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Abstract—Hierarchical scheduling provides a modular frame-
work for integrating, scheduling and guaranteeing timing con-
straints of compositional real-time systems. In such a scheduling
framework, all modules should receive a sufficient portion of
the shared CPU to be able to guarantee timing constraints of
their internal parts. In dynamic systems i.e., systems where the
execution time of tasks are subjected to sudden and drastic
changes during run-time, assigning fixed CPU portions to the
modules is conducive to either low CPU utilization or numerous
task deadline misses. In this paper, in order to address this
problem, we propose an adaptive CPU allocation method which
dynamically assigns CPU portions to the modules during run-
time based on their current CPU demand. Besides, the presented
approach is evaluated using a series of different simulations.
In addition, we present a method for scheduling modules in
situations when the CPU resource is not sufficient for scheduling
all modules. We introduce the notion of module (subsystem)
criticality, and in an overload situation we distribute the CPU
resource based on the criticality of modules.

I. INTRODUCTION

Increasing growth of the complexity in embedded real-time
systems makes it difficult to combine real-time guarantees with
efficient use of system resources. In real-time systems that
do not have fixed run-time behavior, open loop scheduling
techniques often result in poor performance (either there will
be numerous task deadline misses or poor CPU utilization). In
a dynamic real-time system, tasks can be added or removed
during run-time, and their execution time can vary in a signifi-
cantly vast range. A video decoder task is a prime example of
a task that shows such a dynamic execution time behavior. For
example, a decoder task of an H264 stream task can exhibit
more than 500% variation in its execution time [1]. In such
dynamic systems, closed-loop scheduling techniques can be
used for adapting the scheduling parameters to the current
behavior of the dynamic system. The system resources can be
efficiently utilized using a feedback loop which observes the
resource demand of tasks and adapts scheduling parameters
according to the current load situation. Although a variety of
previous studies have been performed on feedback scheduling
[2], [3], [4], in this paper we design feedback loops which
adapts scheduling parameters of our Hierarchical Scheduling
Framework (HSF) [5].

The HSF is a component based approach for scheduling
complex real-time systems [6], [7]. It can be illustrated using a
tree structure in which each node is responsible for scheduling
its own children using CPU resources received from its parent

node. The child node provides its corresponding parent with
interface parameters, such as period and budget, representing
the resource required to guarantee schedulability of the child
node. If the parent provides its child with the required budget
within the required period, the child node will guarantee its
timing constraints. One approach for finding resource efficient
interface parameters for a child node is to assume a fixed
period for it and try to find a minimum possible value for
the budget [8]. However, in a dynamic system, the resource
demand of a child node can vary over time. Therefore, if
we manipulate its budget according to its current resource
requirements, we can utilize the resources more efficiently, and
the node to a greater degree can fulfill temporal constraints of
its children.

In this paper, we introduce a feedback controller which
adapts the budget value of nodes during run-time. Given a
particular node period, the controller keeps the budgets to
a minimum while at the same time minimizing the number
of potential deadline misses within a predetermined time-
interval. While in static systems where modules have fixed
budget values and timing guarantees of one module cannot be
violated by other modules, in dynamic systems we can end up
in an overload situation where modules can affect each other’s
timing guarantees. For example, when we use a priority based
scheduler, if a higher priority module consumes the entire
available resource, a lower priority module must shut down.

However, it is often the case that the higher priority module
is not the most important one. In this paper, we also investi-
gate overload situations and suggest one method for dealing
with budget adaptation in an overload situation. We add the
notion of module criticality (inspired by [9]) to the interface
parameters, and in an overload situation the scheduler gives
priority to higher criticality modules in receiving the resource.

The contributions of this paper are i) the design of a feed-
back control system for dynamic adaptation of the interface
parameters in the HSF, ii) simulation studies investigating the
performance of our solution, and iii) a method for handling
CPU overload in our Adaptive Hierarchical Scheduling Frame-
work (AHSF). The preliminary work was presented in [10],
[11].

