
This work-in-progress paper was presented as part of the main technical program at IEEE ETFA'2011

978-1-4577-0018-7/11/$26.00©2011 IEEE

Towards Resource Sharing by Message Passing
among Real-Time Components on Multi-cores*

Farhang Nemati, Rafia Inam, Thomas Nolte and Mikael Sjödin
Mälardalen Real-Time Research Centre, Mälardalen University, Sweden

Email: {farhang.nemati, rafia.inam, thomas.nolte, mikael.sjodin}@mdh.se

Abstract—In this paper we propose a message passing syn-
chronization protocol for resource sharing among real-time
applications on multi-core platforms where each application is
allocated on a cluster of cores. In this protocol the resources that
are only used within an application (local resources) are handled
by shared memory synchronization while the resources shared
cross applications (global resources) are accessed by means of
message passing. In our protocol the global resources are safely
accessed without requiring to lock the resources explicitly. The
goal is to avoid resource locking using shared memory, since
accessing shared memory in multi-cores is very time consuming,
whereas message passing has the potential to be much more
efficient in systems with deep memory hierarchies.

I. INTRODUCTION

The availability of multi-core platforms has attracted much
attention in multiprocessor embedded software analysis, run-
time techniques, policies, and protocols. As the multi-core
architectures are to be the defacto processors within a near
future, the industry must cope with a potential migration of
existing systems towards multi-core platforms.

Co-executing real-time applications on a shared multi-core
platform, where each application is statically allocated on a
dedicated sub set of cores (cluster), requires to overcome
the problem of handling mutually exclusive shared resources
among those applications. In the real-time community syn-
chronization on mutually exclusive resources mostly has fo-
cused on shared memory synchronization (e.g., by means
of binary semaphores). Message passing techniques for syn-
chronization offer many advantages, e.g., they provide more
isolation of the applications (no need for shared memory),
message passing is a common technique for communications
in commercial real-time operating systems, and resource lock-
ing using shared memory in multi-cores is time consuming.

Recently, in industry, co-executing of multiple applications
on a multi-core platform (using virtualization techniques) has
been considered to reduce the overall hardware costs [1]. In
the virtualization techniques usually each application owns
its own memory space and the applications do not share
memory, hence message passing synchronization among those
applications is a natural fit.

In the domain of distributed systems message passing
techniques for handling mutually exclusive resources are well
developed and used. Numerous algorithms have been proposed

* This work was partially supported by the Swedish Foundation for Strate-
gic Research (SSF), the Swedish Research Council (VR), and Mälardalen
Real-Time Research Centre (MRTC)/Mälardalen University.

since the introduction of ordering of the events by Le Lann [2]
and Leslie Lamport [3], to solve mutual exclusion problem
through sending messages in the loosely-coupled distributed
system where processes (applications) do not share a common
memory. Two different families of these algorithms (token-
based and permission-based algorithms) are commonly used
for accessing shared resources. However, these techniques only
consider satisfying safety (only one process can access the
shared resource) and liveness (each request must be granted)
properties. To our knowledge, scheduling analysis regarding
real-time properties has not been considered in those tech-
niques.

In this paper we propose a synchronization protocol for
handling resource sharing among real-time applications on
multi-core platforms by means of message passing and provide
the real-time guarantees for this method. The main objective
of our work is to avoid resource locking using shared memory
as accessing shared memory in multi-cores is very time con-
suming, while message passing has the potential to be much
more efficient in systems with deep memory hierarchies. In
addition, message passing synchronization will provide better
memory isolations among real-time applications.
Related Work: There are two major approaches for schedul-
ing real-time systems on multiprocessors (multi-cores); global
and partitioned scheduling [4], [5]. Under global scheduling,
tasks are scheduled by a single (global) scheduler and any
task can be scheduled to execute on any processor. Under
partitioned scheduling, tasks are statically assigned to pro-
cessors and tasks within each processor are scheduled by
a uniprocessor scheduling protocol. The generalization of
global and partitioned scheduling algorithms is called clustered
scheduling [6], [7], in which tasks are statically assigned to a
sub set (a cluster) of processors, and within each cluster tasks
are scheduled using a global scheduling algorithm.

