
Towards Real-Time Scheduling of Virtual Machines
Without Kernel Modifications

Mikael Åsberg, Nils Forsberg, Thomas Nolte
MRTC/Mälardalen University

P.O. Box 883, SE-721 23,
Västerås, Sweden

mikael.asberg@mdh.se

Shinpei Kato
Carnegie Mellon University

Department of Electrical and Computer Engineering
Pittsburgh, USA

Abstract—Virtualization is a well used technique in the area of
internet server systems for managing several (legacy) applications
on a single physical machine. These applications do not have
strict time deadlines, which also reflects how these applications
are scheduled. Using virtualization in an embedded real-time
systems context is of course attractive, since we want to pack as
much software as possible on a, as small as possible, hardware
platform. The problem is that this kind of software does not easily
cope well together, in the aspect of time related properties. Hence,
we need a new mechanism, i.e., a scheduler, that can satisfy
the timing requirements of each application. However, scheduler
implementations typically require modifications to middleware or
kernel and this is not acceptable in the area embedded systems,
due to stability and reliability reasons. Hence, in this paper, we
propose a framework for scheduling (soft real-time) applications
residing in separate operating systems (virtual machines) using
hierarchical fixed-priority preemptive scheduling, without the
requirement of kernel modifications.1

I. INTRODUCTION

Virtualization originates back to the 1960’s [1] and the
background theory is that clients, denoted as virtual machines,
are given the illusion of having total control of the the entire
machine while they in fact only utilize part of the underlying
physical machine [2]. The entity that facilitates this illusion
is called a Virtual Machine Monitor (VMM), also known
as a hypervisor. In todays internet server systems, it is not
uncommon that a hypervisor facilitates several servers running
in their own operating system, denoted virtual machine (VM),
on the same physical machine [3]. This reduces the amount
of desktop computers, and hence, it becomes cheaper and it
decreases the heat (generated by the computers) which is a big
problem in data centers. The basic idea of merging software
onto hardware and thereby reducing the amount of hardware,
is motivated by reducing heat, power and space consumption
coming from the hardware. Also, as a bonus, it makes the
software more modular, independent and reusable. This idea
is also attractive in the area of (hard) real-time embedded
systems [4]. However, this domain is sensitive when it comes
to timing, making the shift to virtualization in this area more
problematic.

1The work in this paper is supported by the Swedish Research Council, and
Swedish Foundation for Strategic Research (SSF), via the research programme
PROGRESS.

In this paper, we focus on soft real-time systems which has
more relaxed time deadlines, i.e., the system has deadlines
but it is sufficient if most of them are kept. An example of
such a system is an IP-telephony media server which streams
media packets [5]. Studies have shown [6] that applications
can experience insufficient performance when executed on a
virtualized environment due to I/O and scheduling. We are
interested in the scheduling part but what is also important is
that it must be free from kernel modifications, since reliability
and stability are important requirements in embedded systems.
We use hierarchical scheduling [7], [8], [9] to improve the
performance of soft real-time virtual machines.

A. Preliminaries

a) Hierarchical Scheduling Framework: We have pre-
viously implemented a hierarchical scheduler (HSF) in the
framework REal-time SCHeduler [10] (RESCH) in Linux.
HSF schedules real-time Linux tasks (which themselves are
periodic [11] through the use of RESCH) in groups. The group
(server) is scheduled according to Fixed-Priority Preemptive
Scheduling (FPPS), with respect to its defined interface:
period, budget and priority. A server executes budget time
units every period, and the order is determined by their
priority. Inside each server, the group of tasks are scheduled
according to FPPS.

b) Virtualization: There are 3 types of virtualization
techniques: full virtualization, para-virtualization and micro-
kernel based virtualization. Full virtualization means that the
guest operating system (inside the VM) does not need any
modifications. Examples of hypervisors with such a technique
are VMware [12], VirtualBox2 and KVM (Kernel Based
Virtual Machine) [13].

