
Mälardalen University Licentiate Thesis
No.134

Formal Approaches to

Service-oriented Design: From

Behavioral Modeling to Service

Analysis

Aida Čaušević

June 2011

Department of Computer Science and Engineering
Mälardalen University

Västerås, Sweden

Copyright c© Aida Čaušević, 2011
ISSN 1651-9256
ISBN 978-91-7485-012-3
Printed by Mälardalen University, Västerås, Sweden

Abstract

Service-oriented systems (SOS) have recently emerged as context-indepe-
ndent component-based systems. In contrast to components, services
can be created, invoked, composed and destroyed on-the-fly. Services
are assumed to be platform independent and available for use within
heterogeneous applications. One of the main assets in SOS is service
composability. It allows the development of composite services with the
main goal of reusable functionality provided by existing services in a low
cost and rapid development process on-the-fly. However, in such dis-
tributed systems it becomes difficult to guarantee the quality-of-services
(QoS), both in isolation, as well as of the newly created service com-
positions. Means of checking correctness of service composition can en-
able optimization w.r.t. the function and resource-usage of composed
services, as well as provide a higher degree of QoS assurance of a service
composition. To accomplish such goals, we employ model-checking tech-
nique for both single and composed services. The verification eventually
provides necessary information about QoS, already at early development
stage. This thesis presents the research that we have been carrying out,
on developing of methods and tools for the specification, modeling, and
formal analysis of services and service compositions in SOS. In this work,
we first show how to formally check QoS in terms of performance and
reliability for formally specified component-based systems (CBS). Next,
we outline the commonalities and differences between SOS and CBS.
Third, we develop constructs for the formal description of services using
the resource-aware timed behavioral language called Remes, including
development of language to support service compositions. At last, we
show how to check service and service composition (functional, timing
and resource-wise) correctness by employing the strongest postcondition
semantics. For less complex services and service compositions we choose

i

ii

to prove correctness using Hoare triples and the guarded command lan-
guage. In case of complex services described as priced timed automata
(PTA), we prove correctness via algorithmic computation of strongest
postcondition of PTA.

To the Memory of Maja Ðokić

Acknowledgments

I have never thought that the decision to attend “a some guy’s” presenta-
tion about studies in Sweden, while all my friends went for a coffee break
would impact my life this much. During the presentation I found out
that “a some guy” is nothing less but well known professor in computer
science, Ivica Crnković. Watching his presentation about Mälardalen
University and existing research opportunities, with all those attractive
photos (probably taken during the warmest and the sunniest day in sum-
mer), made me think about possibility to pursue PhD studies and move
to Sweden. Few months later, I came to Sweden and started my journey.
I cannot express how much I am grateful to him, for believing in me and
giving me an opportunity to become a PhD student.

Of course this thesis would not be possible without my supervisors
Paul Pettersson and Cristina Seceleanu who have not only served as my
supervisors but also have encouraged and challenged me through my
studies. I owe a great debt of gratitude for their guidance and for never
accepting less than my best efforts.

I would also like to thank to present and some former members of
my research group (working on Formal Modeling and Analysis of Em-
bedded Systems) Andres Hessel, Aneta Vulgarakis, Cristina Seceleanu,
Eun-Young Kang, Jagadish Suryadevara, Leo Hatvani, Paul Pettersson,
and Stefan Björnader for all support, discussions, reviews and comments.

Outside of the thesis work I have been involved in teaching. Many
thanks to people that I had pleasure to work with: Ivica Crnković, Frank
Lüders, Jan Carlson, Aneta Vulgarakis, Séverine Sentilles, Adnan Čauše-
vić and Andreas Johnsen.

During my studies I have attended a number of courses. I would like
to thank to Hans Hansson, Ivica Crnković, Paul Pettersson, Sasikumar
Punnekkat, Cristina Seceleanu, Frank Lüders, Gordana Dodig-Crnković,

v

vi

Eun-Young Kang, Thomas Nolte, and Emma Nehrenheim for giving me
knowledge and vision to become a better PhD student.

I would like to thank to the whole administrative staff at the de-
partment for making my life easier, in particular Hariet Ekwall, Monica
Wasell, Carola Ryttersson, Gunnar Widforss, Susanne Fronnå, and Ma-
lin Rosqvist.

Spending time with people from the department made all coffee
breaks, lunches, and travels more interesting and enjoyable. I would
like to thank to Aleksandar, Ana+, Andreas+, Aneta, Anton, Antonio,
Barbara, Batu, Bob, Branka, Cristina, Dag, Damir, Daniel, Etienne,
Farhang, Federico, Frank, Fredrik, Giacomo, Hongyu, Hüseyin, Iva, Ja-
gadish, Jan, Josip, Juraj, Lars, Leo, Luka, Luis, Mehrdad, Mikael, Moris,
Nikola, Radu, Rafia, Saad, Svetlana, Thomas+, Tibi, Tomas, Rikard,
and Séverine. 1

Furthermore, I thank to my Bosnian friend, Ajla Ćerimagić, for sup-
porting and encouraging me during the last 10 years through thick and
thin in life.

To my brother Adnan - thank you for being there for me despite the
distance between us.

Veliko hvala mojim roditeljima, Edini i Mujagi. Hvala Vam što ste
me naučili svemu što znam, za pruženu bezuvjetnu ljubav. Ja sam ono
što jesam zahvaljujući Vama. Znajte da ovaj rad ne bi bio moguć bez
svega što ste me naučili do sada. 2

Finally, my deepest gratitude goes for my dear husband Adnan and
daughter Alina. Thank you for bringing sunshine into my life, for being
my inspiration, and motivation to continue during those moments when
the things did not work well.

Aida Čaušević
Västerås, June, 2011

1The positive closure operator is used to express that one or more persons is
acknowledged.

2I am grateful to my parents, Edina and Mujaga. Thank you for teaching me all
I know, for the all unconditional love. You are the reason for which I am here today.
This thesis would not be possible without everything you have though me throughout
my entire life.

List of Publications

Publications Included in the Licentiate The-

sis

Paper A: Aida Čaušević, Paul Pettersson, Cristina Seceleanu. Analyz-
ing Resource-Usage Impact on Component-Based Systems Perfor-
mance and Reliability. Proceedings of International Conference on
Innovation in Software Engineering (ISE08), IEEE, Vienna, Aus-
tria, December, 2008.

Paper B: Aida Čaušević, Aneta Vulgarakis. Towards a Unified Behav-
ioral Model for Component-Based and Service-Oriented Systems.
Proceedings of 2nd IEEE International Workshop on Component-
Based Design of Resource-Constrained Systems (CORCS09), Seat-
tle, USA, July, 2009.

Paper C: Aida Čaušević, Cristina Seceleanu, Paul Pettersson. Mod-
eling and Reasoning about Service Behaviors and their Composi-
tions. Proceedings of 4th International Symposium On Leverag-
ing Applications of Formal Methods, Verification and Validation
(ISOLA10); Formal Methods in Model-Driven Development for
Service-Oriented and Cloud Computing track, Heraklion, Crete,
Greece October 2010.

Paper D: Aida Čaušević, Cristina Seceleanu, Paul Pettersson. Check-
ing Correctness of Services Modeled as Priced Timed Automata.
Submitted to conference.

vii

viii

Other publications, not included in the thesis

• Aneta Vulgarakis and Aida Čaušević. Applying REMES behav-
ioral modeling to PLC systems. Mechatronic Systems, vol 1, nr
1, p40-49, Journal of Faculty Of Electrical Engineering, University
Sarajevo, December, 2009.

• Aida Čaušević, Cristina Seceleanu, Paul Pettersson. Formal rea-
soning of resource-aware services. MRTC report ISSN 1404-3041
ISRN MDH-MRTC-245/2010-1-SE, Mälardalen Real-Time Research
Centre, Mälardalen University, June, 2010

Contents

I Thesis 1

1 Introduction 3

1.1 Preliminaries . 8
1.1.1 Service-oriented Systems 8

1.2 Remes: A Resource Model for embedded Systems 9
1.3 Formal Modeling and Analysis of Software Systems 11

1.3.1 Timed Automata 12
1.3.2 Priced Timed Automata 13
1.3.3 Model-checking technique 14

1.4 Thesis Overview . 15

2 Research Summary 19

2.1 Problem Description . 19
2.2 Research Questions . 20
2.3 Research Methodology . 22

3 Research contributions 25

3.1 Component-based vs. Service-Oriented Systems: System
Modeling and Analysis . 25

3.2 Formal Modeling of Resource-aware Service Behaviors in Re-

mes . 26
3.3 Checking the correctness of Remes services 28
3.4 Questions Revisited . 29

4 Related Work 31

4.1 Services vs. Components 31
4.2 Service-oriented Frameworks 32

ix

x Contents

4.3 Checking Properties of Services and their Compositions . 33

5 Conclusions and Future Work 35

5.1 Summary of Thesis Contributions 35
5.2 Future Research Directions 37

Bibliography 39

II Included Papers 45

6 Paper A:

Analyzing Resource-Usage Impact on Component-Based

Systems Performance and Reliability 47

6.1 Introduction . 49
6.2 Working Example: A Real-time Multi-processor System . 50
6.3 Quality Prediction in Current CBFs 50

6.3.1 SOFA . 51
6.3.2 KLAPER . 52
6.3.3 Koala . 53
6.3.4 ROBOCOP . 53
6.3.5 BIP . 54

6.4 Our approach . 55
6.4.1 Example Revisited: Analyzing the Multiprocessor

System’s Performance and Reliability using UP-
PAAL . 56

6.4.2 PTA Models . 58
6.4.3 Analysis . 59

6.5 Conclusions and Future Work 61
Bibliography . 62

7 Paper B:

Towards a Unified Behavioral Model for Component-

Based and Service-Oriented Systems 67

7.1 Introduction . 69
7.2 Characteristics of CBSE and SOSE 70
7.3 Behavioral Modeling in CBS and SOS 73

7.3.1 Component-Based Modeling 74
7.3.2 Service-oriented Modeling 77

7.4 Discussion and Related Work 79

Contents xi

7.5 Conclusions and Future Work 80
Bibliography . 83

8 Paper C:

Modeling and Reasoning about Service Behaviors and

their Compositions 87

8.1 Introduction . 89
8.2 Preliminaries . 90

8.2.1 Remes modeling language 90
8.2.2 Guarded command language 91

8.3 Behavioral Modeling of Services in Remes 92
8.4 Hierarchical Language for Dynamic Service Composition:

Syntax and Semantics . 97
8.5 Example: An Autonomous Shuttle System 101

8.5.1 Modeling the Shuttle System in Remes 102
8.5.2 Applying the Hierarchical Language 103

8.6 Discussion and Related Work 105
8.7 Conclusions . 106
Bibliography . 109

9 Paper D:

Checking Correctness of Services Modeled as Priced Timed

Automata 113

9.1 Introduction . 115
9.2 Preliminaries . 116

9.2.1 Remes modeling language 116
9.2.2 Priced Timed Automata 117
9.2.3 Symbolic Optimal Reachability 119

9.3 Algorithms for Service Strongest Postcondition Calcula-
tion . 120
9.3.1 Strongest Postcondition 121
9.3.2 Strongest postcondition calculation and minimal

cost reachability 121
9.3.3 Strongest postcondition calculation and maximal

cost reachability 123
9.4 An Illustrative Example 124
9.5 Discussion and Related Work 127
9.6 Conclusions . 128
Bibliography . 131

I

Thesis

1

Chapter 1

Introduction

It is a known fact that, during the last decade, the complexity of software
systems has been continuously increasing. One of the reasons underlying
such increased complexity is a new trend that aims to integrate and con-
nect heterogeneous applications and available resources, in many cases
on-the-fly. However, most of the existing systems and applications are
not designed to offer smooth and easy integration and adaptation to new
application scenarios. Additionally, to reduce development time of new
systems and applications it became a requirement to facilitate software
reusability and componentization. Most of these challenges have already
been addressed by the component-based paradigm [1]. However, since
component-based approaches offer component reusability and compo-
sition only at design time, while on-the-fly behavior is not tackled, it
seems only natural that new paradigms and approaches that would deal
with such challenges would emerge. The recently introduced paradigm
of service-oriented systems (SOS) [2] accommodate the necessary con-
ceptual foundations to cope with increased complexity and challenges
related to integration, by advocating the development of autonomous
and loosely coupled software entities, called services. Although the ap-
proach has brought many benefits, there are still issues to be addressed,
such as: service modeling, service compatibility, interoperability between
services implemented by different vendors and on different platforms, ser-
vice composition via service orchestration and choreography, analyzing
quality-of-service (QoS), etc. In this thesis, we focus on behavioral mod-
eling of services, formal verification for functional, timing, and resource-

3

4 Chapter 1. Introduction

wise correctness, as well as hierarchical modeling through a “command-
line” like language.

Money

withdrawal
Login

Balance

Display

Foreign

Currency

Withdrawl

Logout

Service repository

Possible service composi!ons

Login

Money

withdrawal

Logout

Balance

Display

Foreign

Currency

Withdrawl

Login Logout

protocol

protocol

ATM machine

display

ATM machine

display

protocol

protocol

protocol

protocol protocol

service users

Figure 1.1: Service oriented ATM system

SOS assume services as their basic functional units, independent of
any specific implementation platform, capable of being published, in-
voked, composed, and destroyed on-the-fly. One of the fundamental
characteristics of services is separation of interfaces from the service
behavioral description. Publicly available service interface information
specifies service properties such as service type, capacity, time-to-serve,
etc., visible to service users. The latter exploit interface information
of available services, to find and invoke services most suitable for their
needs. Figure 1.1 depicts a simplified overview of an ATM system. One
can notice that the system consists of several services, available to the
service user, which can be invoked and composed in different ways, based
on the preferences of the user. Now, let us assume a component-based
fixed architecture of the same ATM system, as depicted in Figure 1.2 -
in such a version, all components are composed in advance, and all con-
nections between components are implemented before the actual system
became available to users.

On the other hand, details about service behavior description are

5

Display
ATM

Bank

t1

transaction_number

transaction_result

Control

Or
t2

end_session=false

t0

t3

login

end_session

end_session

Start

Control

Or
t4

Figure 1.2: Component-based ATM system

normally hidden from service users, but available to service developers.
Service behavior description gives a deeper insight into service function-
ality representation, enabled actions, resource annotations, and possible
interactions with other services [3]. Such description may be useful to
the service developer that needs to ensure that adding more function or
improving a service with respect to some QoS attribute does not alter
the correctness of the existing behavior. Also, it becomes important in
cases when one has to differentiate between services that deliver the same
functionality, but have, for instance different response time or resource
usage. The service behavioral description not only enables a proper un-
derstanding of a service function/functionality, but also helps to connect
services in the correct way, and provides means for rigorous reasoning
about extra-functional properties, whose assurance is recognized to be
insufficiently addressed.

If one considers the run-time service behavior, then ensuring the
expected level of QoS becomes more difficult. QoS encompasses the
extra-functional attributes of a service, such as performance, reliability,
security, etc., as well as cost-related information. Being aware of QoS in
advance, enables easier service composition, reduces the level of uncer-
tainty, and gives a possibility to optimize the newly composed service
whenever required. To guarantee the required level of QoS, some of the
existing SOS frameworks provide formal analysis techniques for services
[4–7]. In most cases, building the formal model to be analyzed is not a
straightforward process.

One of the main principles of SOS is the idea of composing services
by discovering and invoking them on demand, rather than building the
whole application from scratch, at design time. The service composi-
tion can be achieved either through orchestration, or choreography. The

6 Chapter 1. Introduction

former assumes the existence of a central controller responsible with
scheduling service execution, according to the user demands, while the
latter assumes a mechanism of message exchange between participants
in a composition, without requiring a central coordinator.

Because of the dynamic nature of services, it is compulsory that,
besides ensuring service correctness in isolation, one checks the func-
tional and extra-functional correctness of possibly composed services, as
soon as they are formed. For example, let us assume that we have a
service that is composed out of several navigation services, where some
services return a route length in miles, and some in kilometers. If the
developer has omitted to introduce a service that would convert length
from one metrics to the other, one should be able to detect this, by for-
mally checking the correctness of the actual composition, right after it
is constructed.

The goal of this thesis is to provide methods and tools for the speci-
fication, modeling, and formal analysis of services and service composi-
tions in SOS. Relying on the fact that SOS have similar characteristics
with component-based systems (CBS) (e.g., componentization, reusabil-
ity, composition, etc.), this thesis introduces an extension of the exist-
ing behavioral modeling language, called Remes, which has been de-
signed to fit a component-based design (CBD) perspective [8, 9]. Our
proposed extensions exploit such advantages of the model, and also in-
troduce service-oriented features, aiming at making Remes suitable to
behavioral modeling and analysis of SOS, too. As a first step, we iden-
tify commonalities and differences between CBD and SOS, in order to
determine the set of extensions to be applied to Remes. Driven by our
findings, we next show how services can be formally described by Re-

mes, our resource-aware timed behavioral language, which we extend
with service specific information, such as type, capacity, time-to-serve,
etc., as well as boolean constraints on inputs, and output guarantees.
By exploiting the pre-, and postcondition annotations, we show how to
describe the service behavior in Dijkstra’s guarded command language
[10], and how to check the service correctness by employing Dijkstra’s
and Scholten’s strongest postcondition semantics [11].

Since the original semantics of Remes is given in terms of priced
timed automata (PTA), in this thesis we also present an algorithmic
way to compute strongest postconditions of services modeled as PTA,
which could be completely automated. We consider the service resource
consumption in Remes as a cost variable in PTA and, alongside our

7

strongest postcondition calculation, we include, in our algorithms, well
known approaches for computing the minimal and maximal reachability
cost [12]. The two ways of computing the strongest postcondition of
services modeled in Remes, needed for proving the correctness of service
composition, stand complementary. The algorithmic technique can be
applied for bounded-variable systems, whereas the deductive technique
could be employed in those but also other cases, where the bounds of
the variables are not specified, but they range over natural numbers,
non-negative reals, etc.

Moreover, to address the on-the-fly aspects of services, we introduce
a hierarchical language for dynamic service composition (HDCL) that
allows creating new services, as well as adding and/or deleting services
from lists. We also give the semantics of sequential, parallel, and parallel
with synchronization service composition, respectively.

This work has been carried out within Q-ImPrESS project [13], funded
under the European Union’s Seventh Framework Programme (FP7),
within the ICT Service and Software Architectures, Infrastructures and
Engineering priority. The aim of the project is to bring service ori-
entation to critical application domains, such as industrial production
control, telecommunication and critical enterprise applications, where
guaranteed end-to-end quality of service is particularly important.

To summarize, our main contributions are:

• showing how we can formally check QoS in terms of performance
and reliability in formally specified CBS;

• an overview of commonalities and differences between SOS and
CBS, which provides insight in the Remes modeling language, lim-
itations, and possible extensions;

• adding constructs to Remes, such that it accommodates formal
description of service behavior;

• developing a hierarchical composition language for Remes-based
services and defining the semantics of possible service composition
operators;

• algorithms for checking the correctness of services modeled in PTA.

The following section provides the background for SOS, and formal
analysis, as a foundation for the remainder of the thesis. We close the
chapter by giving the thesis overview.

8 Chapter 1. Introduction

1.1 Preliminaries

1.1.1 Service-oriented Systems

The rapid growth in complexity of the today’s software systems is justi-
fied by the constant increase in functionality, by higher-level of quality
requirements, increase in degree of distribution, mobility, etc. Service-
oriented development is one of the most promising approaches that
evolved from object-oriented and component-based software engineering
concepts, as a solution for the above listed issues. The paradigm relies
on two basic principles: (i) modularization, meaning that the overall
functionality is split to obtain as smaller and separate as possible units
of behavior, called services; and (ii) composition, that is, a way to effi-
ciently, and possibly with lower costs obtain more complex systems out
of existing units of behavior.

The literature provides many informal definitions for the term “soft-
ware service”, inspired mainly by the telecommunication domain. A
popular definition is given by Broy et al. [14]:

A software service is a set of functions provided by a (server)
software or system to a client software or system, usually
accessible through an application programming interface.

In SOS, services are the smallest functional units, independent of
implementation platform, and equipped with constructs that allow them
to be published, discovered, invoked, and if needed, destroyed on-the-
fly. In each service, there exists a clear separation, at the model level,
between its interface and its behavioral description. Publicly available
interface information specifies service relevant information, such as time-
to-serve, service capacity, service pre-, and postconditions, etc., such
that an available service becomes visible to potential service users. On
the other hand, internal behavior-related information, i.e., functionality
representation, enabled actions, resource annotation, etc., is hidden from
the service user, but available to service developers. In this way, upon
request, a service may be easily changed and upgraded to fit with newly
given user requirements.

One may say that SOS offer cost-efficient software development by
reusing functionality from available services. Also, a service becomes a
single point of maintenance for a common functionality. Using discovery

1.2 Remes: A Resource Model for embedded Systems 9

mechanisms, developers can find and take advantage out of existing ser-
vices, significantly reducing time to develop new systems. Also, in case
the QoS of a service is guaranteed, the quality assurance of the new sys-
tem also increases, and its verification requires a lower effort. Services
can be seen as adaptable units, thanks to the clear separation between
service interface and service behavior, making it possible to employ in-
cremental deployment of services.

The price to pay for all the mentioned benefits brought by the service-
oriented paradigm is a list of challenges in the design and analysis. It
still remains a challenging task to predict QoS, since the system’s QoS is
not a function of the QoS of the services only. It also involves interdepen-
dencies between services, resource constraints of the environment, and
network capabilities. Additionally, checking the correctness of service
compositions lacks appropriate methods and tools especially for extra-
functional properties like resource-wise behavior.
Nowdays a number of service-oriented approaches exist [4–6,15–17]. All
of them have the basic service-oriented concepts incorporated like dis-
covery mechanisms, support for orchestration and choreography, some
predictability for service performance, reliability, etc., but only few can
deliver the whole process from creating single service to system devel-
opment, including some means for analysis. It is obvious, that this
paradigm of SOS still remains to be fully explored, developed, and uti-
lized.

1.2 Remes: A Resource Model for embed-

ded Systems

To address functional and extra-functional behavior such as timing and
resource consumption, we use a dense-time state-based hierarchical mod-
eling language called Remes [18].

The internal component behavior in Remes is depicted by Remes

modes that can be either atomic (do not contain submode(s), see Atomic

mode 1, Atomic mode 2 in Figure 1.3), or composite (contain submode(s)).
The data transfer between modes is done through the data interface,
while the control is passed via the control interface (i.e., entry and exit
points). Remes assumes local or global variables that can be of types
boolean, natural, integer, array, or clock (continuous variable evolving
at rate 1).

10 Chapter 1. Introduction

r1’ = n, r2’ = m,

y ≤ b

Atomic Mode 1

U

Atomic Mode 2

c

r3 += q

x ≤ a and

d == v

d ≥ v

y == b

d := u

Composite mode

Init

Entry

Exit

Figure 1.3: A Remes mode

A composite mode executes by performing a sequence of discrete
steps, via actions that, once executed, pass the control from the current
submode to a different submode. An action, A = (g, S) (e.g., (y == b, d

:= u) in the figure), is a statement S (in our case d := u), preceded by
a boolean condition, the guard (y == b), which must hold in order for
the action to be executed and the corresponding outgoing edge taken.
A Remes composite mode may contain conditional connectors (deco-
rated with letter C) that allow a possibly nondeterministic selection of
one discrete outgoing action to execute, out of many possible ones. In
Figure 1.3, via C, one of the empty statement actions, x ≤ a ∧ d == v or
d ≥ v can be chosen for execution.

In Remes one may model timed behavior and resource consumption.
Timed behavior is modeled by global continuous variables of specialized
type clock evolving at rate 1 (x, y in Figure 1.3). Modes may also be an-
notated with invariants (e.g., y ≤ binAtomicmode1), which bound from
above the current mode’s delay/execution time. Once the invariant stops
to hold, the current mode is exited. In case a mode is exited instanta-
neously after its activation, the mode is called urgent (decorated with
letter U).

Each (sub)mode can be annotated with the corresponding continuous
resource usage, if any, modeled by the first derivative of the real-valued
variables that denote resources, and which evolve at positive integer
rates (r1 and r2 in Figure 1.3). Discrete resources are allocated through
updates, e.g., r3 += q.