The remainder of this paper is organized as follows. Related
work is presented in Section II. Section III provides an
overview of our HSF. Section IV describes the structure of
the budget controller. In Section V a method is suggested for



dealing with scheduling in overload mode. In Section VI we
present simulation results and show one example illustrating
overload scheduling. Finally, our conclusions are presented in
Section VII.

II. RELATED WORK

We categorize related work in three groups: hierarchical
scheduling, feedback scheduling and overload scheduling.

A. Hierarchical Scheduling

Since Deng and Liu [6] presented a two level hierarchical
scheduling framework, there has been a growing attention for
using hierarchical scheduling in complex real-time systems.
Schedulability analysis for two-level frameworks is presented
by Kuo and Li [12]. For EDF-based global schedulers analysis
is presented by Lipari and Baruah [13], [14]. In addition, the
virtual processor model is presented in [15], [8]. Then, based
on this model schedulability analyses under fixed priority
scheduling [16], [17] and EDF [18], [8] are studied. While
all of the aforementioned works allocate static CPU portions
to the subsystems, we introduce an adaptive HSF which
dynamically allocates the CPU to the subsystems.

B. Feedback Scheduling

Addressing control tasks with unpredictable execution time,
feedback scheduling techniques have been efficiently applied
[19], [20]. Reservation based algorithms are similar to our
HSF solution, as we also use reservation based scheduling. The
difference between our work and reservation based scheduling
is that we have local schedulers in each subsystem. Therefore,
tasks and subsystems are not necessarily scheduled using a
same policy. Hence, a hierarchical system has a different
behavior comparing with a flat system. Feedback scheduling
has been applied to reservation based algorithms in [21], [22].
Bandwidth of the servers are adapted in order to improve
application level and system level Quality of Service (QoS) us-
ing a two level feedback controller [22]. Feedback scheduling
have also been applied in the distributed systems domain [4].
Lu et al. controlled CPU utilization request using a deadline
miss ratio feedback loop [3]. Thereafter, they presented a two
feedback loop system which in addition to the miss ratio, uses
a CPU utilization feedback loop [2]. In this paper, however,
we bring feedback scheduling techniques to the context of our
HSF.

C. Overload Scheduling

In [9], using the notion of task criticality, the authors suggest
a scheme for protecting temporal isolation of high criticality
tasks. In [23] tasks consist of mandatory and optional parts.
When the CPU resource is not sufficient, a sub set of task
parts are chosen such that the value of the system is max-
imized. Buttazzo et al. presented an elastic task model in
which tasks can adapt themselves to the current QoS. In their
approach, whenever the CPU resource is not sufficient, instead
of rejecting new tasks, the utilizations of accepted tasks are
reduced such that also the new task can use the CPU. In [24] a

technique for dealing with an overload situation using (m, k)-
firm guarantee is proposed. The approach is suggested for the
real-time control tasks that can tolerate occasional deadline
misses. In this paper we study overload scheduling in our
adaptive hierarchical scheduling framework.

III. THE HIERARCHICAL SCHEDULING FRAMEWORK

A hierarchical scheduling framework can be modelled as a
system S consisting of number of modules (subsystem) SS ∈ S.
In this paper we investigate a two-level HSF in which a global
scheduler schedules subsystems, and each subsystem has its
own local scheduler which is responsible for scheduling its
internal tasks. Figure 1 shows the architecture of our two-
level HSF which uses the Fixed Priority Scheduling (FPS)
algorithm in both local and global levels. In this figure, the
budget controllers and the overload controller are embedded
in the architecture of the HSF.