Para-virtualization means that the guest operating system
needs modifications to be able to run on top of a hypervisor.
XEN [14] is an example of such a VMM. The guest operating
system (OS) needs to replace some instructions with system
calls (called hyper calls) in order to be able to run on XEN.
Micro-kernel based virtualization, as opposed to the hypervi-
sor approach, is to run a micro-kernel directly on hardware
beneath an OS. A micro-kernel is a small-sized software

2VirtualBox: http://www.virtualbox.org/



layer that abstracts the minimal and necessary low-level func-
tionality. Hence, much of the functionality implemented in
an OS is left for the user to implement. This is done by
forwarding low-level events such as hardware interrupts as IPC
messages to user-level handlers. In essence, a micro-kernel
abstracts low-level hardware to a higher level. Any software
can be implemented on top of a micro-kernel, including entire
OS’s [15]. However, it is more common that the OS itself is
modified rather than the micro-kernel [16].

Another type of classification is whether the hypervisor
resides directly on top of hardware, i.e., type-1 hypervisors
(XEN and XtratuM [17]), or on top of an OS which is
then denoted as the host OS (type-2 hypervisor, i.e., KVM,
VirtualBox and VMware).

B. Outline

The outline of this paper is as follows: Section II presents
related work and in Section III we present the proposed frame-
work. In Section IV we present some preliminary experiments,
and finally in Section V, we discuss our approach and the
future work to be done.

II. RELATED WORK

A. Hierarchical scheduling in Linux

SCHED DEADLINE is an implementation [18] of the
Earliest Deadline First (EDF) scheduling algorithm for Linux.
The scheduler modifies the kernel and brings support for
server-based scheduling, where a period, budget and a task
associated with the EDF scheduled server. The scheduling
framework AQuoSA [19] is a hierarchical scheduler (consist-
ing of kernel modifications) which uses the Constant Band-
width Server (CBS) algorithm for the scheduling of servers.
SCHED SPORADIC [20] is a (POSIX compliant) sporadic
server implementation that improves the response time of
aperiodic tasks.

B. Real-time virtualization

Many scheduler implementations in the domain of virtu-
alization are based on XEN [14]. XEN defers all I/O to a
special VM called Dom0, this VM (usually Linux) requires
modifications, i.e., it is para-virtualized. It is also common
that the guest OS’s (VM) are required to be modified as well.
All scheduler implementations requires XEN to be modified
and re-compiled. The following are examples of XEN-based
schedulers. Recently, the authors in [21] implemented FPPS of
virtual machines. An implementation of a feedback controlled
EDF scheduler in XEN was presented in [22]. There has also
been work on message passing between XEN and the guest
OS’s [3]. This is done in order for XEN to avoid deadline
misses of real-time tasks residing in guests. [23] improve the
real-time performance of the default XEN scheduler (Credit
Based Scheduler) by making it preemptive. [24] modifies the
Credit Based Scheduler in order to improve the performance
of soft real-time tasks. A new scheduler is presented in [25],
based on XEN. The scheduler, called PSEDF (priority-based

scheduling plus Simple-EDF), gives higher priority to real-
time guest OS’s and schedules these with fixed priority. The
non-real-time domains are scheduled with the Simple EDF
scheduler (SEDF), which is one of the default XEN schedulers.
There has also been work on improving the I/O performance
[26], [27], [28] in XEN.

Similar to XEN, SPUMONE is a type-1 virtualization layer
which schedules guest OS’s with FPPS [29]. Another type-1
hypervisor is presented in [30] which is specialized for mobile
phones. XtratuM [17] is also based on a type-1 hypervisor
which has evolved towards hard-real time applications.

There exists also implementations based on type-2 hypervi-
sors. In [31] the authors improve the performance of guest
OS’s executed by KVM. This is done by applying real-
time priorities and the preempt-rt patch (from Ingo Molnar
of Red Hat, Inc.) to the host Linux OS, thereby improv-
ing schedulability of guest OS’s (which are actually Linux
processes). The authors in [32] schedule KVM-based OS
guests with the CBS scheduling algorithm and each guest
schedules tasks with FPPS. The authors show improved task
response times (compared to using the default scheduling of
KVM guests). [33] presents an interesting solution which
is related to our work since their solution does not either
require kernel modifications. They let a high priority real-time
Linux task schedule other real-time tasks according to EDF.
The scheduled real-time tasks contain a type-2 hypervisor
(VMware). The main difference between their approach and
ours is that our scheduler is a kernel module (where all the
code reside in interrupt routines) while their scheduler is a
high-priority real-time task. The benefit with our solution is
that it should generate less scheduling overhead since it is
less time consuming to switch between interrupts and tasks as
opposed to context switching between tasks.

