
Enabling Trade-off Analysis of NFRs on Models of
Embedded Systems

Mehrdad Saadatmand, Antonio Cicchetti, Mikael Sjödin
Mälardalen Real-Time Research Centre (MRTC)

Mälardalen University, Västerås, Sweden
{mehrdad.saadatmand, antonio.cicchetti, mikael.sjodin}@mdh.se

Abstract—Satisfaction of Non-Functional Requirements (NFR),
is a key factor in successful design of embedded systems. This
is mainly due to the constraints and resource limitations in
these systems. A design that cannot achieve functionality of the
system under these limitations is actually a failure. Therefore,
NFRs in design of embedded systems deserve special attention.
However, one big issue is that NFRs are interconnected and
cannot be considered in isolation; especially that they can have
direct impacts on each other such as security and performance.
This means that a careful balance and trade-off analysis among
NFRs is necessary. In this paper, we focus on this need and
identify what information about NFRs is required in order to
perform trade-off analysis. We propose and explain our in-
progress approach to incorporate this information into system
models in order to enable trade-off analysis. Our approach is
based on UML profiling method to annotate model elements with
necessary information.

Index Terms—Non-Functional Requirements, Trade-off Anal-
ysis, UML, Embedded Systems, MDE.

I. INTRODUCTION

Successful design of embedded systems depends heavily
on satisfaction of their non-functional requirements. This is
mainly due to the constraints and limitations of these systems
in terms of available resources [1]. Therefore, an embedded
system needs to achieve its functionality under these limita-
tions and NFRs. The problem is that each design decision has
impacts on the system’s NFRs and the system designer should
be able to identify and evaluate these impacts. For example,
if there is an execution time constraint on a component
responsible for sorting some numbers then choosing a slower
algorithm than a more optimized one can lead to violation of
system requirements and failure of its desired functionality.
This situation becomes more complicated when we realize
that NFRs not only crosscut different parts of the system, but
also have impacts on each other. For example, choosing an
time-optimized and faster sorting algorithm might help with
satisfying timing requirements but may require more memory
and thus violate memory constraints. Also, an NFR such as
security crosscuts different parts of a system and affects some
other NFRs like performance [2].

In this paper, we propose a UML profile [3] for trade-
off analysis of NFRs by focusing on the needs of embed-
ded systems and the information and answers that trade-off
analysis of NFRs in these systems should be able to provide.
Enabling trade-off analysis of NFRs through a UML profile

has several key benefits. UML is a standard modeling solution
already used by industry and there are many design and
analysis tools based on it. By offering a UML-based solution
for trade-off analysis of NFRs, it becomes possible to make
use of currently available tools. Also, the learning curve for
developers already using UML will be less which implies
both cost and time savings for companies [3]. Moreover, the
approach we propose here tries to extend design models with
necessary information to enable trade-off analysis of NFRs,
and thus enables using already designed system models and
saves modeling efforts. We propose stereotypes in our profile
by which model elements can be decorated and related with
necessary information that enable designers to query models
for specific information about NFRs and trade-off analysis of
them.

The remainder of the paper is structured as follows. In
section 2, we discuss the required characteristics and informa-
tion that a solution for managing trade-offs of NFRs should
be able to offer considering the complications and needs of
embedded systems. In section 3, profile structure and concepts
are explained. Section 4 shows an application of the profile in
a portion of a mobile phone design and a trade-off analysis is
performed on the annotated model. In section 5, we will have
a look at other related works and finally in section 6, future
works are explained.

II. CHARACTERISTICS OF POSSIBLE SOLUTIONS

In this section we identify the key characteristics that a
model-based solution for representation and trade-off analysis
of NFRs should have.

Traceability of design decisions related to an NFR: consid-
ering that NFRs usually crosscut different parts of the system,
the designer should be able to understand which parts of
the system contribute (both positively and negatively) to a
specific NFR. For example, an encryption component is in-
tended to satisfy security requirements. With this information,
after trade-off analysis, the designer can identify parts of the
systems that should be removed, replaced, improved or kept.

Traceability among NFRs: throughout the whole design
process of a system, higher level NFRs are refined and broken
down into more concrete ones, particularly in a top-to-bottom
approach. For example, a high level and abstract NFR such
as security can be refined into access control or encryption
requirements at lower levels. Therefore, in order to check



satisfaction of security in the system, it is necessary to keep
track of its refinements and lower level requirements that cover
different aspects of security along with information on how
much each contributes towards its parent NFR.