1.3 Formal Modeling and Analysis of Software Systems 11

To enable formal analysis, Remes models can be semantically trans-
formed into timed automata (TA) [19], or PTA [20], depending on the
analysis goals.

The Remes language benefits from a set of tools1 for modeling, sim-
ulation and transformation into TA and PTA, which could assist the
designer during system development. For a more thorough description
of the Remes model, we refer the reader to [18].

1.3 Formal Modeling and Analysis of Soft-

ware Systems

Formal methods are mathematical techniques, often supported by tools,
which enable rigorous analysis of systems design, described as well-
formed statements in a mathematically precise way. Formal verifica-
tion is a technique that provides means to prove or disprove the system
model’s correctness with respect to a formally specified property. This
means that, by formally verifying a system model, one checks that the
latter indeed behaves according to the specified property. As a result of
formal analysis conducted using formal verification, one can get either
qualitative answers (yes/no), of quantitative analysis results (numbers).
The former, is a result of verification of properties that can be either sat-
isfied, or not. The latter, in our case, represents the minimum/maximum
value of the accumulated resource usage for reaching a given goal, but in
a more general context, it could mean reliability estimates, performance
estimates, etc.

Formal verification assumes the following steps:

• Formally model the system;

• Formalize the property to be checked;

• Prove that the model satisfies the property.

Since the services in SOS are assumed to be invoked, composed, and
destroyed on-the-fly, and a designer of such systems is in need to have
available methods and tools that support modeling and verification of
of the system behavior, as soon as it is constructed, we have chosen the
framework of TA and PTA as our modeling framework, and the Uppaal

1The Remes tool-chain is available at http://www.fer.hr/dices/remes-ide.

12 Chapter 1. Introduction

l0

a?

x:=0

x<=4

x>= 4

(a)

l1 x<=5 && y<=3

l0

x:=0,
y:=0

x>=1
a!

y:=0

(b)

Figure 1.4: A timed automata

-based tools 2 as the model-checkers for verifying the system’s property
specified in Timed Computation Tree Logic (TCTL) [21], an extension
of Computation Tree Logic(CTL) [22] with clocks.

In the following, we briefly describe the models of TA [19] and PTA [23,
24], an extension of TA with prices on both location and edges. Next,
the reader is briefed on the model-checking analysis technique.

1.3.1 Timed Automata

A timed automaton [19] is a finite-state machine enriched with a set of
clocks. All clocks in one system are synchronized and assumed to be
real-valued variables, measuring the time elapsed between events. Con-
sider the TA of Figure 1.4 b). It consists of 2 locations (l0, l1), where one
of the locations is marked as initial (l0). Control locations are connected
via edges. Real-valued clocks x and y, initially set to zero, evolve contin-
uously at the rate 1. A control node is labeled with a condition on the
clock values (the invariant), which defines the maximum allowed time to
be spent in a corresponding location. The TA in Figure 1.4 a) may stay
in location l0 as long as the invariant x ≤ 4 is satisfied. The edges of TA
may be decorated with boolean conditions (called guards) on the clock
values, which must hold in order for an edge to be taken. (i.e. the edge
from l0 to l1 will be enabled only if x ≥ 1 holds). Additionally, edges
may be labeled with simple assignments reseting clocks. For example,

2For more information about the Uppaal tool, visit the web page www.uppaal.org.

1.3 Formal Modeling and Analysis of Software Systems 13

when following the edge from l1 to l0 both clocks x and y are reset to 0.
The semantics of TA is defined as a timed transition system, where

each state consists of the current location and the current values of the
clocks. The transitions between states may be either delay transitions
that model the passage of time, or a discrete transitions that correspond
to following an enabled edge in the TA syntactic representation, and
result in changing the current TA location.

Systems modeled as a finite set of automata executed in parallel for
a given synchronization function represent networks of TA. Automata in
Figure 1.4 synchronize on complementary actions via channel a (i.e., a?
is complementary to a!).

Uppaal is a tool-set for validation and verification of TA models,
which serve as the tool input. The Uppaal model checker supports
verification of temporal properties, including safety and liveness prop-
erties, specified in a decidable sub-set of TCTL. The tool is equipped
with a simulator, useful to visualize counter examples produced by the
model checker, but also to spot out possible model errors before em-
barking upon full formal verification. The Uppaal TA extend original
TA with the notions of bounded integer variables, binary, and broadcast
channels, and urgent and committed locations.

1.3.2 Priced Timed Automata

Priced timed automata are timed automata decorated with costs on
both locations and edges. The cost that annotates an active location
represents the cost of a delay transition and it is the product of the
duration of the delay and the cost rate of the active location. On the
other hand, the cost that annotates an edge represents the cost of the
discrete transition and it is given by the cost of the edge. Each run in
PTA has a global cost, which is the accumulated price along the run of
every delay and discrete transition. In this thesis, we use the framework
of PTA for the formal analysis of resource usage in services and service
compositions.

Let us assume that the PTA in Figure 1.5 is a clock that periodically
synchronizes (every 4 time units, which represents the clock period) with
another PTA via channel a. Moreover, we assume that the periodic
synchronization uses a certain amount of energy, modeled here as the
cost variable cost, which evolves at rate 2. The special variable cost

is increased by the price per time unit for staying in the location l0

14 Chapter 1. Introduction

x<=4 && cost’ == 2

a!

l0

x:=0

x>=4

Figure 1.5: A priced timed automaton

(cost′ == 2 indicates that the energy consumption is 2 units per time
unit in location l0).

1.3.3 Model-checking technique

Real system Requirements

modeling formalizing

Model of system

(possible behaviors)

Requirementsspec.

(desired behaviors)

Verifier

Counter-

example

Yes

done

modify check

next

refine

Figure 1.6: Verification methodology of model checking [25]

Nowdays, one of the most used and best known formal techniques is
model-checking. The crux of model-checking is its ability to automati-
cally verify finite-state system properties for all possible system behav-

1.4 Thesis Overview 15

iors. The properties to be examined have to be precisely and unambigu-
ously defined. Being completely automatic and capable to detect coun-
terexamples, model-checking is also suited to uncover and correct errors,
in case a given model fails to satisfy the specified requirement. The ben-
efit of model-checking is the possibility to modify the system model, in
case that counterexample is detected. On the other hand, even if the sys-
tem’s desired behavior is satisfied, one can refine the model and reapply
model checking. Figure 1.6 depicts a generic example of model-checking
and includes all steps that the technique follows.

The properties to be examined can be specified using CTL [22]. CTL
is a specification language for finite state systems that enable reason-
ing about sequences of events. The model-checking problem reduces to
checking that for a given model M, initial state s ∈ S, where S is the set
of all model states, and CTL-formula φ, M, s |= φ is satisfied.

1.4 Thesis Overview

This thesis is organized in two distinctive parts. The first part gives a
summary of the performed research. Chapter 1 describes the background
and motivation of the research. Chapter 2 formulates the main research
goal, introduces the research questions, and the research method that
we use. Chapter 3 describes the research results and recapitulates the
research questions. Chapter 4 surveys related work. Finally, Chapter 5
concludes the thesis, summarizes the contributions and outlines future
work that that can be seen as guidelines for future PhD studies.

The second part consists of a collection of peer-reviewed conference,
and workshop papers, presented below, contributing to the research re-
sults.

Paper A. “Analyzing Resource-Usage Impact on Component-Based
Systems Performance and Reliability”. Aida Čaušević, Paul Pettersson,
Cristina Seceleanu. Proceedings of International Conference on Innova-
tion in Software Engineering - ISE08, IEEE, Vienna, Austria, December,
2008.

Summary: In this paper, we briefly review several popular compo-
nent models and underlying approaches for analyzing the dependency
between resource consumption, performance and reliability attributes,

16 Chapter 1. Introduction

and discuss their potential to support performance and reliability analy-
sis. We have also showed how formal verification techniques, in our case
model-checking, can efficiently be used to predict the performance and
reliability of a small real-time, distributed system, modeled as a network
of priced timed automata.

Contribution: This paper was written with equal contribution from
all three authors. I have been responsible to collect relevant information
about chosen component models and underlying approaches for analyz-
ing resource consumption, performance and reliability attributes, and to
model a real-time multiprocessor system in Uppaal Cora, which acts
as the example in the paper.

Paper B. “Towards a Unified Behavioral Model for Component-Based
and Service-Oriented Systems”. Aida Čaušević, Aneta Vulgarakis. Pro-
ceedings of 2nd IEEE International Workshop on Component-Based De-
sign of Resource-Constrained Systems (CORCS), Seattle, USA, July,
2009.

Summary: This paper overviews the general characteristics of both
SOS and CBS, pointing out the similarities and differences between
them. We show how an existing component framework could be effec-
tively used to model and analyze SOS constituent services. We assume
the existing model Remes as being the underlying model of modeling
of functional and extra-functional behavior of services, as well as their
interface assumptions and guarantees. For this to become applicable, we
first identify the ceratin specific constructs that we need to equip Remes

with, such that our goal is achieved. The benefit of Remes language is
that it is abstract enough and ready to use even when no detailed system
description exists. The modeling part includes also resource annotations
on corresponding transitions and modes. Via transformation to PTA,
one can conduct rigorous, formal analysis on Remes models . It also
benefits from a recently implemented tool-chain for simulation and au-
tomatic transformation into PTA. The paper’s small case-study is used
to illustrate the modeling process within Remes.

Contribution: This paper was written with equal contribution from
all the authors. My responsibility has been related to the description of
SOS, identifying their characteristics, and the necessary concepts that

1.4 Thesis Overview 17

would be needed for SOS modeling in behavioral language called Re-

mes . With Aneta Vulgarakis I have shared responsibility for modeling
an illustrative example of ATM machine in Remes.

Paper C. “Modeling and Reasoning about Service Behaviors and their
Compositions”. Aida Čaušević, Cristina Seceleanu, Paul Pettersson. 4th
International Symposium On Leveraging Applications of Formal Meth-
ods, Verification and Validation (ISOLA); Formal Methods in Model-
Driven Development for Service-Oriented and Cloud Computing track.

Summary: In this paper, we have first extended Remes with specific
service attributes deemed useful for service discovery, and we have also
semantically defined the composition of Remes services. In Remes, the
smallest unit used to represent a single service, is a mode. The notion of
mode is extended with attributes such as: service type, service capacity,
time-to-serve, service status, service pre-, and postcondition. When all
these attributes are published, a service becomes visible and ready to
be composed with other services to achieve the given user requirement.
To provide means for service composition, and decomposition, the pa-
per proposes a hierarchical dynamic service composition language. The
language facilitates modeling of sequential, parallel or synchronized ser-
vices. It takes into account the services to be composed, type of binding
between them and requirement given by the service user. For a small
case study described in this paper, we show the service composition cor-
rectness checking by manually calculating the strongest postcondition
for a program expressed in terms of guarded commands language.

Contribution: This paper was written as equal contribution of all
the authors. I have particulary worked on the development of the hierar-
chical language for dynamic service composition and specified, modeled
in Remes, and analyzed the correctness of service compositions for an
autonomous shuttle system presented as the example in the paper.

Paper D. “Checking Correctness and Refinement of Services Modeled
as Priced Timed Automata”. Aida Čaušević, Paul Pettersson, Cristina
Seceleanu. Submitted to conference.

Summary: In this paper, we introduce an algorithmic way to check
the correctness of services formally defined as PTA by employing forward

18 Chapter 1. Introduction

analysis technique that assumes computation of the strongest postcondi-
tion of automata, with respect to a given precondition. Our algorithms
are inspired by already existing approaches for computing the minimal
and maximal reachability cost [12]. We show that proving the correctness
of a services reduces to showing that the calculated strongest postcon-
dition and minimum/maximum cost of resource consumption implies a
requirement defined by a user. The approach is demonstrated in a small
accompanying example. Also, we illustrate resource consumption calcu-
lation using priced zones for a service modeled in the example.

Contribution: I was the main driver and principal author of this
paper. I have contributed with developing algorithms for checking the
correctness of services. All the coauthors have contributed with valuable
discussions and reviews.

Chapter 2

Research Summary

This chapter presents the scope of our work by formulating the research
goal, and introducing the research questions that address the goal.

2.1 Problem Description

The research presented in the thesis is conducted in the area of service-
oriented development, and it has been driven by problems coming from
the domain of SOS. The list includes issues such as increase in com-
plexity, composition, resource limitations, and formal analysis of such
systems.

An important challenge is thus to develop appropriate methods and
languages to model, compose, and formally analyze behavior of services
in SOS. Motivated by the need for solutions, the main goal that this
thesis aims at addressing is the following:

Provide methods for specification, modeling, and formal anal-
ysis of services and service compositions in SOS.

The goal is broad and admits various answers. We approach the
goal by answering to five research questions and two subquestions, as
formulated in the next section.

19

20 Chapter 2. Research Summary

2.2 Research Questions

Research question 1.

The clear distinction between SOS and CBS is not completely estab-
lished. Based on several similar characteristics, one could consider that
SOS evolved from CBS. However, despite numerous similarities between
SOS and CBS, in order to understand SOS in a proper way, one needs
to be aware of the differences between the two, as well. Due to many
similar concepts that SOS and CBS rely on [26, 27], we have assumed
that it could be beneficial to use a unified behavioral model for both
paradigms. Under such assumption, rather than embarking upon the
development of a new service-oriented modeling environment, we have
chosen to extend an already existing CBD-fit model towards making it
suitable for SOS, too.

For this purpose, we have identified the behavioral language Re-

mes [8] as a possible candidate for describing, modeling, and analyzing
SOS, for three main reasons: i) it is already developed for CBS mod-
eling, ii) it is suitable for describing both functional and resource-wise
behavior of components, iii) and has precise semantics. Since resource-
aware timed behavioral language Remes is aimed at distributed embed-
ded systems for which the architecture is usually fixed at design-time,
the detailed investigation of its suitability in SOS is needed. In terms
of analysis, our focus has been on extra-functional behavior, especially
optimal resource-usage of various types of resources, such as, memory,
energy, etc. In the light of our exposed overall research goal, and of the
motivation outlined above, we have first tried to answer the following
research questions:

What are the characteristics, advantages and limitations of
existing component-based frameworks with respect to analysis
of extra-functional behavior like system’s resource-usage?

(Q1A)

How do such models differ from the service-oriented ones?

(Q1B)

2.2 Research Questions 21

Research questions 2. and 3.

To understand the ways in which services behave and provide mean-
ingful analysis of SOS, we have to be able to access a detailed behavioral
description of each service. Most approaches that are dealing with SOS
usually end up at service interfaces level, not describing the underlying
service behavior [28, 29]. Our aim has been to provide service behav-
ior description in Remes, where by service behavior we mean internal
state change for each specific entity of the service architecture, needed
for properly understanding of the whole SOS. To meet the target that
we have just described, we need to answer the questions below:

What are the relevant features of SOS that need to be sup-
ported by Remes and its analysis methods?

(Q2)

How to model services such that they could be discovered and
reasoned about?

(Q3)

Research question 4.

One of the growing trends of software engineering is building plat-
form independent software services. Unlike components in CBS that are
composed at design-time, in SOS services are assumed to be published,
invoked, composed, and destroyed on-the-fly. They are more loosely cou-
pled and more independent of implementation specific attributes than
components are. Furthermore, there is a need to enable complex applica-
tion creation based on given requirements. This means that the user, or
developer can create new systems out of existing services, on the spot,
and this in turn requires the newly composed system to comply to a
desired QoS. If this is not the case, then one should be able to replace
services that contribute to the violation of required QoS with ones that
could ensure the system quality. When the user ceases to need it, the
corresponding service composition should be destroyed, and unnecessary
services shut off. Accordingly, the next questions need to be answered:

How to compose services on-the-fly and formally analyze the
resulting composition in terms of functional and extra-functional
correctness?

(Q4A)

22 Chapter 2. Research Summary

How to model hierarchically built services, and represent the
main operations on services in a programming-like language?

(Q4B)

Research question 5.

Since services can be composed on-the-fly besides verifying the cor-
rectness of the constituent services in isolation, we need to perform ver-
ification of the composition as soon as it is built. We are interested
in proving that the given composition provides the intended/required
functionality, while possibly using as efficiently as possible the involved
computing resources. We need to answer the following question, in order
to solve the problem that we have just described:

How to ensure the correctness of services?
(Q5)

2.3 Research Methodology

In order to adequately answer the research questions, it is important to
adopt an appropriate research methodology, suitable for a given setting.
The methodology used in our research is based on the research steps
proposed/described by Shaw [30]. It includes the following:

1. Identification of the research problem based on current trends and
demands from the SOS community.

2. Transferring the problem to a research setting and defining the
research questions.

3. Analysis of the current state-of-the-art based on the defined re-
search questions.

4. Answering the research questions by presenting the achieved re-
search results.

5. Research results illustration. The goal is to show that the defined
research questions have been properly answered. It can be achieved
by performing case studies, giving a formal proof, or by prototype
implementation.

2.3 Research Methodology 23

6. Validating whether the research results can be applied in the real-
world applications.

Based on these steps, in our research we have first defined the ini-
tial problem, as stated in Chapter 2. The problem definition has been
followed by identification of research questions as also presented in Chap-
ter 2. In the next step, we have conducted a state-of-the-art investiga-
tion, which has resulted in writing paper A. Further, in papers B, C,
and D we have presented our research results which are summarized in
Chapter 3.

The thorough validation of the presented results is missing, and is the
subject of the future work to be done through the rest of PhD studies.
However, all research results have been exemplified as shown in papers
A, B, C, and D. In paper A, we have shown how formal verification tech-
niques can be used to predict the performance and reliability of a small
real-time, distributed system. Further, in paper B, we have illustrated
the modeling process within Remes on a simple ATM system. The
approach presented in paper C, has been demonstrated on an adapted
version of an intelligent shuttle system, for which we have computed re-
source consumptions, and showed energy-time trade-off analysis. Paper
D includes an illustrative example of our proposed approach, presented
in the paper.

Chapter 3

Research contributions

This chapter provides a brief overview of our contributions and research
results with respect to the research questions proposed in Chapter 2.
The details are presented in the appended papers, to be found in the
second part of this thesis.

3.1 Component-based vs. Service-Oriented

Systems: System Modeling and Analy-

sis

Goal: Based on a considerable number of similarities between SOS and
CBS, it is assumed that SOS have evolved from CBS. These two pa-
radigms share many of the main concepts and principles, both are fo-
cused on modularization and composition, and both proclaim software
reusability and rapid system development. However, one has to also
be aware of differences that exist in mechanisms, approaches, and imple-
mentations, of the two paradigms. The goal of this research is to conduct
an investigation on characteristics, advantages, and limitations of exist-
ing component-based frameworks. The result of such investigation can
help to better understand the background of such frameworks, and be
able to distinguish them from the service-oriented ones. Furthermore,
based on the comparison, one can extract a list of relevant features that
need to be supported by component-based frameworks.

25

26 Chapter 3. Research contributions

Results: The result of this research is an analysis conducted on sev-
eral popular component-based frameworks including: Klaper, Palladio,
SOFA, and BIP, in terms of identifying their capability of modeling
extra-functional properties, with a focus on performance and reliability.
Here, by performance, we mean performance metrics such as response
time, throughput, completion time, etc., and by reliability the ability of
a system or component to perform its required functions under stated
conditions for a specified period of time. We have noticed that some
of them are specialized on analyzing specific extra-functional properties
depending on the area in which these frameworks are used. We have
carried out comparisons between such approaches, and a recently in-
troduced framework for component-based design, called ProCom, and
its behavioral language Remes, on which we rely our subsequent re-
search. The comparison highlights similarities and differences between
our and the assumed frameworks, paving the way towards extending Re-

mes with the necessary constructs, needed for the language to become
fit for service-oriented development. Detailed results can be found in
papers A and B.

Limitations and future work: The conducted investigation selects
and compares only several popular approaches and it can be always ex-
tended to other component models. Moreover, the provided analysis is
limited to only performance and reliability as extra-functional properties
of interest. In the future it might be of interest to expand the analysis
to more frameworks focusing on other extra-functional properties, too.

3.2 Formal Modeling of Resource-aware Ser-

vice Behaviors in Remes

Goal: Relying on the fact that, in most cases the development of SOS
uses platform-independent services, there is a need for rigorous analysis
of such systems already at design time. Additionally, some systems have
limited available resources that makes the development process more
strict and demanding. Also, since services are platform independent and
loosely coupled it is possible to compose them in more than one way, usu-
ally on-the-fly. In these cases, even if the service behavioral description
is available, becomes beneficial to reduce service composition analysis
to checking that could be performed based on the information supplied

3.2 Formal Modeling of Resource-aware Service Behaviors

in Remes 27

in the service pre-, and postcondition. Due to many similar character-
istics between CBS and SOS, we have decided to extend the recently
introduced resource-aware timed behavioral language Remes, initially
developed for CBS, with necessary constructs to support SOS. Our goal
is to propose a model that relies on precise semantics, to be used as a
basis for the formal modeling and that comprises both formal modeling
and analysis of SOS.

Results: The result of this research is a service-oriented extension of
the resource-aware behavioral language Remes. In our work, we have
defined the service interface, such that a service could be published and
visible to service users. This extension relies on the work described pre-
viously, in which we have identified such necessary SOS features. Our
service interface is modeled to include information about the service
type, time-to-serve, service status, service pre-, and postcondition. The
latter specify the set of initial conditions to be fulfilled by the service
in order to be executed, as the precondition, and the guaranteed result
of operation, possibly including extra-functional information like tim-
ing and resource-usage, as the service post-condition. A Remes service
can be atomic, composite, but also employed in various types of com-
positions, resulting in new, more complex, services. There are cases in
which these subservices need to be composed sequentially, in parallel, or
need to be synchronized. In order to model the synchronized behavior of
services we have introduced a special kind of Remes mode (the smallest
functional unit in Remes), called AND/OR mode. By the semantics of
the mode, in an AND or an OR mode, the services finish their execution
simultaneously, from an external observers point of view. However, if
the mode is employed as an AND mode, the subservices are entered at
the same time, and their incoming edges do not contain guard, while
an OR mode assumes that one or all subservices are entered based the
guards annotated on the incoming edges. In order to support on-the-fly
service manipulation, we have enriched Remes with interface operations
such as: create service, delete service, replace service, etc. Alongside the
above operations, we have defined a hierarchical language that supports
dynamic Remes service composition (HDCL), and facilitates modeling
of nested sequential, parallel or synchronized services. Originally, Re-

mes can be semantically translated to TA or PTA, depending on the
expected outcome of the analysis (i.e., results w.r.t. timing properties,
resource consumption, etc.), for formal analysis purposes. However, in

28 Chapter 3. Research contributions

this work, we have relied on a guarded-command language description of
a Remes service, and on the associated strongest postcondition seman-
tics [11]. All details regarding this contributions are available in paper C.

Limitations and future work: As a result of our extension, Remes

language supports modeling and analysis of SOS. In our work, we do not
take into consideration dynamic resource usage (i.e., dynamic memory
allocation). It is sometimes the case that a particular service needs to be
replaced by a service that delivers better QoS but similar functionality.
It is desirable, therefore, that, before the actual replacement, one verifies
a refinement relation between services, to ensure that the previous ser-
vice properties are preserved. Our plan is to investigate possibilities for
proving refinement relation between services modeled as Remes modes.
Regarding tool support, there exists a stabile eclipse-based implementa-
tion of Remes tool chain. However, we plan to provide a stand-alone
implementation of modeling services in Remes, paired with means for
automated analysis.

3.3 Checking the correctness of Remes ser-

vices

Goal: Developing systems on-the-fly, by using services equipped with
constructs that support online behavior, raises some concerns regarding
the quality and correctness of the employed services. As the case with
most of the CBS, it is not sufficient to check the correctness of single
services, but also be able to verify the functional and extra-functional
correctness of service compositions. Considering the fact that some SOS
could be embedded into larger systems that need to run on limited re-
sources, it becomes an essential demand to ensure that the system’s
resource-usage is kept within existing bounds. To address such requests
already at early design stages, one needs powerful analysis techniques
that encompass both functional but also extra-functional service behav-
ior.

