
A Trace-Based Statistical Worst-Case Execution Time Analysis of Component-Based
Real-Time Embedded Systems

Yue Lu1, Thomas Nolte1, Iain Bate2, and Liliana Cucu-Grosjean3

1Mälardalen Real-Time Research Centre (MRTC), Västerås, Sweden
2Department of Computer Science, University of York, York, United Kingdom

3INRIA Nancy-Grand Est, Nancy, France

yue.lu@mdh.se

Abstract—This paper describes the tool support for a
framework for performing statistical WCET analysis of real-
time embedded systems by using bootstrapping sampling and
Extreme Value Theory (EVT). To be specific, bootstrapping
sampling is used to generate timing traces, which not only fulfill
the requirements given by statistics and probability theory,
but also are robust to use in the context of estimating the
WCET of programs. Next, our proposed statistical inference
uses EVT to analyze such timing traces, and computes a
WCET estimate of the target program, pertaining to a given
predictable probability. The evaluation results show that our
proposed method could have the potential of being able to
provide a tighter upper bound on the WCET estimate of the
programs under analysis, when compared to the estimates given
by the referenced WCET analysis methods.

I. INTRODUCTION

The design of a Real-Time System (RTS) revolves heavily

on a model known as a task schedule, which allocates the

CPU resource to executing tasks. Many different scheduling

algorithms [1] are invented, all of which depend on some

temporal properties pertaining to each task. One such prop-

erty is the Worst-Case Execution Time (WCET), which is

the longest time a piece of software will execute without

any interrupts, on a particular hardware platform. A lot of

research has been done in the field of WCET analysis, and

a good overview can be found in [2]. Techniques to perform

WCET analysis can broadly be categorized as Static WCET
Analysis (SA), Measurement-Based WCET Analysis (MBA),

Hybrid Measurement-Based WCET Analysis (HMBA) and

statistical WCET analysis [3]. Because of high complexity,

WCET analysis tools are often not able to find the exact

WCET [4].

Both SA and HMBA have to get the access to the source

code or the ability to dissemble the binary in order to

construct the program model used in analysis. However, both

of these assumptions are challenged when the source code

is not available, and/or even disassembling of its object code

is disallowed, along with the lines of protecting intellectual

property. This is very likely to be a typical case about the

construction of real-time embedded systems which are built

up on a number of prefabricated pieces of software called

components, which is a pervasive area of interest. Only the

relocatable object code of a component is shipped to the

client so that it can later be linked into overall application.

Consequently, existing SA and HMBA techniques to WCET

analysis are not ideal in above context, and the only alter-

native to obtain a WCET estimate is through MBA.

The problems of MBA lie: 1) MBA may not guarantee

to find the actual WCET in the general case, and may

consequently underestimate the WCET and, 2) To remedy

the situation, a safe margin or an ad hoc safety factor
is usually to be added to the WCET estimate given by

MBA, which for instance is from engineering wisdom from

previous projects. Nonetheless, there is no systematic way

to determine the appropriate safety margin or predict how

good the WCET estimate will be, and if the actual WCET

is bounded. Moreover, when the High Water-Mark Time

(HWMT) given by MBA equals the actual WCET in fact

but safety margin is too excessive, there could also lead to

be severe underutilization of system resources.

In this paper, we propose a statistical WCET analysis

method based on measurements, which does not require

the disassembly or source code. Typically, our method is

comprised of a novel sampling mechanism (which tackles

with some problems raised when statistics is used in WCET

analysis) and a statistical inference about computation of a

WCET estimate of the program under analysis, with a certain

predictable probability. The evaluation results show that our

proposed method could have the potential of providing a

tighter upper bound on the WCET of the program under

analysis, when compared to the referenced measurement-

based WCET analysis methods.

II. PROBLEM OVERVIEW AND OUR CONTRIBUTIONS

Throughout this work, we particularly study the problems

about using statistics in WCET analysis proposed by Griffin

in [5]. Such problems are critical for which we mention them

next.

The first problem argued by Griffin is that the Gumbel

distribution, along with any other continuous probability dis-

tribution, makes an assumption that all values are possible.

However, the control flow graph of a program shows that

a program cannot terminate at any point. Therefore, it is

not realistic to use a continuous random variable i.e., the



Gumbel Max distribution in EVT, to model the execution

time of the program.

Moreover, Griffin also introduced the second problem

about using statistics in WCET analysis, i.e., the i.i.d. as-
sumption in EVT. To be specific, EVT makes the assumption

required by statistics and probability theory, i.e., the obser-

vations (or analysis samples) have to be independent and
identically distributed (i.i.d.). Unfortunately, the execution

times of programs usually are not independent or identically

distributed, for instance, due to the dependencies between

different states of the data structure in the program. So

for some systems, such i.i.d. assumption is not a practical

assumption.

