and Mikael Sjödin∗

∗Mälardalen Real-Time Research Centre (MRTC), Mälardalen University, Sweden
†Arcticus Systems, Järfälla, Sweden

{saad.mubeen, jukka.maki-turja, mikael.sjodin}@mdh.se

Abstract. The existing response-time analysis of Controller Area Network (CAN)
can compute the response times of CAN messages that are queued for transmis-
sion periodically or sporadically. However, there are a few high level protocols
for CAN such as CANopen and Hägglunds Controller Area Network (HCAN)
that support the transmission of mixed messages as well. A mixed message can
be queued for transmission both periodically and sporadically. Thus, it does not
exhibit a periodic activation pattern. The existing analysis of CAN does not sup-
port mixed messages. We extend the existing analysis to compute the response
times of mixed messages. The extended analysis is generally applicable to any
high level protocol for CAN that uses any combination of periodic, event and
mixed (periodic/ sporadic) transmission of CAN messages.

1 Introduction

Often, real-time systems are employed in distributed systems. In such systems, also
known as distributed real-time systems, the nodes (processors) communicate with each
other by sending and receiving messages over a real-time network or a bus. Controller
Area Network (CAN) [1] [2] is a real-time, event-triggered, serial communication bus
protocol. It supports bus speeds of up to 1 mega bits per second. CAN is a largely used
real-time network in automotive domain. Moreover, it finds its application in other do-
mains such as, medical equipments, industrial control, etc. There are many high level
protocols and commercial extensions of CAN developed for many industrial appli-
cations. These include CAN Application Layer (CAL) [3], CANopen [4], Hägglunds
Controller Area Network (HCAN) [5], CAN for Military Land Systems domain (Mil-
CAN) [6], DeviceNet, etc.

System providers of hard real-time systems are required to ensure that the system
meets its deadlines. Moreover, the need for safety criticality in most of the hard real-
time systems requires an evidence that the actions by the system will be provided in
a timely manner (e.g. each action will be taken at a time that is appropriate to the
environment of the system). Therefore, it is important to predict the timing behavior
of such systems. In order to provide the evidence that each action in the system will
meet its deadline, a priori analysis techniques, also known as schedulability analysis
techniques, have been developed by the research community.



2 Saad Mubeen∗, Jukka Mäki-Turja∗† and Mikael Sjödin∗

Response-Time Analysis (RTA) [7] [8] is a powerful, mature and well established
schedulability analysis technique. It is a method to calculate upper bounds on the re-
sponse times of tasks or messages in a real-time system or a real-time network respec-
tively. In crux, RTA is used to perform a schedulability test which means it checks
whether or not tasks (or messages) in the system (or network) will satisfy their dead-
lines. RTA applies to systems (or networks) where tasks (or messages) are scheduled
with respect to their priorities and which is the predominant scheduling technique used
in real-time operating systems (or real-time network protocols e.g., CAN) today [9].

Tindell et al. [10] developed schedulability analysis of CAN which was recog-
nized by the automotive industry. Later on, the analysis was revisited and revised by
Davis et al. [11]. The model of communication used by this analysis assumes that the
messages are queued for transmission by the application tasks which are activated peri-
odically or sporadically. However, there are a few high-level protocols and commercial
extensions of CAN such as CANopen and HCAN, that support the transmission of
mixed messages as well. A mixed message contains both periodic and event signals.
Thus a mixed message can be queued for transmission periodically as well as sporad-
ically at the arrival of event signals. The current schedulability analysis of CAN does
not support mixed messages.

In this paper, we extend the existing schedulability analysis of CAN to support the
analysis of mixed messages. The extended analysis is able to find out the response times
of periodic, event and mixed (periodic/event) CAN messages. The extended analysis is
applicable to any high level protocol for CAN that uses any combination of periodic,
event and mixed (periodic/event) transmission of messages. The motivation for this
work comes from the activity of implementing the Holistic Response-Time Analysis
(HRTA) [12] in the industrial tool suite, Rubus-ICE (Integrated Component develop-
ment Environment) [13], that provides a component-based development environment
for resource constrained distributed real-time systems.

The rest of the paper is organized as follows. In Section 2, we discuss the related
work. In Section 3, we describe three different transmission patterns of CAN mes-
sages. In Section 4, we present the scheduling model for network communication. In
Section 5, we visit the existing schedulability analysis of CAN and present the extended
analysis. Finally, Section 6 concludes the paper.

2 Related Work

Liu and Layland [14] provided theoretical foundation for analysis of fixed-priority
scheduled systems. Since then schedulability analysis of fixed-priority preemptive sys-
tems has been well developed. Joseph and Pandya published the first Response-Time
Analysis (RTA) [15] for the simple task model presented by Liu and Layland which
assumes independent periodic tasks.

There are many protocols such as CAN, TDMA (Time Division Multiple Access),
TTCAN (Time-Triggered CAN), FlexRay, etc., that are used for real-time communi-
cation in distributed real-time systems. Schedulability analysis of these protocols has
been developed by the research community. In this paper, we will focus only on the
CAN protocol. Tindell et al. [10] developed the schedulability analysis of CAN by



Title Suppressed Due to Excessive Length 3

adapting the theory of fixed priority pre-emptive scheduling for uniprocessor systems.
This analysis has been implemented in the analysis tools that are used in the automo-
tive industry [16][17]. Moreover, this analysis has served as basis for many research
projects. Later on, this analysis was revisited and revised in [11]. The communication
model used in this analysis supports the analysis of CAN messages that are queued for
transmission periodically or sporadically. This analysis does not support the response-
times computation of CAN messages that are queued for transmission both periodically
and sporadically.

Tindell [12] developed the holistic schedulability analysis for distributed hard real-
time systems. Holistic analysis combines both the schedulability analysis of nodes
(uniprocessors) and the network. This analysis is able to analyze a distributed real-
time system that employs CAN or a simple TDMA protocol. As discussed earlier, this
analysis does not support the response-time computation of mixed type messages.