Results: In our approach, we have decided to use, as our verification ap-
proach, the forward analysis technique that assumes computation of the

3.4 Questions Revisited 29

strongest postcondition of a Remes service with respect to a given pre-
condition. To prove the correctness of a Remes service in isolation, we
check the boolean implication between the calculated strongest postcon-
dition and the given requirement, reducing verification to a simple proof.
We have proposed two techniques for strongest postcondition calculation
for services: a deductive one, starting from the guarded command lan-
guage (GCL) [10] description of a Remes service [31], and an algorithmic
one, starting from the PTA description of a service. The latter includes
also the minimum/maximum resource-usage trace computation, while
performing strongest postcondition analysis. To accomplish the service
composition correctness check, we have introduced a hierarchical lan-
guage for on-the-fly service composition (HDCL) that allows creating
new services, by composing existing services via binary operators, as
well as adding and/or deleting services from lists. We also give the se-
mantics of sequential, parallel, and parallel with synchronization service
composition, respectively. The benefit of this language is that, after each
composition, we require that one checks whether the given requirement
is satisfied, by forward analysis, e.g., by calculating the strongest post-
condition of a given composition w.r.t. a given precondition. The details
about this research are incorporated in papers C and D.

Limitations and future work: Both presented approaches would
be limited to less complex systems and service, unless a postcondition
calculator would be provided in Remes IDE [32] or algorithms would
be implemented in Uppaal Cora [20]. Also, both approaches are il-
lustrated on simple examples. It would be beneficial for our research
to model more complex examples, connected to real-world applications.
Our intention is to extend the Remes tool-chain with a postcondition
calculator and to apply our approach on a series of complex systems, in
order to get better knowledge about its weaknesses and limitations.

3.4 Questions Revisited

In this section, we show how the research results and included papers
answer the research questions.
Question Q1A: What are the characteristics, advantages and limita-
tions of existing component-based frameworks with respect to analysis of
extra-functional behavior like system’s resource-usage?

30 Chapter 3. Research contributions

Question Q1B: How do such models differ from the service-oriented
ones?

From the research summary, we can see that these questions are an-
swered by the first research topic and papers A and B. These papers
provide a comparison between several selected component-based appro-
aches in terms of analysis of extra-functional properties and highlight
differences between component-based and service-oriented frameworks.

Question Q2: What are the relevant features of SOS that need to be
supported by Remes and its analysis methods?

Question Q3: How to model services such that they could easily be
discovered and reasoned about?

The second research topic and included papers B and C contribute
with answers to these questions. It is our intention to provide constructs
for modeling and reasoning about services in Remes and we have ful-
filled this goal as presented in the mentioned papers

Question Q4A: How to compose services on-the-fly and formally ana-
lyze the resulting composition in terms of functional and extra-functional
correctness?

Question Q4B: How to model hierarchically built services, and repre-
sent the main operations on services in a programming-like language?

The second research topic gives answers to these questions. In paper
C we present mechanisms that enable a service composition out of ex-
isting ones and formal analysis w.r.t. the function and resource-usage of
composed services.

Question Q5: How to ensure the correctness of services?
The third research topic and papers C and D address this question.

While in paper C we show how to describe service behavior in Dijkstra’s
guarded command language, and how to check the service correctness by
employing Dijkstra’s and Scholten’s strongest postcondition semantics,
in paper D we present algorithmic computation of strongest postcondi-
tion for a service formally described as PTA.

Chapter 4

Related Work

This chapter relates the work in this thesis to relevant research areas. It
is subdivided into a number of sections in which we provide comparisons
with work of fellow researchers, for each area, respectively.

4.1 Services vs. Components

Broy et al. [14] view a service as a way of orchestrating interactions
among a subset of components in order to obtain some required func-
tionality. They assume services as coordinators of component interplay
that leads to accomplishing a given task. Masek et al. emphasize that
the main difference between services and components is the way the
composition is established [33]. While services are composed at run-
time, components depend on pre run-time composition. However, their
strong similarity in basic concepts and principles makes services and
components highly interoperable. Rychlý describes a service as a sys-
tem that consists of components whose external interfaces match the
provided interfaces of the service [16]. In our approach, we regard the
notion of a service as an extension of an an already existing component
notion. Although it is possible to still ensure the service-component in-
teroperability, our main concern is however, on how to establish service
functional and extra-functional guarantees described through pre-, and
postconditions at service interface.

31

32 Chapter 4. Related Work

4.2 Service-oriented Frameworks

The behavioral side of service engineering is lagging behind the archi-
tectural one, a great deal. However, based on the level of details that
are provided through the existing behavioral description, all approaches
related to services and SOS can be in principle divided into three groups.

The first group is made of code-level behavioral description approa-
ches, in most cases relying on the XML language (e.g., BPEL, BPEL4WS,
WS-CDL, etc.). BPEL [4] is an orchestration language whose behavioral
description includes a sequence of project activities, correlation of mes-
sages and process instances, and recovery behavior in case of failures
and exceptional conditions. Approaches like BPEL are useful when ser-
vices are intended to serve a particular model, or when the access to the
service implementation exists. The drawback of such approaches is the
lack of formal analysis support, which forces the designer/developer to
master not only the specification and modeling processes, but also the
techniques for translating models into a suitable analysis environment.

When compared to the above group, BPMN [6] can be seen as a
higher-level language. It relies on a process-oriented approach, and sup-
ports a graphical representation to be used by both designers and ana-
lysts. The lack of a formal behavioral description does not provide means
for detailed analysis, as the one supported by Remes. SRML [34] is a
service modeling framework that relies on UML state machines to model
service behavior, which could help to spread its use among researchers.
The benefit of the approach comes with the mechanism that supports
the formal analysis formal analysis of functional and timing properties
via model-checking; however, the analysis of extra-functional properties,
other than timing, is not addressed.

The third group includes approaches with strong formal basis. Rychlý
describes the service behavior as a component-based system for dynamic
architectures [16]. The specification of services, their behavior, and hi-
erarchical composition are formalized within the π-calculus. Similar to
our approach, this work emphasizes the behavior in terms of interfaces,
(sub)service communication, and bindings, yet we can also cater for ser-
vice descriptions including timing and resource annotations [35]. Broy et
al. present a theoretical setting of mathematical model of a component
model and service mathematical model [14]. The authors provide details
on a service behavior in terms of a partial behavior, in comparison to
components that are assumed to be described by total behaviors. Al-

4.3 Checking Properties of Services and their Compositions

33

though, the work provides a rich theoretical and formal foundation, the
approach lacks corresponding automated analysis techniques.

4.3 Checking Properties of Services and their

Compositions

A comprehensive survey on several approaches that are accommodat-
ing service composition [4–7] is given by Beek et al. [36]. Regarding
service modeling, all these approaches are solid; however, w.r.t. service
composition [37–39] (usually by employing formal methods), such appro-
aches show limited capabilities to automatically support these processes.
Compositions of Remes models can be mechanically reasoned about (al-
though, as for now, we still miss the interface correctness tool support),
or can be automatically translated to TA [19] or PTA [20], and ana-
lyzed with Uppaal , or Uppaal Cora tools, for functional but also
extra-functional behaviors (timing and resource-wise behaviors). Foster
et al. present an approach for modeling and analysis of web service com-
positions [17]. The approach takes BPEL4WS service specification and
translates it into Finite State Processes (FSP), and Labeled Transition
Systems (LTS), for analysis purposes. The drawback of the approach
might be too tedious transformation process while acquiring the analy-
sis model, especially in cases when the user is not familiar with different
notations and approaches required in this process.

Díaz et al. describe a process of automatic translation of BPEL and
WS-CDL service models to timed automata in order to provide means
for analysis via Uppaal model checker [37]. However, the described ap-
proach is limited to checking only service timing properties. Narayanan
et al. show how semantics of OWL-S, described using first-order logic,
can be translated to Petri-nets and then analyzed as such [38]. The
analysis includes reachability and liveness properties and checking if the
given service or service compositions are deadlock free. Compared to
our approach, Remes services can be both mechanically [31] and algo-
rithmically reasoned about. Moreover, Remes services described as TA
or PTA can be analyzed with Uppaal , or Uppaal Cora tools, for
functional but also extra-functional behaviors.

Chapter 5

Conclusions and Future

Work

The goal of the research presented in this thesis is to develop methods
and tools for the specification, modeling, and formal analysis of services
and service compositions in SOS. Mostly, we have focused on the be-
havioral aspects of services and the challenges associated with analyzing
such models. Consequently, we have extended the resource-wise tim-
ing behavioral language, called Remes, and have provided associated
analysis techniques. We have also introduced a language for composing
and verifying services, on demand. We have illustrated our approach on
several small examples, yet the comprehensive analysis of the achieved
research results needs to be performed in more realistic case-studies and
it is subject of future work.

5.1 Summary of Thesis Contributions

In this work, we have presented our work aiming at answering the for-
mulated research questions of Chapter 2, which can be summarized in
the following concrete lines of contribution:

Analysis-wise comparison between component-based frameworks.

In this thesis, we present the comparison-driven results of several popu-
lar component-based frameworks in term of analysis of extra-functional

35

36 Chapter 5. Conclusions and Future Work

properties, i.e., performance and reliability. Foremost, the comparison
has set our work in the appropriate context, while showing how our fa-
vorite framework handles performance and reliability analysis, through
a small real-time system example.

SOS vs. CBS. Due to the similarity of the fundamental principles
on which SOS and CBS are built, we have carried out a deeper compar-
ison between the two paradigms, in order to identify the differences, but
also to emphasize what is required from a component-based approach to
become fit for service-orientation, too. The results has shown that the
level of similarities is significant enough to allow us to use an unified be-
havioral model for both, service-oriented and component-based systems.

Remes behavioral language for service-oriented setup. Remes

is a resource-wise timed behavioral language that enables modeling of
services as modes that have a notion of explicit entry- and exit points.
We have enriched the original modes with service attributes and ser-
vice pre-, and postconditions, in order to expose the service interface
for potential service discovery, and set the ground for formal analysis
of services. The language supports modeling both single and composed
service, via a hierarchical dynamic composition language that allows to
create new services, using binary operators, as well as adding and/or
deleting services from lists. In addition, it allows serial, parallel and
parallel with synchronization service composition.

Checking the correctness of Remes services. We present two
approaches to check the correctness of Remes services that rely on the
forward analysis technique. First approach is defined using Hoare triples
and Dijkstra and Sholten’s strongest postcondition predicate transformer.
It allows calculation of the strongest postcondition for a Remes service
by hand and it is more suitable for less complex services. Since the orig-
inal semantics of Remes is given in terms of PTA, in second approach,
we show algorithmic calculation of the strongest postcondition for ser-
vices denoted as PTA. The approach makes checking the correctness of
more complex services feasible, and awaits implementation in the Up-

paal Cora tool.

5.2 Future Research Directions 37

5.2 Future Research Directions

We have identified several possible directions that our research could
follow in the future. The current approach has not been validated yet.
Our intention is to apply the proposed modeling and analysis techniques
presented in this thesis on real-world case-studies/systems. This could
add our understanding of how to extend our work such that it becomes
more complete and adequate for real systems, but also uncover some of
the limitations of our approach.

In SOS, it is sometimes the case that the service user needs to replace
a particular service with one of better QoS but similar functionality. In
order to ensure that the two services are behaviorally similar, one needs
to verify a refinement relation between services. As known, the exis-
tence of a timed simulation relation is a sufficient condition for proving
language inclusion, hence refinement. Future work includes a detailed
investigation on how the simulation relation between two Remes services
can be proved, as there is no decidability result regarding computing a
simulation relation between two PTA.

Moreover, we have found interesting to be able to manipulate dif-
ferent types of resources within the same service model, and carry out
various types of analysis. In the future, we plan to investigate possibil-
ities for trade-off analysis of QoS attributes. To tackle such problems,
the current research needs to be extended to dual-priced timed automata
(DPTA) [40], as the modeling framework, in which separate costs model
various QoS. In addition, algorithms that provide the strongest postcon-
dition calculation need to be implemented in Uppaal Cora. At the
moment, we rely on tools that enable modeling of Remes services in an
Eclipse-based environment and their transformation to Uppaal for the
analysis purposes [32]. However, our plan is to provide a stand alone
tool suitable for modeling, correctness check, and resource-wise analysis
via Uppaal Cora of both single and composed services.

Bibliography

[1] Ivica Crnkovic and Magnus Larsson. Building Reliable Component-
Based Software Systems. Artech House publisher, 2002.

[2] Manfred Broy, Norbert Diernhofer, Johannes Grünbauer, Michael
Meisinger, Martin Rappl, Sabine Rittmann, Bernhard Schätz, Mau-
rice Schoenmakers, and Bernd Spanfelner. Service-Oriented De-
velopment - Whitepaper. Whitepaper, Technische Universität
München, 2006.

[3] Aida Causevic and Aneta Vulgarakis. Towards a unified behav-
ioral model for component-based and service-oriented systems. In
2nd IEEE International Workshop on Component-Based Design of
Resource-Constrained Systems (CORCS 2009). IEEE Computer So-
ciety Press, July 2009.

[4] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland,
Johannes Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug
Smith, Satish Thatte, Ivana Trickovic, and Sanjiva Weerawarana.
BPEL4WS, Business Process Execution Language for Web Services
Version 1.1. IBM, 2003.

[5] Nickolas Kavantzas, David Burdett, Greg Ritzinger, Tony Fletcher,
Yves Lafon, and Charlton Barreto. Web services choreography de-
scription language version 1.0. World Wide Web Consortium, Can-
didate Recommendation CR-ws-cdl-10-20051109, November 2005.

[6] Object Management Group (OMG). Business Process Modeling
Notation (BPMN) version 1.1., January 2008.

39

40 Bibliography

[7] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubén
Lara, Michael Stollberg, Axel Polleres, Cristina Feier, Christoph
Bussler, and Dieter Fensel. Web service modeling ontology. Applied
Ontology, 1(1):77–106, 2005.

[8] Cristina Seceleanu, Aneta Vulgarakis, and Paul Pettersson. Remes:
A resource model for embedded systems. In In Proc. of the 14th
IEEE International Conference on Engineering of Complex Com-
puter Systems (ICECCS 2009). IEEE Computer Society, June 2009.

[9] Aneta Vulgarakis, Cristina Seceleanu, Paul Pettersson, Ivan
Skuliber, and Darko Huljenic. Validation of embedded systems be-
havioral models on a component-based ericsson nikola tesla demon-
strator. In 11th InternationalConference on Quality Software (QSIC
2011). IEEE, July 2011.

[10] Edsger W. Dijkstra. Guarded commands, nondeterminacy and for-
mal derivation of programs. Commun. ACM, 18(8):453–457, 1975.

[11] Edsger W. Dijkstra and Carel S. Scholten. Predicate calculus and
program semantics. Springer-Verlag New York, Inc., New York, NY,
USA, 1990.

[12] Kim Guldstrand Larsen and Jacob Illum Rasmussen. Optimal
reachability for multi-priced timed automata. Theor. Comput. Sci.,
390:197–213, January 2008.

[13] Q-ImPrESS Project. http://www.q-impress.eu/wordpress/.

[14] Manfred Broy, Ingolf Krüger, and Michael Meisinger. A for-
mal model of services. ACM Transactions on Software En-
gineering Methodology (TOSEM), 16(1), 2007. available at
http://doi.acm.org/10.1145/1189748.1189753.

[15] Johannes Maria Zaha, Alistair P. Barros, Marlon Dumas, and
Arthur H. M. ter Hofstede. Let’s dance: A language for service
behavior modeling. In Robert Meersman and Zahir Tari, editors,
OTM Conferences (1), volume 4275 of Lecture Notes in Computer
Science, pages 145–162. Springer, 2006.

Bibliography 41

[16] Marek Rychlý. Behavioural modeling of services: from service-
oriented architecture to component-based system. In Software En-
gineering Techniques in Progress, pages 13–27. Wroclaw University
of Technology, 2008.

[17] Howard Foster, Wolfgang Emmerich, Jeff Kramer, Jeff Magee,
David Rosenblum, and Sebastian Uchitel. Model checking service
compositions under resource constraints. In ESEC-FSE ’07: Pro-
ceedings of the the 6th joint meeting of the European software en-
gineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, pages 225–234, New York, NY,
USA, 2007. ACM.

[18] Cristina Seceleanu, Aneta Vulgarakis, and Paul Pettersson. Remes:
A resource model for embedded systems. In In Proc. of the 14th
IEEE International Conference on Engineering of Complex Com-
puter Systems (ICECCS 2009). IEEE Computer Society, June 2009.

[19] R. Alur and D. L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[20] Rajeev Alur. Optimal paths in weighted timed automata. In In
HSCCć01: Hybrid Systems: Computation and Control, pages 49–
62. Springer, 2001.

[21] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking
in dense real-time. Inf. Comput., 104:2–34, May 1993.

[22] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time
systems. In Logic in Computer Science, 1990. LICS ’90, Proceed-
ings., Fifth Annual IEEE Symposium on e, pages 414 –425, jun
1990.

[23] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen,
Paul Pettersson, Judi Romijn, and Frits Vaandrager. Minimum-
Cost Reachability for Priced Timed Automata. In Maria
Domenica Di Benedetto and Alberto Sangiovanni-Vincentelli, ed-
itors, Proceedings of the 4th International Workshop on Hybris Sys-
tems: Computation and Control, number 2034 in Lecture Notes in
Computer Sciences, pages 147–161. Springer–Verlag, 2001.

42 Bibliography

[24] Kim Guldstrand Larsen and Jacob Illum Rasmussen. Optimal
reachability for multi-priced timed automata. Theor. Comput. Sci.,
390(2-3):197–213, 2008.

[25] Christel Baier and Joost-Pieter Katoen. Principles of Model Check-
ing (Representation and Mind Series). The MIT Press, 2008.

[26] Hongyu Pei-Breivold and Magnus Larsson. Component-based and
service-oriented software engineering: Key concepts and principles.
In 33rd Euromicro Conference on Software Engineering and Ad-
vanced Applications (SEAA), Component Based Software Engineer-
ing (CBSE) Track, IEEE, August 2007.

[27] W. T. Tsai. Service-oriented system engineering: A new paradigm.
In SOSE ’05: Proceedings of the IEEE International Workshop,
pages 3–8, Washington, DC, USA, 2005. IEEE Computer Society.

[28] Jim Amsden. Modeling SOA, parts I-V. October 2007.

[29] Marek Rychlý and Petr Weiss. Modeling of service oriented architec-
ture: From business process to service realisation. In ENASE 2008
Third International Conference on Evaluation of Novel Approaches
to Software Engineering Proceedings, pages 140–146. Institute for
Systems and Technologies of Information, Control and Communi-
cation, 2008.

[30] Mary Shaw. The coming-of-age of software architecture research.
In ICSE ’01: Proceedings of the 23rd International Conference on
Software Engineering, page 656, Washington, DC, USA, 2001. IEEE
Computer Society.

[31] Aida Causevic, Cristina Seceleanu, and Paul Pettersson. Mod-
eling and reasoning about service behaviors and their composi-
tions. In Proceedings of 4th International Symposium On Lever-
aging Applications of Formal Methods, Verification and Validation
(ISOLA 2010), Formal Methods in Model-Driven Development for
Service-Oriented and Cloud Computing track. Springer LNCS, Oc-
tober 2010.

[32] Dinko Ivanov, Marin Orlic, Cristina Seceleanu, and Aneta Vulgar-
akis. Remes tool-chain - a set of integrated tools for behavioral
modeling and analysis of embedded systems. In Proceedings of the

Bibliography 43

25th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2010), September 2010.

[33] Karel Masek, Petr Hnetynka, and Tomás Bures. Bridging the
component-based and service-oriented worlds. In EUROMICRO-
SEAA, pages 47–54, 2009.

[34] João Abreu, Franco Mazzanti, José Luiz Fiadeiro, and Stefania
Gnesi. A model-checking approach for service component archi-
tectures. In Proceedings of the Joint 11th IFIP WG 6.1 Interna-
tional Conference FMOODS ’09 and 29th IFIP WG 6.1 Interna-
tional Conference FORTE ’09 on Formal Techniques for Distributed
Systems, FMOODS ’09/FORTE ’09, pages 219–224, Berlin, Heidel-
berg, 2009. Springer-Verlag.

[35] Aida Causevic, Cristina Seceleanu, and Paul Pettersson. For-
mal reasoning of resource-aware services. Technical Report ISSN
1404-3041 ISRN MDH-MRTC-245/2010-1-SE, Mälardalen Univer-
sity, June 2010.

[36] Maurice H. Ter Beek, Antonio Bucchiarone, and Stefania Gnesi.
Formal methods for service composition. Annals of Mathematics,
Computing & Teleinformatics, 1(5):1 – 10, 2007. In: Annals of
Mathematics, Computing & Teleinformatics, vol. 1 (5) pp. 1 - 10.
Technological Education Institute of Larissa (TEIL), Greece, 2007.

[37] Gregorio Díaz, Juan José Pardo, María-Emilia Cambronero,
Valentin Valero, and Fernando Cuartero. Automatic translation
of ws-cdl choreographies to timed automata. In Mario Bravetti,
Leïla Kloul, and Gianluigi Zavattaro, editors, EPEW/WS-FM, vol-
ume 3670 of Lecture Notes in Computer Science, pages 230–242.
Springer, 2005.

[38] Srini Narayanan and Sheila A. McIlraith. Simulation, verification
and automated composition of web services. In WWW ’02: Pro-
ceedings of the 11th international conference on World Wide Web,
pages 77–88, New York, NY, USA, 2002. ACM.

[39] Gwen Salaün, Lucas Bordeaux, and Marco Schaerf. Describing and
reasoning on web services using process algebra. In ICWS ’04:
Proceedings of the IEEE International Conference on Web Services,
page 43, Washington, DC, USA, 2004. IEEE Computer Society.

[40] Kim Larsen and Jacob Rasmussen. Optimal conditional reacha-
bility for multi-priced timed automata. In Vladimiro Sassone, edi-
tor, Foundations of Software Science and Computational Structures,
volume 3441 of Lecture Notes in Computer Science, pages 234–249.
Springer Berlin / Heidelberg, 2005.

II

Included Papers

45

Chapter 6

Paper A:

Analyzing

Resource-Usage Impact

on Component-Based

Systems Performance

and Reliability

Aida Čaušević, Paul Pettersson, Cristina Seceleanu
In Proceedings of International Conference on Innovation in Software
Engineering (ISE08), Vienna, Austria, December, 2008

47

Abstract

An early prediction of resource utilization and its impact on system
performance and reliability can reduce the overall system cost, by al-
lowing early correction of detected problems, or changes in development
plans with minimized overhead. Nowadays, researchers are using both
academic and commercial models to predict such attributes, by mea-
suring them at earliest stages of system development. In this paper,
we give a short overview of existing prediction models for performance
and reliability, targeting popular component-based frameworks. Next,
we describe our own approach for tackling such predictions, through an
illustration on a small example that deals with estimations of energy
consumption.

6.1 Introduction 49

6.1 Introduction

In most component-based system development efforts, a great deal of
time is spent on ensuring that the functional requirements are being
properly implemented, while performance and reliability requirements
are given a lower priority [1]. The premise of this paper is that perfor-
mance and reliability, when added to functionality, constitute a necessary
and complete set of metrics for reducing the development cost of com-
plex component-based systems, be they service-oriented or embedded
systems.

As the degree of using existing hardware and software resources af-
fects quality attributes like performance and reliability in particular,
there is a strong need of system models on which dedicated prediction
methods can be applied, as early as possible in the development cy-
cle. Such methods should be able to estimate how various changes in
component-wise resource utilization impact on the respective response
times (performance metric) and/or number of software faults and er-
rors (reliability metric). The predictions would then later guide the
designer towards potential redesigns, e.g., in case the system’s resource
utilization nears upper thresholds of performance criteria. Most of the
component-based frameworks (CBFs) for system design rely on methods
for estimating either performance or reliability changes under given re-
source utilization scenarios. However, few of the approaches can deliver
predictions for any possible system behavior. Most of them cover subsets
of behaviors, by using simulation or lightweight formal methods.

The goal of this paper is twofold: first, we briefly review some of
the most significant component models and underlying approaches for
analyzing the dependency between resource consumption, performance
and/or reliability attributes; second, we show how can formal verification
techniques, in particular model-checking, be used to predict the perfor-
mance and reliability of a small real-time, distributed system, modeled
as a priced timed automata [2]. The intention is to describe a way of
carrying out a significant number of experiments, without increasing the
system’s development cost.