In the context of shared memory locking protocols under
multiprocessors, a non-exhaustive list of work includes [8],
[9], [10], [11], [12], [13].

Recently we have proposed a shared memory locking
protocol [14] for handling resource sharing among real-time
applications on multiprocessors. In this work each application
is represented by an interface which abstracts the resource
requirements of the application.

We are not aware of any work regarding synchronization on
multi-cores by message passing techniques where the real-time
properties are considered.

II. MESSAGE PASSING TECHNIQUES FOR MUTUAL

EXCLUSION UNDER DISTRIBUTED SYSTEMS

The techniques for handling of sharing mutually exclusive
resources in loosely-coupled distributed systems are divided
in two general categories; token-based and non-token-based
(permission-based) approaches. In this section we briefly de-
scribe the two traditional message-passing approaches for em-
ploying mutual exclusion algorithms in the distributed systems
community. These two principles characterize two families of
these algorithms:

A. Token-based Algorithms

In this approach a unique token is shared among the
processes (applications) of the whole system, the process that
owns the token is granted the access to the resource. Hence
the mutual exclusion is guaranteed, i.e., safety property is
satisfied. A token-based algorithm can be implemented in
either of the following forms: (i) The token moves in a directed
ring; a process can access the resource when it receives the
token, and if the process has not requested the resource,
it simply forwards the token to the next process [2], [15].
(ii) The process requesting a resource requests for the token
(the token does not move). If the process owns the token, it
accesses the resource, otherwise it has to wait until the token
is granted [16].

B. Permission-based Algorithms

In this approach, whenever a process requests a resource,
it requires permission from all other processes and waits until
the permission is granted [17]. In Permission-based algorithm,
usually a time-stamping mechanism is used to attain such
a permission. Many improvements have been suggested spe-
cially the use of acyclic directed graph and the use of a logical
tree structure [18]. To satisfy the safety property, enough
number of permissions is taken from other processes. The
liveness property is guaranteed by the total-ordered requests
using timestamps or by using acyclic directed graph.

C. Complexity Analysis

In traditional distributed systems, the complexity analysis
for message-passing algorithms is dependent on the following
complexities:
Communication Complexity: The communication complex-
ity is dependent on the total number of messages required
per critical-section (CS) access, and synchronization messages,
i.e., the total number of messages required before and after the
accessing the shared resource to synchronize the processes.
Time Complexity: The total time interval (response time) a
process waits from requesting for a shared resource until it
accesses the resource.

III. SYSTEM AND PLATFORM MODEL

In this paper we assume that a real-time application, denoted
by Ak, is allocated on a dedicated cluster consisting of one
or more identical, unit-capacity processors (cores). The real-
time application consists of a set of real-time tasks. We

assume that the tasks in application Ak are scheduled using
a global scheduling if Ak is allocated on more than one
core otherwise the tasks are scheduled using a uniprocessor
scheduling processor.

Application Ak consists of a set of sporadic tasks, τi. The
tasks in application Ak may share a set of mutually exclusive
resources, RAk

. The set of shared resources RAk
consists

of two sets of different types of resources; local and global
resources. A local resource is only shared by tasks within the
same application while a global resource is shared by tasks
from more than one application. In this paper, we focus on
non-nested critical sections.

We also assume that the applications do not use (have)
shared memory for synchronization on global resources and
message passing is the only way of communication among
the applications.

We assume that sharing the local resources is handled by
shared memory synchronization protocols. However, as an
application is allowed to be allocated on more than one core,
applications will benefit from handling sharing their local
resources by means of message passing as well. In this paper
we only consider the partial problem regarding the global
resources.

