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Abstract—A method is presented for generating statistical
models of timing data continuously over very long monitoring
sessions. This method is intended for memory-efficient runtime
modeling of timing properties in embedded software systems,
such as execution times or inter-arrival times, but is a quite
generic method that should be applicable for other purposes
and domains as well. Specifically, we intend to use this method
as a component in automatic generation of simulation models
for probabilistic timing analysis of complex embedded software
systems. Given a stream of data as input, this method gradually
builds up a statistical model capturing the approximate distribu-
tion of the data. The method uses a modest and fixed amount of
on-target RAM, decided by the desired accuracy of the model,
and allows for long monitoring sessions covering billions of data
points. The paper presents the motivation, algorithm, a prototype
implementation and evaluation using real execution time data
from an ARM7 microcontroller.

I. INTRODUCTION

If developers of embedded software systems were able to
predict runtime properties related to timing and resource usage
before implementing new software designs, they could identify
and avoid unsuitable software designs at an early stage and
thereby also avoiding the associated costs and delays as a
result of having to redesign the software when the system
verification (hopefully) detects the problems. Predicting task
response times is possible for many systems using established
methods for schedulability and response time analysis [1],
[2], [3] or tools for formal verification using model checking,
such as UPPAAL [4] and KRONOS [5]. However, there are
embedded systems in industry today which have real-time
and performance requirements, but hardly can be analyzed
using such methods. An example is the industrial robot control
system IRC 5 developed by ABB Robotics which contains
some 3 million lines of code and 50-100 tasks. Model checking
tools do not come near to scaling to systems of this size.
The existing analytical methods for schedulability or response-
time analysis are not suitable for the IRC 5 system, due to
the complex runtime behavior which does not comply with
the system assumptions required to use these methods. In the
IRC 5 system, tasks trigger each other using asynchronous
messages and the contents of the messages often have a
major impact on the temporal behavior of the receiver. The
telecom domain poses similar even greater analysis chal-
lenges, for instance the radio base stations and radio network
controllers developed by Ericsson. Such systems are event

triggered, massively parallel, contain many millions lines of
code, thousands of processes and also has several layer of fault
tolerance which together gives very high system complexity.
An alternative for analysis of complex embedded systems is
to use simulation-based timing analysis [6]. This approach
is more related to testing than formal verification as it is
only possible to show the presence of potential errors, not
their absence. However, simulation has the advantage of not
posing restrictions regarding the design of the software system.
Moreover, simulation allows for analysis of any measurable
run-time property, in contrast to the analytical methods for
schedulability and response time analysis [1], [2], [3] which
have strict assumptions and focus on specific properties. Since
a simulation model can be much more abstract than the
modeled system, and since a PC is typically much faster than
embedded hardware, many thousands of simulations can often
be performed in short time where each simulation is given
more or less random variations in execution times and other
parameters. This way, many scenarios are explored which
otherwise might be hard to generate on a real system. Note
that the type of simulation in focus is not cycle-accurate low-
level simulation like, e.g., Simics from Wind River, which
are much slower than normal execution. In the perspective
of analyzing an existing software system, simulation does not
require manual modeling, since a simulation model typically is
implemented using common programming languages and can
be automatically extracted from the system implementation,
either using a combination of program analysis and runtime
measurements [6] or using runtime measurements [7] alone.
This paper focuses on a specific problem in enabling automatic
model generation: how to obtain execution time data for
simulation models from recordings, without storing each data
point individually. This is specifically in the context of the
RTSSim simulation framework presented in Section II. The
specific contribution of this paper is the proposed algorithm
and a brief evaluation on real timing data, with diagrams
visualizing the results. The algorithm has been implemented
in an offline trace visualization tool, which feeds the algorithm
one data point at a time, like when used in runtime monitoring.
A proper implementation on an embedded system is planned
in future work. As the session length is only limited by counter
overflows, for 32-bit CPUs a session may cover at least 232−1
(4.294.967.295) observations of each specific property, since



each interval may hold up to 232− 1 data points. If assuming
a data production rate of 100 Hz per measured property, this
solution allows for at least 30 years of continous monitoring
before wrapping occurs. This is in practice unlimited.

This solution is presented in Section III, and we present an
implementation and evaluation of the method in Section IV.
Section V puts this paper in perspective of related work, and
Section VI concludes the paper and outlines future work.

