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Abstract—The problem of finding the Worst-Case Execution
Time, WCET, of a program executed on a specific hardware
architecture is a very challenging task. A lot of effort has been
put into analysing sequential programs executing on single-core
hardware. The result is a variety of different methods and tools.

The author currently works on finding methods for static
WCET analysis of parallel software. The emphasis of the work is
put on analysing the impact of synchronisation between threads
executing on a shared memory architecture. The analysis is done
on the software level, so less focus is put on the effects of the
actual hardware on which the parallel program executes.

The analysis is based on a small parallel programming
language incorporating some fundamental synchronisation prim-
itives; locking and unlocking of shared resources. The program-
ming language is formally defined, which allows the correctness
of the analysis to be proven.

I. INTRODUCTION & MOTIVATION

The execution time of a program can be a very complex
function of the input data, the hardware, and the binary code
executing on the hardware. The complexity mainly has two
sources: the complex performance characteristics of modern
processor architectures, and the sometimes very large number
of possible paths through the code. This makes properties like
the Worst-Case Execution Time, WCET, of a program very
difficult to determine.

Today, parallel hardware, like multicore and MPSoC (Multi-
Processor System-on-Chip) processors, host only a few cores.
However, it is expected that within a few years’ time, a chip
could contain hundreds of cores, similar to today’s GPUs
(Graphical Processing Units). These architectures will be quite
unlike current multicore architectures.

The same will hold for the software. Since long, program-
mers have been able to write programs containing several con-
current units of execution, often referred to as threads. Today,
programmers should focus on introducing such parallelism in
their programs, in order to utilise the parallel hardware in the
best way.

Research in WCET analysis must take this trend into
account – this is what the author intends to do, with emphasis
on analysis of thread synchronisation. Some of the major
predictable difficulties of this approach are:

1) Nothing is known about the execution environment;
there could e.g. be several programs executing on the
same hardware.

2) The WCET is generally assumed to be a constant
property of a program.

3) The WCET estimate for a system of threads executing in
parallel (on parallel hardware) will be very pessimistic
if nothing is known about the scheduling policy used.

4) Introducing parallelism in software generally explodes
the number of possible patterns of execution, and thus
also the size of the state space to be analysed.

Since safety-critical hard real-time systems are considered,
some realistic assumptions about the execution environment
could be made. For this kind of systems, a predictable behavior
is crucial. So regarding problem 1, it can be assumed that
specific system resources, like a parallel processor or some of
its cores, are dedicated to specific tasks.

Regarding problems 2 and 3, a WCET analysis could as-
sume that the (synchronising) threads of a considered parallel
program are effectively executed in a sequential manner, with
the worst-case ordering (assuming that there are no timing
anomalies [20] due to parallel execution of the threads). This
would mean that the WCET estimate would be a constant
property of the program and that it could be safely used in
any schedulability analysis. However, the result of the WCET
analysis would probably be an extremely pessimistic WCET
estimate. This is since some threads would most likely be
scheduled to execute in parallel and thus a reduction of the
execution time bound could possibly be guaranteed.

This is a problem that has not yet been attacked within the
field of WCET analysis. It will be the work of the author
to define an analysis for programs containing concurrently
executing and synchronising threads. A limitating assumption
that the threads of a program are uninterruptedly executed in
parallel on individual processor cores, would still expose the
fundamental problems of defining such an analysis. Therefore,
such an assumption will initially be made in the work of the
author. Later on, the assumption might be relaxed by incor-
porating details on scheduling-introduced behaviors1 in the

1A scheduling method resulting in a behavior not too far from that of the
assumed model could be accomplished using some form of 2-level hierarchical
scheduling [1], [25]. If the program is assumed to execute alone within a
subsystem, the assumed system model basically holds within that subsystem.
A possible problem could be that there are not enough cores to allow all
threads to execute in parallel. It would probably not be too difficult to adapt
the analysis to incorporate this situation, though (given that the properties of
the global and subsystem schedulers are known).



analysis; effectively making the analysis scheduler-dependent.
The result might be different WCET estimates for the program,
depending on the used scheduler.

Problem 4 will have to be handled and solved by adapting
the abstraction level of the analysis. The size of the analysed
state space could e.g. be reduced by only considering well-
structured parallel programs (written using e.g. OpenMP),
which might greatly simplify the analysis. There will, however,
be a significant tradeoff between the handling of this problem
and the achievable precision in the resulting WCET estimate.