IV. THE SYNCHRONIZATION PROTOCOL

We have provided our proposed protocol, for
synchronization on global resources among real-time
applications on a multi-core platform, with two alternatives.
The first alternative is similar to permission-based algorithms
in distributed systems, however our algorithm is much
simpler with regards to the number of messages (actually
an application sends out only one request message any time
it requests a resource). We call this alternative as time out
algorithm. The second alternative is similar to the token-based
algorithms in the domain of distributed systems. We call the
second alternative as token-based algorithm

To be able to guarantee schedulability and consistency
in accessing the mutually exclusive resources shared among
such applications, for each application Resource Hold Times
(RHT’s) of the global resources it shares have to be calculated
and provided in the abstraction of the application.
Definition 1: Resource Hold Time of a global resource Rq by
application Ak is denoted by RHTq,k and is the maximum
duration of time that the global resource Rq can be held by
any task in Ak.

The calculation and minimization of resource hold times for
real-time applications on a shared uniprocessor platform has
been presented in [19], [20]. We have extended the calculation
and minimization of RHT’s to multi-core platforms in a recent
work [21].

A. Time Out Algorithm

In this approach any application Ak contains a request
queue RequestQq,k for each global resource Rq it shares
where it maintains incoming requests to access Rq from other

applications.A request from an application Ai for accessing
resource Rq is denoted by RQq,i. Whenever application Ai

starts using global resource Rq , it will hold it for at most
RHTq,i time units (Definition 1). Thus Ak will remove
the corresponding request (RQq,k) from RequestQq,k after
RHTq,i time units (by setting a timer).

Furthermore, application Ak contains a data structure to
maintain the information from other applications regarding
global resources, i.e., a table called RHTTablek that contains
the RHT’s of other applications for the resources they share
with Ak.
Request Rules
Rule 1: Whenever any task τi in application Ak requests a
global resource Rq, it time stamps a request message RQq,k

and sends it to all applications sharing Rq . Time stamping
is applied to order incoming request messages in the request
queues in correct order. However, it may happen that more
than one application issue requests at the same time (i.e., at
the same tick). This means that multiple requests may have
the same time stamp. Considering this, the incoming requests
have to be ordered by their time stamps first and the requests
containing the same time stamp will be ordered by the index
of the applications issuing the requests.

If RequestQq,k is empty (i.e., no other application has
requested Rq), τi can access Rq. All recipient applications add
RQq,k to their request queue for Rq . After RHTq,k time units
all recipient applications as well as Ak will remove RQq,k

from their corresponding request queue.
In this paper we assume atomic message transmit. However,

in reality it may happen that there is a delay between the
time a request message is issued and the time the message
is received. In this case to guarantee mutual exclusion, any
application whose request for a global resource is at the top
of its corresponding request queue has to wait for up to
WCMT time units where WCMT denotes the worst case
time that may take for a message to be received from the
time it is issued. An alternative solution could be to exchange
more messages similar to permission-based approaches in
distributed systems.
Rule 2: If RequestQq,k is not empty (i.e., some applications
have already requested Rq), all recipient applications as well
as Ak add RQq,k to their request queues for Rq . In this case
τi suspends.
Rule 3: Any request RQq,l at the top of RequestQq,k will
be removed after RHTq,l time unites (the RHT values are
extracted from RHTTablek). When a request of Ak is at the
top of RequestQq,k, the eligible task (e.g., the highest priority
task waiting for Rq) in Ak can access Rq and after RHTq,l

time units Ak’s request is removed from RequestQq,k. When
the task releases Rq , no more tasks in Ak are allowed to access
Rq even if RQq,k is not yet removed and there exists tasks
in Ak waiting for Rq . This limitation is applied to restrict
any application not to hold a global resource more than its
corresponding RHT. This process will continue as long as
RequestQq,k is not empty.
Rule 4: At some point of time if multiple request queues in

Ak contain requests from Ak at their tops (i.e., Ak is allowed
to access multiple global resources at the same time), the
corresponding resources will be accessed in the order of the
time stamps in the requests and for the requests with equal time
stamps the requests are ordered based on application indexes.