In [18], Pop et al. provide a holistic schedulability analysis of distributed embedded
systems in which the tasks are both time- and event-triggered. The analysis is developed
for ST/DYN protocol bus that uses static and dynamic phases for sending messages.
Static phase is split into time slots and each node transmits in its own slot. The dynamic
phase is shared by all nodes and the contention is resolved by message priorities. As
compared to this approach, we use CAN protocol for network communication and the
messages are queued by the tasks (that require remote transmission), on each node,
periodically or sporadically or both periodically and sporadically.

3 Transmission Patterns of a CAN Message

When CAN is employed for network communication in a distributed real-time system,
each node (processor) is equipped with a CAN interface that connects the node to the
bus [19]. Application tasks in each node, that require remote transmission, are assumed
to queue messages for transmission over CAN bus. The messages are actually transmit-
ted according to the protocol specification of CAN. The classical scheduling analysis
of CAN [10] assumes that the tasks queueing CAN messages are invoked either by pe-
riodic events with a period or sporadic events with a minimum inter-arrival time. How-
ever, there are few high level protocols and commercial extensions of CAN in which
the task that queues the messages can be invoked periodically as well as sporadically
and hence, does not exhibit periodic activation patterns.

Throughout this paper, we will use the terms message and frame interchangeably
since we only consider messages that will fit into one frame (maximum 8 bytes). For
the purpose of using simple notation, we will call a CAN frame as PERIODIC, EVENT
or MIXED if it is queued by an application task that is invoked periodically, sporadically
or both (periodically/ sporadically) respectively.

3.1 Periodic and Event Transmissions

If all the signals contained in a message are periodic then the transmission type of
the message is periodic. Such a message will be queued for transmission at periodic
intervals. The transmission pattern of a mixed message in CANopen is illustrated in



4 Saad Mubeen∗, Jukka Mäki-Turja∗† and Mikael Sjödin∗

Figure 1. The down-pointing arrows (labeled with numbers) symbolize the queueing of
messages.

Message

MUT

Message

MUT
Message

MUT

A B EC D

1 2 3

Message

Period

Message

Period

Message

Period

1 2 3 4

Message

Period

1 4 5 6

A B C D

Message 

Queued for 

Transmission

Event 

Arrival

Message 

Queued for 

Transmission

Event 

Arrival

Message 

Queued for 

Transmission

Message

MUT

Message

MUT

2 3

Message

Period

Fig. 1. Transmission pattern of a Periodic Message

3.2 Event Transmissions

If all the signals contained in a message are of event type then the message is said
to have event transmission type. Such a message will be queued for transmission as
soon as an event occurs that changes the value of one or more signals contained in
the message provided a Minimum Update Time (MUT ) between the queueing of two
successive event messages has elapsed. Hence, the transmission of an event frame is
constrained by MUT . The transmission pattern of an event message is illustrated in
Figure 2. The down-pointing arrows (labeled with numbers) symbolize the queueing of
messages while the upward lines (labeled with alphabets) represent arrival of the events.

Message

MUT

Message

MUT
Message

MUT

A B EC D

1 2 3

Message

Period

Message

Period

Message

Period

1 2 3 4

Message

Period

1 4 5 6

A B C D

Message 

Queued for 

Transmission

Event 

Arrival

Message 

Queued for 

Transmission

Event 

Arrival

Message 

Queued for 

Transmission

Message

MUT

Message

MUT

2 3

Message

Period

Fig. 2. Transmission pattern of an Event Message

3.3 Mixed (Periodic/Event) Transmission

If a message can be queued periodically as well as at the arrival of an event then
the transmission type of a message is called mixed (periodic/event) or simply mixed
transmission. We identified two different methods of implementing mixed messages for
CAN protocol.



Title Suppressed Due to Excessive Length 5

Method 1: Implementation of a Mixed Message The CANopen protocol [20] pro-
vides an example of the first implementation method of a MIXED message. A mixed
message can be queued for transmission at an arrival of an event provided an Inhibit
Time has expired. The Inhibit Time is the minimum time that must be allowed to elapse
between the queueing of two consecutive messages. A mixed message can also be
queued periodically at the expiry of an Event Timer. Hence, the expiry of an Event
Timer is considered as an additional event for queueing of a mixed message. The Event
Timer is reset every time the message is queued. It should be noted that once a mixed
message is queued for transmission, any additional queueing of the same message will
not take place during the Inhibit Time [20]. The transmission pattern of a mixed mes-
sage in CANopen is illustrated in Figure 3. The down-pointing arrows (labeled with
numbers) symbolize the queueing of messages while the upward lines (labeled with
alphabets) represent arrival of the events.

Message

Period

Message

Period

Message

Period

1 2 3 4

Message 

Queued for 

Transmission

Message

MUT

Message

MUT
Message

MUT

A B EC D

1 2 3

Event 

Arrival

Message 

Queued for 

Transmission

Message

Period

1 4 5 6

A B C D

Event 

Arrival

Message 

Queued for 

Transmission

Message

MUT

Message

MUT

2 3

Message

Period

Event

Timer

1 4 5

A

Event 

Arrival

Message 

Queued for 

Transmission

Inhibit

Time

2 3

Event

Timer

B

Inhibit

Time

Event

Timer

Inhibit

Time

Fig. 3. Transmission pattern of a Mixed Message in CANopen

In Figure 3, message 1 is queued for transmission as soon as an event A arrives
(assume that the Inhibit Timer was expired). In this case, the Event Timer is reset along
with the Inhibit Time. As soon as the Event Timer expires, message 2 is queued for
transmission and both the Event Timer and Inhibit Time are reset. Similarly, message
3 is queued for transmission because of the expiry of the Event Timer. When an event
B arrives, message 4 is immediately queued for transmission because the Inhibit Time
has already expired. Note that the Event Timer is also reset at the same time when the
message 4 is queued. The message 5 is transmitted because of the expiry of the Event
Timer. Hence, there exist a dependency relationship between the Inhibit Time and the
Event Timer.