Fig. 1. Adaptive Hierarchical Scheduling Framework

A. Subsystem Model

Each subsystem SS is represented by its timing interface
parameters (TS,PS,BS,ζS) where TS, PS, BS and ζ are subsys-
tem period, priority, budget and criticality respectively. Each
subsystem SS also consists of a set of tasks τS and a local
scheduler. The criticality of a subsystem ζS is used only in
overload situations. Therefore, we ignore this parameter when
systems are not overloaded. To keep the utilization required
of subsystems as minimum as possible, we set the subsystem
period to at most half of its shortest task period and then we
find the minimum required budget for guaranteeing subsystem
schedulability [25]. In each subsystem period TS the subsystem
receives a budget equal to BS. The budget of subsystems



should be set to a minimum, otherwise subsystems will
experience idle time and resources will be wasted. Dewan et
al. have proposed an algorithm for finding an exact minimum
possible budget for subsystems that are using FPS in the local
scheduler [26].

B. Task Model

We assume the periodic soft real-time task model
τi(Ti,Pi,Ci,Di), where Ti, Pi, Ci and Di are task period, priority,
worst-case execution time and relative deadline respectively.
When a deadline miss happens in the system, the task contin-
ues executing until it finishes.

IV. BUDGET CONTROLLER

In this section we design a budget controller which manipu-
lates the budget of subsystems according to the feedback that it
receives from the scheduling plant. Therefore, the budget is our
manipulated variable and we need to find proper controlled
variables and sample them during run-time. In the design
and analysis we are inspired by the work presented in [2].
However, we formulate the controlled system in the context
of hierarchical scheduling.

The controlled variables are chosen according to two desir-
able features of a real-time system. First of all, in a real-time
system the number of tasks that are missing their deadline
should be either zero or as low as possible. In addition,
available system resources should preferably be fully utilized.
Therefore, we have two feedback loops in the system. The first
loop observes the number of task deadline misses and manipu-
lates the budget such that more tasks can meet their deadlines
in the next sampling period. The second loop measures the
amount of idle time in each subsystem, and manipulates the
budget such that in the next sampling period this idle time
becomes closer to zero. For simplification purpose we assume
that these loops are independent from each other and we
perform separate analyses for each loop.

A. Controlled Variables

The first feedback loop monitors task deadline misses.
Therefore, we define the controlled variable of this loop MS(t)
as the total number of missed deadline jobs of all tasks inside
the subsystem τi ∈ SS, within one specified time window (twm)
prior to the current time t. This control loop is called ”M-loop”
in the rest of the paper. The second feedback loop observes
the idle time in the subsystems. In order to simplify analysis
we do not directly use the idle time but instead define the
second controlled variable based on the total available budget
and amount of used budget. Hence,

US(t) =
BS(t)
ES(t)

(1)

where BS(t) and ES(t) represent total budget of the subsystem
and total measured time of CPU usage by all tasks of the
subsystem SS in the time window twu respectively. Similar to
the M-loop, we call the second control loop ”U-loop” in the
rest of the paper.

B. Manipulated Variables

As it is mentioned, the budgets of the subsystems are
manipulated variables of our controlled system. In each control
period, the controller adds a budget change value DBS(t) to the
previous value of the subsystem budget.

BS(t) = BS(t−1)+DBS(t) (2)

C. Integrating loops

In the presented architecture, each feedback loop in each
control period has a budget change output DBS(t). We choose
a budget change value which has a greater absolute value
than the others’ absolute values. The reason for not using the
smaller one is that when loops are in their saturation zone, their
output is zero. For example when the subsystem idle time is
equal to the set point but there are some deadline misses, the
result of the U-loop is zero while the result of the M-loop is a
positive number. Hence, a logical operation for integrating the
results of the loops is to select the absolute maximum budget
change value.