B. Token-based Algorithm

In the token-based approach, for each global resource Rq

there exists a unique token TKq and the application that holds
the token is allowed to access Rq . Each token TKq contains a
request queue where the requests of applications requesting the
token are located. Each application contains a queue denoted
by GQq, where it maintains its tasks requesting Rq .
Request Rules
Rule 1: Whenever any task τi in application Ak requests a
global resource Rq , if Ak holds TKq and the request queue
of TKq is empty, τi accesses Rq . If the request queue of
TKq is not empty (which means that another task within Ak

is accessing Rq), τi will be added to the request queue of
TKq and to GQq , and suspends. If Ak does not hold TKq it
will add τi to GQq and sends a request message RQq,k to all
applications sharing Rq . The request message is ignored by
all applications except the one that holds the token.
Rule 2: When an application Ai holding token TKq receives
a request message it adds the request to the request queue of
TKq.
Rule 3: While task τi within application Ak is accessing Rq ,
it may happen that more tasks within Ak request Rq . In this
case these tasks will be added to GQq and for each of the
tasks a request is added to token’s request queue.
Rule 4: When task τi within application Ak releases resource
Rq (i.e., exits from the corresponding critical section), Ak

removes its request from the top of the request queue of TKq.
Token TKq will be forwarded to the application whose request
is at the top of the token’s request queue. It may happen that
after τi has released Rq the request queue of TKq is empty.
In this case TKq is called inactive and remains in Ak until a
request message requesting TKq comes in.
Rule 5: If at some point of time application Ak holds multiple
tokens, the corresponding resources are accessed in the order
of the time stamps of the requests and for the requests with
equal time stamps access will occur in the order of application
indexes.

C. Remarks

Here we point out some remarks regarding the efficiency of
our proposed algorithms.
Communication complexity: The time out algorithm has
much less number of messages for handling mutual exclusion
as compared to the permission-based algorithms in distributed
systems. In a permission-based algorithm, generally at least
one round of messages are exchanged; the node (application)
requesting for a resource sends a request message to all
nodes sharing the resource and waits for permission message
(request grant) from all the other nodes. Furthermore, after
each release of the resource a release message is sent to

all other nodes that share the resource. On the other hand,
in the time out algorithm whenever an application requests
a resource it is only required to send a request message to
the applications sharing the resource and it does not need to
wait for the grant messages neither does it need to send any
release message to other applications. However, setting a timer
for removing a request at the top of the request queue will
introduce overhead. The time out algorithm will perform well
when it is used on multi-cores with a single clock, however
when applications are executing on a multi-core with more
than one clock, the clock synchronization may also increase
the communication complexity. In the token-based algorithm,
less messages are exchanged as compared to the token-based
algorithms in distributed systems.
Run time complexity: In the time out algorithm, the run
time performance can be increased as any application Ak

always holds a resource Rq for RHTq,k time units while in the
permission-based algorithms the resource becomes available to
other applications as soon as it is released by Ak. From the
schedulability analysis point of view this is not a drawback
as in the schedulability analysis the worst case has to be
considered where application Ak holds any global resource Rq

for RHTq,k time units. Our token-based algorithm however,
does not have this drawback as it forwards the token to the
next requesting application as soon as the resource is released
by the application holding the token.
Comparison of time out and token-based algorithms:
The time out algorithm suffers from the overhead of timers
as well as always holding a resource as long as its RHT
value. Furthermore, in the time out algorithm each application
contains a request queue for each global resource it shares and
keeping the consistency among the request queues in different
applications may also introduce overhead. On the other hand
the token-based algorithm suffers from the overhead regarding
the size of the tokens as they contain a request queue.
Message passing using shared global memory In this paper
we have assumed that the applications do not have or use
shared memory. However, today’s multi-core platforms usually
contain a global memory shared among all cores. In this
case our both time out and token-based algorithms will be
simpler and perform better as the request queues and the
tables containing information regarding RHT’s can be located
in the shared memory. The size of tokens in the token-based
algorithm will be reduced to the size of a very short message
and in the time out algorithm, the applications will not suffer
from multiple request queues and timers.

V. CONCLUSIONS

In this paper we have proposed two algorithms (called time
out and token-based) for synchronization on mutually exclu-
sive resources among real-time applications. The applications
communicate solely by message passing thus shared memory
synchronization techniques cannot be used.

We have mentioned the advantages and disadvantages of
each algorithm.We are currently working on deriving the

detailed schedulability analysis of the algorithms as well as
the formal proofs of the correctness of them.