50 Paper A

6.2 Working Example: A Real-time Multi-

processor System

Let us consider a simple distributed system made of 5 components, out
of which C0, C1, C2 will be mapped, on a selected target platform, onto 3
real-time tasks that have to execute on 2 available processors, assumed
to be components CPU0, CPU1. Moreover, a task component Ci can
be executed on just one available processor at any point of time, and it
cannot be split in more jobs and executed on both processors. Except for
component C1 that can only be executed on processor CPU1, the other
two task components can be executed on any available processor.

The tasks are characterized by attributes like cpu_type and deadline,
and are assumed to be independent and non-preemptive. The attributes
specify the type of CPU on which each component is allowed to execute
and the relative deadline, respectively. The target system abstraction,
that is the CPUs, have the attributes type and frequency, denoting the
respective CPU’s type and speed, respectively.

Assuming a component-based system model, our analysis goal is to
select both the best mapping of the task components onto the available
processors, and the optimal sequence of execution such that all tasks will
meet their deadlines and the energy consumption for each execution is
minimized. We recognize here both a performance as well as a reliability
prediction problem of the composition, as follows:

• performance: minimize the energy consumption of each task, for
each execution, given the fact that the consumed energy is directly
proportional to the task’s execution time;

• reliability: minimize the number of software errors, that is, number
of times the tasks fail to meet their deadlines, respectively.

Here, the identified resources are energy and the computation resources,
that is, the processors.

6.3 Quality Prediction in Current CBFs

In this section, we will give a brief overview of the current prediction
techniques for performance and/or reliability, for some of the most pop-
ular state-of-the-art component models, if possible, in the context of the

6.3 Quality Prediction in Current CBFs 51

above example. Concretely, we will look at Palladio Component Model,
Klaper, SOFA, Koala, Robocop, and BIP.

Palladio Component Model (PCM) represents a domain modeling
language used for model-driven performance prediction [3]. The main
purpose of introducing PCM is to perform early performance prediction
of alternative software architectures. Therefore, the analysis methods
are able to calculate metrics like the response time of provided services
in a software system, with respect to parametric dependencies within
components, and the actual usage profile of a software system. Sim-
ulation tools generate simulation source code and scenarios, based on
instances of the PCM [4].

In our example’s context, assuming that both tasks and processors
are each described by a PCM, one could get the following:

• performance: calculate the response time of each task, for various
task-processor allocation scenarios and energy-usage profiles;

• reliability: no support provided.

The main advantage of PCM-based prediction methods is that it reduces
model complexity by providing models for different component-based
software engineering (CBSE) developer roles, which are parameterized
with the targeted platform attributes. The disadvantage of the approach
is lack of support of reliability prediction techniques, of real-time anal-
ysis, and the lower degree of assurance provided by simulation, when
compared to full formal verification.

6.3.1 SOFA

The Software Appliances (SOFA) component model, in its current ver-
sion SOFA 2 [5], provides a modeling platform for software components,
based on a hierarchical model with nested components that are able to
communicate over defined interfaces. In terms of prediction, this model
comes together with an infrastructure that allows for general component
monitoring that gathers performance related information. The perfor-
mance attributes are fed to the performance modes, and then the gath-
ered information is feedbacked to the component model, whose resource
usage level is adjusted accordingly. The process is iterative, stopping
when a reasonable trade-off between resource-usage and performance is
obtained.

52 Paper A

The component behavior is captured by annotating invocations with
lists of resource demands. The allocation of resources is described within
the deployment model. With SOFA, one can predict how performance
attributes change when the application scale changes.

If we assume the working example of section 6.2, by employing this
approach, we can get the following results:

• performance: predict each task’s completion time, based on moni-
toring, and a chosen energy-demand level;

• reliability: not supported.

6.3.2 KLAPER

KLAPER (Kernel LAnguage for PErformance and Reliability analy-
sis) [6] is a kernel language intended to capture relevant information
about non-functional attributes of component-based systems (CBS), fo-
cusing mainly on performance and reliability. To derive meaningful
analysis models from design models, one can work within the so-called
KLAPER-based transformation framework; the latter accepts as input
software design models expressed via heterogeneous notations, and pro-
duces as output various performance and reliability models. Assuming
that we virtually apply KLAPER-based transformations to our task and
processor models, the following can be predicted:

• performance: calculate each task’s execution time, as a function of
the service speed attribute represented by the processor frequency;

• reliability: calculate each task’s probability of failure to meet its
respective deadline.

A remarkable feature of KLAPER is that it offers the possibility of a di-
rect transformation from design-oriented into different analysis-oriented
notations such as Petri Nets, Discrete Time Markov processes, and Ex-
tended Queueing Networks (EQN). Another advantage is that one can
associate scheduling policies with a resource, in order to model access
control policies. As such, the framework allows for a direct estimation
of the resource-usage impact on quality attributes like performance and
reliability. The lack of feedback between the analysis step and the design
models could be considered as a disadvantage of the approach.

6.3 Quality Prediction in Current CBFs 53

6.3.3 Koala

Koala [7] is a software component model, introduced by Philips Electron-
ics, designed to build product families of consumer electronics. Resource
information is exposed at the component’s interface. The provides in-
terface defines the operations offered by the component, whereas the
requires interface defines the operations of other interfaces that the com-
ponent needs to use. Since in a Koala model all the external functionality
that is required by the component needs to go through the “requires”
interface, it is somewhat straightforward to estimate the use of the sys-
tem’s resources, such as memory utilization. To estimate a Koala com-
ponent’s static memory consumption, one can assume that a special type
of reflection provides the interface.

In the context of our example, one could analyze the following:

• performance: assuming that all the components (tasks) of the ex-
ample require the same amount of memory, and that the latter is
specified, yet some of the components need to queue to get memory
access, one could analyze how various component configurations
can affect task execution and system performance, under different
memory availability scenarios. In addition, if one tags the task that
uses the largest amount of memory as “slow”, one could estimate
the number of failures that affect the system budget, and compare
the new budget with the actual execution cost, hence capturing
performance changes;

• reliability: estimate the number of failures that might occur during
the execution of “slow” tasks.

The above technique supports budgeting, that is, the expected val-
ues of the resource consumption of non-implemented components can
also be accounted for. On the other hand, the approach can be used
to estimate the total system performance, in a compositional fashion,
only on specific, reduced-size scenarios for which the set of components
instantiated in a composition is known before run-time.

6.3.4 ROBOCOP

The Robust Open Component Based Software architecture for Config-
urable Devices Project (ROBOCOP) is inspired by the Koala component

54 Paper A

model. It consists of several models that provide parts of the component
information, respectively.

To solve the static memory estimation problem, a scenario-based
simulation approach has been introduced [8, 9]. This approach deliv-
ers resource estimations for a set of scenarios that represent critical us-
ages/executions of the system. The proposed resource model specifies
the predicted resource consumption for all the operations implemented
by the services of an executable component. As such, the model contains
a number of cost functions that give the operations’ costs. There can be
multiple cost functions, for each resource. To increase the faithfulness of
the prediction, the resources that are claimed and released are specified
per operation.

Let us assume that we have the resource-wise and functional behav-
ioral model (written for example in binary code) for the components in
our example, and the accompanying application scenario that describes
service instances and bindings between the respective components. In
such case, we would be able to proceed with the analysis described below:

• performance: for components C0, C1, C2 their worst-case response
times could be checked against the respective deadlines;

• reliability: compute the number of missed deadlines for C0, C1, C2;
this result can reflect the reliability of the modeled system.

Muskens and Chaudron are describing a method for run-time resource
consumption in multi-task CBS, via a formal approach that allows pre-
diction of dynamic resource consumption [10].

6.3.5 BIP

The acronym BIP stands for Behavior, Interaction, Priority, and is a
framework for modeling heterogeneous real-time CBS. Each component
is obtained as a superposition of three layers. The lower layer describes
the component behavior, the intermediate layer includes connectors that
describe component interactions, and the upper layer is a set of priority
rules that model scheduling policies for interactions. BIP does not make
an explicit distinction between inputs and outputs, such that the global
variables can be treated either as inputs or as outputs. Basu et al. [11]
give an example of performance evaluation of timed tasks that process
events from a bursty event generator, all modeled and executed in the
BIP framework.

6.4 Our approach 55

If we employed BIP to tackle our example, we would get the following
results:

• performance: worst-case execution time of C0, C1, C2, for any valid
task-processor allocation scenario, and scheduling analysis via for-
mal verification.

The advantage of the approach is threefold: (a) it accounts for pos-
sible heterogeneity of components; (b) it provides a rigorous, correct-by-
construction basis for the study of architectural transformations, and (c)
it is supported by formal verification tools for the compositional analysis
of performance, or important properties such as deadlock-freedom.

6.4 Our approach

Our approach is based on the SaveComp component technology and its
component modeling language SaveComp Component Model (SaveCCM),
which have been developed within the SAVE project1 [12]. The seman-
tics of the core part of the language is given as models of timed au-
tomata. Having semantics defined in terms of timed automata, we are
able to analyze SaveCCM models within different model-checking tools
(e.g. Uppaal2). Recent research on SaveCCM has been performed in
the area of embedded control applications of vehicular systems [13, 14].
The electronics in vehicles represents a class of systems where quality
attributes, such as reliability and resource usage, have impact through-
out the development process. The analysis that has been done with
SaveCCM within case studies mainly address these topics.

In this section, we will present our model, which is based on Priced
Timed Automata (PTA) theory [2], an extension of Timed Automata
(TA) with costs on locations and edges. In PTA, costs are associated
with edges, to define the cost of executing a corresponding action transi-
tion, and location, to define the cost per time unit of delaying there. The
PTA framework provides modeling and analysis of continuous, mono-
tonically increasing consumption of resources, e.g. energy consumption.
Since the PTA framework does not provide combined reasoning about
monotonic (e.g. energy) and non-monotonic resources (e.g. memory), we

1SAVE project is supported by Swedish Foundation for Strategic Research.
2The Uppaal tool is developed in collaboration between Uppsala University,

Sweden and Aalborg University in Denmark. More information is available at
http://www.uppaal.com/

56 Paper A

will treat the whole amount of required memory as static, allocate the to-
tal memory amount at the beginning of each task execution, and model
it as a discrete value. This problem can be solved with multi-priced
TA [15], which are PTA with multiple cost variables evolving according
to given rates for each location. Due to space limitation, we will not
describe the model of priced timed automata here, but refer the reader
to [2] for a thorough description of the framework.

6.4.1 Example Revisited: Analyzing the Multipro-

cessor System’s Performance and Reliability

using UPPAAL

To exemplify our approach, we recall the component-based system pre-
sented as our working example in Section 6.2. The system model is
depicted as a SaveCCM-based description in Figure 6.1. We model the
example system as the composition of three real-time tasks T0, T1, and
T2, corresponding, in the Save-CCM representation, to C0, C1, and C2,
respectively, and two processors P0 and P1 describing components CPU0

and CPU1. Note that tasks are assumed to be independent, that is, their
execution do not depend on the state, results, or side effects of the other
tasks.

Our first goal is to model non-preemptive multiprocessor task schedul-
ing. Tasks Ti can be executed in parallel if there are available processing
resources Pj, enabling multiple requests to be served simultaneously.
Each task Ti is defined by its deadline (Di). Processors (Pj) are char-
acterized by their period (Pj) and consumed energy (Ej). We introduce
the notion of task execution time (ETi), since the consumed energy is
directly proportional to the latter. As such, in a quite simplified form,
ETi can be equated to:

ETi = NoCyc ∗ P erj

where i ∈ {0, 1, 2} is the task identifier, j ∈ {0, 1} is the processor
identifier, and NoCyc represents the total number of CPU cycles per
task, which we assume known.

The consumed energy, per task, is given by the following equation,
also in an abstracted form:

Ei = ETi ∗ wj ∗ P Wj ,

6.4 Our approach 57

<<Componet>>

 C1

 Attributes

- cpu_type = 1, 2

- deadline = 6

<<Componet>>

 C2

 Attributes

- cpu_type = 1

- deadline = 10

<<Componet>>

 C3

 Attributes

- cpu_type = 1, 2

- deadline = 14

<<Componet>>

 CPU1

 Attribute

- frequency = 1

- type = 1

<<Componet>>

 CPU2

 Attribute

- frequency = 2

- type = 2

Figure 6.1: SaveCCM component model

where P Wj models CPU power dissipation, which we assume fixed and
known. Note that Ei is a weighted function of ETi and P Wj, where the
given weight wj expresses the relative importance of Ei, which in turn
influences the final cost. The accumulated energy consumption is then
given as the following cost:

c =
2

∑

i=0

Ei

Choosing the values of the weights is subjective, depending on both the
application and the analysis goals.

When a task execution completes by meeting its deadline, it sends
an acknowledgment to some processor to inform that the execution is

58 Paper A

Execution_CPU 2
failure1!=0

Execution_CPU 1
failure1!=0

Ack_Send
Start

p3==2 && t1>D 1
ack4!
p3:=0, t1:=0,failure1+=1,
F1:=failure1

p1==1 && t1>D 1
ack3!

p1:=0, t1:=0,failure1+=1,
F1:=failure1

p3:=c2

p1:=c1

p3==2 && t1<D 1

ack2!
p3:=0, t1:=0,
failure1:=0, n1++

syn1?
p:=0

p1==1 && t1<D 1
ack1!

p1:=0, t1:=0,
failure1:=0, n1++

syn2?
p:=0

Figure 6.2: The model of a task

finished. Our complementary goal is to model a system that would let
us predict the total resource usage and its impact on performance and
reliability.

6.4.2 PTA Models

We model our example as a collection of five non-deterministic PTA. The
PTA (also called processes) communicate using synchronization channels
and shared global variables (i.e. variables that can be read and written by
all of the processes). The model consists of three automata representing
the tasks (T0, T1, T2) that are competing for two available automata
representing the processors (CPU0 and CPU1).

The model of a task is shown as a PTA in Figure 6.2. It has two
locations: Start and AckSend. The synchronization with an available
processor is modeled by using two channels, syn1 (models synchronization
with processor P0), and syn2 (models synchronization with processor P1).
The execution start of a task is controlled by the failure1 variable — a
counter (bounded integer) that indicates whether the task failed to meet
its deadline or not. The counter is initially set to one, and increased if

6.4 Our approach 59

Ack_Receive

cost'==w*ET[p]*PW 1Execution

Start

ack3?
ack1?

ET[p]+=NoCyc*P[0]

syn1!

c1:=1,
cost+=5*w1

Figure 6.3: The model of the processing unit

a failure occurs. If the execution is successful, that is, the deadline is
met, the variable is reset to zero. This also indicates that the task is no
longer in the ready queue. For each task, the variable pi is assigned the
processor number (cj) on which it is currently executing. Depending on
the execution result, one of two types of acknowledgment can be sent;
in case the task completes successfully, ack1 or ack2 are sent, depending
on which CPU the task is synchronizing with; in case the task fails to
meet its deadline, ack3 or ack4 are sent.

The PTA model of a processor consists of two locations: Start and
AckReceive. In Figure 6.3, a synchronization channel syn1 is used for syn-
chronization with the tasks present in the ready queue. Variable cj stores
the processor number used by task variable pi to identify the task that is
being executed on the respective processor. If the execution is success-
ful, acknowledgment ack1 is received by the processor, or ack3 otherwise.
The cost of energy consumption is influenced by the assigned weights,
execution times, and CPU power dissipation as described previously in
this section. The minimum cost of energy consumption is the infimum
of the costs of all finite executions from the first to the last state.

6.4.3 Analysis

The best performance analysis could include finding the best mapping of
tasks onto available processors, such that all task deadlines are met, but
also the execution order for which the power consumption is minimal.
The results are presented as cost values of the computed optimal execu-
tion traces. Recall that in our example task T1 can be only executed on
processor P0.

Usually, the reliability of a system reflects its ability to perform a
given function under present conditions, in a specified period of time.

60 Paper A

Scenario Order of execution Cost
1 (T0, P0)-(T1, P0)-(T2, P0) 15
2 (T0, P1)-(T2, P0)-(T1, P0) 20
3 (T0, P0)-(T2, P1)-(T1, P0) 30

Table 6.1: Best task mapping with minimum cost.

Sequence of task execution Ratio
(T0, P1)-(T2, P0)-(T1, P1) 23/10
(T2, P0)-(T0, P1)-(T1, P1) 47/10
(T2, P0)-(T1, P1)-(T0, P0) 20/10
(T1, P1)-(T2, P0)-(T0, P0) 37/10

Table 6.2: Ratio between number of failures occurred and system exe-
cutions

Our assumption is that during normal system execution, failures can
occur, and this affects directly the overall system reliability. In order to
account for failures in our PTA-based model, we analyze the reliability
via a ratio between the number of failures occurred during all system
invocations, and the number of system invocations. The results are
given in Table 6.2.

We note that the cost is minimum in case when all tasks T0, T1 , and
T2 are competing for the same processor. The cost value presented in
Table 6.1 shows that the cost is minimal if all tasks are being executed
on processor P0, which is assumed to be “less expensive”, than the other
one. Of course, cost could be higher if we assigned additional cost for
waiting in ready queue. Table 6.1 presents the cost results assuming all
tasks complete successfully. Beside the minimum cost, we also present in
Table 6.1 costs for scenarios in which T1 has to wait additional time for
tasks T0 and T2 to complete. Tasks T0 and T2 arrive before T1 to the ready
queue and they are allowed to compete for all available CPU resources.
In these scenarios, task T1 is forced to wait in the ready queue, despite
the fact that early execution of this task would result in lower cost for
the whole system. Clearly, if failures occur during execution, such that
the tasks need to be executed more than once in order to complete, the
final cost is much higher.

6.5 Conclusions and Future Work 61

We have noticed that most of the failures occur in situations when
two tasks with the greatest and the smallest execution time and deadline
T2 and T0, respectively) are competing for the same free processor, and
T2 gains its CPU time (see Table 6.2). In that case, T0 has to wait an
additional time to start its execution. This problem can be easily solved
by including some additional scheduling policy, however this is out of
the scope of this paper.

6.5 Conclusions and Future Work

In this paper, we have briefly reviewed the performance/reliability anal-
ysis techniques available in the state-of-the-art component-based frame-
works, and their possibility of estimating the impact of changing resource
usage on the above mentioned quality attributes. Although extensive
work has tackled such problems, the real-time systems area is left less
researched. This has motivated us to propose a priced timed automata
model-checking approach for component-based systems described in the
SaveCCM modeling language that is designed for a real-time and em-
bedded systems. As demonstrated in a small accompanying example,
our approach allows for rigorous predictions of performance and/or reli-
ability, depending on the prices of using various resources, such as CPU,
memory etc.

In the future, we plan to investigate the possibility of carrying out
probabilistic quantitative predictions, by expressing properties to be ver-
ified in a probabilistic temporal logic (e.g., PCTL) [16].

Acknowledgments: The authors are grateful to Petr Tuma, Mikael
Sjödin, and Tiberiu Seceleanu for their valuable comments on the exam-
ple used in this paper. This work was partially funded in the context of
the Q-ImPrESS research project (FP7-215013) by the European Union
under the Information and Communication Technologies priority of the
Seventh Research Framework Programme. We also want to express our
gratitude to the Swedish national strategic research center PROGRESS,
supported by the Swedish Foundation for Strategic Research (SSF) and
Mälardalen University, for co-funding this work.

Bibliography

[1] Paul R. Work and Jr. H. E. (John) Johnson. Risk Management in
Computer-Based Systems Development by Use of Performance and
Reliability Metrics. In Proceedings of the 1995 International Sym-
posium and Workshop on Systems Engineering of Computer Based
Systems, pages 367–373. IEEE, 1995.

[2] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen,
Paul Pettersson, Judi Romijn, and Frits Vaandrager. Minimum-
Cost Reachability for Priced Timed Automata. In Maria
Domenica Di Benedetto and Alberto Sangiovanni-Vincentelli, ed-
itors, Proceedings of the 4th International Workshop on Hybris Sys-
tems: Computation and Control, number 2034 in Lecture Notes in
Computer Sciences, pages 147–161. Springer–Verlag, 2001.

[3] Steffen Becker, Heiko Koziolek, and Ralf Reussner. Model-based
performance prediction with the palladio component model. In
WOSP ’07: Proceedings of the 6th international workshop on Soft-
ware and performance, pages 54–65, New York, NY, USA, 2007.
ACM.

[4] Klaus Krogmann. Reengineering of Software Component Models
to Enable Architectural Quality of Service Predictions. In Ralf H.
Reussner, Clemens Szyperski, and Wolfgang Weck, editors, Proceed-
ings of the 12th International Workshop on Component Oriented
Programming (WCOP 2007), volume 2007-13 of Interne Berichte,
pages 23–29, Berlin, July31 2007. Universität Karlsruhe (TH).

[5] Tomas Bures, Petr Hnetynka, and Frantisek Plasil. Sofa 2.0: Bal-
ancing advanced features in a hierarchical component model. In

63

64 Bibliography

SERA ’06: Proceedings of the Fourth International Conference
on Software Engineering Research, Management and Applications,
pages 40–48, Washington, DC, USA, 2006. IEEE Computer Society.

[6] Vincenzo Grassi, Raffaela Mirandola, and Antonino Sabetta. From
design to analysis models: a kernel language for performance and
reliability analysis of component-based systems. In WOSP ’05: Pro-
ceedings of the 5th international workshop on Software and perfor-
mance, pages 25–36, New York, NY, USA, 2005. ACM.

[7] Rob van Ommering, Frank van der Linden, Jeff Kramer, and Jeff
Magee. The koala component model for consumer electronics soft-
ware. Computer, 33(3):78–85, 2000.

[8] Egor Bondarev, Michel R. V. Chaudron, and Peter H. N. de With.
Compositional performance analysis of component-based systems
on heterogeneous multiprocessor platforms. In EUROMICRO-
SEAA, pages 81–91, 2006.

[9] Egor Bondarev, Peter de With, Michel Chaudron, and Johan
Muskens. Modelling of input-parameter dependency for perfor-
mance predictions of component-based embedded systems. In EU-
ROMICRO ’05: Proceedings of the 31st EUROMICRO Conference
on Software Engineering and Advanced Applications, pages 36–43,
Washington, DC, USA, 2005. IEEE Computer Society.

[10] Johan Muskens and Michel R. V. Chaudron. Prediction of run-
time resource consumption in multi-task component-based software
systems. In CBSE, pages 162–177, 2004.

[11] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling hetero-
geneous real-time components in bip. In SEFM ’06: Proceedings of
the Fourth IEEE International Conference on Software Engineer-
ing and Formal Methods, pages 3–12, Washington, DC, USA, 2006.
IEEE Computer Society.

[12] Jan Carlson, John Haakansson, and Paul Pettersson. SaveCCM:
An analysable component model for real-time systems. In Z. Liu
and L. Barbosa, editors, Proceedings of the 2nd Workshop on For-
mal Aspects of Components Software (FACS 2005), volume 160 of
Electronic Notes in Theoretical Computer Science, pages 127–140.
Elsevier, 2006.

[13] Mikael Åkerholm, Johan Fredriksson, Kristian Sandström, and Ivica
Crnkovic. Quality attribute support in a component technology for
vehicular software. In Fourth Conference on Software Engineering
Research and Practice in Sweden, October 2004.

[14] Hans Hansson, Mikael Åkerholm, Ivica Crnkovic, and Martin Torn-
gren. Saveccm - a component model for safety-critical real-time sys-
tems. In EUROMICRO ’04: Proceedings of the 30th EUROMICRO
Conference, pages 627–635, Washington, DC, USA, 2004. IEEE
Computer Society.

[15] Kim Guldstrand Larsen and Jacob Illum Rasmussen. Optimal
reachability for multi-priced timed automata. Theor. Comput. Sci.,
390(2-3):197–213, 2008.

[16] Marta Kwiatkowska, Gethin Norman, Jeremy Sproston, and Fuzhi
Wang. Symbolic model checking for probabilistic timed automata.
Inf. Comput., 205(7):1027–1077, 2007.