Clearly, before any statistics is used in WCET analysis,

the above two problems have to be tackled. Nonetheless,

the analysis samples collected by using traditional sampling

mechanism, i.e., end-to-end measurements, can never ever

fulfill the i.i.d. assumption. A new way of collecting quali-
fied analysis samples (or individuals) which could be used

by statistics is thereby necessary. The contributions of this

paper concern both aspects:

1) In Section III-A, we propose a novel sampling mecha-

nism by employing the simple random sampling tech-

nique with bootstrapping to collect qualified and robust

analysis samples (i.e., timing traces), which can be used

by our proposed statistical inference.

2) We propose a statistical WCET analysis method namely

RapidET which computes a WCET estimate of the

program under analysis based around analyzing timing

traces, by using EVT.

Our research problem can be defined as follows: We are

given a program p which is running on a specific hardware

platform S. The goal of the problem is then to find an

estimate, under a certain probability of being exceeded Pe.

In addition, by given some hard statistical constraint (i.e., a

lower value of Pe), such the estimate could have the potential

of bounding the actual WCET1 of the program p.

III. A STATISTICAL WCET ANALYSIS RAPIDET

This section is split into two parts: Section III-A explains

our proposed bootstrapping sampling, and Section III-B

introduces our proposed statistical WCET analysis based

around EVT.

A. Bootstrapping for Collecting Timing Traces Taken from
Programs

Our bootstrapping sampling proposed in this work con-

sists of three steps, which are about the collection of non-
i.i.d. SRS samples, i.i.d. SRS samples and bootstrap samples
respectively. The three steps, namely:

1) Construction of non-i.i.d. SRS samples: First, when

any type of statistical techniques is applied to analyze

1When the actual WCET is possible to deduce.

the observations (or samples)2, there is a key issue

of selecting such samples from the population of all

individuals concerning the desired information, i.e., any

bias on the sampling has to be avoided. In this work,

we therefore employ the technique of Simple Random

Sample (SRS) [6], which gives every possible sample of

a given size the same chance to be chosen. Practically,

the SRS can be done in terms of randomizing program

inputs by using the uniform distribution. Due to the

existence of dependencies between different states of

the data structure in the program, an upcoming ET data

may not be independent with the ET data previously

measured at program executions, when the SRS tech-

nique is used. This violates i.i.d. assumption required

by any statistical methods. We refer to the samples

collected at this step as non-i.i.d. program SRS ET
samples.

2) Construction of i.i.d. SRS samples: In order to tackle

with the problem about non-i.i.d. program SRS ET

samples, we propose to first execute the target program

for n times by using the SRS technique which results

in n sub-timing traces, and each of sub-timing traces

contains m non-i.i.d. program SRS ET samples. Next,

per sub-timing trace, the highest value of m ET data

of the program measured, will be chosen as a sample

to construct the new sampling distribution of the i.i.d.

SRS ET data samples of the program. Since there are

no dependencies between any maximum of the ET data

of the program from two independent sub-timing traces,

as a result, all the individuals in the new reconstructed

sampling distribution are mutually independent. Hence,

the underlying i.i.d. assumption is satisfied. We call

such new constructed ET data sampling distribution

of the program as the i.i.d. program SRS ET samples,

hereafter.

3) Construction of bootstrap samples: With the inten-

tion to have more robust analysis samples, we will

use bootstrapping, which draws randomly with replace-

ment from n i.i.d. program SRS ET samples for N

times. Consequently, there are N program bootstrap ET
samples. It is interesting to note that resampling with

replacement means that after an observation from the

i.i.d. program SRS ET samples is randomly drawn, it

will be placed back before drawing the next observa-

tion [7].

The detailed implementation of SRS is the function SRS
as shown in line 2 in Algorithm 1 (i.e., pseudo-code for

our proposed statistical WCET analysis which is to be

introduced in Section III-B), where the parameters P and

m represent the program under analysis and the certain

number of timing traces taken from the target program

2From such observations, some interesting conclusions based on hypoth-
esis tests can be drawn.