D. Model of Plant

In order to find the stability region of our controlled system
we present an approximate analytical model of the plant. This
model in combination with the model of the controller gives us
model of the controlled system which is used in the stability
analysis. In finding a plant model we are interested in the
relation between the control output DBS(t) and the control
variables US(t) and MS(t). From the definition of US(t) we
have

US(t) =
BS(t)
ES(t)

. (3)

In order to continue analysis we assume that the subsystem
tasks execute according to their worst case execution time
WCETS = max(ES(t)). Hence

US(t) =
BS(t)

WCETS
(4)

where WCETS is a total worst case execution time of all tasks
in subsystem SS. After transfering to the z domain, from the
control input DB(z) to U(z) the transfer function is:

U(z) = PU (z)DB(z) (5)

and
PU (z) = GU/(z−1) (6)

where
GU =

1
WCETS

. (7)

We can define MSS(t) based on USS and derive a similar
model for MSS(t):

MSS(t) = MSS(t−1)+Gm(USS(t)−USS(t−1)) (8)

where Gm is the deadline miss factor and can be found
by plotting the MSS(t) curve as a function of USS(t). For
continuing the analysis we use GM as the maximum value of



Gm. Similar to the U-loop we can derive the transfer function
of the M-loop

PM(z) = GU GM/(z−1). (9)

E. Model of The Controller

We use a PI controller for both the M-loop and the U-loop
to control the budget value of subsystems. The PI controller
function is

DBS(t) = KPErorrS(t)+KI ∑
tw

ErrorS(t) (10)

where KP, KI , ErorrS(t) and tw are proportional gain, integral
gain, error value of the subsystem SS at time t and time
window respectively. KP, KI are tunable parameters of the
controller and should be tuned to get a desirable performance.
ErorrS(t) is control loop error which is the difference between
the controlled variable of each loop (MS(t) or US(t)) and the
set point of that loop (MSet or USet ). After applying the z-
transform we have

DBS(z) = KP +
KI

(z−1)
. (11)

F. Closed-Loop System Model

If we consider G = GU GM for the M-loop and G = GU for
the U-loop, we can derive the following closed-loop system
model for both loops:

HS(z) =
C(z)P(z)

1+C(z)P(z)
=

GKP(z−1)+KIG
(z−1)2 +G(KP(z−1)+KI)

(12)

G. Stability Analysis

From (12) the characteristic equation is:

(z−1)2 +G(KP(z−1)+KI) = z2 +α1z+α2 (13)

where α1 = GKP−2 and α2 = 1−GKP +GKI . According to
Jury’s scheme [27, p. 82] the stability conditions are:

α2 < 1 (14)

α2 >−1+α1 (15)

α2 >−1−α1. (16)

These conditions give us boundaries on the tunable variables
of the system KI and KP.

H. Configurations

As shown in Figure 1, we have one budget controller
corresponding to each subsystem. It implies that the controllers
can be configured separately and they can have different
periods, gain values and set points. Therefore, each controller
should be configured according to the particular requirements
of its inner tasks. As it is mentioned in Section IV-G, by
applying the stability analysis we make the tuning process
of the gain variables (KP and KI) easy. This section provides
discussions about the tuning controller period and how to set
the reference points in the feedback loops. However, we do not
provide any mathematical analysis; we provide a discussion
about the rationale behind selecting the controller period and
the set points.

1) Tuning The Controller Period: In most of our sim-
ulations the controller period of the both feedback loops
are selected to be two times larger than its corresponding
subsystem period. The reason for choosing such a period is to
let all subsystems work with their new budget so that in the
next sampling we can measure the controlled variables that are
resulting the new budget settings. The problem of choosing a
larger period is that the M-loop cannot react to the deadline
misses quickly, which is not desirable in some cases. A useful
option that is possible in our AHSF is that we can set a
relatively short control period for the critical subsystems and a
relatively long period for the less critical ones. In summary, the
controller period is an application specific tunable parameter
which should be tuned according to the requirements of the
subsystems.