Method 2: Implementation of a Mixed Message The HCAN protocol [5] provides an
example of the second implementation method of a MIXED message. A mixed message
defined by HCAN protocol contains signals of which some are periodic and some are of
event type. A mixed message is queued for transmission not only periodically but also,
as soon as, an event occurs that changes the value of one or more event signals provided



6 Saad Mubeen∗, Jukka Mäki-Turja∗† and Mikael Sjödin∗

MUT between the queueing of two successive event messages has elapsed. Hence, the
transmission of a mixed message due to arrival of events is constrained by MUT . The
transmission pattern of a mixed message is illustrated in Figure 4.

Message

MUT

Message

MUT
Message

MUT

A B EC D

1 2 3

Message

Period

Message

Period

Message

Period

1 2 3 4

Message

Period

1 4 5 6

A B C D

Message 

Queued for 

Transmission

Event 

Arrival

Message 

Queued for 

Transmission

Event 

Arrival

Message 

Queued for 

Transmission

Message

MUT

Message

MUT

2 3

Message

Period

Fig. 4. Transmission pattern of a Mixed Message in HCAN

In Figure 4, message 1 is queued for transmission because of the partly periodic
nature of a mixed message. As soon as the event A arrives, message 2 is queued. When
the event B arrives it is not queued immediately because MUT is not expired yet. As
soon as MUT expires, message 3 is queued. Message 3 contains the signal changes
that correspond to event B. Similarly, a message is not immediately queued when an
event C arrives because the MUT is not expired. Message 4 is queued because of the
periodicity. It should be noted that although,MUT was not yet expired, the event signal
corresponding to event C was packed in message 4 and queued as part of the periodic
message. Hence, there is no need to queue an additional event message when MUT
expires. It should be noted that the periodic transmission of a mixed message cannot
be blocked by the event transmission. When an event D arrives, an event message 5 is
immediately queued because the MUT has already expired. Message 6 is queued due
to the periodicity.

Discussion In the first method, the Event Timer is reset every time a mixed message is
queued for transmission. The most natural interpretation of a mixed message from the
specification of CANopen is that there is an implicit requirement that the periodicity
of transmission of a mixed message can never be higher than the Inhibit Time [4] [21].
Hence, it can be assumed that in the worst case, a mixed message is queued for trans-
mission every time the Inhibit Timer expires. Therefore, the original CAN analysis can
be used for mixed messages in the first method.

However, the second method of implementing a mixed message is more complex
because the periodic transmission is independent of the event transmission. In other
words, the Event Timer is not reset with every event transmission. In this case, for the



Title Suppressed Due to Excessive Length 7

purpose of analysis we need to treat a mixed message as two separate message streams
with same IDs and priorities. This calls for the need of new analysis for mixed CAN
messages. In addition, the existing analysis does not support any two messages with
same IDs and equal priorities, which also requires extension of the original analysis.

4 Network Scheduling Model

In this section, we discuss the network scheduling model that will be used in the
development of extended analysis for mixed type CAN messages. This model is an
extension to the communication model that was developed by Tindell et al. [10] for
the response-time analysis of Controller Area Network (CAN) messages. The existing
model supports the scheduling of messages that are queued for transmission period-
ically (PERIODIC messages) or sporadically (EVENT messages). We will extend this
model to support the analysis of messages that are queued periodically as well as spo-
radically (MIXED messages).

Each CAN message m has an IDm which is a unique identifier. Associated to each
message is a FRAME TYPE that specifies whether the frame is a Standard or an
Extended CAN frame. The difference between the two frame types is that a standard
CAN frame uses an 11-bit identifier whereas an extended CAN frame uses a 29-bit
identifier. There is a TRANSMISSION TYPE of each message that specifies whether
the message is PERIODIC or EVENT or MIXED (both PERIODIC and EVENT). Each
message has a unique priority (Pm ), transmission time (Cm ) and queueing jitter (Jm )
which is inherited from the response time of the task queueing the message.

Each message can carry a data payload that ranges from 0 to 8 bytes. This number
is specified in a header field of the frame called Data Length Code (DLC) and denoted
by sm . In case of PERIODIC transmission, each frame has a period, denoted by Tm . In
case of EVENT transmission, each frame has a MUTm that refers to the minimum time
that should elapse between the transmission of any two EVENT frames. Each message
has a blocking time Bm which refers to the largest amount of time this message can be
blocked by any lower priority message. Each message has a worst-case response time,
denoted by Rm , and defined as the longest time between the queueing of the message
(on the sending node) and the delivery of the message to the destination buffer (on the
destination node).

When a message has a MIXED transmission type, we duplicate the message in the
analysis model. Hence, each MIXED message has two copies which are treated as sepa-
rate messages. One copy is the PERIODIC message and the other is an EVENT message.
All the attributes of these duplicates, including ID, priority, release jitter, transmission
time and blocking time, are the same except that the PERIODIC copy inherits Tm while
the EVENT copy inherits MUTm .

It is important to note that CAN identifier of each message is unique and it also
corresponds to its priority. As discussed earlier that in case of a MIXED message, we
duplicate the message and the duplicates have the same identifier and priority. The ex-
isting analysis model [19][10] does not support any two messages with equal priorities.



8 Saad Mubeen∗, Jukka Mäki-Turja∗† and Mikael Sjödin∗

5 Extending CAN Schedulability Analysis

In this section, we extend the scheduling analysis of CAN that was originally developed
by Tindell et al. [10] and later revised by Davis et al. [11]. The extended analysis will
be able to compute the response times of mixed type messages as well.