Satisfaction level of an NFR: it should be possible to
evaluate the total satisfaction of an NFR in the system.
This is necessary to compare current design against system
specification and customer requirements as well as different
design alternatives. In the end, the goal is that the designer
gets an idea to what degree each NFR is satisfied.

Impact of an NFR on other NFRs: as mentioned before,
NFRs cannot be considered in isolation in a system without
taking into account their impacts on each other. Therefore, it is
required to identify and evaluate effects that a model element
and design decision that is used to satisfy one NFR, has on
another NFR in the system. For example, performing heavy
computations by an encryption component in an embedded
system can also mean consuming more battery. Therefore, the
side effects of such design decision should be identifiable for
the designer.

Priority of an NFR: all NFRs do not have the same impor-
tance in the system. In order to increase overall satisfaction
of NFRs and also to resolve conflicts among NFRs (reduce
impact of one NFR in favor of another), it is necessary to
know the importance of each NFR and compare them.

Coherent terms for NFRs: one subtle problem with NFRs
that is more often noticed in large enterprises, is that different
(sub)departments may have different interpretations for an
NFR term or use different terms to refer to an NFR. Therefore,
it is important to provide a coherent and consistent notation
for defining NFRs and relating them to design elements.

Coherent measurements of NFRs: to compare different
NFRs and perform trade-off analysis among them, evaluation
of the satisfaction degree and impacts of NFRs should follow a
coherent representation. In other words, the criteria or metrics
used, should be such that to allow pair-wise comparison of
NFRs (e.g. using the same types, scales and units, or a
convertible format).

III. SUGGESTED PROFILE

Figure 1 shows the structure of our profile to include the
necessary information mentioned in the previous section in
models to enable trade-off analysis of NFRs.
System: this stereotype is used to annotate the system

which is the context of the analysis and to which different
NFRs belong. It includes satisfactionValue tagged value to
represent quantitatively the total satisfactions of the system’s
NFRs.
NFR: each NFR is identified using this stereotype. A higher

level NFR (in terms of abstraction level) can be refined into
one or more other NFRs. Therefore, there is an association
relationship to itself (reflexive aggregation).
Feature: this stereotype which is an equivalent of Op-

erationalization concept in NFR framework and Softgoal
Interdependency Graph (SIG) [4], represents a feature in the
system that contributes to the satisfaction of an NFR.

Fig. 1. Profile for Trade-off analysis of NFRs

NFRContributes: this stereotype which is used on
relationships between model elements shows that an element
(NFR or Feature) contributes to the satisfaction of another
element. The contributionValue of this stereotype is used to
specify the degree of this contribution.

NFRImpacts: this is similar to NFRContributes stereo-
type, but is used to include the impact of a design decisions
and model element on other NFRs in the system in a quanti-
tative manner. ImpactValue attribute of this stereotype shows
the degree of the impact.

NFRCooperates: is used to relate two or more elements
that cooperate together to satisfy an NFR. This is similar to
the AND relation in NFR framework and SIG.

NFRApplies: the relation between NFR related model el-
ements and functional ones can be modeled using NFRApplies
stereotype (e.g. an NFR that applies to a component).

Rationale: this property and tagged value in NFR and
Feature stereotypes can be used to include the description
and rationale for an NFR, its refinements into other NFRs
or Features implementing that.

There are also several rules on the elements and their
relationships described above:

• The allowed range of values is between -1 and 1. For
example a negative value on the NFRImpacts relationship
shows the negative impact of the source element on the
target element.

• The satisfaction value for each leaf node is considered to
be 1.

• The sum of contribution values of the links connecting
children nodes (refinement/lower level elements) to their
parent should be less or equal to 1 (maximum is 1).

• Contribution of a child node to its parent is calculated as
the satisfactionValue of the child node multiplied by its
contributionValue or impactValue.

• The satisfactionValue of a node is, therefore, calculated
as the sum of the contributions from all of its children
nodes.



IV. USAGE EXAMPLE

The profile concepts described in the previous section were
implemented in MDT Papyrus [5]. In figure 2 an example
usage of the profile is shown on parts of a mobile phone
system. Two NFRs are defined. One for quality of the taken
camera picture and the other one for the battery life. There
are two features that contribute to the quality of taken photos:
usage of a flash and type of the lens. Also two features are
considered for battery life: adjustment of screen’s brightness
level and auto standby feature. The contribution of each
feature to its parent NFR is annotated using NFRContributes
stereotype and its contributionValue attribute. In this system,
use of flash consumes lots of battery. The impact of Flash
feature on battery life is therefore specified using NFRImpacts
stereotype and its impactValue attribute which is -0.8.