III. PROPOSED SOLUTION

We propose a setup illustrated in Figure 1. The core
scheduling functionality comes from the scheduling frame-
work RESCH [10]. Currently, RESCH supports any Linux
kernel which has real-time task support (from version 2.6.23
and beyond) and it does not require any kernel modifications.
It has more flexible scheduling than group scheduling in
Linux, i.e., control groups and sched-rt-group. The base
functionality of RESCH is its support for FPPS of peri-
odic real-time tasks in Linux. It also has several scheduler
plugins, including multi-core scheduling algorithms (global,
partitoned and semi-partitioned) and a 2-level hierarchical
FPPS scheduler (HSF). As described in Section I, several
real-time Linux tasks can reside in a server and they can in
turn be scheduled internally with FPPS by the RESCH core
scheduler. However, our proposition (Figure 1) suggests that
one task should reside per server, where this task contains a
VM (hosted by VirtualBox, KVM, VMware or any other type-
2 hypervisor). Further, each VM could host a Linux operating
system installed with RESCH, giving rise to FPPS scheduling
of periodic tasks inside each VM. In this way we get a 2-level



FPPS scheduling framework with virtual machines, without
any kernel modifications.

RESCH 
core

HSF

Linux Kernel
Scheduler

Timers

RESCH 
libraryApplication

Ke
rn

el 
Sp

ac
e

Us
er 

Sp
ac

e
Vi
rt
ua
lB
ox

KV
M

Fig. 1. The proposed framework

Multimedia intensive applications can gain performance
with a HSF scheduler since the CPU availability for video
and audio processing can be controlled in detail.

IV. EXPERIMENTS

We have conducted some preliminary tests by executing the
proposed framework on a desktop computer (Intel Pentium
Dual-Core, E5300 2,6GHz) equipped with Ubuntu 9.10 Linux
(kernel version 2.6.31.9). Since we assume uni-core the con-
figuration in RESCH was set to load-balancing disabled, i.e.,
no task migration was allowed to balance the load between
the cores. Ubuntu Linux was used both on the host and on the
guest OS. We used both VirtualBox and KVM to virtualize
Ubuntu as a Linux process. During the execution monitoring,
using Ftrace [34], we found that VirtualBox VM’s were
scheduled with a period of 12-13 ticks (1 tick = 4 milli-
seconds), while the KVM scheduler scheduled their VM’s with
a frequency of 7-8 ticks. Both virtualization schedulers used a
budget of less than 1 tick. We ran two RESCH-based tasks in-
side a VM with task periods 55 and 5 ticks, execution time 20
and 2 ticks respectively and we used rate-monotonic priorities
(lower period value = higher priority). In the traces presented
(Figure 2-5) we used the KVM virtualization. Figure 2 shows
the execution trace (Ftrace) visualized with the Grasp tool
[35]. Observe that the high priority task rt task1 should have
a clean periodic pattern (since it has highest priority) but due
to the interference from the KVM scheduler (scheduling the
VM itself), there are some gaps (time 270 and 380) present
due to that the VM had long idle periods. Figure 3 shows the
trace of the two tasks executing in a VM while it, in turn,
was scheduled by HSF. We configured the VM with period
3, budget 1 (ticks) and highest real-time priority. Since the
CPU allocation of the VM was greater, task rt task1 showed
a more even pattern.

Figure 4 shows a trace of the KVM guest OS when it was
only scheduled by the KVM scheduler and Figure 5 shows

the pattern when it was scheduled by the HSF scheduler
(simultaneous with the KVM scheduler).