Chapter 7

Paper B:

Towards a Unified

Behavioral Model for

Component-Based and

Service-Oriented Systems

Aida Čaušević, Aneta Vulgarakis
In Proceedings of 2nd IEEE International Workshop on Component-
Based Design of Resource-Constrained Systems (CORCS09), Seattle,
USA, July, 2009

67

Abstract

An early prediction of resource utilization and its impact on system per-
formance and reliability can reduce the overall system cost, by allowing
early correction of detected problems, or changes in development plans
with minimized overhead. Nowadays, researchers are using both aca-
demic and commercial models to predict such attributes, by measuring
them at earliest stages of system development. In this paper, we give a
short overview of existing prediction models for performance and reliabil-
ity, targeting popular component-based frameworks. Next, we describe
our own approach for tackling such predictions, through an illustration
on a small example that deals with estimations of energy consumption.

7.1 Introduction 69

7.1 Introduction

As the complexity of software systems grows, be it in size, functional or
extra-functional requirements, requests of mobility, or number of users,
applying formal verification techniques to achieve predictability becomes
increasingly necessary. In order to accomplish this, one should be able
to model and analyze the system behavior throughout the whole system
lifecycle.

Nowadays, the two most promising approaches that enable efficient,
error-free software development are component-based software engineer-
ing (CBSE) [1], and service-oriented software engineering (SOSE) [2].
Since SOSE evolved from CBSE [3], it is easy to assume that they are
similar and tightly connected. While in CBSE the smallest functional
unit is a component, in SOSE that role is given to a service. Underlying
concepts for both CBSE and SOSE are component/service modulariza-
tion (i.e., system functionality is split up in order to achieve separate
modules of behavior) and component/service composition (i.e., the sep-
arate modules are combined in order to get the overall system behavior).
However, services enjoy looser coupling, higher reusability, and larger
independence from implementation specific attributes. Moreover, SOSE
subsumes features like dynamic service discovery, system scalability, and
service availability.

In the service-oriented systems (SOS), it is still a challenge to predict
Quality of Service (QoS) [4, 5]. This is the case because in SOS, QoS
is not just a function of the quality of a provided service, but of the
interdependencies between the services, the resource constraints of the
runtime environment, and network capabilities. These make it difficult
to predict how such factors might influence the system behavior. Since
CBSE and SOSE are built around similar concepts [3, 6], it would be
beneficial to use a unified behavior model for both paradigms.

This paper studies the CBSE and SOSE paradigms, and points out
their distinctive features. In most CBSE and SOSE frameworks, the
design description usually ends up at the architectural level, without
support for details regarding the inner structure or behavior of the lat-
ter. SOS frameworks treat service behavioral modeling either at lower
level of abstraction, tightly coupled with the underlying programming
language [7, 8], or behavior is described at higher levels of abstraction
than programming languages, but they lack a formal description [9, 10].
In component-based approaches authors usually give detailed description

70 Paper B

of behavior in terms of interfaces, connectors, and protocols [11–13], but
internal behavioral description is assumed to be known, hence, it is often
not described in detail.

In the SOSE community some recent research has been devoted to
specification and prediction of QoS [4,5], yet detailed service behavioral
modeling with support for formal analysis is still needed. Seceleanu
et al. introduce a behavioral modeling language called Remes [14] for
formal modeling and analysis of component-based systems (CBS) with
provided formal analysis support for component behavior. Remes may
serve as an intermediate language between abstract architectural mod-
eling of systems (e.g., architecture description languages (ADLs) [15])
and formal analysis models (e.g., timed automata [16]). Given the sim-
ilarities between CBSE and SOSE, in this paper we show how Remes

can be extended for behavior modeling of services in a service-oriented
paradigm.

In brief, in this paper we contribute by :

• making a clear distinction between architectural view of CBS and
SOS and behavioral (internal) view of components and services;

• comparing behavioral modeling in CBS and SOS;

• identifying ways in which Remes can become a unified behavioral
model for both CBS and SOS;

The remainder of the paper is organized as follows. Section 7.2 draws
a parallel between basic characteristics of CBSE and SOSE. Section 7.3
discusses the behavior modeling of both CBS and SOS, and shows how
Remes can be extended towards modeling service behavior. In Sec-
tion 7.4, we present the related work, and in Section 7.5 we conclude the
paper.

7.2 Characteristics of CBSE and SOSE

CBSE and SOSE both aim at supporting component reusability, error-
free and efficient software development. CBSE is more concerned with
maintainability and component substitutability, whereas SOSE focuses
on dynamic service discovery, low-cost application composition, recon-
figuration and interoperability. Since both CBSE and SOSE can coexist
in large scale systems, it is desirable to have common ways of modeling
CBS and SOS architecture and behavior.

More specifically, CBSE aims at fulfilling the following goals [1]:

7.2 Characteristics of CBSE and SOSE 71

• support the development of systems as component assemblies;

• support component reusability;

• support maintenance and upgrade of systems while customizing
and/or replacing components;

• guarantee a given level of quality attributes in given CBS.

Related to the above listed goals, the main focus in CBSE nowadays
is on the specification of QoS, prediction of extra-functional attributes,
component interfaces and processes, and component reusability issues.
Despite being proven as successful for software reuse and maintainability,
CBSE still lacks appropriate relations between abstract models and the
underlying platform. The basic blocks of CBSE are component models.
Component models are used in the development of components to de-
scribe their interfaces, illustrate their dependencies, specify their prop-
erties and composition mechanisms. A component framework should
be able to express both structural requirements for interconnection and
composition of components, as well as behavior-oriented requirements.
For example, a system development can be seen as an interplay between
design and deployment (see Progress1). The interplay is ensured by
the notion of virtual architecture that provides an abstraction of the tar-
geted platform on which components can be (virtually) mapped to [17].
The virtual architecture can be gradually refined, at the same time with
increasing the details of the system representation. Such a framework al-
lows an early prediction of extra-functional properties, since the designer
has access to models of the platform.

A typical CBSE development process is described in [18]. The devel-
opment process of CBS is separated from the development process of its
components, but is influenced by it. As shown in Figure 7.1, once compo-
nents are implemented, they are released into a component repository.
The system developer can select any component from the repository,
provided that the respective component is functionally adequate, and
interface compliant [18].

In comparison, the dynamic nature of services (that is, the fact that
they can be created and destroyed at run-time), as well as their avail-
ability, and greater degree of distribution, might let us consider SOS as
an evolution from CBS. On the other hand, their hard-to-ensure depend-
ability and maintainability quality attributes could be considered as a

1http://www.mrtc.mdh.se/progress/

72 Paper B

System developer

Requierements

System Development

Design

Implementation

Integration

Test

Release

Maintenance

Requierements

Component Development

Design

Implementation

Integration

Test

Release

Maintenance

Component Developer

Component

Repository

Figure 7.1: CBSE development process

weakness of the SOS paradigm. The SOS’ low dependability (reliabil-
ity and security) is a consequence of the flexible nature of the service
oriented architecture (SOA), more concretely, of the fact that services
can be composed at run-time. The SOSE approach and its correspond-
ing SOA support a collection of loosely coupled services that can be
invoked, published, and discovered. They communicate with each other
via well defined standard interfaces and message exchanging protocols.
Services are autonomous and platform independent entities, which can
be composed at runtime in order to achieve the desired functionality.
The discovery of the services is done through the service provider that
searches the existing service descriptions and provides the suitable ones
to the service user. SOSE has some specific features that include:

• standard-based interoperability - allows services that are developed
on different platforms and by different vendors to be integrated
with each other based on their service specification only;

• dynamic composition - new services can be formed and destroyed
at runtime;

• dynamic orchestration - assumes the existence of a central con-
troller (i.e., service provider) that has the responsibility to sched-
ule service execution, according to the demands received from a
service user;

• service interrupt - each service can be interrupted if any of the
given constraints is violated, and QoS can be renegotiated.

In Figure 7.2 we give an abstract overview of the SOSE. Observe that
in order to get the requested service, the user has to communicate with

7.3 Behavioral Modeling in CBS and SOS 73

the service provider.

Service User Service Provider

get request

from the user

explore existing

service descriptions

send response

to the user

ReqSend

Service 1

Service 2

Service n

Service description

Service description

Service description

RespSend

List of discovered

services

Service discovery

Figure 7.2: SOSE overview

In order to get the best out of both CBSE and SOSE, these approa-
ches need to be combined, as shown by Collet et al. [19], through unified
modeling languages.

7.3 Behavioral Modeling in CBS and SOS

In this section, we present the architectural views and the internal be-
havioral representations, of both CBS and SOS. The main goal is to
show how can we reuse the behavioral modeling framework of CBS,
in a service-oriented context. This endeavor targets a unified model-
ing environment for both paradigms. The architectural view depicts
the structure of the system, which includes among others: the software
components, the relationships and connections between them, and the
externally visible properties of those components [20]. The behavioral
view gives a description of the internal state change for each specific en-
tity of that architecture. The architectural view is not meant to illustrate
the concrete runtime state change or communication mechanism, but to
explain how different parts of a system, be it CBS or SOS, work together
to deliver certain properties, regardless of whether they are functional
or extra-functional.

74 Paper B

7.3.1 Component-Based Modeling

In the following, we exemplify the differences between the architectural
views and the behavioral views by using for instance ProCom component
model (A Component Model for Distributed Embedded Systems) [21].
The architectural view of the ProCom component model defines CBS as
a collection of hierarchical structured and interconnected ProCom com-
ponents with well defined input- and output interfaces. The component
model models a data- and a control flow, where data can be read and
written through the data ports. The component activation is controlled
by trigger ports. The type of the components, active or passive, as well
as the way of the interaction with other components or composition of
components is given by the architectural view. The behavioral modeling
of ProCom components is introduced in the Remes (REsource Model for
Embedded Systems) [14] language that is briefly recalled in the following,
via an example.

Component-based behavioral modeling in Remes. Remes is in-
tended to provide a basis for modeling and analysis of embedded re-
sources (e.g., energy, computation, communication). The model sup-
ports both continuous (like energy) and discrete (e.g., memory) resources.
Basically, it is a state-machine behavioral language that supports hier-
archical modeling, continuous time, and notions of explicit entry- and
exit points that make it suitable for component-based system modeling.

In order to provide support for formal analysis, Remes can be easily
transformed into Timed Automata (TA) [16] or Priced Timed Automata
(PTA) [22] depending on the analysis goals (i.e., timing analysis, resource
consumption, etc.). It is important to point out that the behavior
of CBS with respect to resource usage can be formally analyzed (e.g.,
compute the most “expensive” trace w.r.t. utilized resources).

Simple ATM scenario in Remes. Here, we exemplify the internal
component behavioral modeling, as well as the system architectural mod-
eling of a simple ATM system. The ATM machine has a GUI through
which the user communicates with a bank. Each user is required first
to login and depending on the success/failure of the login the user can
proceed with the transaction request or not. If the login is successful, the
user can choose between four types of transactions: withdrawal transac-
tion, deposition transaction, transfer transaction, and inquiry transac-

7.3 Behavioral Modeling in CBS and SOS 75

tion; if the login is not successful, an information is then sent to the GUI,
informing that the session has ended. The outcome of the transaction is
displayed on the GUI, as well.

We model an abstracted version of the ATM system architecture
in the ProCom language, used to describe the three constituent com-
ponents: ATM, Bank, and Display as shown in Figure 7.3. The Display

component performs simple output writing (transaction status or trans-
action result), so we chose not to model its behavior.

The ATM component is activated when a user tries to login by press-
ing the Start button on the GUI (then trigger signal t0 is sent). Trigger
port t2 initiates an interaction with the Bank component. The Bank com-
ponent uses login data and type of transaction request through login and
transaction_number data ports, respectively. The Bank component trig-
gers ATM via trigger port t3 if the login has been successful. Afterwards,
the user can chose between four existing types of transactions. When
the transaction has been chosen request is sent to Bank to be processed.
Finally, transaction_result is sent to Display. If the login has not been suc-
cessful then ATM informs the user through the Display component that
the session has ended. The control or connector is a ProCom construct
used to join control flows of two or more alternatives paths.

Display
ATM

Bank

t1

transaction_number

transaction_result

Control

Or
t2

end_session=false

t0

t3

login

end_session

end_session

Start

Control

Or
t4

Figure 7.3: Component based ATM system as a ProCom-based descrip-
tion

We model the internal behavior (with respect to resource usage and
time) of the ATM system components as modes in Remes. The modes
of the ATM and Bank component are composite, as depicted in Figure 7.4.
They are made up of atomic modes (i.e. Send Request, Check Login, Login,
and Transaction, respectively), conditional connectors (C), and discrete
actions (e.g. mem += 40).

For each mode, the discrete control is implemented using the con-

76 Paper B

Bank

Entry

ExitCcpu’=10

Check login

 Init

logged==false, end_session=true

logged==true

cpu’=50

Transaction
end_session==false transaction_result, end_transaction==true

(a) (b)

ATM

Entry
Exit

cpu’=2

t<=20

cpu’=10

 e
nd_sessio

n==false

C

Send Request

Loginmem+=40,

transaction_number

lo
gi

n

Init

end_session==true

t:=0

>
>

> > >

>

>

> >

>

>

>

Figure 7.4: Remes modes for ATM and Bank

trol interface that consists of entry- and exit points. The data inter-
face, constituted by global variables, enables the data transfer between
modes. The ATM and Bank modes use the global variables login, trans-

action_number, and end_session. In order to distinguish the initialization
of a mode from other entry actions, a composite mode may have an Init
entry point, used to start the execution of the mode for the first time.
Composite mode execution involves executing a sequence of actions that
can be delay/timed actions or discrete actions depending on whether the
control stays in the same mode or it is transferred to another mode or
submode. A discrete action is a statement or list of statements preceded
by a guard (boolean expression) that needs to hold in order for the corre-
sponding edge to be taken and action executed. One Remes composite
mode can have conditional connectors that allow the selection of edges
from the outgoing ones, based on the values of the corresponding actions
guards, as seen in Figure 7.4 (b).

Remes supports modeling of timed behavior and resource usage. The
timed behavior is captured by a global variable of specialized type, clock,
which specifies continuous variables evolving at rate 1. In this context,
an invariant may be used to define for how long the execution continues
in the same mode. When the invariant is violated the mode must be
exited through one of the outgoing edges. For example, in the atomic
mode Login an invariant t ≤ 20 is used. In the ATM system, we make
use of two resources: memory and CPU.

For analysis purposes, this Remes-based ATM system can be trans-
lated to a network of two PTA models of ATM and Bank. For details we
refer the reader to [14].

7.3 Behavioral Modeling in CBS and SOS 77

7.3.2 Service-oriented Modeling

The SOS architecture defines the internal communication between ser-
vices, the ways in which services can be published and discovered, orches-
trated, or how can they make a choreography in order to be composed
into more complex systems. On the other hand, the service behavioral
view gives the detailed overview of the interfaces, actions, functionality,
resources involved, and the possible interactions within the service. After
a thorough investigation on related work, [7,8,10–13] one can notice the
sparingly used service description at the behavioral level. We consider
the detailed behavioral description as a crucial element for a proper
understanding of a service-oriented model, and especially its analysis.
Knowledge about the service behavior will not only help us to connect
services in a correct manner, but will also help to provide rigorous reason-
ing about extra-functional requirements whose assurance is recognized
to be insufficient, especially with respect to performance and security.
Regarding performance, for instance, response times are difficult to cal-
culate and ensure, usually because the concrete time for a user to be
served is hard to predict. If one applies common security policies from
CBS in SOS, one will notice that they will be violated, since services
are supposed to be stateless, without a precise model of the environ-
ment (e.g., no user context forwarding). In order to address some of
the identified issues, we propose ways of service behavioral modeling in
Remes.

Service-Based Behavioral Modeling in Remes. Most of the re-
search on SOS is devoted to describing service interfaces, discovery, in-
teractions, service assembly, often leaving the service internal behavior
unspecified. In this section, we investigate possibilities to describe and
model the internal service behavior by exemplifying Remes.

In Remes one can already do:

• Service modeling: Remes supports simple and/or composed en-
tity modeling in terms of modes and submodes that can provide
service behavior description (i.e., internal workflow process). The
additional logic based on well defined inputs, outputs, conditions,
and guards is rich enough to provide both, simple and complex
service functionality modeling.

• Service provider modeling: Remes provides possibility not only
to model services, but also the service provider as an element of

78 Paper B

service-user interaction.
• QoS prediction: for predicting the quality attributes (i.e., perfor-

mance, reliability, etc.), it is possible to annotate the resource-wise
behavior and to semantically transform Remes into TA or PTA;
the transformation gives the opportunity to predict resource us-
age in SOS, for critical resources. Early resource prediction can
provide insights in how to minimize consumption of highly critical
resources, such as energy or memory.

The modeling concepts that differentiate services from components, which
should be added to Remes in order to support service behavioral descrip-
tion are as follows:

• Service failure report: should be introduced for those services that
do not meet given conditions. In Remes, it is currently assumed
that a component runs until completing the execution, without
interruption;

• Service discovery mechanism: The biggest issue here is publishing
and presenting all capabilities that a service can offer, in order to
be recognized by service users through the service provider;

• Support for negotiation: should be provided to model the cases
when some hard constraints given by a user on requested services
can not be provided by a service provider. The mechanism should
enable the user to chose weaker constraints, in order to get an
acceptably qualitative service (i.e., contract-based design of ser-
vices [23]).

• Reliability prediction: to provide support for reliability modeling,
Remes should be extended with probabilistic behavior, e.g., by
adding probabilities on edges. The resulting model could then be
transformed into a Discrete Markov Chain for analysis purposes.

We consider that the Remes modeling language is rich enough to
be used for service orientation, provided that the above mentioned ad-
ditional modeling capabilities are added to the current version of the
language. Services, as basic entities of SOS, can be described in terms
of modes, actions, guards, and invariants, which are basic elements that
support behavioral description in Remes. The ATM example is a rel-
evant example in which the component-based architectural description
(depicted in Figure 7.4) is combined with the service-oriented modeling,
as shown above. To summarize, the notions of service failure report, ser-
vice discovery mechanism, support for negotiation, etc., should be added

7.4 Discussion and Related Work 79

to Remes, in order to provide the designer with a framework suitable
for service-orientation, too. Moreover, the Remes support for predicting
quality attributes is a valuable tool, especially for SOS, when optimizing
the usage of possibly critical resources could be of extreme importance.

7.4 Discussion and Related Work

The approaches that deal with component and service behavioral de-
scription can be broadly divided into three groups, based on the level of
details exposed through the description.
The first group constitutes code-level (low level) behavioral description
approaches. One of this kind in CBSE is Koala [24]. All behavioral in-
formation is exposed through interfaces, where provides interface defines
operations offered by a component, and requires interface defines opera-
tions required by a component. WS-CDL [8] is a XML based language
that exposes information on specific function provided by a service by
the behavioral description. There are no details given on inner service
behavior. BPEL [7] defines a notation for specifying business process be-
havior based on Web Services. The scope of the behavioral description
includes a sequence of project activities, correlation of messages and pro-
cess instances, and recovery behavior in case of failures and exceptional
conditions. These low-level, code-driven approaches are valuable only
when one has access to the implementation of the components/services,
and especially when the components/services conform to a particular
model. Nevertheless, Remes is more abstract and may be used already
at early stages of system development, even when no detailed design de-
scription exists.
The second group is made of approaches that model behavior at a higher-
level of abstraction than the previous. Two representative examples
are UML-activity diagrams [25] and BPMN [9]. UML takes an object-
oriented approach to model applications while BPMN takes a process-
oriented approach. They both support graphical representation and they
are aimed to be suitable for designers and analysts. Lack of formal be-
havioral description for both, components and services make them not
completely suitable for throughout analysis as one provided by Remes.
To this group also belong languages that represent semantic web ser-
vices, such as OWL-S [9] and WSMO [10] that use logical statements
in order to capture and manipulate service related information. They

80 Paper B

assume that a service is a set of facts and rules related to service capa-
bilities, extra-functional properties, and interfaces. While semantic web
service descriptions are suitable in view of applying automated reason-
ing techniques (e.g., automated planning) over service descriptions, their
suitability for use at the level of domain analysis and systems design is
questionable. Domain analysts do not typically describe services down
to the level of details required for non-trivial automated reasoning.
The third group involves approaches that have formal background and
give opportunity not only to specify behavior, but also to analyze given
compositions, regardless whether they are component-based or service-
oriented. In [26] Rychlý formally describes service behavior and structure
in SOA as a CBS systems with features of dynamic and mobile architec-
tures. He uses π-calculus formalism for service specification, definition
of individual component behavior, and their composition into a hierar-
chically structured CBS that implements service behavior. In compar-
ison with our work introduced in this paper [26] is more concerned for
the behavior in terms of interfaces and inner subcomponent/subservice
communication and bindings, while we give more detailed description in-
volving not only this type of behavioral characteristics, but also actions
and resources.

7.5 Conclusions and Future Work

In this paper, we present the commonalities and differences between
CBSE and SOSE, by pointing out the relation between the architectural
view of CBS and SOS and component/service (internal) behavioral view.
The language Remes has already been used for CBS behavioral model-
ing and analysis, by translating Remes models to the PTA framework,
and analyzing them within the Uppaal 2 and Cora3 tools. To provide
support for reliability analysis too, Remes should be added with prob-
abilistic constructs, such as edges annotated with probabilities. More-
over, we have enumerated some ways of extending Remes to support
service-oriented contexts. As future work, we plan to provide concrete
representation of: service failure report, service discovery mechanisms,
support for negotiation, and reliability prediction in the existing model-
ing language Remes.

2http://uppaal.com/
3http://www.cs.aau.dk/ behrmann/cora/

7.5 Conclusions and Future Work 81

Acknowledgements This work was partially supported by the Swedish
Foundation for Strategic Research via the strategic research centre Pro-

gress, and by the European Union under the ICT priority of the 7th
Research Framework Programme in the context of the Q-ImPrESS re-
search project (www.q-impress.eu).

Bibliography

[1] Ivica Crnkovic and Magnus Larsson. Building Reliable Component-
Based Software Systems. Artech House publisher, 2002.

[2] Manfred Broy, Norbert Diernhofer, Johannes Grünbauer, Michael
Meisinger, Martin Rappl, Sabine Rittmann, Bernhard Schätz, Mau-
rice Schoenmakers, and Bernd Spanfelner. Service-Oriented De-
velopment - Whitepaper. Whitepaper, Technische Universität
München, 2006.

[3] W. T. Tsai. Service-oriented system engineering: A new paradigm.
In SOSE ’05: Proceedings of the IEEE International Workshop,
pages 3–8, Washington, DC, USA, 2005. IEEE Computer Society.

[4] Vincenzo Grassi, Raffaela Mirandola, and Antonino Sabetta. From
design to analysis models: a kernel language for performance and
reliability analysis of component-based systems. In WOSP ’05: Pro-
ceedings of the 5th international workshop on Software and perfor-
mance, pages 25–36, New York, NY, USA, 2005. ACM.

[5] Steffen Becker, Heiko Koziolek, and Ralf Reussner. Model-based
performance prediction with the palladio component model. In
WOSP ’07: Proceedings of the 6th international workshop on Soft-
ware and performance, pages 54–65, New York, NY, USA, 2007.
ACM.

[6] Hongyu Pei-Breivold and Magnus Larsson. Component-based and
service-oriented software engineering: Key concepts and principles.
In 33rd Euromicro Conference on Software Engineering and Ad-
vanced Applications (SEAA), Component Based Software Engineer-
ing (CBSE) Track, IEEE, August 2007.

83

84 Bibliography

[7] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland,
Johannes Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug
Smith, Satish Thatte, Ivana Trickovic, and Sanjiva Weerawarana.
BPEL4WS, Business Process Execution Language for Web Services
Version 1.1. IBM, 2003.

[8] Nickolas Kavantzas, David Burdett, Greg Ritzinger, Tony Fletcher,
Yves Lafon, and Charlton Barreto. Web services choreography de-
scription language version 1.0. World Wide Web Consortium, Can-
didate Recommendation CR-ws-cdl-10-20051109, November 2005.

[9] Object Management Group (OMG). Business Process Modeling
Notation (BPMN) version 1.1., January 2008.

[10] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubén
Lara, Michael Stollberg, Axel Polleres, Cristina Feier, Christoph
Bussler, and Dieter Fensel. Web service modeling ontology. Applied
Ontology, 1(1):77–106, 2005.