Fig. 2. Example usage of NFR profile for a Mobile Phone

The contributionValue attributes for Battery Life and Cam-
era Picture Quality NFRs to the Mobile Phone system actually
imply the priorities the customer/designer has given to each.
For example, Battery Life has 0.7 as its contribution value to
the system while Camera Picture Quality has 0.3 which means
Battery Life is more than two times more important for the
customer. One point here is that, although these values are
assigned subjectively by the designer, there are methods such
as sensitivity analysis [6] that help to increase the confidence
in the chosen decision. Now what we need to understand is
the impact that having the Flash feature has on the system.

By having the necessary information in the model, it is
now possible to perform analysis on the model to determine
impacts of each design decision on the system and perform
trade-off among them. To traverse the model and perform
calculations, we have developed a model-to-model (M2M)
transformation using QVT Operational language (QVT-O) [7]
in Eclipse [8]. It reads as input a UML model annotated
with our profile, traverses the nodes and calculates satisfaction
values and writes results in the same model. In other words,
we use an in-place transformation (i.e. input and output models
are the same).

To calculate the satisfaction values, a recursive algorithm is
used in the model transformation based on the rules mentioned
in the previous section. For each node, all the incoming
links that have NFRImpacts or NFRContributes stereotypes are
retrieved. If a node does not have any such links (meaning that
it is a leaf node), its satisfaction value is set to 1. Otherwise,
the source of the link, which is another node, is retrieved
and the algorithm starts calculating the satisfaction value of
the source node; hence the recursion. The satisfaction value
of each node is therefore calculated as follows: if si is the
satisfaction value for each child node of a node, and li is the
value on the link that connects the child node to its parent
node, the satisfaction value of the parent node is calculated
as:

∑
si ∗ li.

For example, in figure 2, the satisfaction values for Auto
Standby and Brightness Level features are set to
1, since they are leaf nodes. The satisfaction value of
Battery Life is then calculated as the satisfaction value
of Brightness Level (1) multiplied by value on the link
that connects it to Battery Life (0.5), plus the same
multiplications for Auto Standby (1*0.5) and Flash (1*-
0.8) which results in 0.20. The discrepancy observed between
this calculated value (0.20) and the one in figure 3 (0.199. . . )
which is calculated automatically through the in-place model
transformation on the model is due to the OCL implementation
of real numbers that QVT-O uses.

Fig. 3. Calculated satisfcation value of the system having the Flash feature

By performing the transformation on the whole model,
the satisfaction values are calculated for each node and
propagated upwards toward the system element as shown in
figure 3:

(1*0.4+1*0.6)*0.3+((1*0.5+1*0.5)-0.8)*0.7=0.44

Therefore, the total satisfaction value in this case will
be 0.44. Trying the procedure again on the same model but
without having the flash feature results in:

(1*0.6)*0.3+(1*0.5+1*0.5)*0.7=0.88



The introduced modeling concepts and calculations above,
provide for several interesting features. One feature is to opti-
mize the total satisfaction of the system considering different
design alternatives. For example, in the mobile phone system
described, if the designer needs to select among several possi-
ble solutions that contribute to better image quality, he/she can
find the ones that lead to the highest satisfaction value of the
system. Another possibility is to have run-time adaptability or
re-configuration based on different quality of service levels.
For example, if the battery level goes low beyond a certain
limit, the system can go into a power-saving mode using
features that incur minimum impact on battery consumption or
replacing active components with back-up/standby ones which
may provide lower quality/fewer services but consume less
battery (e.g. in design diversity techniques [9]). Without the
trade-off analysis introduced here, such a decision may not
only be hard, but also will be blind in the sense that the side
effects of a feature/component replacement on other aspects
of the system will be unknown.