2) Set Point of the M-loop: A desirable value for M is
zero because in this case all subsystem tasks can meet their
deadlines. However, since this value is on the threshold of
deadline miss saturation, setting the reference point of the M-
loop to zero results in a very sensitive controller which in some
cases will be conducive to a large steady state error. Therefore,
in subsystems that can tolerate some deadline misses by
choosing the M-loop reference point to one or two, we can
acquire a much better and stable performance.

3) Set Point of the U-loop: A desirable value for U is one
because in this case all subsystems are using all CPU portions
that they have received. Similar to the M-loop, since U = 1
is a threshold value, setting the reference point of the U-loop
to one is conducive to a large steady state error. Therefore, a
value between one and two is recommended for the set point.

V. OVERLOAD CONTROLLER

When the total requested budget of all subsystems in the
system is more than the available CPU, the system is over-
loaded. In this situation, which we will call critical mode, if the
controller provides all subsystems with their requested budget
values, tasks that are in the lower priority subsystems will
start to miss their deadlines. However, during critical mode the
high criticality subsystems are superior to the low criticality
subsystems. Therefore, in this section we introduce a method
for distributing the CPU resource according to the subsystem
criticality values ζS.

A. Mode Change

The budget controller, in each control period, suggests new
budget values for the subsystems according to their current
load situations. The overload controller can be consulted of the
new budgets before they are assigned to the subsystems such
that schedulability can be checked. When the budget controller
wants to increase the budget value of any subsystems, the
overload controller first performs a schedulability analysis
given the new budgets. If the schedulability analysis fails, the
system mode changes from the normal mode to the critical
mode.

The schedulability analysis that is executed in the overload
controller is performed on the global level. Since the global



scheduler schedules subsystems in a similar way as scheduling
simple real-time periodic tasks, it is possible to use the schedu-
lability analysis methods used for scheduling such periodic
task systems. The subsystem can be modeled as a periodic task
where the subsystem period is equivalent to the task period and
the subsystem budget is equivalent to the task execution time.
We use the CPU utilization based schedulability analysis and,
assuming that priorities have been assigned according to the
rate monotonic algorithm in the global level, the schedulability
test follows according to Liu and Layland [28]:

n−1

∑
i=0

Bi

Ti
< n(2

1
n −1) (17)

where n is the number of subsystems in the system. Although
the utilization based schedulability analysis is sufficient but
not necessary which may lead to a case that the schedulability
test fails and the overload controller punishes the lower priority
subsystems even if the system may still be schedulable. We can
avoid facing this potential problem by using an exact response
time based schedulability analysis which on the other hand has
higher computational complexity which is not preferred to be
used during runtime.

B. Budget Distribution Policy in the Critical Mode

In the critical mode, the controller starts from the highest
criticality subsystem and gives it a new budget. Thereafter, it
moves to a lower criticality subsystem. It can only receive a
budget value which is left after use of the highest criticality
subsystem. This process continues until the lowest criticality
subsystem receives the leftover CPU after all other subsystems
are assigned to a new budget. In this approach a lower
criticality subsystem tasks can start missing deadlines or even
it can be completely shut down which is unavoidable. Indeed,
the overload controller provides high criticality subsystems
with enough CPU resource by punishing the lower criticality
subsystems.

From Equation 17 and given that we have started to dis-
tribute the budget from the highest criticality subsystem to
the lowest one, we can drive the following equation for the
maximum available budget for subsystem Si:

BMax
i = Ti (n(2

1
n −1)− ∑

j∈Sh

B j

Tj
)︸ ︷︷ ︸

Uav

(18)

where Sh is the set consisting of all subsystems that have a
higher criticality level than that of Si, and Uav is the available
CPU utilization for subsystem i. In this approach, if subsystem
Si asks for a budget value which is less than or equal to
BMax

i , it will be assigned that value, otherwise it will be
assigned BMax

i . Algorithm 1 shows pseudocode of the budget
distribution policy in the critical mode. In this pseudocode
NewBudgeti represents a new budget that the budget controller
suggests to subsystem Si. Assuming that we have n subsystems
in the system, there are n levels of criticality (from 0 to n−1)
in the system. The algorithm loops through all subsystems

from the lowest criticality level to the highest one, and using
equation 18 assigns the new budgets to the subsystems. The
computational complexity of this algorithm is of O(n) which
makes it suitable for dynamic systems.