5.1 Existing Analysis

First of all, we quickly revisit the existing algorithms that are used to compute the
response-times of CAN messages. Then we extend these algorithms to support the anal-
ysis of mixed type messages.

According to the existing analysis, the worst-case response time of a CAN message
is given by the following equation:

Rm = Jm + ωm + Cm (1)

where m is the message under analysis. Jm denotes the queueing jitter of m and is in-
herited from the worst-case response time of the task that queues this message (sending
task). ωm represents the worst-case queueing delay and is equal to the longest time that
elapses between the instant a message m is queued by the sending task in the priority-
ordered send queue and the instant when the message starts its transmission. In other
words, ωm is the interference caused by other messages to m.

It is important to mention that CAN uses fixed-priority non-preemptive scheduling
and therefore, a message cannot be interfered by higher priority messages during its
transmission on the bus. Whenever we use the term interference, it refers to the amount
of time the message has to wait in the send queue because the higher priority mes-
sages win the arbitration and hence, the right of transmission before the message under
analysis.

ωm is given by the following recursive equation:

ωn+1
m = Bm +

∑
∀k∈hp(m)

⌈
ωnm + Jk + τbit

Tk

⌉
Ck (2)

In (2), hp(m) refers to the set of all messages in the system that have higher priority
than m. τbit denotes the time required to transmit a single bit on CAN bus. Its value
depends upon the speed of the bus. In order to solve the recursive equation given by
(2), initial value of ωnm can be taken equal to the blocking time, Bm, as given by the
following equation:

ω0
m = Bm (3)

Bm represents the maximum time for which m can be blocked by the lower priority
messages. It is equal to the largest transmission time of any message in the set of all
the lower priority messages compared to the priority of m and is given by the following
equation:



Title Suppressed Due to Excessive Length 9

Bm = max
∀k∈lp(m)

(Ck) (4)

where, lp(m) refers to the set of all messages in the system that have lower priority than
message m.

In (2), Cm is the transmission time of m. It represents the longest time it takes for
m to be transmitted over the bus. The transmission time of the message is computed
according to [11] as given by the following equation:

Cm =

(
g + 8sm + 13 +

⌊
g + 8sm − 1

4

⌋)
τbit (5)

where sm is the Data Length Code. It refers to the number of data bytes in a CAN data
message. It can have any integer value from 0 to 8. g is equal to 34 and 54 for standard
and extended CAN frame formats respectively. For a Standard CAN identifier, (5) can
be simplified as follows.

Cm = (55 + 10sm)τbit (6)

Similarly, the transmission time of m for an Extended CAN identifier is given by
the following equation.

Cm = (80 + 10sm)τbit (7)

In [11], Davis et al. made an observation that it is possible in the case of fixed-
priority non-preemptive scheduling that a higher priority task may be waiting for trans-
mission when a message m finishes its transmission. Hence, they proposed to analyze
all the instances of m that lie in the level-m busy period.

In order to calculate the worst-case response time of a CAN message, the number
of instances of m that become ready for transmission before the end of the busy period
should be known first. Then the response time of each instance of m should be com-
puted. The largest value from the response time of all instances should be picked up as
the worst-case response time of m. The length of a priority level-m busy period, tm, is
given by the following recursive equation:

tn+1
m = Bm +

∑
∀k∈hep(m)

⌈
tnm + Jk
Tk

⌉
Ck (8)

where, hep(m) refers to the set of all messages in the system that have equal or higher
priority thanm. In order to solve this recursive equation, initial value of tnm can be taken
equal to the transmission time of m, i.e.

t0m = Cm (9)

The right hand side of (8) is a monotonic non-decreasing function of tm. The recursive
equation (8) is guaranteed to converge if the bus utilization for messages of priority level
m and higher, denoted by Um, is less than 1. Um is given by the following equation:



10 Saad Mubeen∗, Jukka Mäki-Turja∗† and Mikael Sjödin∗

Um =
∑

∀k∈hep(m)

Ck
Tk

(10)

thus,

Um < 1 (11)

The number of instances ofm, denoted byQm, that becomes ready for transmission
before the end of the busy period is given by the following equation:

Qm =

⌈
tm + Jm
Tm

⌉
(12)

The response time of each instance of m is calculated by the following equation:

Rm(q) = Jm + ωm(q)− qTm + Cm (13)

where q is the message-instance number. The range of q is shown below.

0 ≤ q ≤ Qm − 1 (14)

The queueing delay of each instant of the message m is given by the following
equation.

ωn+1
m (q) = Bm + qCm +

∑
∀k∈hp(m)

⌈
ωnm(q) + Jk + τbit

Tk

⌉
Ck (15)

After the response time of all instances of the message m have been computed, its
worst-case response time can be found by selecting the largest value as given by the
following equation.

Rm = max(Rm(q)), ∀ 0 ≤ q ≤ (Qm − 1) (16)

5.2 Extended Analysis

In the extended schedulability analysis of CAN, we treat a message differently based
on its transmission type. In order to keep the notations simple and consistent, we define
a function ξ(m) that represents the transmission type of a message m. It can be either
periodic or event or mixed. Formally, the domain of this function can be defined as:

ξ(m) ∈ [PERIODIC, EVENT, MIXED]

We assume that there are multiple slots for sending and receiving messages in the
CAN controllers. Usually each slot has a single buffer [11]. If the previous instance of
a message is not sent before the next then the previous instance is overwritten by the



Title Suppressed Due to Excessive Length 11

next one. In case of multiple buffers per slot, we assume that the FiFo (First in First out)
policy is used to send the multiple instances of a message.

We discuss two cases. In the first, we assume that a message under analysis has a
transmission type either periodic or event. Whereas in the second case, we consider that
the message under analysis is of mixed transmission type.

