
On Generating Security Implementations from
Models of Embedded Systems

Mehrdad Saadatmand, Antonio Cicchetti, Mikael Sjödin
Mälardalen Real-Time Research Centre (MRTC)

Mälardalen University, Västerås, Sweden
{mehrdad.saadatmand, antonio.cicchetti, mikael.sjodin}@mdh.se

Abstract—Designing secure embedded systems is a challenging
task. Many of the challenges unique to embedded systems in this
regard are due to the constraints that these systems have and
thus impacts that security features will have on other properties
of the system. Therefore, security decisions should be considered
from early phases of development and together with other
requirements. In model-driven methods, this means including
security features in the design models. On the other hand, code
generation from models is one of the promises of model-driven
approaches. In this paper, by discussing the impacts of security
design decisions on timing properties, we present the idea of
automatic security code generation. We identify what issues
a model for an embedded system should be able to answer
and cover so that the security implementations that are later
generated from it, will be consistent with the timing constraints
and specifications of the system.

Index Terms—Embedded security; MDA; Code generation;
UML modeling

I. INTRODUCTION

In the design of systems, security should be considered from
early phases of development and along with other aspects of
the system. While this approach to security is important for
consistent and efficient security decisions, it becomes critical
in case of embedded systems. Due to resource constraints in
embedded systems, it is important to perform careful balance
among different properties to satisfy all the requirements.
Therefore, security should not be considered just as an addition
of features but as a new dimension and metric [1].

Regarding design complexity of embedded systems, model-
driven methods are a promising approach in raising abstraction
levels and coping with the complexity of embedded systems.
However, due to the characteristics of embedded systems,
security requirements cannot be considered in separation from
other requirements, and the modeling solutions that are used
should be able to model security aspects along with other
requirements such as timing, performance, and power con-
sumption. This is especially important not to just document
security requirements in the model, but also to enable analysis
of them and their impacts on other requirements of the system,
and generation of code that includes security features and
implementations. The possibility to perform such analyses
is the key to ensure correct design of an embedded system
and that the code to be generated will be consistent with the
specification. However, it should also be noted that the actual
behavior of the generated code at runtime may deviate from

what is specified in the model and expected. One reason is that
some information may only be available at runtime. These
deviations can be detected and controlled by using runtime
verification and monitoring methods [2].

In this paper, considering challenges of designing secure
embedded systems, we discuss what is needed at model level
to enable proper security code generation. We do this by
identifying necessary analyses that are required to realize
implications of security design decisions and therefore predict
the side effects of generated security implementations on other
aspects, particularly timing properties.

The remainder of the paper is structured as follows. Section
II discusses security challenges in embedded systems and
implications of security design decisions in general. In Section
III, we describe automatic payment system for toll roads, and
explain the relation between timing and security requirements
in this system. In Section IV, we will have a look at several
UML profiles for modeling security and discuss their suitabil-
ity for generation of security implementations. We propose a
solution for modeling security by extending MARTE [3], and
present our partial work on that (in the scope of this work, we
focus only on UML profiles and not other ways of defining
domain specific languages). Finally, Section V summarizes the
paper and states how we continue with the work and possible
future directions.

II. SECURITY IN EMBEDDED SYSTEMS

Security is an aspect that is often neglected in the design of
embedded systems. However, the use of embedded systems
for critical applications such as controlling power plants,
vehicular systems control, and medical devices makes security
considerations even more important. This is due to the fact that
there is now a tighter relationship between safety and security
in these systems.

Also because of the operational environment of embedded
systems, they are prone to specific types of security attacks
that might be less relevant for other systems such as a
database inside a bank. Physical and side channel attacks [1]
are examples of these types of security issues in embedded
systems that bring along with themselves requirements on
hardware design and for making systems tamper-resistant.
Examples of side channels attack could be the use of time
and power measurements and analysis to determine security
keys and types of used security algorithms.



Increase in use and development of networked and con-
nected embedded devices also opens them up to new types of
security issues. Features and devices in a car that communicate
with other cars (e.g., the car in front) or traffic data centers to
gather traffic information of roads and streets, use of mobile
phones beyond just making phone calls and for purposes
such as buying credits, paying bills,and transferring files (e.g.
pictures, music,etc.) are tangible examples of such usages in
a networked environment.

Besides physical and side channel attacks, often mobility
and ease of access of these devices also incur additional secu-
rity issues. For example, sensitive information other than user
data, such as proprietary algorithms of companies, operating
systems and firmwares, are also carried around with these
devices and need protection.