II. RTSSIM AND TRACEALYZER

RTSSim [6] is a simulation environment which emulates
a generic real-time operating system on a PC. It works as a
“sandbox” with respect to timing. All time-triggered events in
RTSSim are driven by an integer simulation clock incremented
by explicit Execute calls, using timing data recorded from the
modeled system. The timing of the modeled system is thereby
preserved in the simulation even though it runs on a PC instead
of the embedded hardware. The simulated timing is however
approximate, it is not guaranteed to be 100 % identical to
the real timing when executing the code on the intended
hardware, since the simulation model abstracts from the details
of instruction-level timing. It instead describes the execution
times between relevant program points, in a probabilistic man-
ner. RTSSim focuses on the timing and resource usage of tasks,
i.e., threads in a real-time operating system. An RTSSim task
is a C function which is registered in the RTSSim scheduler
together with attributes such as priority. An RTSSim task
contains at least one Execute statement, which models CPU
time usage. A simulation model can be specified at different
abstraction levels. In one extreme is the most basic RTSSim
task containing a single Execute statement only, i.e., only
execution time is specified, no behavior. In the other extreme
is to include the full source code of the analyzed software
system, extended with Execute statements. Our intention of
the RTSSim framework is however to use it together with
a model extraction tool, which produces an abstraction of
the implementation focusing on behavior of relevance for
timing and resource usage. The tasks of an RTSSim simulation
model are by default scheduled using fixed priority preemptive
scheduling, and are assumed to share a single CPU core. In
future work we intend to extend RTSSim to support parallel
systems as well. RTSSim can produce two kinds of output,
a detailed simulation trace focusing on the scheduling and
other logged events, and a text file with selected statistics
on task timing, such as highest response time observed for
the selected task. The simulation trace is produced using a
trace recorder described in Kraft et al. [8], which outputs
a simulation trace for the Tracealyzer tool, including task
scheduling, task communication and synchronization events.
Tracealyzer is trace visualization tool for studying scheduling,
resource usage and interaction of tasks and interrupts in
embedded software. This tool originated in a research project
back in 2004, performed in collaboration with ABB Robotics.
They have used it since then in every industrial robot, and
the Tracealyzer is now product in the author Johan Kraft’s

company Percepio AB1. Tracealyzer is today sold by Quadros
Systems, Inc. as RTXCview and is the official trace tool for
the real-time operating system RTXC Quadros. A description
of the trace recorder used in RTXC Quadros is found in Kraft
et al [8].

III. STATISTICAL RUNTIME MODELING

Classic theoretical distributions are often hard to fit to
timing data from software systems, since the distributions
often are discontinuous and complex. Even linear code may
result in discontinuities due to hardware effects such as cache
misses, and if the measurements cover code with conditional
jumps that is another cause of discontinuities in the resulting
distribution. The most exact method of logging timing data
from a program is to store every observation separately, i.e.,
an empirical distribution. However, over a long monitoring
session this would consume vast amounts of RAM. Another
approach is to only store watermarks (lowest and highest
value) and use them as bound for a uniform distribution, but
this way the shape of the distribution is lost which may result
in incorrect simulations.

We suggest to use an established statistical approach known
as stratification, where the data points are divided into intervals
and where each such interval has a counter attribute, which
is incremented at each matching data point. The individual
observations are attributed to an interval (or used to create a
new interval), and then forgotten. Each interval represents a
uniform distribution, so the shape of the distribution within
each interval still is lost, but given enough intervals this may
give a sufficiently accurate statistical model, using a modest
amount of memory.

The amount of RAM needed for a particular measurement
is 3wi, where i is the number of intervals used and w is the
width of the variables, measured in bytes. In many cases w = 2
is sufficient, otherwise w = 4 allows for over four billion
observations per interval. The constant (3) corresponds to the
number of properties stored per interval, i.e., lower bound,
upper bound and count. When using this simulation model for
replay of timing data in a simulation, a two step sampling
approach is used. At first the interval is selected, with the
probability indicated in its count property, i.e., the number of
observations in the interval divided by the total number of
intervals. Once the interval has been selected, its bounds are
used as a uniform distribution from which the final value is
sampled.

A. Modeling Algorithm

The proposed algorithm takes as input a sequence of integer
values, and produces as output a set of intervals, where each
interval I has:

• I.min: the lower interval bound
• I.max: the upper interval bound, and
• I.count: the number of inputs x observed matching the

interval, i.e., where I.min ≤ x ≤ I.max.