Case 1: When the Message Under Analysis is Periodic or Event When the trans-
mission type of m is PERIODIC or EVENT then the worst-case response time of each
instance q of this message is computed by the following equation:

Rm(q) =

Jm + ωm(q)− qTm + Cm, if ξ(k) = PERIODIC

Jm + ωm(q)− q(MUTm) + Cm, if ξ(k) = EVENT
(17)

This equation is similar to the response-time equation (13) in the existing analysis. In
(17), Jm represents the queueing jitter which is equal to the worst-case response time
of the task that queuesm. Cm represents the transmission time ofm. It is calculated ac-
cording to the existing analysis using (6) or (7) depending upon the type of CAN frame
identifier. If the transmission type of a message under analysis is PERIODIC then the
message period is taken into account. However, if the transmission type of the message
is EVENT, minimum update time is used in the above response-time equation.

The algorithms for the computation of the worst-case queueing delay (ωm) of m
should include the interference caused by all the other PERIODIC, EVENT and MIXED
messages. The existing analysis accounts the interference caused by only PERIODIC
and EVENT messages.

As we discussed in the communication model that when transmission type of a mes-
sage is MIXED, we duplicate the message and designate the duplicates as a PERIODIC
and EVENT copy of the MIXED message. It is important to note that all the attributes of
the duplicates are the same as that of the original MIXED message except the PERIODIC
copy inherits the period while the EVENT copy inherits minimum update time.

Worst Case Queueing Delay of a Periodic or Event Message

Each higher priority MIXED message should contribute more interference to the
the message under analysis. The worst-case queueing delay, adapted from (15) in the
existing analysis, can be computed by the following recursive equation:

ωn+1
m (q) = Bm + qCm +

∑
∀k∈hp(m)

IkCk (18)

where Ik is computed differently for different values of ξ(k) (k is the index of any
higher priority message) as shown below. Note that the interference by a higher priority
MIXED message contains the contribution from both the duplicates.



12 Saad Mubeen∗, Jukka Mäki-Turja∗† and Mikael Sjödin∗

Ik =



⌈
ωn

m(q)+Jk+τbit
Tk

⌉
, if ξ(k) = PERIODIC⌈

ωn
m(q)+Jk+τbit

MUTk

⌉
, if ξ(k) = EVENT⌈

ωn
m(q)+Jk+τbit

Tk

⌉
+

⌈
ωn

m(q)+Jk+τbit
MUTk

⌉
, if ξ(k) = MIXED

(19)

The initial value of ωnm can be taken equal to the blocking time ofm as given by (3).
Bm in (18) can be computed by the same method which is used in the existing analysis
given by (4). This is because CAN uses fixed priority non-preemptive scheduling and
any message can be blocked by only one message in the set of lower priority messages.
Although we duplicate all the mixed messages, a message under analysis can only be
blocked by either the periodic copy or the event copy of any lower priority MIXED
message. It should be noted that both the copies of a MIXED message have the same
transmission time, Cm. Hence Bm is equal to the largest transmission time among all
periodic, event and mixed messages in a set of lower priority messages with respect to
the message under analysis.

Length of the Busy Period

The length of priority level-m busy period, denoted by tm, is also adapted from the
existing analysis as given in (8). It can be computed by the following recursive equation.

tn+1
m = Bm +

∑
∀k∈hep(m)

I ′kCk (20)

where I ′k is given by the following relation. Note that the contribution of both the dupli-
cates of a MIXED message k is taken into account, provided k belongs to a set of equal
or higher priority messages with respect to m.

I ′k =



⌈
tnm+Jk
Tk

⌉
, if ξ(k) = PERIODIC⌈

tnm+Jk
MUTk

⌉
, if ξ(k) = EVENT⌈

tnm+Jk
Tk

⌉
+

⌈
tnm+Jk
MUTk

⌉
, if ξ(k) = MIXED

(21)

In order to solve this recursive equation, Cm can be used as an initial value of tnm as
shown in (9). The right hand side of (20) is a monotonic non-decreasing function of tm.
The recursive equation (20) is guaranteed to converge if the bus utilization for messages
of priority level-m and higher, denoted by Um, is less than 1. That is,

Um < 1 (22)



Title Suppressed Due to Excessive Length 13

where Um is computed by the following equation:

Um =
∑

∀k∈hep(m)

CkI
′′
k (23)

where I ′′k is given by the following relation:

I ′′k =


1
Tk
, if ξ(k) = PERIODIC

1
MUTk

, if ξ(k) = EVENT

1
Tk

+ 1
MUTk

, if ξ(k) = MIXED

(24)

In the above equation, the contribution by both the copies of all the mixed messages,
lying in a set of equal and higher priority messages with respect to m, is clearly taken
into account while calculating the bus utilization.

The number of instances ofm, denoted byQm, that becomes ready for transmission
before the busy period ends is given by the following equation (similar to the existing
analysis):

Qm =


⌈
tm+Jm
Tm

⌉
, if ξ(m) = PERIODIC⌈

tm+Jm
MUTm

⌉
, if ξ(m) = EVENT

(25)

The index of each message-instance is identified by q. The range of q is shown as
follows.

0 ≤ q ≤ Qm − 1 (26)

After computing the response time of all the instances of m, we select the largest
value among these response times as the worst-case response time ofm as shown below.