In the future we will study the cases where the multi-core
contains multiple clocks and investigate the clock synchro-
nization methods and their effect on each algorithm. Another
interesting future work is to implement both algorithms in a
real-time operating system (RTOS) and study the performance
of the algorithms. Furthermore, we will study the possibility
of message passing synchronization via global shared memory
which will simplify our proposed algorithms. An interesting
future work is to compare the performance of message passing
synchronization (with and without global shared memory) to
the performance of shared memory locking mechanisms.

REFERENCES

[1] C. Bialowas. Achieving Business Goals with Wind Rivers Multicore
Software Solution. Wind River white paper.

[2] G. Le Lann. Distributed systems - towards a formal approach. Infor-
mation of Processing, pages 155–160, 1977.

[3] L. Lamport. Time, clocks and ordering of events in distributed systems.
Communications of ACM, 1978.

[4] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and
S. Baruah. A categorization of real-time multiprocessor scheduling
problems and algorithms. In Handbook on Scheduling Algorithms,
Methods, and Models. Chapman Hall/CRC, Boca, 2004.

[5] U. Devi. Soft real-time scheduling on multiprocessors. In PhD thesis,
available at www.cs.unc.edu/˜anderson/diss/devidiss.pdf, 2006.

[6] J. M. Calandrino, J. H. Anderson, and D. P. Baumberger. A hybrid
real-time scheduling approach for large-scale multicore platforms. In
ECRTS’07, pages 247–258, 2007.

[7] Theodore P. Baker and Sanjoy K. Baruah. Schedulability analysis of
multiprocessor sporadic task systems. In Handbook of Realtime and
Embedded Systems, 2007.

[8] R. Rajkumar, L. Sha, and J.P. Lehoczky. Real-time synchronization
protocols for multiprocessors. In RTSS’88, 1988.

[9] R. Rajkumar. Synchronization in Real-Time Systems: A Priority Inheri-
tance Approach. Kluwer Academic Publishers, 1991.

[10] P. Gai, G. Lipari, and M. D. Natale. Minimizing memory utilization of
real-time task sets in single and multi-processor systems-on-a-chip. In
RTSS’01, pages 73–83, 2001.

[11] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A flexible
real-time locking protocol for multiprocessors. In RTCSA’07, pages 47–
56, 2007.

[12] A. Easwaran and B. Andersson. Resource sharing in global fixed-priority
preemptive multiprocessor scheduling. In RTSS’09, pages 377–386,
2009.

[13] B. Brandenburg and J. Anderson. Optimality results for multiprocessor
real-time locking. In RTSS’10, pages 49–60, 2010.

[14] F. Nemati, M. Behnam, and T. Nolte. Independently-developed real-time
systems on multi-cores with shared resources. In ECRTS’11, to appear,
2011. (Available at www.mrtc.mdh.se).

[15] A.J. Martin. Distributed mutual exclusion on a ring of processors.
Science of computer Programming, 25:256–276, 1985.

[16] M. Naimi and M. Trehel. A distributed algorithm for mutual exclusion
based on data structures and fault tolerance. In Int. Phoenix IEEE conf.
on Comp. and Comm., pages 35–39, 1987.

[17] G. Ricart and A.K. Agrawala. An optimal algorithm for mutual exclusion
in computer networks. Communications of ACM, 24(1):9–17, 1981.

[18] D. Agrawala and A.E. Abbadi. An efficient solution to distributed mutual
exclusion problem. In Proc. of 8th ACM Symposium on PODC, pages
193–200, 1989.

[19] N. Fisher, M. Bertogna, and S. Baruah. Resource-locking durations in
edf-scheduled systems. In RTAS’07, pages 91–100, 2007.

[20] M. Bertogna, N. Fisher, and S. Baruah. Static-priority scheduling and
resource hold times. In IPDPS’07 Workshops, pages 1–8, 2007.

[21] F. Nemati and T. Nolte. Resource hold times under multiprocessor static-
priority global scheduling. In RTCSA’11 , to appear, 2011. (Available
at www.mrtc.mdh.se).