1http://www.percepio.se



Fig. 1. The Modeling Algorithm

If there is no existing interval that match a specific input x and
the maximum number of intervals has not yet been reached,
a new interval I is created where

I.min = I.max = x

I.count = 1

If the maximum number of intervals has been reached, an
analysis is performed in order to find and merge the two
most similar adjacent intervals, in order to make room for
a new interval according to above. The overall algorithm is
illustrated in Figure 1. Initially there are no intervals and the
first input thus result in the first interval created. Most early
inputs will produce new intervals (until the maximum number
of intervals have been reached), unless a specific input value
is repeated. The merging of intervals will cause them to grow,
which increases the probability of later inputs falling within
the bounds of the interval. When merging two intervals A and
B, they are replaced by a new interval C where

C.min =Min(A.min,B.min)

C.max =Max(A.max,B.max)

C.count = A.count+B.count

Only neighbor intervals are merged and intervals never over-
lap. The crucial aspect of this algorithm is how to select what
intervals to join. We propose the following selection heuristics:
Calculate a fitness value for each interval apart from the first,
indicating its suitability for a merge with the lower neighbor
interval. Then find the interval with best fitness value and
merge it, i.e., with its lower neighbor. We suggest to base
the fitness value on three properties:

• Proximity
• Density
• Count

Proximity is the absolute distance between the intervals of
the candidate pair, i.e., the size of the gap in between the
intervals. The smaller the gap, the more suitable merge.

Density indicates the number of observations in relation to
the width of the interval. A “spike”, where many observations
have been made in a narrow band, should not be merged with
a “plateau” with lower density, i.e., where observations are
more sparse. This is indicated by a density measure

I.density = I.count/(I.max− I.min)

The density fitness value of two merge candidate intervals
A and B, a value between 0 and 1, indicates the similarity
in density. The closer to 1, the better fitness for merge. The
density fitness is calculated by

Min(A.density,B.density)/Max(A.density,B.density)

Finally, Count is the absolute number of observations ac-
counted to the interval, i.e., I.count. If this is very low,
the density becomes very sensitive to random variations in
I.count. We therefore skip the density comparison if the count
is below a certain threshold for either of the two intervals, we
have used 5 as minimum in the prototype evaluation. Only
if both intervals have at least 5 data points is the density
property used, otherwise the fitness is based on proximity
only. The density property is the dominant one when used,
the proximity only matters in case the densities of two pairs
are identical. To relax this a bit, we represent the density using
an 8-bit integer in order to allow minor differences in actual
density. We do not claim this to be the optimal merge selection
heuristic, but the overall method proposed is however quite
generic and can be used with different heuristics. In future
work we plan evaluate the accuracy of this approach in greater
depth and probably develop improved methods for selecting
what intervals to merge.

B. Suggested Implementation

When implemented in an embedded system, we envision a
solution where the intervals are stored in a linked list and
kept sorted using insertion sort. The input is read from a
circular RAM buffer which the measurements probes (code
instrumentation) writes to. The modeling algorithm runs peri-
odically on a low priority thread. This means that the modeling
computations do not interfere with higher priority processes,
but may cause loss of data if the system is under high load over
a longer period of time. This might however be acceptable,
since it is easaly detectable and can be compensated by
increasing the rate of the modeling task, the size of the
buffer, or both. The buffering will cause some additional
RAM usage, but should typically only need to hold a few
thousand observations. Consider a system with 100 tasks, each
producing on average 100 observations per second. Assuming
4 bytes per observation, this would require about 40 KB for
one second of execution. The buffer can however be eliminated
by processing each data point when captured, i.e., the code
instrumentation would update the statistical model directly,
without buffering. This will cause CPU overhead at higher
priority levels, thereby decreasing system performance, but
might be an option for systems with severely limited amount



of RAM and where a few percent lower system performance
can be tolerated.

IV. EVALUATION

An implementation of the algorithm has been made within
the Tracealyzer tool; a trace visualization tool developed by Jo-
han Kraft in his company Percepio AB. Note that the proposed
algorithm has not yet been implemented in the embedded
software recorder, but has been added as a prototype feature
in the Tracealyzer tool itself, i.e., in the offline analysis of the
recorded trace. However, the prototype implementation works
in the same way as intended when integrated in an embedded
software recorder; it gradually constructs and updates the
statistical model for each data point given as input.

In our prototype implementation, Tracealyzer has also been
extended to visualize the resulting timing models (i.e., the in-
tervals) together with a plot of the raw data. Figure 2 show four
diagrams generated using the prototype implementation, on a
specific task using different configurations of the algorithm;
2, 4, 6 or 8 intervals allowed. The horizontal axis represents
the value domain and the vertical axis the relative frequency
of the different values. The rectangles represent the resulting
intervals of the generated timing model, i.e., the output of the
modeling algorithm, while the thin vertical bars (some are very
short) represent the individual data points used as input, i.e.,
the recorded execution times of the analyzed task. The height
of the interval rectangles correspond to the relative number of
matching data points, and the absolute number of matching
inputs of the interval (the count property) is shown on the top
of the rectangle.