Rm = max(Rm(q)), ∀ 0 ≤ q ≤ (Qm − 1) (27)

Case 2: When the Message Under Analysis is Mixed Since, a message with a MIXED
transmission type is duplicated, we compute the response time of both the duplicates
separately. For simplicity, we denote the PERIODIC and EVENT copies of a mixed mes-
sage m by mP and mE respectively. Let the worst-case response time of mP and mE

be denoted by RmP
and RmE

respectively. The worst-case response time of m is equal
to the largest value between RmP

and RmE
as given by the following equation:

Rm = max(RmP
, RmE

) (28)

where,RmP
andRmE

are computed separately by adapting the existing analysis. Let us
denote the total number of instances of messages mP and mE , occurring in the priority
level-m busy period, byQmP

andQmE
respectively. Assume that the index variable for



14 Saad Mubeen∗, Jukka Mäki-Turja∗† and Mikael Sjödin∗

message instances of mP and mE is denoted by qmP
and qmE

respectively. The range
of qmP

and qmE
is shown by the following equations:

0 ≤ qmP
≤ (QmP

− 1) (29)

similarly,

0 ≤ qmE
≤ (QmE

− 1) (30)

The worst-case response time ofmP is equal to the largest value among the response
times of all its instances in the busy period as shown by the following equation.

RmP
= max(RmP

(qmP
)) (31)

Similarly, the worst-case response time of mE is equal to the largest value among
the response times of all its instances in the busy period. It is given by the following
equation.

RmE
= max(RmE

(qmE
)) (32)

The worst-case response time of each instance of mP and mE can be derived by
adapting the equations for the computation of worst-case response time of PERIODIC
and EVENT messages respectively, derived in case 1, as given by the following two
equations:

RmP
(qmP

) = Jm + ωmP
(qmP

)− qmP
Tm + Cm (33)

RmE
(qmE

) = Jm + ωmE
(qmE

)− qmE
MUTm + Cm (34)

The queueing jitter, Jm, is the same in both the equations (33) and (34). It is equal to
the worst-case response time of the task that queues m. The transmission time, Cm, is
also the same in these equations and is calculated according to the existing analysis by
using (6) or (7) depending upon the type of CAN frame identifier. Although, both the
duplicates of m inherit same Jm and Cm from it, they experience different amount of
worst-case queueing delay caused by other messages.

The worst-case queueing delay experienced by mP and mE is denoted by ωmP

and ωmE
in (33) and (34) respectively. ωmP

and ωmE
can be computed by adapting

the algorithm for the computation of the worst-case queueing delay for PERIODIC and
EVENT messages presented in (18). In this algorithm, we need to add the contribution
ofmP to the worst-case queueing delay experienced bymE and vice versa. It should be
noted that the copies of a mixed message have equal priority and the existing analysis
does not allow any two messages with equal priority.

Effect of Self Interference in a Mixed Message

In order to derive the contribution of one copy of a mixed message to the worst-case
queueing delay of the other, consider three different cases, depicting the transmission



Title Suppressed Due to Excessive Length 15

pattern of a mixed message m, shown in Figure 5. In the first case, we assume that Tm

is greater than MUTm . This means that there could be more transmissions of the event
copy compared to the periodic copy of m. Since the maximum update time between
the queueing of any two event copies can be arbitrarily very long, it is also possible
that there are fewer event transmissions than the periodic transmissions of m. In the
second case, we assume that Tm is equal to MUTm . In this case, there could be equal
transmissions of both the copies of m. In the third case, we assume that Tm is smaller
than MUTm . This implies that the event transmissions will be less than the periodic
transmissions of m.

It is important to note that in the example shown in Figure 5, there is a small offset
between the first periodic and event transmission of m. This offset is used to maximize
the queueing delay. If this offset is removed then only one frame will be queued cor-
responding to the first instance of both periodic and event copy. Moreover, the larger
value between Tm and MUTm is the integer multiple of the smaller in all the cases.
This relationship along with the offset between Tm and MUTm ensures that periodic
and event transmission of m will not overlap, there by, maximizing the queueing delay.

Case (a): Tm >MUTm

Let the message under analysis bemP and consider case (a) in Figure 5. An applica-
tion task queuesm periodically with a period Tm (e.g., equal to 9 time units). Moreover,
the same task can also queue m at the arrival of events (labeled with numbers 1-6). The
queueing of mE is constrained by MUTm (e.g., equal to 3 time units). The first in-
stance of mP , i.e., (qmP

= 0), is queued for transmission as shown by mP (0) in Figure
5. If event 1 had arrived at the same time as the queueing of mP (0) then the signals in
mE(0) were updated as part of mP (0). In that case, mE(0) was not queued separately
(this is the property of a mixed message). In order to maximize the contribution of mE

on the queueing delay of mP , mE(0) is queued just after the queueing of mP (0) as
shown in all the cases in Figure 5. Therefore, mE(0) and subsequent instances of mE

will have no contribution in the worst-case queueing delay of the first instance of mP ,
i.e., mP (0).

Now, consider the second instance of mP . All the instances of mE that are queued
just before the queueing of mP (1) will contribute to its worst-case queueing delay. It
can be observed in the case (a) that the first three instances of mE are queued before
mP (1). Similarly, there are six instances of mE that are queued before mP (2).

Let QPmE
denotes the total number of instances of mE that are queued before the

qthmP
instance of mP . We can generalize QPmE

for the case (a) as follows:

QPmE
=

⌈
qmP

Tm
MUTm

⌉
(35)

for example, consider again the queueing of different instances of mE and mP in the
case (a). Equation (35) yields the set
{QP

mE
= 0 , 3 , 6 , ...}

for the corresponding values in the set
{qmP = 0 , 1 , 2 , ...}.



16 Saad Mubeen∗, Jukka Mäki-Turja∗† and Mikael Sjödin∗

Event Arrival Message Queued for Transmission

Case (c)

Tm=3

MUTm = 9

1

MUTm = 9

mP(0)

mE(0)

mP(3) mP(6)mP(1) mP(4)mP(2) mP(5)

Tm=3 Tm=3 Tm=3 Tm=3 Tm=3

Tm = 9

MUTm = 9

1

MUTm = 9

Tm = 9

2 3

mP(0)

mE(0)

mP(1) mP(2)

mE(1) mE(2)

Case (b)

Case (a)

Tm = 9

1 2 3

MUTm=3

Tm = 9

4 5 6

mP(0)

mE(0)

mP(1) mP(2)

mE(1) mE(2) mE(3) mE(4) mE(5)

2

mE(1)

3

mE(2)

Fig. 5. Demonstration of self interference in a MIXED message. Case (a) Tm >MUTm. Case
(b) Tm = MUTm. Case (c) Tm <MUTm

Thus the total number of instances ofmE queued before each instance ofmp computed
by (35) are consistent with the case (a) in Figure 5.