V. RELATED WORK

There are versatile research works that try to target dif-
ferent issues regarding NFRs. [10] focuses on the problem
of informal and separated documentation of design decisions
and NFRs. To alleviate the problem, it introduces two profiles
to model design decisions and generic NFRs to treat them
as first-class entities in software architectures and maintain
the traceability of design decisions and architectural elements.
NFR framework proposed in [4] is one of the fundamental
works in the area of NFR. It uses Softgoal Interdependancy
Graph (SIG) to represent NFRs, their refinements and entities
that NFRs are applied to (termed as Operationalization), and
the interdependencies among them to include their impacts
and relations. The dependencies and contributions of NFRs
are specified using make, hurt, help, break and undetermined
types. It provides notations to mark critical NFRs in the graph
and also an evaluation procedure to determine satisfaction and
conflicts of NFRs. The approach suggested in NFR framework
is basically a qualitative approach. Moreover, the criticality
concept in NFR framework seems more suitable for developers
and does not convey enough information for prioritization
of NFRs particularly from the customer’s perspective and
also for performing trade-off analysis [6]. [11] offers a UML
profile for modeling SIG and concepts of NFR framework
to represent NFRs as UML elements in order to integrate
them with functional parts of the system (that are modeled in
UML). The article [6] introduces Q-SIG which is a quantified
version of SIG that enables quantitative evaluation of impacts
and trades-offs among NFRs. In this paper, we introduced
modeling concepts that enable designers to apply the Q-SIG
approach in the form of UML models, and provided a tooling
solution for evaluation and trade-off analysis of NFRS on these
models using this approach.

VI. SUMMARY AND FUTURE WORK

In this paper, a UML profile for modeling NFRs and
their dependencies was introduced to enable performing trade-
off analysis among them. As continuation of this work, we
plan to develop an analysis tool as an Eclipse plug-in that
can read as input, models annotated with our NFR trade-off
profile and provide total satisfaction values for different NFRs,
identify parts contributing negatively to an NFR, and perform
calculations for overall optimization of NFRs in the system
considering different design alternatives and scenarios. With
the help of the tool, when some parts of the system need to
be changed and updated, the user can identify the side effects
of such changes on other parts and the system as a whole in
terms of NFRs, at model level and before implementing the
intended changes. The defined profile depicted in this paper is
the first step towards enabling such features. Using the intro-
duced modeling concepts here along with a back-annotation
mechanism in model-based development of embedded systems
will also be an interesting topic to further investigate and work
on. Having such a mechanism, it would be possible to monitor
the system for preservation of the specified NFRs and provide
feedbacks to the design model about possible violations in the
system (or any of its subsystems) in terms of satisfaction levels
of their NFRs. Also, usage of the suggested approach for run-
time adaptability and re-configuration of systems is another
direction for further investigation.

REFERENCES

[1] T. Henzinger and J. Sifakis, “The embedded systems design challenge,”
in FM 2006: Formal Methods, ser. Lecture Notes in Computer Science,
J. Misra, T. Nipkow, and E. Sekerinski, Eds. Springer Berlin /
Heidelberg, vol. 4085, pp. 1–15.

[2] J. Lee, K. Kapitanova, and S. H. Son, “The price of security in wireless
sensor networks,” Comput. Netw., vol. 54, pp. 2967–2978, December
2010.

[3] B. Selic, “A systematic approach to domain-specific language design
using uml,” in Object and Component-Oriented Real-Time Distributed
Computing, 2007. ISORC ’07. 10th IEEE International Symposium on,
may 2007, pp. 2 –9.

[4] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-Functional Re-
quirements in Software Engineering, ser. International Series in Software
Engineering. Springer, October 1999, vol. 5.

[5] MDT Papyrus , http://www.eclipse.org/modeling/mdt/papyrus/, Ac-
cessed: February 2011.

[6] T. Marew, J.-S. Lee, and D.-H. Bae, “Tactics based approach for
integrating non-functional requirements in object-oriented analysis and
design,” The Journal of Systems and Software, vol. 82, pp. 1642–1656,
October 2009.

[7] QVT Operational Language, http://www.eclipse.org/m2m/, Accessed:
February 2011.

[8] Eclipse Modeling Framework Project (EMF), http://www.eclipse.org/
modeling/emf/, Accessed: February 2011.

[9] J. P. J. Kelly, T. I. McVittie, and W. I. Yamamoto, “Implementing design
diversity to achieve fault tolerance,” IEEE Softw., vol. 8, pp. 61–71, July
1991.

[10] L. Zhu and I. Gorton, “Uml profiles for design decisions and non-
functional requirements,” in Proceedings of the Second Workshop on
SHAring and Reusing architectural Knowledge Architecture, Rationale,
and Design Intent, ser. SHARK-ADI ’07. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 8–.

[11] S. Supakkul, “A uml profile for goal-oriented and use casedriven
representation of nfrs and frs,” in In Proceedings of the 3rd Interna-
tional Conference on Software Engineering Research, Management and
Applications, 2005, pp. 112–121.