[11] E. Bruneton, T. Coupaye, and J. Stefani. Recursive and dynamic
software composition with sharing, 2002.

[12] Frantisek Plasil and Stanislav Visnovsky. Behavior protocols for
software components. IEEE Trans. Softw. Eng., 28(11):1056–1076,
2002.

[13] Gary T. Leavens and Krishna Kishore Dhara. Concepts of behav-
ioral subtyping and a sketch of their extension to component-based
systems. pages 113–135, 2000.

[14] Cristina Seceleanu, Aneta Vulgarakis, and Paul Pettersson. Remes:
A resource model for embedded systems. In In Proc. of the 14th
IEEE International Conference on Engineering of Complex Com-
puter Systems (ICECCS 2009). IEEE Computer Society, June 2009.

[15] N. Medvidovic and R. N. Taylor. A classification and comparison
framework for software architecture description languages. IEEE
Transactions on Software Engineering, 26(1):70–93, 2000.

[16] R. Alur and D. L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

Bibliography 85

[17] H. Hansson, I. Crnkovic, and T. Nolte. The world according to
progress. Draft paper, 2008.

[18] Ivica Crnkovic, Michel Chaudron, and Stig Larsson. Component-
based development process and component lifecycle, pages. Journal
of Computing and Information Technology, 13(4):321–327, Novem-
ber 2005.

[19] Phillipe Collet, Thiery Coupaye, Herve Chang, Lionel Seinturier,
and Guillaume Dufrene. Components and services: A marriage of
reason. Technical Report ISRN I3S/RR-2007-17-FR, CNRS, May
2007. Project RAINBOW.

[20] David Garlan and Mary Shaw. An introduction to software ar-
chitecture. In V. Ambriola and G. Tortora, editors, Advances in
Software Engineering and Knowledge Engineering, pages 1–39, Sin-
gapore, 1993. World Scientific Publishing Company.

[21] Séverine Sentilles, Aneta Vulgarakis, Tomáš Bureš, Jan Carlson,
and Ivica Crnkovic. A component model for control-intensive dis-
tributed embedded systems. In Proceedings of the 11th Inter-
national Symposium on Component Based Software Engineering
(CBSE2008), pages 310–317. Springer Berlin, October 2008.

[22] Rajeev Alur, Salvatore La Torre, and George J. Pappas. Op-
timal paths in weighted timed automata. Theor. Comput. Sci.,
318(3):297–322, 2004.

[23] Tom Henzinger, Shaz Qadeer, and Sriram K. Rajamani. Decom-
posing refinement proofs using assume-guarantee reasoning. In Pro-
ceedings of the IEEE/ACM International Conference on Computer-
aided Design, pages 245–252, January 2000.

[24] Rob C. van Ommering. Koala, a component model for consumer
electronics product software. In Proceedings of the Second Interna-
tional ESPRIT ARES Workshop on Development and Evolution of
Software Architectures for Product Families, pages 76–86, London,
UK, 1998. Springer-Verlag.

[25] UML 2.0 Superstructure Specification. Technical report, Object
Management Group (OMG), August 2005.

[26] Marek Rychlý. Behavioural modeling of services: from service-
oriented architecture to component-based system. In Software En-
gineering Techniques in Progress, pages 13–27. Wroclaw University
of Technology, 2008.

Chapter 8

Paper C:

Modeling and Reasoning

about Service Behaviors

and their Compositions

Aida Čaušević, Cristina Seceleanu, Paul Pettersson
In Proceedings of 4th International Symposium On Leveraging Applica-
tions of Formal Methods, Verification and Validation (ISOLA10); Formal
Methods in Model-Driven Development for Service-Oriented and Cloud
Computing track, Heraklion, Crete, Greece, October, 2010

87

Abstract

Service-oriented systems have recently emerged as context independent
component-based systems. Unlike components, services can be created,
invoked, composed, and destroyed at run-time. Consequently, all ser-
vices need a way of advertising their capabilities to the entities that
will use them, and service-oriented modeling should cater for various
kinds of service composition. In this paper, we show how services can
be formally described by the resource-aware timed behavioral language
Remes, which we extend with service-specific information, such as type,
capacity, time-to-serve, etc., as well as boolean constraints on inputs,
and output guarantees. Assuming a Hoare-triple model of service cor-
rectness, we show how to check it by using the strongest postcondition
semantics. To provide means for connecting Remes services, we propose
a hierarchical language for service composition, which allows for verify-
ing the latter’s correctness. The approach is applied on an abstracted
version of an intelligent shuttle system.

8.1 Introduction 89

8.1 Introduction

Service-oriented systems (SOS) assume services as their basic functional
units, with capabilities of being published, invoked, composed and de-
stroyed at runtime. Services are loosely coupled and enjoy a higher level
of independence from implementation specific attributes than compo-
nents do.

An important problem is to ensure the quality-of-service (QoS) that
can be expected when deciding which service to select out of a number
of available services delivering similar functionality. Some of the existing
SOS standards support formal analysis [1–4] to ensure QoS, but usually
it is not straightforward to work out the exact formal analysis model.

In order to fully understand the ways in which services evolve and
impact on QoS attributes, a service behavioral description is required [5].
Such behavior is assumed to be internal to the service, and hidden from
the user. It should include the representation of a service functional-
ity, enabled actions, resource annotations, and possible interactions with
other services.

To meet the above demands, in this paper, concretely in Section 8.3,
we extend the existing resource-aware, timed hierarchical language Re-

mes [6], recalled in Section 8.2, to become fit for service behavioral
modeling. In Remes, a service is modeled by an atomic or composite
mode, which we enrich with attributes such as service type, capacity,
time-to-serve etc., pre- and postconditions, which are exposed at the
mode’s interface. Still in Section 8.3, we introduce a synchronization
mechanism for Remes modes, which enables modeling and verification
of synchronized services.

By exploiting the pre-, postcondition annotations, we show how to
describe the service behavior in Dijkstra’s guarded command language
[7], and how to check the service correctness by employing Dijkstra’s and
Scholten’s strongest postcondition semantics [8].

Since services can be composed at run-time, analyzing the correctness
of a service in isolation does not suffice. To exemplify, let us consider
a service that is composed of several navigation services, out of which
some return the route length in miles, whereas others in kilometers. If
the developer has omitted to introduce a service that converts length
from one metric to the other, it is desirable to uncover such an error
right away, by formally checking the correctness of the actual service
composition, at run-time.

90 Paper C

To address the dynamic aspects of services, in Section 8.4, we propose
a hierarchical language for dynamic service composition (HDCL) that
allows creating new services, via binary operators, as well as adding
and/or deleting services from lists. In the same section, we also give
the semantics of sequential, parallel, and parallel with synchronization
service composition, respectively. Next, we apply the approach on an
abstracted version of an intelligent shuttle system, for which we show the
use of Remes language to model the system and apply HDCL language
to check the correctness of service compositions. In Section 8.6, we
compare to some of the relevant related work, before concluding the
paper in Section 8.7.

8.2 Preliminaries

8.2.1 Remes modeling language

The REsource Model for Embedded Systems Remes [6] is intended as
a meaningful basis for modeling and analysis of resource-constrained
behavior of embedded systems. Remes provides means for modeling of
both continuous (i.e., power) and discrete resources (i.e., memory access
to external devices). Remes is a state-machine behavioral language
that supports hierarchical modeling, continuous time, and a notion of
explicit entry and exit points, making it fit for component-based system
modeling.

To enable formal analysis, Remes models can be transformed into
timed automata (TA) [9], or priced timed automata (PTA) [10], depend-
ing on the analysis type.

The internal component behavior in Remes is given in terms of
modes that can be either atomic (do not contain submode(s)), or com-
posite (contain submode(s)). The data transfer between modes is done
through the data interface, while the control is passed via the control
interface (i.e., entry and exit points). Remes assumes local or global
variables that can be of types boolean, natural, integer, array, or clock
(continuous variable evolving at rate 1). Each (sub)mode can be anno-
tated with the corresponding continuous resource usage, if any, modeled
by the first derivative of the real-valued variables that denote resources,
and which evolve at positive integer rates.

The control flow is given by the set of directed lines (i.e., edges) that
connect the control points of (sub)modes. Modes may also be annotated

8.2 Preliminaries 91

with invariants, which bound from above the current mode’s delay/ex-
ecution time. For a more thorough description of the Remes model, we
refer the reader to [6].

The Remes language benefits from a set of tools1 for modeling, sim-
ulation and transformation into PTA, which could assist the designer
during system development.

8.2.2 Guarded command language

The Guarded Command Language (GCL) was introduced and defined
by Dijkstra for predicate transformers semantics [7]. The basic element
of the language is the guarded command, a statement list prefixed by
a boolean expression, which can be executed only when the boolean
expression is initially true.

The syntax of the GCL is given in Backus-Naur Form (BNF) ex-
tended with braces “{..}”, where the braces mean: “followed by zero or
more instances of the enclosed”.

< guarded command > ::= < guard > − > < guarded list >

< guard > ::= < boolean expression >
< guarded list > ::= < statement > {; < statement >}
< guarded command set > ::= < guarded command > { [] < guarded command >}
< alternative construct > ::= if < guarded command set > fi

< statement > ::= < alternative construct > | “other statements”
< repetitive construct > ::= do < guarded command set > od

The semicolons in the guarded list denote that whenever the guarded
list is selected for execution, its statements will be executed successively
in the order from the left to the right. A guarded command is not
a statement but a component of a guarded command set from which
statements can be constructed. The separator “ [] ” is used for mutual
separation of guarded commands in guarded command set.

The alternative construct is written using special bracket pair: “if

... fi”. The program aborts if none of the guards is true, otherwise an
arbitrary guarded list with a true guard will be executed. Similarly, the
repetitive construct “do ... od” means that the program runs as long
as one of the guards is true, and terminates if none of the guards is true.
Semantics and Correctness of Guarded Commands. Let us as-
sume the Hoare triple, {p} S {q}, where p, q are predicates, denoting
the partial correctness of guarded command S with respect to precon-
dition p and postcondition q. Introduced by Dijkstra and Sholten [8],

1The Remes tool-chain is available at http://www.fer.hr/dices/remes-ide.

92 Paper C

the strongest postcondition predicate transformer (a function that maps
predicates to predicates), denoted by sp.S.p, holds in those final states
for which there exists a computation controlled by S, which belongs to
class “initially p”. Proving the Hoare triple, that is, the correctness of
a guarded command, reduces to showing that (sp.S.p ⇒ q) holds. The
strongest postcondition rules for the assignment statement, for sequen-
tial composition, and for the non-deterministic conditional are as follows:

sp.(x := e).p(x) ≡ x = e ∧ (∃x · p(x)) (8.1)

sp.(S1; S2).p ≡ sp.S2.(sp.S1.p), ∀p (8.2)

sp.(if g1 → S1 [] . . . [] gn → Sn fi).p ≡ sp.S1.(g1 ∧ p) ∨ . . . ∨ sp.Sn.(gn ∧ p), ∀p (8.3)

8.3 Behavioral Modeling of Services in Re-

mes

In Remes, a service is represented by a mode (be it atomic or composite).
The service may have a special Init entry point, visited when the service
first executes, and where all variables are initialized. In order for a
service to be published and later discovered, a list of attributes should
be exposed at the interface of a Remes mode/service (see Fig.8.1).

Figure 8.1: A service modeled in Remes

The attributes depicted in Fig.8.1 have the following meaning:

8.3 Behavioral Modeling of Services in Remes 93

• service type - specifies whether the given service is a web service
(i.e., weather report), a database service (i.e., ATM services), a
network service, etc.;

• service capacity - specifies the service’s maximum ability to handle a
given number of messages per time unit (i.e., the maximum service
frequency)(∈ N);

• time-to-serve - specifies the worst-case time needed for a service to
respond and serve a given request (∈ N);

• service status - describes the current service status (that is, passive
(not invoked), idle, active);

• service precondition - is a predicate (Pre :
∑

→ Bool, Pre ≡ (PreInit∨
PreEntry)) that conditions the start of service execution, and must
be true at the time a Remes service is invoked. In this expression
∑

is the polymorphic type of the state that includes both local and
global variables, and predicates PreInit, PreEntry are the initial, and
the entry precondition of the service, respectively;

• service postcondition - is a predicate (Post) that must hold at the end
of a Remes service execution.

The attributes are used to discover Service; they are specified by an
interested party and, based on the specification, the service is either
retrieved or not.

The formal specification of a service, modeled as the composite mode
of Fig. 8.1, is the Hoare triple {p }Service {q}, where Service is described
in terms of the guarded command language, and the mode’s precondition
p, and postcondition (requirement) q are as follows:

p

≡
y ≤ c ∧ c > b ∧ (d = 0 ∨ v ≤ d ≤ e) ∧ r1 = r2 = r3 = 0 ∧ (h = 0 ∨ h = 1)
q

≡
y ≤ c ∧ d ≤ e ∧ (∀i, 1 ≤ i ≤ 3 · ri ≤ vali)

where vali are the given upper bounds on each resource usage, respec-
tively.

94 Paper C

Below, we give the GCL description of the Remes composite mode
Service:

Service ::=
IF
¬u1 ∧ h = 0 ∧ y ≤ b Init → Atomic mode 1

→ r3 := r3 + q;
sm := Atomic mode 1; u1 := true;
Update(now)

[] ¬u2 ∧ h = 1 ∧ (x ≤ a ∧ d = v) ∧ y ≤ b Entry → Atomic mode 1
→ sm := Atomic mode 2; u2 := true;

Update(now)
[] (¬u3 ∧ (h = 1 ∧ d ≥ v) ∨ d = u) ∧ y ≤ c (Entry or Atomic mode 1) → Atomic mode 2

→ sm := Atomic mode 2; u3 := true;
Update(now)

[] ¬u4 ∧ sm = Atomic mode 1 ∧ y ≤ b Delay in Atomic mode 1
→ r1(t) := r1(now) + n ∗ (t − now);

r2(t) := r2(now) + m ∗ (t − now);
{y ≤ b}; u4 := true;
Update(now)

[] ¬u5 ∧ sm = Atomic mode 1 ∧ y = b

→ d := u; u5 := true;
Update(now)

[] ¬u6 ∧ sm = Atomic mode 2 ∧ y ≤ c Delay in Atomic mode 2
→ r2(t) := r2(now) + p ∗ (t − now);

{y ≤ c}; u6 := true;
Update(now)

[] ¬u7 ∧ sm = Atomic mode 2 ∧ y = c Atomic mode 2 → Exit
→ d := e;

h := 1; u7 := true;
Update(now); u1, . . . , u7 := false

FI

(8.4)

In the GCL description (8.4), the variables x, y are clocks, h is the
history variable that is used to decide where to enter the composite
mode, sm is the variable ranging over submodes, and r1 : Real+ → T1,
r2 : Real+ → T2 are the continuous resources of the model, defined as
functions over the non-negative reals that are used as the time domain.
In addition, ui are local variables used for preventing executing the same
action more than once, at the same time point. These variables are reset
each time the mode Service exits. Similar to the approach taken for
action system models [11], the variable now shows the current time,
and it is explicitly updated by statement Update(now). The assertions
{y ≤ b}, {y ≤ c} model the invariants (Inv) of Atomic mode 1, and Atomic

mode 2, respectively.

8.3 Behavioral Modeling of Services in Remes 95

We define Update(now) as follows:

Update(now) , now := next.now

The submodes can be urgent (no delays are allowed), or non-urgent
(where delays can happen, until an invariant Inv is violated); also,
guarded actions can annotate edges connecting the entry points of the
composite mode with submodes, via some conditional connector (de-
noted by encircled C in Figure 8.1). Given these, and assuming that gg

is the disjunction of the action guards of the edges leaving a mode (or
a conditional connector), and that Inv is the invariant of the respective
mode, next is defined by:

next.t ,

{

min{t′ ≥ t | ¬Inv ∨ gg}, if exists t′ ≥ t such that ¬Inv ∨ gg

+∞, otherwise.

If a mode is urgent, or the guards correspond to a conditional con-
nector, then I ≡ false, so the next moment of time is identical to the
current one, no delay being possible.

The mode Service, modeled by (8.4), can be iterated for as long as
needed, so the complete specification is:

statusService := active; (DO g → Service [] ¬g → statusService := idle OD).

According to rule (8.3), the strongest postcondition of the conditional
statement is:

sp.Service.p
≡

sp.(r3 := r3 + q; sm := Atomic mode 1; Update(now)).(h = 0 ∧ y ≤ b ∧ p)
∨
. . .

∨
sp.(d := e; h := 1; Update(now)).(sm = Atomic mode 2 ∧ y = c ∧ p)

Assuming that sp.{y ≤ c}.p ≡ y ≤ c ∧ (∃x · p(x)), the above sp can
be mechanically computed by successively applying rules (8.1) - (8.2).
The correctness proofs reduce to checking whether each of the strongest
postconditions of the above disjunction implies the requirement q, given
earlier.

In service-oriented systems, there is often the case that services need
to synchronize their behaviors. In order to model synchronized behavior,
we introduce a special kind of Remes mode, given in Figure 8.2, which
can act either as an AND mode, or as an OR mode, depending on whether
the services need to be entered simultaneously, or not.

96 Paper C

Service a

Service b

*

*

A1

B1

in x

out x

...

...

A2

B2

Figure 8.2: AND/OR Remes mode.

The composite mode of Figure 8.2 contains as sub-modes the services
that need to be synchronized. For AND modes, both Service a, and Service

b are entered at the same time (through their entry point). This means
that the edges marked with (*) do not have guards. In case of OR modes,
one or all constituent services are entered, so the edges marked with (*)
are annotated with guards. If some of the edges need to be taken at the
same time in both services, the communication between Service a and b

is realized via synchronization variables, chan (in x), (out x), which are
used similarly to the PTA channels x?, x!, respectively. Depending on
the required synchronization type and starting time of the constituent
services’ execution, AND modes, but also OR can be employed when
either “and” synchronization (both services should finish execution at
the same time), or “max” synchronization (the composite mode finishes
when the slowest service finishes) is required.

In Figure 8.2, Service a, Service b need to synchronize actions A2,
B2. This can be done by decorating the respective edges with channel
variables out x for A2, and in x for B2, meaning that the respective edges
are taken simultaneously in both services, A2 writing variables that B2
is reading. The same applies if the services need to “and”-synchronize at
the end of their execution. The exit edge of each service, respectively,
needs to be annotated with chan variables.

8.4 Hierarchical Language for Dynamic Service Composition:

Syntax and Semantics 97

The GCL representation of such synchronization requires strength-
ening the guards of the respective synchronized commands of the condi-
tional statement, as follows: (in x) ∧ gA2 → SA2, (out x) ∧ gB2 → SB2,
where SA2, SB2 are the action bodies of A2, B2, respectively. The ac-
tions can then be executed in a sequence, with the one writing variables,
first. The “max” synchronization can be represented in GCL by using a
virtual selector (variable sel) [11], which selects for execution the modes
SM1, . . . , SMn, according to the control flow, marks them as executed
after they finish their execution, and keeps the time values of now in
a copy variable nowc, which is updated only after the slowest service
finishes executing; the latter translates in exiting the composite AND, or
OR mode.

8.4 Hierarchical Language for Dynamic Ser-

vice Composition: Syntax and Seman-

tics

Service compositions may lead to complex systems of concurrently exe-
cuting services. An important aspect of such systems is the correctness of
their temporal and resource-wise behavior. In the following, we propose
an extension to the Remes language, which provides means to define and
support creation, deletion, and composition of fine-grained or coarser-
grained services, applicable to different domains. We also investigate a
formal way of ensuring the correctness of the composition, based on the
strongest postcondition semantics of services.

Let us assume that a service, whose behavior is described by a Remes

mode, is denoted by service_namei, i ∈ [1..n]; then, a service list,
denoted by s_list, is defined as follows:

s_list ::= [service_name1, ..., service_namen]

In order to support run-time service manipulation, we define a set of
Remes interface operations, by a pre- postcondition specification. We
denote by Σ the set of service states, respectively, that is, the current
collection of variable values.

• Create service: create service_name
[pre] : service_name = NULL

98 Paper C

create : T ype × N × N × ′′passive′′ × (Σ → bool) × (Σ → bool) →
service_name

{post} : service_name 6= NULL

• Delete service: del service_name
[pre] : service_name 6= NULL
del : service_name → NULL
{post} : service_name = NULL

• Create service list: create s_list
[pre] : s_list = NULL
create_list : s_list → s_list, s_list = List()
{post} : s_list 6= NULL

• Delete service list: del s_list
[pre] : s_list 6= NULL
del_list : s_list → NULL
{post} : s_list = NULL

• Add service to a list: add service_name, s_list
[pre] : service_name 6∈ s_list

add : s_list → s_list

{post} : service_name ∈ s_list

• Remove service from the list: del service_name, s_list
[pre] : service_name ∈ s_list

del : s_list → s_list

{post} : service_name 6∈ s_list

• Replace service in the list: replace service_name1,
service_name2

[pre] : s_list(p) = service_name1

replace : s_list → s_list

{post} : s_list(p) = service_name2

8.4 Hierarchical Language for Dynamic Service Composition:

Syntax and Semantics 99

• Insert service at a specific position: insert service_namei,
s_list

[pre] : s_list(p) 6= service_namei

add : s_list → s_list

{post} : s_list(p) = service_namei

Note that a new service list can be created by using the constructor
List(), which holds list values of any type. Such a constructor enables
the creation of both empty list and also list with some initial value:

s_list = List : String([“Shuttle1”, “Shuttle2”]).

Also, adding a service to a list means, in this context, appending that
service, that is, adding it at the end of the list. Replacing a service with
another one, and inserting a service at a specific position requires the
use of parameter p, which specifies the position at which the service is
replaced or inserted.

Most often, services can be perceived as independent and distributed
functional units, which can be composed to form new services. The
systems that result out of service composition have to be designed to
fulfill requirements that often evolve continuously and therefore require
adaptation of the existing solutions.

Alongside the above operations, we also define a hierarchical lan-
guage that supports dynamic Remes service composition (HDCL), that
is, facilitates modeling of nested sequential, parallel or synchronized ser-
vices:

DCL ::= (s_list, PROTOCOL, REQ)

HDCL ::= (((DCL+, PROTOCOL, REQ)+, PROTOCOL, REQ)+, . . .)

The formula above allows a theoretically infinite degree of nesting.
The positive closure operator is used to express that one or more DCLs
(Dynamic Composition Languages) are needed to form an HDCL. The
PROTOCOL defines the way services are composed, that is, the type of
binding between services, as follows:

PROTOCOL ::= unary_operator service_name | servicem binary_operator servicen

The requirement REQ is a predicate (Σ → Bool) that can include
both functional and extra-functional properties/constraints of the com-

100 Paper C

position. It identifies the required attribute constraints, capability, char-
acteristics, or quality of a system, such that it exhibits the value and
utility requested by the user. The above unary and binary operators are
defined as follows:

Unary_operator ::= exec − first

Binary_operator ::= ; | ‖ | ‖SY NC−and | ‖SY NC−or

Let us assume that two services s1, s2 are invoked at some point in time,
and their instances are placed in the service list s_list. Also, we assume
that si.P rei is the strongest postcondition of si, i ∈ 1, 2, w.r.t. pre-
condition P rei. Then, the semantics of the unary and binary protocol
operators, as well as the correctness conditions for such compositions are
given as follows.

• Exec-first (specifies which service should be initially executed in
a composition) - below we formalize the fact that s1 should execute
first, and only when it finishes and establishes its postcondition,
service s2 can become active:

statuss1
= active ∧ statuss2

= idle ∧ P osts1
⇒ (statuss2

= active)

If we assume n services s1, . . . , sn of a list, executing s1 first is
defined as:

Exec − first s1 , s1 [] ¬gs1 → (s2 Binary_operator . . . Binary_operator sn)

This means that, even if any other service (or service composition)
could be executed, it will be executed only after s1 has finished
execution.