Algorithm 1 Budget distribution policy

Uav = n∗ (2 1
n −1);

for ζi = 0 to ζi = n−1 do
if NewBudgeti ≤ Ti ∗Uav then

Bi = NewBudgeti;
else

Bi = bTi ∗Uavc;
end if
Uav =Uav− Bi

Ti
;

end for

VI. SIMULATION RESULTS AND OVERLOAD EXAMPLE

For simulation purposes, we have used a synthesized sched-
uler according to the hierarchical scheduling model presented
in [29]. We have synthesized the scheduler together with the
budget control function and some functions for sampling the
controlled variables. The controller function is embedded in
the scheduler code such that the scheduler runs it (periodically)
before each scheduling invocation.

A. Base Simulation

In order to show how the budget controller reacts to the ex-
ecution time variation of tasks, a sample scenario is presented
in this example. In this scenario the execution time of a task
both increases and decreases during run-time.

The system consists of two subsystems. The specification
of these subsystems is presented in Table I. Tasks that are
in S1 have fixed execution times and they use the entire
available budget in each period. Table II shows the tasks that
are in S2. During run-time τ1 experiences various execution
time values. The execution time changes of τ1 are presented
in Table III. These execution time changes are done using
a function which changes the value of execution time to a
predefined value at a instant in time. All simulations presented
in this paper are designed in a way such that the system has
enough CPU resource to allocate to the subsystems. Therefore,
we are only studying performance of our budget controller in
these simulations.

Name TS BS PS
S1 19 2 1
S2 5 3 0

TABLE I
SUBSYSTEMS SPECIFICATIONS

In the base simulation the control period is 15, meaning that
the controller samples the plant and manipulates the budget
every 15 time unites. In the next simulation examples different
values are assigned to the controller period.

Figure 2 shows result of executing the system for 600 time
unites. The controlled variables M(t) and U(t) as well as the



Name Ti Di Pi Ci
τ1 10 6 1 3
τ2 11 8 0 1

TABLE II
TASKS SPECIFICATIONS OF S2

Time 0 50 200 400
C1 3 2 3 0

TABLE III
EXECUTION TIME CHANGES OF τ2

manipulated variable B(t) are sampled during run-time. The
budget of S2 is adapted during run-time as a result of the
execution time changes of τ1. The first budget change at time
30 occurs due to not sufficient initial budget of S1. Afterwards,
the budget has a similar change pattern as the execution time
of τ1 with some delay.

Whenever the execution time of τ1 is increased, the system
experiences some deadline misses which are detected by the
M-loop, and this loop increases the budget of S1. On the other
hand, when the execution time of τ1 is decreased, the U-loop
observes the idle time in the subsystem and takes an action to
reduce the budget value of S1.

For comparing adaptive budget allocation with having a
static budget, the system is executed using fixed budget values,
and the result is illustrated in Table IV. The table shows the
number of total deadline misses and the total idle time in S1
using four different budget settings. This table shows a great
improvement with respect to number of deadline misses when
using our adaptive approach. Although the total idle time could
be further reduced by using a lower set point for U-loop, since
meeting deadlines is usually the most important objective in
real-time systems, we have configured the controller in such
a way that the system does not experience too many deadline
misses.

Budget 4 3 2 adaptive
Deadline misses 0 12 33 4
Idle time 317 197 77 185

TABLE IV
IDLE TIME AND DEADLINE MISSES USING DIFFERENT BUDGETS

Fig. 2. Execution times, budget and controlled variables change over time

B. Different Configurations
In this part we set up the same system as the previous

one but we change its configuration compared to the based
simulation and we conduct some new simulation studies.