II. WCET ANALYSIS

WCET analysis can be performed either statically or dynam-
ically [33]. In dynamic WCET analysis, measurements of the
actual execution time of the software running on the target
hardware are performed. This method is not guaranteed to
execute the program’s worst-case path though, which could
e.g. include some error-handling routine. Thus the WCET
might be gravely under-estimated; i.e., there might exist paths
through the code with considerably worse (longer) execution
times than the worst execution time detected by the measure-
ments.

In static WCET analysis, the actual program code and the
properties of the target hardware are analysed offline. This
method tries to find a tight estimation of the WCET (i.e., an
estimation not too far from the actual WCET), but always
over-estimates it. Solving the problem of finding the actual
WCET, in the general case, is actually comparable to solving
the halting-problem (a decision-problem [13]).

Static WCET analysis is normally split into three subtasks:
the low-level analysis, which attempts to find safe timing
estimates for executions of code sequences, the flow analysis,
which constrains the possible paths through the code, and the
calculation, where the most time-consuming path is found,
using information derived in the first two phases.

III. RELATED WORK

In low-level analysis, most research efforts have been ded-
icated to analyse the effects of different hardware features,
including pipelines [5], [10], [18], [28], [31], caches [16], [18],
[31], [32], branch predictors [3], and superscalar CPUs [17],
[27].

In flow analysis, most research has been dedicated to
loop bound analysis. Flow analysis can also identify infea-
sible paths, i.e., paths which are executable according to the
program control-flow graph structure, but not feasible when
considering the semantics of the program and possible input
data values. There are a number of approaches to flow anal-
ysis, using e.g., abstract interpretation, symbolic execution,
Presburger arithmetics, specialized data flow analyses, and
syntactical analysis of parse trees [8], [11], [12], [19], [31].

Three main methods exist for the WCET calculation: The
tree-based method [2], [3], [18], originating from Park’s timing
schemas [23]; the path-based method [10], [29]; and the
Implicit Path Enumeration Technique (IPET) [6], [12], [16],
[24], [31], where the WCET calculation problem is formulated

as an integer linear programming problem, and the set of
execution paths is restricted by linear constraints.

As a result, today’s WCET analysis tools are able to analyse
a large variety of software targeted for execution on single-
core processors [33].

Some initial efforts have been put into analysing multi-
core architectures and concurrent/parallel software. Staschulat
et. al. [30] consider an integrated system- and task-level
analysis to estimate memory access times for single-processor
tasks running in parallel with tasks of other processors. Their
approach requires full information about all tasks running in
the system, and it makes quite strong assumptions about the
task model.

Yan and Zhang [35], [36] present a static method for
analysing a multicore processor with a shared L2 instruction
cache. A limitation of this analysis is that the L1 data cache
is assumed to be perfect (i.e., all accesses are assumed to be
hits – which is generally not the case) and thus does not affect
the content of the L2 cache.

Lv et. al. [21] and Wu and Zhang [34] use model-checking
of timed-automata to perform WCET analysis. In this ap-
proach, a timed automata-model of the system to be analysed
is created. Then, specific properties of the model are verified to
find a WCET estimate for the analysed system. The achievable
tightness of the WCET estimate depends on the level of details
in the timed automata-model. Thus, model-checking is not a
traditional static WCET analysis method.

Both papers mainly propose methods for reducing the size
of the state space by altering the program model without
affecting the true WCET of the model. This is a very important
aspect when using model-checking overall. If the model is
too large and complex, the state space will “explode”, which
means that the number of possible states is very large and
analysing the model becomes infeasible.

There is some work on data flow analyses for parallel
programs [4], [7], [14], which is of relevance to WCET flow
analysis of parallel programs. Constant propagation has also
been considered [15]. A survey of analyses for concurrent and
parallel programs is found in [26].

IV. RESEARCH QUESTIONS

The goal of the author’s research is to find suitable models
and methods for WCET analysis of parallel systems; mainly
parallel software executing on some parallel hardware, like
multicore and MPSoC architectures. Since the field is quite
new, focus is put on basic models taking parallelism into ac-
count, mainly for some form of flow analysis and calculation.