• Sequential composition - two services are executed in a se-
quence, uninterrupted, e.g., s1; s2. The correctness condition of
s1; s2 is:

(sp.s2.(sp.s1.P res1
) ⇒ P osts2

) ∧ (P osts2
⇒ REQ)

• Parallel composition’s (s1 ‖ s2) correctness condition is:

(sp.s1.P res1
∨ sp.s2.P res2

) ⇒ REQ

8.5 Example: An Autonomous Shuttle System 101

• Parallel composition with synchronization - we denote by
S-AND the set of services belonging to an AND mode, which need
to synchronize their executions in the end. Then, the “and” syn-
chronization of such services is defined as:

(s1 ‖SY NC−and s2) , (s1, s2 ∈ S−AND

⇒ ((∀ now · statuss1
= statuss2

= active)
∧(starts1

+ T imetoServes1
= starts2

+ T imetoServes2
)))

The correctness condition of the “and-AND” synchronization is given
below:

(sp.(s1 ‖SY NC−and s2).P reAND ⇒ (P osts1
∧ P osts2

)) ∧ (P osts1
∧ P osts2

⇒ REQ)

A service user, but also a developer of services, might need to replace
a service with one with possibly better QoS. It follows that one needs to
be able to check whether the new service still delivers the original func-
tions, while having better time-to-serve or resource-usage qualities. Ver-
ifying such a property reduces to proving refinement of services. Either
weakening the service precondition or strengthening its postcondition
qualifies as service refinement.

8.5 Example: An Autonomous Shuttle Sys-

tem

In this section, we consider an example, previously modeled and analyzed
in the PTA framework, in our recent work [12].

We consider a simplified version of a three train system that provides
transportation service to three different locations. The system has been
developed at University of Paderborn within the Railcab project [13].
While in our previous work [12], we have focused on resource effective
design, in the current example, we extract parts of the behavior described
by Giese and Klein [13], to show how services are created, invoked, com-
posed, and idled, by using the Remes extended interface and behavioral
language.

Each of the trains has a well-defined path to follow, as shown in
Fig. 8.3. During the transport, the shuttles might meet at point B, in
which they are forced to create a convoy. In order to enter the convoy,
they have to respect given speed and acceleration limits, measured in
points A1, A2, and A3, respectively, otherwise they may stop to let others

102 Paper C

that fulfil the given requirements join the convoy. After a convoy is
formed and has left, those that were stopped are allowed to continue
their journey to previously assigned destination, if the sensor at point C,
in Fig. 8.3, has sent the “safe to continue” signal.

A3

A2

A1

B C D

train1

train2

train3

controller

E

F

G

Figure 8.3: An example overview.

After the destination point is being reached, a shuttle is free to turn
to the idle state, and wait for new orders. The system described above is
equipped with one central controller, as shown in Fig. 8.3, which decides
when and which shuttle to invoke, based on the service descriptions for
each shuttle, respectively.

8.5.1 Modeling the Shuttle System in Remes

We model the behavior of the Autonomous shuttle system services as
modes in the extended Remes. The composite mode of Shuttle1 is de-
picted in Fig. 8.4, yet, due to lack of space, we do not show here the
constituent submodes, but we briefly explain them instead (for more
details we refer reader to [12]).

The mode consists of the atomic modes (i.e., Acceleration1, STOP, and
Destination). They communicate data between each other using the global
variables: speedi, statusi, ti, and StatusConvoy. The control interfaces are
used to expose mode attributes relevant for mode discovery. Shuttle1 and
Shuttle3 have the same behavior, while Shuttle2 is an older shuttle than
the other two, and therefore it requires more time to start, accelerate,
slow down.

8.5 Example: An Autonomous Shuttle System 103

Shu�le1

Init/Entry Exit

[t1 = 0 Λ

Speed1 = 0] { td1 ≤ 290}

Shu�le1 A�ributes: Network Service, 5, 290, Idle,

(t1 = 0 Λ Speed1 = 0), (td1 ≤ 290)

Figure 8.4: The model of Shuttle1 given as a Remes service.

8.5.2 Applying the Hierarchical Language

Below, we illustrate the use of our proposed hierarchical language for
modeling service composition, as depicted in Table 8.1, on the example
described in Section 8.5.

Table 8.1: An illustration of the Remes language

00 declare Shuttle1 ::=< network service, 18 create Shuttle1
01 5, 19 create Shuttle2
02 290, 20 create Shuttle3
03 passive, 21 create list_Convoy
04 (t1 = 0 ∧ speed = 0), 22 add Shuttle1 list_Convoy
05 (t1 ≤ 290) > 23 add Shuttle2 list_Convoy
06 declare Shuttle2 ::=< network service, 24 DCL_Convoy ::= (list_Convoy, ; , t ≤ 300)
07 7, 25 HDCL_Convoy ::= ((DCL_Convoy, Shuttle3), , t ≤ 300)
08 300, 26 check(sp.(Shuttle1; Shuttle2).(t1 = 0 ∧ speed = 0) ∧ (t = t1 ∨ t = t2)) ⇒ (t ≤ 300)
09 passive, 27 check(sp.Shuttle3.(t3 = 0 ∧ speed = 0) ∧ (t = t3)) ⇒(t ≤ 300)
10 (t2 = 0 ∧ speed = 0), 28 del HDCL_Convoy
11 (t2 ≤ 300) >

12 declare Shuttle3 ::=< network service,

13 5,

14 290,

15 passive,

16 (t3 = 0 ∧ speed = 0),
17 (t3 ≤ 290) >

The needed services are introduced through the declarative part (lines
00-17 in Table 8.1). A service declaration contains the service name,
type, status, TimeToServe, precondition and postcondition. The cor-
responding requirement is matched against such attribute information,

104 Paper C

when choosing a service. After the selection, the instances of the se-
lected services are created (lines 18-20 in Table 8.1), and added to the
service list using the add command (lines 22-23 in Table 8.1). Finally,
the chosen services are composed by DCL. The list of services, employed
protocol (type of service binding), and DCL requirements are given as
parameters. Moreover, the language provides means to compose the ex-
isting DCLs with other services, through HDCL, as shown in line 25 of
Table 8.1. If not anymore needed, the composition can be deleted.

The advantage of this language is that, after each composition, one
can check whether the given requirement is satisfied, by forward analysis,
e.g., by calculating the strongest postcondition of a given composition
w.r.t. a given precondition. Due to space limitation, we show only the
final computed result. Below, p1 ≡ (t1 = 0 ∧ speed = 0).

By applying the sp rules (8.1) - (8.3), we get the following:

sp.(Shuttle1; Shuttle2).p1 ≡ sp.Shuttle2.(sp.Shuttle1.p1)
sp.Shuttle1.p1 ≡ (t1 = 0 ∧ 245 ≤ t ≤ 266 ∧ speed1 = 0 ∧

∧ mode = Destination ∧ r1 = 0 ∧
∧ status1 = end1 = idle)

sp.Shuttle2.(sp.Shuttle1.p1) ≡ (t1 = t2 = 0 ∧ 264 ≤ t ≤ 285 ∧
∧ speed1 = speed2 = 0 ∧ r1 = r2 = 0 ∧
∧ status1 = end1 = idle ∧ status2 = end2 = idle)

One can notice that the requirement REQ ≡ (t ≤ 300) is implied by the
calculated strongest postcondition to which the condition (t = t1 ∨ t = t2)

is added. This is actually what the command check should return as a
main proof obligation, provided that the method is implemented in the
Remes tool-chain.

Next, we have Shuttle3 composed in parallel with the sequential com-
position of the other two shuttles, with p3 ≡ (t3 = 0 ∧ speed = 0). Then, ac-
cording to the composition semantics of section 8.4, proving the correct-
ness of the (Shuttle3 (Shuttle1; Shuttle2)) composition reduces to show-
ing that:

(sp.Shuttle3.p3 ∨ sp.Shuttle2.(sp.Shuttle1.p1)) ⇒ REQ

As already shown, the sequential composition of the first two shuttles
implies the requirement. What is left to be proven is that the strongest
postcondition of Shuttle3, w.r.t. p3, also implies the requirement. The
calculated strongest postcondition of the latter is as follows:

8.6 Discussion and Related Work 105

sp.Shuttle3.p3 ≡ (t3 = 0 ∧ 245 ≤ t ≤ 266 ∧ speed3 = 0∧
∧ mode = Destination ∧ r3 = 0 ∧ status3 = end3 = idle)

It is easy to check that the requirement REQ is actually implied by
sp.Shuttle3.p∧t = t3. This concludes our service composition correctness
verification.

8.6 Discussion and Related Work

Based on the level of details that are provided through the behavioral
description, all approaches related to services and SOS can be in principle
divided into three groups.

Code-level behavioral description approaches are mostly based on
XML language (e.g., BPEL, WS-CDL). BPEL [1] is an orchestration
language whose behavioral description includes a sequence of project
activities, correlation of messages and process instances, and recovery
behavior in case of failures and exceptional conditions. Approaches like
BPEL are useful when services are intended to serve a particular model
or when the access to the service implementation exists. The drawback
of such approaches is the lack of formal analysis support, which forces
the designer/developer to master not only the specification and modeling
processes, but also the techniques for translating models into a suitable
analysis environment.

When compared to the above group, BPMN [3] can be seen as a
higher-level language. It relies on a process-oriented approach, and sup-
ports a graphical representation to be used by both designers and ana-
lysts. The lack of a formal behavioral description does not provide means
for detailed analysis, as the one supported by Remes.

The third group includes approaches with formal background. Rychlý
describes the service behavior as a component-based system for dynamic
architectures [14]. The specification of services, their behavior, and hi-
erarchical composition are formalized within the π-calculus. Similar to
our approach, this work emphasizes the behavior in terms of interfaces,
(sub)service communication, and bindings, while we can also cater for
service descriptions including timing and resource annotations [12]. Fos-
ter et al. present an approach for modeling and analysis of web service
compositions [15]. The approach takes BPEL4WS service specification
and translates it into Finite State Processes (FSP), and Labeled Tran-
sition Systems (LTS), for analysis purposes.

106 Paper C

A comprehensive survey on several approaches that are accommo-
dating service composition, and are checking the correctness of compo-
sitions [1–4] is given by Beek et al. [16]. Regarding service modeling,
all these approaches are solid; however, w.r.t. service compositions and
their correctness checking [17–19] (usually by employing formal meth-
ods), such approaches show limited capabilities to automatically support
these processes. In comparison, as shown in this paper, compositions of
Remes models can be mechanically reasoned about (although, as for
now, we still miss the interface correctness tool support), or can be au-
tomatically translated to TA [9] or PTA [10], and analyzed with Uppaal

, or Cora tools 2, for functional but also extra-functional behaviors (tim-
ing and resource-wise behaviors).

8.7 Conclusions

In this paper, we have presented an approach for formal service descrip-
tion by extending the resource-aware timed behavioral language Remes.
Attributes such as type, time-to-serve, capacity, etc., together with pre-
condition and postcondition are added to Remes to enable service dis-
covery, as well as service interaction. Even if the original semantics of
Remes [6] is given in terms of Priced Timed Automata (PTA), here, we
have chosen to use Hoare triples and the strongest postcondition seman-
tics to prove service correctness, motivated by the lack of decidability
results for computing simulations relations on PTA. We have also pro-
posed a hierarchical language for service composition, which allows for
the verification of, e.g., service composition correctness. The approach
is demonstrated on a simplified version of an intelligent shuttle system.

As future work, we plan to look into the algorithmic computation
of strongest postconditions of priced timed automata, by building on
preliminary results of Badban et al. [20]. We also intend to extend the
Remes tool-chain with a postcondition calculator.

2For more information about the Uppaal and Cora tool, visit the web page
www.uppaal.org.

Bibliography

[1] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland,
Johannes Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug
Smith, Satish Thatte, Ivana Trickovic, and Sanjiva Weerawarana.
BPEL4WS, Business Process Execution Language for Web Services
Version 1.1. IBM, 2003.

[2] Nickolas Kavantzas, David Burdett, Greg Ritzinger, Tony Fletcher,
Yves Lafon, and Charlton Barreto. Web services choreography de-
scription language version 1.0. World Wide Web Consortium, Can-
didate Recommendation CR-ws-cdl-10-20051109, November 2005.

[3] Object Management Group (OMG). Business Process Modeling
Notation (BPMN) version 1.1., January 2008.

[4] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubén
Lara, Michael Stollberg, Axel Polleres, Cristina Feier, Christoph
Bussler, and Dieter Fensel. Web service modeling ontology. Applied
Ontology, 1(1):77–106, 2005.

[5] Aida Causevic and Aneta Vulgarakis. Towards a unified behav-
ioral model for component-based and service-oriented systems. In
2nd IEEE International Workshop on Component-Based Design of
Resource-Constrained Systems (CORCS 2009). IEEE Computer So-
ciety Press, July 2009.

[6] Cristina Seceleanu, Aneta Vulgarakis, and Paul Pettersson. Remes:
A resource model for embedded systems. In In Proc. of the 14th
IEEE International Conference on Engineering of Complex Com-
puter Systems (ICECCS 2009). IEEE Computer Society, June 2009.

109

110 Bibliography

[7] Edsger W. Dijkstra. Guarded commands, nondeterminacy and for-
mal derivation of programs. Commun. ACM, 18(8):453–457, 1975.

[8] Edsger W. Dijkstra and Carel S. Scholten. Predicate calculus and
program semantics. Springer-Verlag New York, Inc., New York, NY,
USA, 1990.

[9] R. Alur and D. L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[10] Rajeev Alur. Optimal paths in weighted timed automata. In In
HSCCć01: Hybrid Systems: Computation and Control, pages 49–
62. Springer, 2001.

[11] Cristina Seceleanu. A Methodology for Constructing Correct Re-
active Systems. PhD thesis, Turku Centre for Computer Science
(TUCS), December 2005.

[12] Aida Causevic, Cristina Seceleanu, and Paul Pettersson. For-
mal reasoning of resource-aware services. Technical Report ISSN
1404-3041 ISRN MDH-MRTC-245/2010-1-SE, Mälardalen Univer-
sity, June 2010.

[13] Holger Giese and Florian Klein. Autonomous shuttle system case
study. In Scenarios: Models, Transformations and Tools, pages 90–
94, 2003.

[14] Marek Rychlý. Behavioural modeling of services: from service-
oriented architecture to component-based system. In Software En-
gineering Techniques in Progress, pages 13–27. Wroclaw University
of Technology, 2008.

[15] Howard Foster, Wolfgang Emmerich, Jeff Kramer, Jeff Magee,
David Rosenblum, and Sebastian Uchitel. Model checking service
compositions under resource constraints. In ESEC-FSE ’07: Pro-
ceedings of the the 6th joint meeting of the European software en-
gineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, pages 225–234, New York, NY,
USA, 2007. ACM.

[16] Maurice H. Ter Beek, Antonio Bucchiarone, and Stefania Gnesi.
Formal methods for service composition. Annals of Mathematics,

Computing & Teleinformatics, 1(5):1 – 10, 2007. In: Annals of
Mathematics, Computing & Teleinformatics, vol. 1 (5) pp. 1 - 10.
Technological Education Institute of Larissa (TEIL), Greece, 2007.

[17] Gregorio Díaz, Juan José Pardo, María-Emilia Cambronero,
Valentin Valero, and Fernando Cuartero. Automatic translation
of ws-cdl choreographies to timed automata. In Mario Bravetti,
Leïla Kloul, and Gianluigi Zavattaro, editors, EPEW/WS-FM, vol-
ume 3670 of Lecture Notes in Computer Science, pages 230–242.
Springer, 2005.

[18] Srini Narayanan and Sheila A. McIlraith. Simulation, verification
and automated composition of web services. In WWW ’02: Pro-
ceedings of the 11th international conference on World Wide Web,
pages 77–88, New York, NY, USA, 2002. ACM.

[19] Gwen Salaün, Lucas Bordeaux, and Marco Schaerf. Describing and
reasoning on web services using process algebra. In ICWS ’04:
Proceedings of the IEEE International Conference on Web Services,
page 43, Washington, DC, USA, 2004. IEEE Computer Society.

[20] Bahareh Badban, Stefan Leue, and Jan-Georg Smaus. Automated
predicate abstraction for real-time models. EPTCS, 10:36, 2009.

Chapter 9

Paper D:

Checking Correctness of

Services Modeled as

Priced Timed Automata

Aida Čaušević, Cristina Seceleanu, Paul Pettersson
(Submitted to conference)

113

Abstract

Service-oriented systems have gained importance in different application
domains thanks to their ability to enable reusable functionality provided
via well-defined interfaces, and the increased opportunities to compose
existing units, called services, into various configurations. Developing
applications in such a setup, by reusing existing services, brings some
concerns regarding ensuring the expected quality, and correctness of the
employed services. In this paper, we assume service models annotated
with pre- and postconditions, their semantics given as priced timed au-
tomata (PTA), and the forward analysis method for checking the service
correctness w.r.t. given requirements. For such models, we show how to
algorithmically compute the strongest postcondition of the correspond-
ing automata, with respect to the specified precondition. The approach
is illustrated on a small example of services modeled as PTA.

9.1 Introduction 115

9.1 Introduction

Service-oriented systems (SOS) are becoming one of the dominant para-
digms for designing, implementing and developing large scale systems out
of self-contained and loosely coupled services. Among the main benefits
of the approach, the reusable functionality via well-defined interfaces,
the service infrastructure equipped to enable services to be published,
discovered, invoked, and if needed destroyed on-the-fly, and the fast ap-
plication development by employing existing services are most appealing.

In systems built up in such a setup, it becomes essential to ensure
a satisfying level of the system’s quality-of-service (QoS). Sometimes,
it might be the case that one needs to decide which service to select
out of a number of available services that offer similar functionality. To
deliver guarantees on provided QoS, some SOS approaches [1–4] support
formal analysis, yet in most cases building the formal system model, out
of formalized services, is far from straightforward.

However, once a model is created, it becomes essential to be able
to check the correctness of the employed services, both in isolation, as
well as in the context of the newly created system, which involves ser-
vice compositions. An as important aspect, many times ignored, is the
service’s resource consumption. Any analysis approach that would ab-
stract from service resource constraints would produce analysis results
that are insufficiently correct, or reliable. For example, let us assume
that we have a web payment service that includes several currency ser-
vices, where some services return prices in Swedish Krona (SEK), some
in US Dollar (USD), and some in Euros (EUR). If the developer has
forgotten to introduce a service that converts prices from one available
currency to the other, it is important to detect this error, by formally
checking the correctness of the existing service composition, on-the-fly.
Another scenario could assume that the system in which some service
is incorporated has limited memory resources, which the respective ser-
vice does not comply with (i.e., some service that draws the chart that
displays currency change over some period of time).

To establish means for checking the correctness of services, in our
recent work [5], we have presented an approach that extends the resource-
aware timed behavioral language Remes, recalled in Section 9.2, with
constructs for a formal service description. In the same work, we have
shown how service correctness can be checked using Hoare triples, and
strongest postcondition semantics, described in Section 9.3.1. However,

116 Paper D

such check is deductive, and it is not completely automated.
Since the original semantics of Remes [6] is given in terms of Priced

Timed Automata (PTA), in this paper, concretely in Section 9.3, we go
one step further, and present an algorithmic way to compute strongest
postcondition of services modeled as PTA. We consider the service re-
source usage in Remes as a cost variable in PTA, and consequently we
include in our algorithms well known approaches for computing the min-
imal and maximal reachability costs of a final PTA location [7], alongside
calculating the strongest postcondition of reaching such location, over
symbolic states. In Section 9.4, we exemplify our approach on a simple
model of PTA. We compare our approach with some relevant work, in
Section 9.5, before concluding the paper in Section 9.6.

9.2 Preliminaries

9.2.1 Remes modeling language

The REsource Model for Embedded Systems Remes [6] is initially in-
tended as a meaningful basis for modeling and analysis of resource-
constrained behavior of embedded systems. It provides means for mod-
eling of both continuous (i.e., power) and discrete resources (i.e., mem-
ory access to external devices). Remes is a state-machine behavioral
language that supports hierarchical modeling, continuous time, and a
notion of explicit entry and exit points, making it fit for the modeling of
component-based and service-oriented systems.

To enable formal analysis, Remes models can be transformed into
timed automata (TA) [8], or PTA [9], depending on the analysis type.

In Remes services are represented in terms of modes that can be
either atomic (do not contain submode(s)), or composite (contain sub-
mode(s)). The data transfer between modes is done through the data
interface, while the control is passed via the control interface (i.e., entry
and exit points). Remes assumes local or global variables that can be
of types boolean, natural, integer, array, or clock (continuous variable
evolving at rate 1). In order for a service to be published and later dis-
covered, a list of attributes (i.e. service type, time-to-serve, service pre-,
and postcondition, etc.) is exposed at the interface of a Remes mode.
Based on the service attributes specification and a requirement given by
a service user a service is either retrieved or not.

9.2 Preliminaries 117

Each (sub)mode can be annotated with the corresponding continuous
resource usage, if any, modeled by the first derivative of the real-valued
variables that denote resources, and which evolve at positive integer
rates.

The control flow is given by the set of directed lines (i.e., edges) that
connect the control points of (sub)modes. Remes supports delay/timed
actions and discrete actions. The former describe the continuous behav-
ior of the mode, and their execution does not change the current mode;
the latter, discrete actions (represented as edge annotations), when fired,
result in a mode change. The delay/timed actions are not exposed in
the model, but are constrained by the above mentioned differential equa-
tions. In order for a discrete action to be executed, the corresponding
boolean guard, which prefixes the action body, must hold. Modes may
also be annotated with invariants, which bound from above the current
mode’s delay/execution time.

It is often the case that services in SOS need to synchronize their
behaviors. To model service synchronization a special kind of Remes

mode is introduced. It can act either as an AND, or an OR mode, de-
pending whether services have to be entered simultaneously or not. By
the semantics of the mode, in an AND or an OR mode, the services
finish their execution simultaneously, from an external observers point
of view. However, if the mode is employed as an AND mode, the sub-
services are entered at the same time, and their incoming edges do not
contain guard, while an OR mode assumes that one or all subservices
are entered based the guards annotated on the incoming edges.

Remes language provides means for service creation, delation, and
composition via Remes interface operations. To facilitate modeling of
nested sequential, parallel or synchronized services, Remes includes a
hierarchical language that supports Remes service composition (HDCL).

For a more thorough description of the Remes model, we refer the
reader to [5, 6]. The Remes language benefits from a set of tools1 for
modeling, simulation and transformation into PTA, which could assist
the designer during system development.

9.2.2 Priced Timed Automata

In the following, we recall the model of PTA [9,10], an extension of timed
automata [8] with prices on both locations and transitions.

1The Remes tool-chain is available at http://www.fer.hr/dices/remes-ide.

118 Paper D

Let χ be a finite set of clocks and B(χ) the set of formulas obtained
as conjunctions of atomic constraints of the form x ⊲⊳ n, where x ∈ χ,
n ∈ N, and ⊲⊳ ∈ {<, ≤, =, ≥, >}. The elements of B(χ) are called clock
constraints over χ.

Definition 1. A linearly Priced Timed Automaton (PTA) over clocks
χ and actions Act is a tuple (L, l0, E, I, P), where L is a finite set of
locations, l0 is the initial location, E ⊆ L × B(χ) × Act × P(χ) × L

is the set of edges, I : L → B(χ) assigns invariants to locations, and
P : (L ∪ E) → N assigns prices (or costs) to both locations and edges. In

the case of (l, g, a, r, l′) ∈ E, we write l
g,a,r
→ l′.

The semantics of a PTA is defined in terms of a priced transition
system over states of the form (l, u), where l is a location, u ∈ RRX ,
and the initial state is (l0, u0), where u0 assigned all clocks in χ to
0. Intuitively, there are two kinds of transitions: delay transitions and
discrete transitions. In delay transitions,

(l, u)
d,p
→ (l, u ⊕ d)

the assignment u ⊕ d is the result obtained by incrementing all clocks of
the automata with the delay amount d, and p = P (l) ∗ d is the cost of
performing the delay. Discrete transitions

(l, u)
a,p
→ (l′, u′)

correspond to taking an edge l
g,a,r
→ l′ for which the guard g is satisfied

by u. The clock valuation u′ of the target state is obtained by modifying
u according to updates r. The cost p = P ((l, g, a, r, l′)) is the price
associated with the edge.

A timed trace σ of a PTA is a sequence of alternating delays and
action transitions

σ = (l0, u0)
a1,p1

→ (l1, u1)
a2,p2

→ . . .
an,pn

→ (ln, un)

A network of PTA A1 . . . An over χ and Act is defined as the par-
allel composition of n PTA over χ and Act. Semantically, a network
again describes a timed transition system obtained from those compo-
nents, by requiring synchrony on delay transitions and requiring discrete
transitions to synchronize on complementary actions (i.e., a? is comple-
mentary to a!) [10].