1) Control Period = 30: In this example, we are using
the same system as the previous one with the difference in
its controller period. The controller period is changed to 30
and the system is executed again. As it is shown in Figure
3 we can see a similar budget adaptation pattern as the base
simulation but with some delay. In addition, the number of
deadline misses is increased to six, compared to four in the
base simulation.

Fig. 3. Execution times, budget and controlled variables change over time
(Control period = 30)

2) Control Period = 10: Here we set the controller period to
10 and execute the system. As shown in Figure 4, the number
of deadline misses is decreased. Using this configuration
the system experiences two total deadline misses, and the
maximum number of deadline misses in one control period
is one. The earlier the controller observes a deadline miss,
the faster it can react. Note that when we are changing the
controller period, we should also consider the control overhead
on the scheduler.

Fig. 4. Execution times, budget and controlled variables change over time
(Control period = 10)

3) Different Set points: In this example the set points of
the M-loop (MSet ) and U-loop (USet ) are set to 0.5 and 1.2
respectively, and the corresponding result is shown in Figure 5.
In the base simulation the set points were MSet = 0 and USet =
1.5. Using this configuration the system experiences 10 total
deadline misses, and the maximum number of deadline misses
in one control period is two. On the other hand, the total idle
time is 134 which is lower compared to the base simulation.
This example shows that in the cases where a system can



tolerate some deadline misses, we can configure MSet to a
value greater than zero and USet to a value close to one, then
the system can achieve a high CPU utilization.

Fig. 5. Execution times, budget and controlled variables change over time
(MSet = 0.5 and USet = 1.2)

C. Four Subsystems

In this example we have four subsystems in a system.
Table V shows the specification of these subsystems. Since the
execution time of tasks inside subsystems are changing over
time, the budgets of subsystems are adapted during run-time
to improve overal system performance. Figure 6 indicates the
relation between the controlled variables of the two feedback
loops and the budget.

Name TS Initial BS PS Number of tasks
S1 23 1 1 4
S2 20 2 0 2
S3 20 2 2 2
S4 31 1 3 1

TABLE V
SUBSYSTEMS SPECIFICATIONS

Task specifications of all subsystems are presented in Ta-
ble VI. Budget adaptation in this example is inherent in two
reasons. First of all, the initial budget values are not enough
for some subsystems. In addition, the execution time of some
tasks will change at time 200 and 300.

Subsystem Name Ti Di Pi Ci
S1 τ1 48 30 0 1
S1 τ2 48 40 1 1
S2 τ1 40 32 0 1
S2 τ2 40 30 1 1
S3 τ1 40 35 0 1
S3 τ2 42 40 1 1
S3 τ3 44 34 2 1
S3 τ4 48 19 3 0
S4 τ1 60 30 0 2

TABLE VI
TASKS SPECIFICATIONS OF ALL SUBSYSTEMS

D. Overload Control Example

Although the overload scheduling method is not imple-
mented in our simulation environment, we present here an

Fig. 6. Budget adaptation of four subsystems over time (Si-M and Si-U are
controlled variables of the M-loop and U-loop respectively.)

Name TS Initial BS PS ζS
S1 15 2 1 1
S2 17 3 2 2
S3 14 2 0 (highest) 3
S4 19 5 3 0 (highest)

TABLE VII
SUBSYSTEMS SPECIFICATIONS

example for illustrating the overload controller. Assume a
system with the specifications as presented in Table VII.

Assume that during run-time the budget controller suggests
3 as a new budget of S1. Assigning this new budget will put
the system in an overload situation and therefore cause a mode
change. We use Algorithm 1 to distribute the CPU resource
among the subsystems as a result of this mode change, and:

• The available utilization is Uav = 0.7568.
• Since the utilization of the system is 0.7825 (assuming

B1 = 3) the overload controller will change the system
mode.