V. DISCUSSION

We believe that this proposed framework will bring a new
dimension to the RESCH framework itself. Most importantly,
we will continue this work towards a measurement comparison
with other solutions, both such that are modification-free
(Vsched [33]) and such that are not [32]. It will also be
valuable to compare the overhead of this approach to type-
1 hypervisor solutions, such as those scheduler implementa-
tions presented in Section II which are based on XEN [21],
[22], [25]. Conclusively, it would be interesting to see the
performance penalty by using a modification-free solution (as
opposed to modifying the kernel), as well as the performance
difference between type-1 and type-2 hypervisor-based sched-
ulers. The combination of modification-free solutions (like
RESCH or Vsched) together with type-2 hypervisors results in
an embedded-systems friendly approach (since it is 100% free
from kernel modifications). However, the performance loss
should not be too great in order for this approach to retain
attractive. Further investigations will reveal how practical this
type-2 hypervisor solution is.

REFERENCES

[1] R. J. Creasy, “The Origin of the VM/370 Time-Sharing System,” IBM
J. Res. Dev., vol. 25, no. 5, pp. 483–490, 1981.

[2] G. J. Popek and R. P. Goldberg, “Formal Requirements for Virtualizable
Third Generation Architectures,” Commun. ACM, vol. 17, no. 7, pp.
412–421, 1974.

[3] Y. Wang, J. Zhang, L. Shang, X. Long, and H. Jin, “Research of Real-
time Task in Xen Virtualization Environment,” in ICCAE’10, 2010.

[4] T. Gaska, B. Werner, and D. Flagg, “Applying Virtualization to Avionics
Systems - The Integration Challenges,” in DASC’10, 2010.

[5] D. Patnaik, A. Bijlani, and V. Singh, “Towards High-Availability for IP
Telephony Using Virtual Machines,” in IMSAA’10, 2010.

[6] D. Patnaik, A. S. Krishnakumar, P. Krishnan, N. Singh, and S. Yajnik,
“Performance Implications of Hosting Enterprise Telephony Applica-
tions on Virtualized Multi-Core Platforms,” in IPTComm’09, 2009.

[7] P. Goyal, X. Guo, and H. M. Vin, “A Hierarchical CPU Scheduler for
Multimedia Operating Systems,” in OSDI’96, 1996.

[8] Z. Deng and J. W.-S. Liu, “Scheduling Real-time Applications in an
Open Environment,” in RTSS’97, 1997.

[9] J. Regehr and J. A. Stankovic, “HLS: A Framework for Composing Soft
Real-Time Schedulers,” in RTSS’01, 2001.

[10] S. Kato, R. Rajkumar, and Y. Ishikawa, “A Loadable Real-Time
Scheduler Suite for Multicore Platforms,” Technical Report CMU-
ECE-TR09-12, 2009. [Online]. Available: http://www.contrib.andrew.
cmu.edu/∼shinpei/papers/techrep09.pdf

[11] C. Liu and J. Layland, “Scheduling Algorithms for Multi-Programming
in a Hard-Real-Time Environment,” ACM, vol. 20, no. 1, pp. 46–61,
1973.

[12] A. Muller, S. Wilson, D. Happe, and G. J. Humphrey, Virtualization
with VMware ESX Server. Rockland, Ma.: Syngress Publ. Inc., 2005.

[13] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “KVM: The
Linux Virtual Machine Monitor,” in OLS’07, 2007.

[14] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,” in
SOSP’03, 2003.

[15] H. Härtig, M. Hohmuth, J. Liedtke, J. Wolter, and S. Schönberg, “The
Performance of µ-Kernel-Based Systems,” in SOSP’97, 1997.

[16] F. Armand and M. Gien, “A Practical Look at Micro-Kernels and Virtual
Machine Monitors,” in CCNC’09, 2009.

[17] A. Crespo, I. Ripoll, and M. Masmano, “Partitioned Embedded Archi-
tecture Based on Hypervisor: The XtratuM Approach,” in EDCC’10,
2010.