Figure 1. The workflow for bootstrapping sampling we developed
in this work.

respectively. It is interesting to stress that the SRS technique

also gives us the confidence that no matter how big the

population is, the statistical inference based on the sampling

distribution collected by using SRS can successfully estimate

the parameters of the underlying population [6], such as the

tail behavior of the underlying population, i.e., the WCET of

the programs under analysis in our case. The implementation

of bootstrapping sampling as a whole can be found in lines

from 1 to 6, and RR is the function Resampling with
Replacement, where X is n i.i.d. program SRS ET samples,

and N is the number of program bootstrap ET samples. The

workflow pertaining to bootstrapping sampling in this work

is shown by Figure 1.

B. RapidET

Our proposed statistical WCET analysis method RapidET
is based on EVT. Furthermore, RapidET is a recursive

procedure which, as the first three arguments, takes n and

m, to generate N bootstrap samples pertaining to programs’

execution times. The algorithm next returns the WCET

estimate of the program under analysis with a probability

of being exceeded, e.g., 10−9, which is the fourth algorithm

argument. For instance, Airbus [8] uses such the value 10−9

which is at the highest development assurance level in the

safety-critical system domain. The last parameter PGOF , i.e.,

the significance level of the hypothesis tests used in RapidET

is chosen as 0.05, which is a typical value and based on

preliminary assessments provides appropriate results [9].

RapidET consists of the following two steps: 1) construc-

tion of the bootstrap samples and, 2) derivation of a WCET

estimate of bootstrap samples by using EVT that is given

by the algorithm. Moreover, the outline of the algorithm is

as follows:

1) Construct N bootstrap samples for the WCET estimates

by using our bootstrapping sampling described in Sec-

tion III-A.

2) Calculate the WCET estimate of the bootstrap samples,

i.e., X∗.

a) Set the initial block size b to 1.

b) If the number of blocks k =
⌊

X∗

b

⌋
is less than 30,

the algorithm stops as there are not enough samples

to generate an estimate [10].

c) Segment X∗ execution times into blocks of size b,

and for each of the

⌊
X∗

b

⌋
blocks find the maximum

values.

d) Estimate the best-fit parameters of the Gumbel Max

distribution, i.e., μ and β to the block maximum val-

ues, by using a proposed exhaustive search algorithm

together with Chi-square test. The pertaining imple-

mentation is shown in lines 7 to 21 in Algorithm 1.

e) Calculate a WCET estimate based on Equation 1

which uses the best-fit Gumbel Max parameters

estimated through Step d), i.e., μ, β, and a target

acceptance probability Pe.

est = μ − β × log(−log((1 − Pe)b)) (1)

Algorithm 1 RapidET (n,m, N, Pe, PGOF )
1: for all xi such that 1 ≤ i ≤ n do
2: eti ← eti,1, ..., eti,m ← SRS(P, m)
3: xi ← MAX(eti)
4: end for
5: X ← x1, ..., xn

6: X∗ ← RR(X, N)
7: b ← 1

8: k ←
⌊

X∗

b

⌋

9: success ← false
10: while k ≥ 30 and success = false do
11: Si ← si,1, ..., si,k ← segment(N, b)
12: Yi ← yi,1, ..., yi,k ← maxima(Si)
13: if passChiSquareTest(Yi, GumbelMax, PGOF ) > 0 then
14: success ← true
15: μ, β ← ChiSquareTest(Yi, PGOF )
16: estet ← evtgumbelmax(b, μ, β, Pe)
17: else
18: b ← b + 1

19: k ←
⌊

X∗

b

⌋

20: end if
21: end while
22: return estet

IV. EVALUATION

We present some preliminary evaluation results of the

programs bubblesort, quicksort and janne complex which

are taken from the Mälardalen suite [11], by using our

proposed method. The reasons for evaluating these programs

are: 1) They are often used by many groups in WCET

analysis to evaluate their tools and, 2) They are particularly

appealing since the worst-case Test Vector (TV) is easy

to deduce [12], which is used to find the exact WCET of

the programs under analysis on our testbed. Due to space

restrictions, we cannot give the detailed description of each

program under investigation, and more details can be found

in [11].

As shown in Column Actual WCET in Table I, the actual

WCET of the programs under analysis3 is expected to be

in the proximity of 1 028 clock cycles (cc hereafter), 1 523

cc and 398 cc for bubblesort, quicksort and janne complex

respectively. Moreover, the results given by HWMT, HMBA

and RapidET can be found in Columns HWMT, HMBA and

RapidET separately in Table I.

3Such actual WCET of programs is obtained through the manual effort
on deducing the worst-case TVs in [12].



Clearly, as shown in Table II, under the assumption

that the actual WCET of the programs under analysis is

accurate given by the manual deduction, RapidET gives

the tightest upper bound on WCET estimates among all

the measurement-based WCET analysis methods used in

our evaluation, in terms of 1.36%, 2.27% and 6.82% more

pessimistic than the exact WCET respectively. It is also

interesting to stress that the WCET estimate given by

HWMT which is the state-of-the-art measurement-based

WCET analysis used in industry, cannot bound the actual

WCET of any of the three programs under investigation.