• Iteration starts from the highest criticality subsystem
which is S4, and since NewBudget4 < T4 ∗Uav (5 <
14.3797), it can receive this new budget. The available
utilization is updated: Uav = 0.4937.

• The next critical subsystem is S1, and since
NewBudget1 < T1 ∗Uav (3 < 7.4051), it can receive
the new suggested budget, and Uav = 0.2937.

• The next critical subsystem is S2, and since
NewBudget2 < T2 ∗Uav (3 < 4.9924), it can receive
the new suggested budget, and Uav = 0.1172.

• The last critical subsystem is S3, and since NewBudget3 >
T3 ∗Uav (2 > 1.6408), it cannot receive the suggested
budget. Therefore, B4 = bT3 ∗Uavc= b1.6408c= 1.

• After the overload controller finishes its job, the budget
values will be: B1 = 3, B2 = 3, B3 = 1 and B4 = 5.

The result of using Algorithm 1 is that budget has been
taken from the lowest criticality subsystem S3 and re-allocated
to the higher criticality subsystem S1. However, if we would
not use the budget controller the global scheduler would prefer
S3 (the least critical subsystem) over all other subsystems.



VII. SUMMARY AND CONCLUSIONS

In this paper, we have studied feedback scheduling tech-
niques in the context of hierarchical scheduling. Using a math-
ematical modeling approach, we have designed a PI controller
which by sampling the number of deadlines and the amount
of idle time in subsystems takes an action and manipulates the
budgets. The performance of the budget controller is evaluated
by simulation, the simulation results show that using the
budget controller and re-allocating the CPU resource during
run-time we can achieve a system with fewer deadline misses
and higher CPU utilization.

In addition we have proposed an overload scheduling
method for solving the problem of violating timing constraint
of low priority subsystems, which may be side effect of
manipulating budgets during run-time. In the presented method
higher criticality subsystems are superior to the lower critical-
ity subsystems in receiving CPU resources.

In compositional real-time systems where the execution time
of tasks are not fixed during run-time, task execution times
are not fully known before run-time, or tasks are added and
removed during run-time, our adaptive hierarchical scheduling
framework provides the system developers with an applicable
solution for scheduling the real-time tasks.

The next step in our work is to implement the overload
scheduling method in our simulation environment and study
the performance of our adaptive scheduling approach in the
overload situations. Moreover, we want to implement adap-
tive hierarchical scheduling on hardware, further evaluate our
controllers and also measure the overhead of the controllers.
Finally, another trend of our work is to investigate the pre-
sented approach in the context of multicore systems.
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[5] T. Nolte, M. Behnam, M. Åsberg, R. J. Bril, and I. Shin, “Hierarchical
scheduling of complex embedded real-time systems,” in Ecole d’Ete
Temps-Reel (ETR’09), August 2009, pp. 129–142.

[6] Z. Deng and J. W.-S. Liu, “Scheduling real-time applications in an
open environment,” in Proceedings of the 18th IEEE Real-Time Systems
Symposium (RTSS ’97), December 1997, pp. 308 –319.

[7] G. Lipari and S. Baruah, “A hierarchical extension to the constant
bandwidth server framework,” in Proceedings of the 7th IEEE Real-
Time Technology and Applications Symposium (RTAS ’01), May 2001,
pp. 26 –35.

[8] I. Shin and I. Lee, “Periodic resource model for compositional real-
time guarantees,” in Proceedings of the 24th IEEE Real-Time Systems
Symposium, (RTSS ’03), 2003, pp. 2 – 13.

[9] D. d. Niz, K. Lakshmanan, and R. Rajkumar, “On the scheduling of
mixed-criticality real-time task sets,” in Proceedings of the 30th IEEE
Real-Time Systems Symposium (RTSS ’09), December 2009, pp. 291–
300.

[10] N. M. Khalilzad, M. Behnam, T. Nolte, and M. Åsberg, “On adaptive
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