0 50 100 150 200 250 300 350

idle

rt_task2

rt_task1

Fig. 2. Example trace of tasks running in the VM (without HSF)

0 50 100 150 200 250 300 350

idle

rt_task2

rt_task1

Fig. 3. Example trace of tasks running in the VM (with HSF)

0 50 100 150 200 250 300 350

idle

KVM

Fig. 4. Example trace of the VM (without HSF)

0 50 100 150 200 250 300 350

idle

rt_task3

KVM

Fig. 5. Example trace of the VM (with HSF)

[18] D. Faggioli and F. Checconi, “An EDF Scheduling Class for the Linux
Kernel,” in RTLWS’09, 2009.

[19] L. Palopoli, T. Cucinotta, L. Marzario, and G. Lipari, “AQuoSA Adaptive
Quality of Service Architecture,” Softw. Pract. Exper., vol. 39, no. 1, pp.
1–31, 2009.

[20] D. Faggioli, A. Mancina, F. Checconi, and G. Lipari, “Design and
Implementation of a POSIX Compliant Sporadic Server for the Linux
Kernel,” in RTLWS’08, 2008.

[21] S. Xi, J. Wilson, C. Lu, and C. Gill, “RT-Xen: Real-Time
Virtualization Based on Fixed Priority Hierarchical Scheduling,”
Technical Report WUCSE-2010-38, 2010. [Online]. Available: http:
//students.cec.wustl.edu/∼sx1/RT-XEN/emsoft11 rtxen.pdf

[22] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat, “Enforcing
Performance Isolation Across Virtual Machines in XEN,” in MIDDLE-
WARE’06, 2006.

[23] P. Yu, M. Xia, Q. Lin, M. Zhu, S. Gao, Z. Qi, K. Chen, and H. Guan,
“Real-Time Enhancement for XEN Hypervisor,” in ICEUC’10, 2010.

[24] M. Lee, A. S. Krishnakumar, P. Krishnan, N. Singh, and S. Yajnik,
“Supporting Soft Real-Time Tasks in the XEN Hypervisor,” in VEE’10,
2010.

[25] A. Masrur, S. Drossler, T. Pfeuffer, and S. Chakraborty, “VM-Based
Real-Time Services for Automotive Control Applications,” in RTCSA’10,
2010.

[26] S. Govindan, A. R. Nath, A. Das, B. Urgaonkar, and A. Sivasubra-

maniam, “Xen and Co.: Communication-Aware CPU Scheduling for
Consolidated XEN-Based Hosting Platforms,” in VEE’07, 2007.

[27] D. Ongaro, A. L. Cox, and S. Rixner, “Scheduling I/O in Virtual
Machine Monitors,” in VEE’08, 2008.

[28] H. Kim, H. Lim, J. Jeong, H. Jo, and J. Lee, “Task-Aware Virtual
Machine Scheduling for I/O Performance,” in VEE’09, 2009.

[29] Y. Kinebuchi, W. Kanda, Y. Yumura, K. Makijima, and T. Nakajima,
“A Hardware Abstraction Layer for Integrating Real-Time and General-
Purpose with Minimal Kernel Modification,” in STFSSD’09, 2009.

[30] S. Yoo, Y. Liu, C.-H. Hong, C. Yoo, and Y. Zhang, “MobiVMM: A
Virtual Machine Monitor for Mobile Phones,” in MobiVirt’08, 2008.

[31] J. Zhang, K. Chen, B. Zuo, R. Ma, Y. Dong, and H. Guan, “Performance
Analysis Towards a KVM-Based Embedded Real-Time Virtualization
Architecture,” in ICCIT’10, 2010.

[32] T. Cucinotta, G. Anastasi, and L. Abeni, “Respecting Temporal Con-
straints in Virtualised Services,” in COMPSAC’09, 2009.

[33] B. Lin and P. A. Dinda, “VSched: Mixing Batch and Interactive Virtual
Machines Using Periodic Real-time Scheduling,” in SC’05, 2005.

[34] T. Bird, “Measuring Function Duration with Ftrace,” in Proc. of the
Japan Linux Symposium, 2009.

[35] M. Holenderski, M. M. H. P. van den Heuvel, R. J. Bril, and J. J.
Lukkien, “Grasp: Tracing, Visualizing and Measuring the Behavior of
Real-Time Systems,” in WATERS’10, 2010.