In addition, more programs in the Mälardalen suite will be

evaluated as part of our future work, since our evaluation

results show that the WCET estimate given by our proposed

statistical WCET analysis method may have the potential of

being a more accurate WCET upper bound of the program

under analysis, when compared to the existing measurement-

based WCET analysis.

Table I
ANALYSIS RESULTS GIVEN BY HWMT, HMBA WITH BASIC BLOCK

AND RAPIDET FOR THE PROGRAMS UNDER ANALYSIS. THE UNIT IS

ONE CC.

Program Actual WCET HWMT HMBA RapidET

bubblesort 1 028 1 008 1 818 1 042
quicksort 1 523 1 456 3 915 1 557.62

janne complex 398 367 743 425.16

Table II
THE PESSIMISM OF THE RESULTS GIVEN BY HWMT, HMBA WITH

BASIC BLOCK AND RAPIDET WHEN COMPARED TO THE ACTUAL WCET
OF THE PROGRAMS UNDER ANALYSIS.

Pessimism HWMT Actual WCET HMBA RapidET

bubblesort -1.95% - 76.85% 1.36%
quicksort -4.40% - 157.06% 2.27%

janne complex -7.79% - 86.68% 6.82%

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented the work towards us-

ing our proposed statistical Worst-Case Execution Time

(WCET) Analysis method RapidET, to compute a WCET

estimate of programs running on a single processor. To be

specific, RapidET consists of a novel bootstrapping sampling

mechanism and a statistical inference based around Extreme

Value Theory [13]. Moreover, our evaluation results show

that the obtained WCET estimates given by RapidET can

actually bound the exact value of the WCET of programs

in a less pessimistic way, when compared to the referenced

measurement-based WCET analysis methods. To our best

knowledge, this is the first work of WCET analysis for

programs running on a single processor, which involves

theoretically correct sampling mechanism and valid statis-

tical techniques for the characterization and computation of

execution time bounds on programs.

Future work will focus on a more thorough method

evaluation and the selection of good value of algorithm

parameters (from the perspective of accuracy of analysis

results), as well as how to use the obtained WCET estimates

and pertaining statistical constraints (i.e., certain predictable

probabilities) in response time analysis and schedulability

test which consider a system of tasks.

REFERENCES

[1] Handbook of Real-Time and Embedded Systems. Chapman
and Hall/CRC (July 23, 2007), 2007.

[2] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra,
F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Sten-
ström, “The worst-case execution-time problem—overview of
methods and survey of tools,” Trans. on Embedded Comput-
ing Sys., vol. 7, no. 3, pp. 1–53, 2008.

[3] Y. Lu, “Approximation Techniques for Timing Analysis of
Complex Real-Time Embedded Systems,” Lic. dissertation,
School of Innovation, Design and Engineering, October 2010.

[4] J. Kraft, “Enabling timing analysis of complex embedded
software systems,” Ph.D. dissertation, Mälardalen University
Press, August 2010.

[5] D. Griffin and A. Burns, “Realism in Statistical Analysis
of Worst Case Execution Times,” in Proceedings of the
10th International Workshop on Worst-Case Execution Time
Analysis (WCET’ 10), 2010.

[6] D. S. Moore, G. P. Mccabe, and B. A. Craig, Introduction to
the practice of statistics, 6th ed. New York, NY 10010: W.
H. Freeman and Company, 2009.

[7] J. L. Simon, Resampling: The New Statistics, 2nd ed. ACM
Press, 1997.

[8] “Airbus, www.airbus.com/en/, 2009.”

[9] S. Stigler, “Fisher and the 5% Level,” Journal of CHANCE,
vol. 21, no. 4, p. 12, 2008.

[10] J. Hansen, S. Hissam, and G. Moreno, “Statistical-Based
WCET Estimation and Validation,” in Proceedings of the
9th International Workshop on Worst-Case Execution Time
Analysis (WCET’ 09), 2009, pp. 123–133.

[11] “Website of the Mälardalen WCET benchmark,”
www.mrtc.mdh.se/projects/wcet/benchmarks.html.

[12] A. Betts and A. Marref, “WCET Analysis of Component-
Based Systems using Timing Traces,” in In Proceedings of
the 16th IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS’ 11), 2011.

[13] E. Gumbel, Statistics of Extremes. Columbia University
Press, 1958.