9.2 Preliminaries 119

9.2.3 Symbolic Optimal Reachability

The text in this subsection is an adaptation for single-cost PTA, of the
similar one presented by Larsen and Rasmussen, for dual-priced PTA [7].
Symbolic techniques are required in analysis of infinite state systems.
They provide effective way to describe and manipulate set of states si-
multaneously. To enable cost-optimal analysis such techniques are en-
riched with cost information annotated to each individual symbolic state
[11].

A priced transition systems with a structure τ = 〈S, s0, Σ, →〉, where
S is a set of states, s0 ∈ S is the initial state, Σ is a finite set of labels,
and → is a partial function from S × Σ × S into the non-negative reals,
R≥0 defines all possible systems transitions with their respective costs.

An execution of τ is a sequence γ = s0
a1,p1
→ s1

a2,p2
→ . . .

an,pn
→ sn. The

cost of γ with respect to some goal state G ⊆ S, is defined as:

COSTG(γ) =

{

∞, if ∀ i ≥ 0 : si /∈ G
∑n

i=1
pi, if ∃ n ≥ 0 : si ∈ G ∧ ∀ 0 ≤ i < n : si /∈ G.

For a given state s, the minimum cost of reaching s is the infimum of
the costs of the finite traces ending in s. Dually, the maximum cost of
reaching s is the supremum of the costs of the finite traces ending in s.
Similarly, the minimum/maximum cost of reaching a set of states G ⊆ S

is:

inf {COSTG(γ) : γ ∈ Γ}, and
sup{COSTG(γ) : γ ∈ Γ}

where Γ is a set of all executions of a priced transition system τ .
To effectively analyze the priced transition systems, priced symbolic

states of the form (A, π) are used, where A ⊆ S is a set of states, and π :
A → R≥0 assigns non-negative costs to all states of A. The reachability
of the priced symbolic state (A, π), assumes that all s ∈ A are reachable
with all cost in π(s). To express successors of priced symbolic states, a
Post-operator P osta(A, π) = (posta(A), η(A)) is expressed as:

posta(A) = {s
′

| ∃s ∈ A : s
a,p
→ s′}

η(A) = {π(s′) + p | s′ ∈ A ∧ s′ a,p
→ s}

A symbolic execution of a priced transition system τ is a sequence β

= (A0, π0), . . . , (An, πn), where for i < n, (Ai+1, πi+1) = P ostai(Ai, πi)

120 Paper D

for some ai ∈ Σ and A0 = {s0} and π0(s0) = 0. The relation between
executions and symbolic executions is expressed as follows:

• For each execution γ of τ ending in s, there is a symbolic execution
β ending in (A, π) such that s ∈ A and COST(γ) ∈ π(s).

• Let β be a symbolic execution of τ ending in (A, π); then for
each s ∈ A and p ∈ π(s), there is an execution γ ∈ s such that
COST(γ) = p.

From the statements above one can notice that symbolic states ac-
curately capture the cost of reaching all states in the state space.

9.3 Algorithms for Service Strongest Post-

condition Calculation

In cases when more Remes services that deliver the same or similar
functionality are available, it becomes beneficial to check the correctness
of those services w.r.t. the requirement defined by a service user. To
provide constructs for correctness check of a Remes service, described
in Section 9.2 and introduced in [5], we will use Hoare triples and a
forward analysis technique, which assumes computations of the strongest
postconditions of a Remes service, with respect to a given precondition.
To prove the correctness of a Remes service in isolation, we check the
Boolean implication between the calculated strongest postcondition and
the given user requirement, reducing it to a simple proof.

Previously [5], we have focused on less complex systems and employed
the guarded command language (GCL) [12] to prove service correctness
by hand. In this paper, we aim for a more automated mechanism to
check service correctness, focusing on defining algorithms that facili-
tate such computation for Remes services formally described as PTA.
Each Remes service can be transformed into PTA, by the set of rules
defined in [13]. Equipped with such a transformation, we can perform
minimum/maximum resource-usage trace computation on the resulting
PTA, while carrying out the strongest postcondition analysis.

The Remes models transformed to PTA are assumed to be deadlock
free, limited2, and no infinite delays are allowed, which are implemented

2A global finite-domain data variable can be incremented on each edge, in order
to prove model boundness.

9.3 Algorithms for Service Strongest Postcondition

Calculation 121

by associating a time invariant to each automaton location. The algo-
rithms presented in this paper are inspired by the symbolic reachability
algorithms for computing the minimal and the maximal reachability cost,
respectively, proposed by Larsen and Rasmussen [7].

In the following, we recall the notion of strongest postcondition, as
introduced by Dijkstra and Sholten [14], and the program correctness
check based on it. Next, we introduce two algorithms that compute
the strongest postcondition of a Remes service formally described as
PTA, together with the minimum/maximum cost reachability analysis,
respectively.

9.3.1 Strongest Postcondition

Assume {p}S{q} is a Hoare triple, where p and q are predicates denoting
the partial correctness of service S with respect to precondition p and
postcondition q. According to Dijkstra and Sholten [14], the strongest
postcondition transformer, denoted by (sp.S.p), is a set of final states
for which there exists a computation controlled by S, which belongs to
class “initially p”. Given that p holds, execution of a service S results in
sp.S.p true, if S terminates. Proving the Hoare triple, that is, proving
the correctness of service S, reduces to showing that (sp.S.p ⇒ q) holds.

To illustrate the strongest postcondition calculation on a simple state-
ment, let us assume that a service performs a simple subtraction oper-
ation (x := x − 5) and that the provided precondition is p = (x > 15),
while the requirement is q = (x > 10). Then, calculating the strongest
postcondition reduces to the following:

sp.(x := x − e).p(x) = (∃x0 · x = x0 − 5 ∧ (x0 > 15))

where x0 is the initial value of x. Verifying the correctness of S, with
respect to p, and q above, reduces to showing that:

∃x0 · x = x0 − 5 ∧ (x0 > 15) ⇒ (x > 10)

9.3.2 Strongest postcondition calculation and mini-

mal cost reachability

In this section, we show the algorithm that computes the strongest post-
condition, and the minimal cost of resource consumption for a given Re-

mes service, formally described as a PTA.

122 Paper D

Algorithm 1 employs two data-structures, Waiting and Passed to
hold the priced symbolic states waiting to be examined, and those that
are already explored, respectively. At each iteration, the algorithm se-
lects a priced symbolic state (A, π) from Waiting. If (A, π) is a goal
state3 not contained in a goal state previously stored in SP, it is added
to the calculated postcondition SP. Otherwise, if it is not a goal state
and not contained in a symbolic state previously stored in Passed, it
is added to Passed, and all its successor states are added to Waiting.
When Waiting is empty, the strongest postconditions calculated for
each path reaching the goal state are returned.

We define Final (A, π) as follows:

Final (A, π) =

{

true, if (A, π) ∈ G

false, otherwise

where G denotes the final state.
The algorithm terminates when Waiting is empty, that is, when

no further priced symbolic state is left to be examined. The algorithm
results in a set of strongest postconditions SP. Termination of the al-
gorithm is guaranteed, provided that 6⊑inf is a well quasi-ordering on
symbolic states [11].

Relying on the fact that the algorithm takes into consideration priced
symbolic states, and that by checking (B, η) 6⊑inf (A, π) we ensure that
there are no states in Passed that dominate the current state, that is,
the state (A, π) is “as big and cheap” as (B, η), information about the
minimum cost is carried within the calculated strongest postcondition.

00 SP := {}
01 Passed := {}
02 Waiting := {({A0}, π0)}
03 while Waiting 6= {} do

04 select (A, π) from Waiting

05 if (Final (A, π) ∧ ∀ (B, η) ∈ SP : (B, η) 6⊑inf (A, π))
06 then SP := SP ∪ (A, π) else

07 if ∀ (B, η) ∈ Passed : (B, η) 6⊑inf (A, π) then

08 Passed := Passed ∪ {(A, π)}
09 Waiting := Waiting ∪

⋃

a∈Σ P osta(A, π)

3Note that, in a PTA describing a Remes service, the goal state is determined by
a unique location and hence, if Final (A, π) holds, then the whole of (A, π) is a goal
state.

9.3 Algorithms for Service Strongest Postcondition

Calculation 123

10 end if

11 end if

12 end while

13 return SP

Algorithm 1. Abstract algorithm for computing the service strongest postcondition
and the minimal reachability cost of reaching the goal state.

As stated, the algorithm provides a set of strongest postconditions cal-
culated for distinctive paths that reach the goal state (location) in PTA.
Finally, to provide the strongest postcondition, we also simplify the set
SP. The strongest postcondition can be simplified as follows:

∀ (A, π)i ∈ SP :
⋃

j 6= i

(A, π)j 6⊑inf (A, π)i

The simplification assumes that each symbolic priced state that is not
included into the reunion of all other symbolic priced states is subtracted.
For more details regarding simplification, we refer the reader to [15,16].

9.3.3 Strongest postcondition calculation and maxi-

mal cost reachability

Algorithm 1 can be modified to provide the strongest postcondition cal-
culation together with maximal cost. We here briefly sketch the required
modifications. Like in the above, we assume that all paths eventually
reach the goal state. The modification concerns the lines 05 to 07 of
Algorithm 1, which should be modified as follows:

05 if (Final (A, π) ∧ ∀ (B, η) ∈ SP : (B, η) 6⊒sup (A, π))
06 then SP := SP ∪ (A, π) else

07 if ∀ (B, η) ∈ Passed : (B, η) 6⊒sup (A, π)) then

Algorithm 2. Extract of abstract algorithm for computing the service strongest
postcondition and the maximal reachability cost of reaching the goal state.

Hence, the only difference from the previous algorithm is in the pruning
of symbolic priced states before adding them to Passed or SP. Any
symbolic state (A, π) can be pruned if there exists already a symbolic
state (B, η) such that A ⊆ B and π(s) � η(s) for all states s ∈ A.

124 Paper D

Similarly, the strongest postcondition can be simplified as follows:

∀ (A, π)i ∈ SP :
⋃

j 6= i

(A, π)j 6⊒sup (A, π)i

9.4 An Illustrative Example

l2l1

y<=1 && cost’==3

l0

y<=1 && cost’== 2

y>x

cost+=2

x:=0,
cost+=1

n>0
x:=0,
n=n-1,
cost+=1

Figure 9.1: PTA model of example

To illustrate our approach, we consider the simple PTA shown in
Fig. 9.1. It consists of three locations l0, l1, and l2, and four transitions.
The timing behavior is expressed using the two clocks x and y, initially
set to zero. In the automaton, it is possible to delay either in location
l0 or l1. Location l2 is assumed to be the final location (in which the
automaton immediately terminates). From l0 it is possible to take a
self-loop, for maximum two times (if integer n is initially set to two)
and then take one of the available transitions, or directly take one of the
available transitions that lead to location l1, and finally end up in the
final location l2. Staying in either l0 or l1, or taking any of the available
transitions brings the additional cost, 2 or 3 per time unit, respectively,
annotated via the cost variable. We are interested in calculating both,
the minimum and the maximum cost for reaching the final location (l2)
and the respective strongest postcondition.

Let us now assume that our example PTA describes a Remes service,
annotated with precondition p, which we assume satisfied, and postcon-
dition q, which represents the service requirement, as follows:

p = (n = 2 ∧ x = 0 ∧ y = 0)
q = (n ≥ 0 ∧ y ≥ x ∧ 0 ≤ r ≤ 10)

9.4 An Illustrative Example 125

In the above, x and y are clock variables, n is an integer variable that
bounds the number of loop iterations in location l0, and r is the variable
modeling the resource usage of the original service. In the corresponding
PTA representation, r translates into the automaton’s cost variable.

According to our methodology, to verify the correctness of the service
with respect to p and q, we need to first compute the strongest postcon-
dition of the corresponding PTA, under the assumption of worst-case
resource usage, meaning of maximum cost in PTA terms. This is needed
in order for the requirement to be met for any possible behavior, includ-
ing the worst-case one.

1
cost = 2y

ρ1

max cost (ρ1) = 0

x

y

1
cost = 2y + 4

ρ4

max cost (ρ5) = max cost (ρ4) + 3 = 7

x

y

1
cost = 3y + 4

ρ5

x

max cost (ρ4) = max cost (ρ3) + 2 = 4

y

cost = 2y + 1

ρ2

x

y

max cost (ρ2) = max cost (ρ1) + 1 = 1

1
cost = 2y + 2

ρ3

x

y

max cost (ρ3) = max cost (ρ2) + 1 = 2

1

Figure 9.2: Symbolic states for maximum reachability cost

Fig. 9.2 depicts a trace of the reachability analysis, assuming the
maximum cost of reaching the goal location. In this case, we illustrate
a trace that performs two self-loops in l0, and then transits to l1 via the
lower of the two possible edges. The costs are 2y, 2y + 1, and 2y + 2
in l0 and then 3y + 4 in l1 (and in l2). The strongest postcondition
w.r.t. maximum cost of the trace becomes cost = 3y + 4 ∧ y ≤ 1 ∧ x <

126 Paper D

y ∧n = 0. The total SP of the whole PTA w.r.t. maximum cost becomes

(cost = 3y + 1 ∧ y ≤ 1 ∧ x ≤ y ∧ n = 2) ∨
(cost = 3y + 2 ∧ y ≤ 1 ∧ x ≤ y ∧ n = 1) ∨
(cost = 3y + 3 ∧ y ≤ 1 ∧ x ≤ y ∧ n = 0) ∨
(cost = 3y + 3 ∧ y ≤ 1 ∧ x < y ∧ n = 1) ∨
(cost = 3y + 4 ∧ y ≤ 1 ∧ x < y ∧ n = 0)

By applying simple rules of logic, it is easy to verify that the above
maximum cost strongest postcondition implies the following predicate:

w = (1 ≤ cost ≤ 7 ∧ x ≤ y ∧ n ≥ 0)

Next, after replacing r by cost in q, it follows straightforwardly that
w ⇒ q, which entails, by transitivity of the implication, that the strongest
postcondition for maximum cost implies the requirement q. This actu-
ally proves the correctness of our original service, including its feasibility
w.r.t. worst-case resource usage.

However, let us assume now that we would like to check whether our
service could be optimized w.r.t. its resource usage, such that our system
could accommodate more, within the same resource budget. For this,
we formalize a new requirement, as follows:

qrmin
= (n ≥ 0 ∧ y ≥ x ∧ 0 ≤ r ≤ 6)

Proving correctness of the PTA w.r.t. this new requirement requires a
new strongest postcondition computation, for minimum cost, according
to Algorithm 1.

1
cost = 2y

ρ1

x

1
cost = 2y + 1

ρ2

x

yy

min cost (ρ1) = 0 min cost (ρ2) = min cost (ρ1) + 1 = 1

Figure 9.3: Symbolic states for minimum reachability cost

In Fig. 9.3, we illustrate one trace of the minimum cost reachability
analysis that reaches the goal location l2. Note that in the minimum

9.5 Discussion and Related Work 127

cost case, it is optimal to reach l2 in zero time units, via location l1. The
accumulated cost is then 1. In case of the total accumulated delay 1,
it is optimal to delay in l0 with cost 2, hence the cost of reaching l2 is
2y+1 and the strongest postcondition for this trace is cost = 2y+1∧y ≤
1 ∧ x ≤ y ∧ n = 2.

There are four more traces reaching l2. The total SP becomes

(cost = 2y + 1 ∧ y ≤ 1 ∧ x ≤ y ∧ n = 2) ∨
(cost = 2y + 2 ∧ y ≤ 1 ∧ x ≤ y ∧ n = 1) ∨
(cost = 2y + 3 ∧ y ≤ 1 ∧ x ≤ y ∧ n = 0) ∨
(cost = 2y + 3 ∧ y ≤ 1 ∧ x < y ∧ n = 1) ∨
(cost = 2y + 4 ∧ y ≤ 1 ∧ x < y ∧ n = 0)

Again, we can easily prove that the above strongest postcondition
implies the following:

v = (1 ≤ cost ≤ 6 ∧ x ≤ y ∧ n ≥ 0),

which in turn implies qrmin
, with r replaced by cost. It then follows by the

transitivity property of the implication that the minimum-cost strongest
postcondition implies, in turn, qrmin

, which completes our correctness
proof.

9.5 Discussion and Related Work

Beek et al. [17] give an exhaustive survey on several popular approa-
ches [1–4] that provide means for service modeling, service composition,
and service correctness check. While all described approaches provide
rich environment for service modeling and composition, previously nei-
ther of them have included direct support for service correctness check.
To overcome this limitation, recently, in some of these approaches [18–20]
formal methods have been employed with intention to provide guarantees
for web-service compositions.

Díaz et al. describe how BPEL and WS-CDL services can be auto-
matically translated to timed automata and verified by Uppaal model
checker [18]. However,described approach is limited to checking service
timing properties. Narayanan et al. show how semantics of OWL-S de-
scribed using first-order logic can be translated to Petri-nets and then
analyzed as such [19]. Analysis includes includes reachability and live-
ness properties and checking if the given service or service compositions
are deadlock free.

128 Paper D

Compared to these approaches, Remes services can be both mechan-
ically reasoned about [5], but also, automatically translated to PTA [9]
where one can apply algorithmic computation of the strongest postcon-
dition of PTA, as presented in this paper. Moreover, Remes services
formally described as PTA can be analyzed with Uppaal , or Cora

tools 4, for functional but also extra-functional behaviors.

9.6 Conclusions

In this paper, we have presented an approach that facilitates an au-
tomated correctness check for services formally described as PTA, by
providing forward analysis algorithms that compute the most precise
postcondition (strongest postcondition) that is guaranteed to hold upon
termination of the service execution, which corresponds to reaching a
final PTA location. The approach serves as the algorithmic alternative
verification method for services modeled as Remes modes, to the de-
ductive method that uses Hoare triples and the strongest postcondition
semantics to prove service correctness [5].

In our previous work, we show that proving the correctness of a Re-

mes service reduces to showing that the calculated strongest postcondi-
tion of that particular service is at least as strong as the user-defined
requirement, if not stronger. The algorithms that we propose com-
bine the strongest postcondition calculation for PTA with minimum-
and maximum-cost reachability algorithms, already existing in the liter-
ature [7]. In our case, the cost variable models the service’s accumulated
resource-usage. Consequently, the computed strongest postcondition of
a service modeled as a PTA could contain both functional, but also tim-
ing and resource-usage information, observable at the end of the service
execution.

The approach is illustrated on a small example, on which we also show
resource usage/cost calculation using symbolic states, for the example
service.

As future work, we plan to investigate the possibility of implementing
the introduced strongest postcondition algorithms in the Cora tool.
We also intend to extend the Remes tool-chain with a postcondition
calculator that would run Cora as a back-end.

4For more information about the Uppaal and Cora tool, visit the web page
www.uppaal.org.

Bibliography

[1] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland,
Johannes Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug
Smith, Satish Thatte, Ivana Trickovic, and Sanjiva Weerawarana.
BPEL4WS, Business Process Execution Language for Web Services
Version 1.1. IBM, 2003.

[2] Nickolas Kavantzas, David Burdett, Greg Ritzinger, Tony Fletcher,
Yves Lafon, and Charlton Barreto. Web services choreography de-
scription language version 1.0. World Wide Web Consortium, Can-
didate Recommendation CR-ws-cdl-10-20051109, November 2005.

[3] Object Management Group (OMG). Business Process Modeling
Notation (BPMN) version 1.1., January 2008.

[4] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubén
Lara, Michael Stollberg, Axel Polleres, Cristina Feier, Christoph
Bussler, and Dieter Fensel. Web service modeling ontology. Applied
Ontology, 1(1):77–106, 2005.

[5] Aida Causevic, Cristina Seceleanu, and Paul Pettersson. Mod-
eling and reasoning about service behaviors and their composi-
tions. In Proceedings of 4th International Symposium On Lever-
aging Applications of Formal Methods, Verification and Validation
(ISOLA 2010), Formal Methods in Model-Driven Development for
Service-Oriented and Cloud Computing track. Springer LNCS, Oc-
tober 2010.

[6] Cristina Seceleanu, Aneta Vulgarakis, and Paul Pettersson. Remes:
A resource model for embedded systems. In In Proc. of the 14th

131

132 Bibliography

IEEE International Conference on Engineering of Complex Com-
puter Systems (ICECCS 2009). IEEE Computer Society, June 2009.

[7] Kim Guldstrand Larsen and Jacob Illum Rasmussen. Optimal
reachability for multi-priced timed automata. Theor. Comput. Sci.,
390:197–213, January 2008.

[8] R. Alur and D. L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[9] Rajeev Alur. Optimal paths in weighted timed automata. In In
HSCCć01: Hybrid Systems: Computation and Control, pages 49–
62. Springer, 2001.

[10] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen,
Paul Pettersson, Judi Romijn, and Frits Vaandrager. Minimum-
Cost Reachability for Priced Timed Automata. In Maria
Domenica Di Benedetto and Alberto Sangiovanni-Vincentelli, ed-
itors, Proceedings of the 4th International Workshop on Hybris Sys-
tems: Computation and Control, number 2034 in Lecture Notes in
Computer Sciences, pages 147–161. Springer–Verlag, 2001.

[11] Kim Guldstrand Larsen, Gerd Behrmann, Ed Brinksma, Ansgar
Fehnker, Thomas Hune, Paul Pettersson, and Judi Romijn. As
cheap as possible: Efficient cost-optimal reachability for priced
timed automata. In Proceedings of the 13th International Con-
ference on Computer Aided Verification, CAV ’01, pages 493–505,
London, UK, 2001. Springer-Verlag.

[12] Edsger W. Dijkstra. Guarded commands, nondeterminacy and for-
mal derivation of programs. Commun. ACM, 18(8):453–457, 1975.

[13] Marin Orlić. Resource usage prediction in component-based software
systems. Phd thesis, Faculty of electrical engineering and comput-
ing, University of Zagreb, November 2010.

[14] Edsger W. Dijkstra and Carel S. Scholten. Predicate calculus and
program semantics. Springer-Verlag New York, Inc., New York, NY,
USA, 1990.

[15] Pao-Ann Hsiung and Shang-Wei Lin. Model checking timed sys-
tems with priorities. In Proceedings of the 11th IEEE International

Conference on Embedded and Real-Time Computing Systems and
Applications, RTCSA ’05, pages 539–544, Washington, DC, USA,
2005. IEEE Computer Society.

[16] Alexandre David, John Håkansson, Kim Larsen, and Paul Petters-
son. Model checking timed automata with priorities using dbm
subtraction. In Eugene Asarin and Patricia Bouyer, editors, For-
mal Modeling and Analysis of Timed Systems, volume 4202 of Lec-
ture Notes in Computer Science, pages 128–142. Springer Berlin /
Heidelberg.

[17] Maurice H. Ter Beek, Antonio Bucchiarone, and Stefania Gnesi.
Formal methods for service composition. Annals of Mathematics,
Computing & Teleinformatics, 1(5):1 – 10, 2007. In: Annals of
Mathematics, Computing & Teleinformatics, vol. 1 (5) pp. 1 - 10.
Technological Education Institute of Larissa (TEIL), Greece, 2007.

[18] Gregorio Díaz, Juan José Pardo, María-Emilia Cambronero,
Valentin Valero, and Fernando Cuartero. Automatic translation
of ws-cdl choreographies to timed automata. In Mario Bravetti,
Leïla Kloul, and Gianluigi Zavattaro, editors, EPEW/WS-FM, vol-
ume 3670 of Lecture Notes in Computer Science, pages 230–242.
Springer, 2005.

[19] Srini Narayanan and Sheila A. McIlraith. Simulation, verification
and automated composition of web services. In WWW ’02: Pro-
ceedings of the 11th international conference on World Wide Web,
pages 77–88, New York, NY, USA, 2002. ACM.

[20] Gwen Salaün, Lucas Bordeaux, and Marco Schaerf. Describing and
reasoning on web services using process algebra. In ICWS ’04:
Proceedings of the IEEE International Conference on Web Services,
page 43, Washington, DC, USA, 2004. IEEE Computer Society.