While important, there is less focus on the low-level anal-
ysis. Instead, emphasis is put on analysing the impact on
the WCET from allowing synchronising and communicating
threads executing on a shared memory architecture.

Some concrete research questions are:
1) Is model-checking a feasible tool for performing WCET

analysis of parallel programs, containing synchronising
threads?



2) Is there a feasible static program analysis method to
perform WCET analysis of parallel programs, containing
synchronising threads?

3) If there is a feasible static program analysis method to
perform the WCET analysis, can it be separated into the
current static (flow, low-level, and calculation) analysis
phases?

4) What is the achievable precision of the chosen method
and how does it scale with respect to analysis of real-
world parallel systems (i.e., what is the complexity of
the method)?

V. RESEARCH RESULTS

Using the UPPAAL modeling and verification tool box,
the impact of thread communication and synchronisation via
shared resources, such as caches and buses, on a multicore
architecture has been investigated [9]. In the analysed model,
one thread is executed per processor core (i.e., there can be
no scheduling or migration of threads) and synchronisation
occurs through spin-locks.

Using the verification subsystem of the UPPAAL model-
checker, different properties, such as the WCET, of the system-
model is found and verified.

A problem with the method used for the case study in [9] is
that too many properties of the analysed system are considered
at once; e.g., properties of the cache hierarchy are taken into
account while analysing the impact of thread synchronisation.
Therefore, the used method does not scale very well with the
size of the analysed problem. A more suitable abstraction level
needs to be found (e.g., only considering the impact of having
synchronising threads) in order to make the method scale.

The conclusion is that the used method does not seem to be
a very good candidate for analysing parallel systems. Thus, the
answer to research question 1 is probably no, at least if using a
method similar to that of [9]. However, model-checking might
still be a useful tool that could be integrated as part of some
other method.

VI. RESEARCH DIRECTION

Current and future work includes the definition of a static
analysis method for a system of synchronising threads, ex-
ecuting on a shared memory architecture. The analysis will
be based on a formally defined parallel programming lan-
guage called PLock. This allows certain properties, such as
correctness, of the analysis to be proved with respect to the
semantic of PLock. However, the analysis (with the necessary
extensions added to it) is intended to be general enough to be
applicable to real-world languages, such as C/C++, as well.

PLock is an extension to the standard imperative While-
type of languages, which can be found in some literature
on semantics; e.g., [22]. A program written in PLock can
contain one or more threads that are uninterruptedly executed
in parallel on individual processor cores. A statement S is
defined as:

S ::= halt
∣∣∣ skip ∣∣∣ x := a

∣∣∣ S′;S′′
∣∣∣ if b then S fi

∣∣∣
if b then S′ else S′′ fi

∣∣∣ while b do S done
∣∣∣

lock l
∣∣∣ unlock l

halt simply stops the thread. lock l makes the issuing thread
wait until it is allowed to lock the lock named l (which could
happen immediately). unlock l immediately unlocks the lock
named l. The other statements follow a semantic comparable to
the standard C semantics regarding their functional behavior.

An abstraction in the semantic of PLock is that all state-
ments are defined to require 1 time unit to execute. This is
perhaps not very realistic, especially when considering e.g. an
assignment (x := a) to the variable x occurring in two threads
at the same time instance. Taking properties and effects of the
hardware, on which the program executes, into account, one
of the threads would most probably need to wait for the other
to finish. Furthermore, writing to memory is usually a very
time-consuming task. The semantic of PLock will allow both
threads to concurrently write to x without any delays. (Note
that this describes a situation with a race condition between
the two threads, and that the resulting value of x is non-
deterministically chosen between the possible values written
to it.) However, the behavior of the memory system (and other
shared resources for that matter), like delays occurring when
reading, writing, and waiting for exclusive access to it, can
be modeled at the program level. This can be done using the
skip, lock l and unlock l statements to protect a variable
and delaying the access to it.

In other words, PLock is a modeling language excluding
unnecessary details and incorporating a simplified parallel
timing model. This makes PLock powerful enough to model
a realistic behavior of a parallel system, but simple enough to
let the WCET analysis focus on the important aspects; like the
fundamental problems of analysing the effects resulting from
thread synchronisation-introduced behaviors.
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