Title Suppressed Due to Excessive Length 17

Case (b): Tm = MUTm

Consider case (b) in which Tm is equal to MUTm . It can be observed from Figure
5 that there are 0, 1, and 2 instances of mE that are queued before mP (0), mP (1) and
mP (2) respectively. When Equation (35) is used in case (b), we get the set
{QP

mE
= 0 , 1 , 2 , ...}

for the corresponding values in the set
{qmP

= 0 , 1 , 2 , ...}.
Therefore, (35) is also applicable on case (b).

Case (c): Tm <MUTm

Now, consider case (c) in which Tm (equal to 3 time units) is smaller than MUTm

(equal to 9 time units). The first instance ofmE , which ismE(0), will be queued before
the queueing ofmP (1),mP (2) andmP (3). Similarly, it can be seen from the figure that
two instances of mE , which are mE(0) and mE(1), will contribute to the worst-case
queueing delay of mP (4), mP (5) and mP (6). (35) yields the set
{QP

mE
= 0 , 1 , 1 , 1 , 2 , 2 , 2 , ...}

for the corresponding values in the set
{qmP

= 0 , 1 , 2 , 3 , 4 , 5 , 6 , ...}.
Thus the total number of instances ofmE queued before each instance ofmp computed
by Equation (35) are consistent with the case (c) in Figure 5.

Now we consider the effect of jitter on the instances of mE previous to mE(0)
which can be queued just before mP (0) and hence, can contribute to the worst-case
queueing delay of mP . We assume a FiFo queue for the queueing of different instances
of each message. By adding the jitter of mE to QPmE

, equation (35) can be generalized
for the three cases as follows.

QPmE
=

⌈
qmP

Tm + Jm
MUTm

⌉
(36)

The total number of instances of mP that are queued before the qthmE
instance of

mE , denoted by QEmP
, can be derived in a similar fashion. Thus QEmP

can be computed
by the following equation:

QEmP
=

⌈
qmE

MUTm + Jm
Tm

⌉
(37)

Worst Case Queueing Delay of a Mixed Message

The worst-case queueing delay of messagesmP andmE can be computed by adapt-
ing (18) as follows.

ωn+1
mP

(qmP
) = Bm + qmP

Cm +
∑

∀k∈hp(m)

IkPCk +QPmE
Cm (38)



18 Saad Mubeen∗, Jukka Mäki-Turja∗† and Mikael Sjödin∗

ωn+1
mE

(qmE
) = Bm + qmE

Cm +
∑

∀k∈hp(m)

IkECk +QEmP
Cm (39)

Where, IkP and IkE are given by the following equations.

IkP =



⌈
ωn

mP
(qmP

)+Jk+τbit

Tk

⌉
, if ξ(k) = PERIODIC⌈

ωn
mP

(qmP
)+Jk+τbit

MUTk

⌉
, if ξ(k) = EVENT⌈

ωn
mP

(qmP
)+Jk+τbit

Tk

⌉
+

⌈
ωn

mP
(qmP

)+Jk+τbit

MUTk

⌉
, if ξ(k) = MIXED

(40)

IkE =



⌈
ωn

mE
(qmE

)+Jk+τbit

Tk

⌉
, if ξ(k) = PERIODIC⌈

ωn
mE

(qmE
)+Jk+τbit

MUTk

⌉
, if ξ(k) = EVENT⌈

ωn
mE

(qmE
)+Jk+τbit

Tk

⌉
+

⌈
ωn

mE
(qmE

)+Jk+τbit

MUTk

⌉
, if ξ(k) = MIXED

(41)

Bm in equations 38 and 39 can be computed by the same method which is used in the
existing analysis given by (4). By using the values of QPmE

and QEmP
from (36) and

(37) in equations (38) and (39), we get:

ωn+1
mP

(qmP
) = Bm + qmP

Cm +
∑

∀k∈hp(m)

IkPCk +

⌈
qmP

Tm + Jm
MUTm

⌉
Cm (42)

ωn+1
mE

(qmE
) = Bm + qmE

Cm +
∑

∀k∈hp(m)

IkECk +

⌈
qmE

MUTm + Jm
Tm

⌉
Cm (43)

In order to solve the recursive equations (40) and (41), initial values of ωnmP
(qmP

)
and ωnmE

(qmE
) can be taken equal to the blocking time of the MIXED message m, i.e.

ω0
mP

(qmP
) = ω0

mE
(qmE

) = Bm (44)

Length of the Busy Period

The length of priority level-m busy period, denoted by tm, can be computed by
using (20) that was developed for PERIODIC and EVENT messages. This is because (20)
takes into account the effect of queueing delay from all the higher and equal priority
messages. Since, the duplicates of a MIXED message inherit the same priority from it,
the contribution of queueing delay from the duplicate is also covered in (20). Therefore,
there is no need to compute tm formP andmE separately. tm should be computed only
once for a MIXED message m.



Title Suppressed Due to Excessive Length 19

Although the length of the busy period is the same for mP and mE , the number
of instances of both the messages that become ready for transmission just before the
end of busy period, i.e., QmP

and QmE
respectively, may be different. The reason

is that the computation of QmP
and QmE

require Tm and MUTm respectively and
which may have different values.QmP

andQmE
can be computed by adapting (25) that

was derived for the computation of the number of instances of PERIODIC and EVENT
messages that become ready for transmission before end of the busy period. QmP

and
QmE

are given by the following equations.