The execution time data used in the evaluation comes from
a demo trace for RTXCview provided by Quadros Systems,
Inc, which has been recorded on a development board with
a microcontroller using the ARM7 core. The four diagrams
of Figure 2 illustrate how the interval merging is affected by
the interval limit. The most significant gap is around 120 µs,
when allowing only two intervals, only this gap survives the
merging of intervals. When allowing four intervals, a second
major gap is recognized at around 135 µs, which is divided
in two parts by an interval of size 1. The reason this single
data point is not merged with the large interval to the right, is
since it was not forced to by the interval limit, as four intervals
were allowed. When increasing to six and eight intervals,
additional larger gaps are recognized as the merging process is
less aggressive. Figure 3 show diagrams from two other tasks
from the same trace file (TMR0ISR is actually an interrupt
service routine). In this case, four intervals are allowed in both
cases, a relatively aggressive setting but which represents the
distributions fairly well. In future work we plan to evaluate
the accuracy of this method by running simulations using the
statistical model as base for generating execution times and
compare the resulting distribution with the real distribution
used as input for the modeling. Such a comparison can be
made using established statistical methods, such as the two-
sample Kolmogorov-Smirnoff test [9], or KS test for short.
A good overview of this test can be found at the U.S. NIST

website [10]. The KS test is non-parametric and makes no
assumptions on the underlying distribution of the data, which
is important for this type of data. As a basic verification of
the correctness of the implemented algorithm, traces have been
generated using RTSSim, with a known distribution, and given
as input to the algorithm. The resulting diagrams are shown
by Figure 4. The distribution of the input data in the first case,
for the task TEST, is uniformly distributed in two intervals,
30% between 200–300 µs and 70% between 400–450 µs.
If allowing for two intervals only, the generated intervals
fits exactly. The right diagram of Figure 3 shows a similar
experiment using a different reference distribution.

V. RELATED WORK

Several methods have been proposed for stochastic represen-
tation of task execution time. Bernat et al. [11] use Execution
Profiles (EPs) to represent execution times of sections of
a task. The EPs can then be combined to Joint Execution
Profiles (JEPs) which represents the execution time of a
whole task. This work resulted in the founding of Rapita
Systems, Ltd. [12] and their RapiTime tool for execution time
profiling. They use a hardware recorder device, the RTBx, to
log execution times, which uses a large hard drive to store
very long traces of execution time data. This is however fairly
large and expensive equipment which hardly can be deployed
in the field.

Hansen et al. [13] presented an approach for probabilistic
estimation of the worst-case execution time (WCET) of tasks
using extreme value theory, based on earlier work by Edgar
and Burns [14]. They divide the sample data into blocks, take
the maximum of each block (an independent random variable)
and use these maximas to derive a Gumbel distribution, which
essentially have a skewed bell-shape. Such an approach could
possibly be combined with the statistical model proposed
in this paper; instead of modeling the intervals as uniform
distributions, we could fit the data within each interval to a
theoretical distribution such as the Gumbel distribution. If this
is possible in a memory efficient manner during continuous
runtime monitoring remains to be investigated in future work.

RTSSim is not claimed a novel contribution conceptually,
several similar simulation frameworks have been proposed.
The most similar ones are Virtual Time, from Rapita Systems,
Ltd. [12], ARTISST [15] and DRTSS [16]. An earlier result
is STRESS [17], which inspired our first simulator implemen-
tation ART-ML back in 2002.

Nolte et al. [18] outlined how execution-time profiles can
be used for probabilistic timing analysis in general and in the
context of component-based software engineering. The idea
was to let components keep track of their own execution times
and they highlighted the problem of how to generate execution
time profiles, which is effectively solved by this paper.

Kraft et al. [19] (at the time named Andersson) made a
case study of practical application of simulation-based timing
analysis in collaboration with ABB Robotics, and studied in
particular how to model execution time data measured in
runtime. A concept of instance equivalence classes, or IECs,



Fig. 2. COMODRV execution times, using 2, 4, 6 and 8 intervals

Fig. 3. ECHOTASK and TMR0ISR execution times, using 4 intervals

was introduced which is very similar to the statistical model
proposed in this paper, and an algorithm was presented for
offline identification of IECs. This was however not designed
for use during continuous monitoring, but was intended for
offline analysis of scheduling trace files.

VI. CONCLUSIONS

We have presented an approach for constant-memory moni-
toring of embedded systems, intended for continuous profiling
of execution times and other runtime properties, which allows

for profiling of systems in live operation over extended pe-
riods of time, possibly for years, using no hardware tracing
equipment but only onboard software mechanisms. Due to the
modest memory requirements, this approach is feasible even
for microcontrollers with limited amounts of RAM. We have
presented a prototype implementation of the algorithm and an
evaluation which indicates that the method performs satisfac-
torily, although improvements in the selection heuristics most
likely are possible. In future work we intend to implement,



Fig. 4. Verification cases from RTSSim

evaluate and refine the modeling method using industrial cases;
the ABB Robotics control system and the Ericsson telecom
platform CPP.
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