QmP
=

⌈
tm + Jm
Tm

⌉
(45)

QmE
=

⌈
tm + Jm
MUTm

⌉
(46)

6 Conclusion

The schedulability analysis of Controller Area Network (CAN) developed by the re-
search community can compute the response times of CAN messages that are queued
by application tasks periodically or sporadically. The existing analysis does not support
the analysis of mixed messages. A mixed message can be queued for transmission both
periodically and sporadically. Mixed messages are used in some of the high-level pro-
tocols for CAN such as CANopen and HCAN. Hence, the context of this problem is
very general and requires a new analysis to support mixed messages.

In this paper, we extended the existing schedulability analysis of CAN to support
the analysis of mixed messages. The extended analysis is able to compute the response
times of CAN messages with all types of transmission patterns, i.e., periodic, event and
mixed. The extended analysis is applicable to any high level protocol or commercial ex-
tension of CAN that uses any combination of periodic, event and mixed (periodic/event)
transmission of messages.

In future work, the extended analysis will be implemented in an existing industrial
tool suite, the Rubus-ICE [22], that provides a complete component-based development
environment for resource constrained distributed real-time systems.

Acknowledgement
This work is supported by Swedish Knowledge Foundation (KKS) within the project
EEMDEF, the Swedish Research Council (VR) within project TiPCES, and the Strate-
gic Research Foundation (SSF) with the centre PROGRESS. The authors would like
to thank the industrial partners Arcticus Systems and BAE Systems Hägglunds for the
cooperation.

References

1. R. B. GmbH, “CAN Specification Version 2.0,” postfach 30 02 40, D-70442 Stuttgart, 1991.



20 Saad Mubeen∗, Jukka Mäki-Turja∗† and Mikael Sjödin∗

2. ISO 11898-1, “Road Vehicles interchange of digital information controller area network
(CAN) for high-speed communication, ISO Standard-11898, International Standards Organ-
isation (ISO), Nov. 1993.”

3. “CAL, CAN Application Layer for Industrial Applications, CiA Draft Standard DS-207,
Version 1.1,” CAN-in-Automation, Feb. 1996.

4. “CANopen high-level protocol for CAN-bus, Version 3.0,” NIKHEF, Amsterdam, March
2000.

5. J. Westerlund, “Hägglunds Controller Area Network (HCAN), Network Implementation
Specification,” BAE Systems Hägglunds, Sweden, April 2009.

6. “MilCAN (CAN for Military Land Systems domain),” http://www.milcan.org/.
7. N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellings, “Fixed priority pre-emptive

scheduling:an historic perspective,” Real-Time Systems, vol. 8, no. 2/3, pp. 173–198, 1995.
8. L. Sha, T. Abdelzaher, K.-E. A. rzén, A. Cervin, T. P. Baker, A. Burns, G. Buttazzo, M. Cac-

camo, J. P. Lehoczky, and A. K. Mok, “Real Time Scheduling Theory: A Historical Perspec-
tive,” Real-Time Systems, vol. 28, no. 2/3, pp. 101–155, 2004.

9. M. Nolin, J. Mäki-Turja, and K. Hänninen, “Achieving Industrial Strength Timing Predic-
tions of Embedded System Behavior,” in ESA, 2008, pp. 173–178.

10. K. Tindell, H. Hansson, and A. Wellings, “Analysing real-time communications: controller
area network (CAN),” in Real-Time Systems Symposium (RTSS) 1994, pp. 259 –263.

11. R. Davis, A. Burns, R. Bril, and J. Lukkien, “Controller Area Network (CAN) schedulability
analysis: Refuted, revisited and revised,” Real-Time Systems, vol. 35, pp. 239–272, 2007.

12. K. Tindell and J. Clark, “Holistic schedulability analysis for distributed hard real-time
systems,” Microprocess. Microprogram., vol. 40, pp. 117–134, April 1994. [Online].
Available: http://dx.doi.org/10.1016/0165-6074(94)90080-9

13. “Arcticus Systems,” http://www.arcticus-systems.com.
14. C. Liu and J. Layland, “Scheduling algorithms for multi-programming in a hard-real-time

environment,” ACM, vol. 20, no. 1, pp. 46–61, 1973.
15. M. Joseph and P. Pandya, “Finding Response Times in a Real-Time System,” The Computer

Journal (British Computer Society), vol. 29, no. 5, pp. 390–395, October 1986.
16. “Volcano Network Architect (VNA). Mentor Graphics,”

http://www.mentor.com/products/vnd/communication-management/vna/.
17. L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg, “Volcano - a revolution in on-board

communications,” in Volvo Technology Report, 1998.
18. T. Pop, P. Eles, and Z. Peng, “Holistic scheduling and analysis of mixed time/event-triggered

distributed embedded systems,” in Proceedings of the tenth international symposium on
Hardware/software codesign, ser. CODES ’02. New York, NY, USA: ACM, 2002, pp.
187–192. [Online]. Available: http://doi.acm.org/10.1145/774789.774828

19. K. Tindell and A. Burns, “Guaranteeing Message Latencies on Controller Area Network
(CAN),” in 1st International CAN Conference, 1994, pp. 1 –11.

20. “CANopen Application Layer and Communication Profile. CiA Draft Standard 301. Version
4.02. February 13, 2002,” www.ece.unh.edu/biolab/hof/public/CiA.

21. O. Pfeiffer, A. Ayre, and C. Keydel, Embedded Networking with CAN and CANopen. Anna-
books, 2003.

22. K. Hänninen, J. Mäki-Turja, S. Sandberg, J. Lundbäck, M. Lindberg, M. Nolin, and K.-L.
Lundbäck, “Framework for real-time analysis in Rubus-ICE,” in Emerging Technologies and
Factory Automation, 2008. ETFA 2008. IEEE International Conference on, 2008, pp. 782
–788.