A. Implications of Introducing Security

Because of the constraints and resource limitations in
embedded systems, satisfying a non-functional requirement
such as security requires careful balance and trade-off with
other properties and requirements of the systems such as
performance and memory usage. Therefore, introducing se-
curity brings along its own impacts on other aspects of the
systems. This further emphasizes the fact that security cannot
be considered as a feature that is added later to the design
of a system and needs to be considered from early stages of
development and along with other requirements.

From this perspective, there are many studies that discuss
implications of security features in embedded systems such
as [1]. Considering the characteristics of embedded systems,
major impacts of security features are on the following aspects:
Timing and Performance, Power Consumption, Flexibility and
Maintainability, and Cost.

Considering these points, the security code that is generated
for an embedded system should be from a model that satisfies
the aforementioned criteria. This means that the model should
contain enough information to enable impact analysis of
security features (such as timing and performance), and ensure
that they are in line with the system specification before
generating code from the model. In the scope of this work,
we focus on the timing costs of security mechanisms that
are important for schedulability analysis and performance of
a system, particularly in real-time embedded systems.

III. AUTOMATIC PAYMENT SYSTEM EXAMPLE

Figure 1 shows internal interactions of a real-time embedded
device in vehicles for automatic payment system in toll roads.
The main goal in the design of this system is to allow a
smoother traffic flow and reduce waiting times at tolling
stations. This is an example of systems in which the impact of
security features on timing properties are important and criti-
cal. The sequence diagram shows that when a payment station,
through its camera, detects that a vehicle is approaching, it
starts communicating with the vehicle and sends information
such as the amount to pay to the vehicle. The vehicle, then
shows this information to the driver through its User Interface

Fig. 1. Automatic Payment Systems for toll roads.

Fig. 2. Suggested Approach

(UI). Upon confirmation of this payment by the driver, the
vehicle sends credit card information to the station through a
secure wireless connection. However, in this system, not only
there are several security requirement, but also we have timing
requirements as well. For instance, there is a critical time
window from the moment that the camera detects a vehicle
until the time it reaches the tolling station. It is within this
time window that a successful payment transaction should be
done; otherwise, the vehicle has to stop.

To implement such a system while ensuring the satisfaction
of timing requirements, it is necessary to take into account
the timing costs of security mechanisms that are used to
implement security requirements of the system. For example,
there are operations such as the transfer of CreditCardInfo that
not only require encryption to protect sensitive data, but also
have constraints on their execution times and cannot just take
any arbitrary amount of time to execute.

To achieve this, the approach depicted in Figure 2 is
suggested.

To enable the generation of appropriate security implemen-
tations, with respect to the timing constraints of the system,
the following challenges are identified:

1) Modeling security mechanisms with enough detail to
enable both timing analysis on the model and generation
of the code implementing them,

2) Obtaining timing costs of security mechanisms,



3) Generating code for security mechanisms and detecting
possible timing violations of the generated code at run-
time.

The first challenge is discussed in the following section. To
get the timing costs of security mechanisms, we rely on studies
such as [4] that have done such measurements. To solve the
third challenge, some hints are provided in the last section,
but we leave its thorough discussion and implementation as a
future work.

IV. MODELING SECURITY MECHANISMS

In this section, we discuss how to model security mecha-
nisms, namely confidentiality, for our example system.

A. Current Solutions for Modeling Security

There are several efforts on defining UML profiles for
security. For example, SecureUML [5] focuses on modeling
role-based access control. AuthUML [6] provides a framework
for analysis of access control requirements. [7] introduces
a set of stereotypes for specification of vulnerabilities that
serve as guidelines for developers to avoid them during im-
plementation. UMLsec [8] offers a broader range of security
concepts and comes with an analysis tool. Article [9] tries
to offer a solution for modeling security along with timing
characteristics of the system using UMLsec and MARTE.

One main issue with these modeling profiles is that model-
ing of security requirements is often considered in separation
from other requirements such as timing [9], [10]. One solution
could be to combine security profiles with other profiles that
enable modeling requirements of embedded real-time systems
and their analysis such as MARTE. However, it should be
noted that combining different UML profiles can be tricky as
these profiles can have overlapping and conflicting semantics
and notations. This issue can be even trickier remembering
that most of available security profiles are limited in the
sense that they usually focus on a certain aspect of security
and several of them may need to be combined as well [10].
Supporting hardware modeling and hardware devices with
built-in security mechanisms is also another issue that is
important for evaluating different deployment scenarios and
is often not covered in security profiles. We have discussed
this issue with more details in [11].

Finally, to generate code that includes implementations of
security mechanisms from a model of an embedded system,
the modeling concepts for security should provide the nec-
essary information to derive code. This level of information
is equally important to enable certain types of analyses at
model level such as performing schedulability analysis by
taking into account execution times of security features (e.g.
encryption/decryption) or energy consumption analysis. For
example, execution time and energy consumption of a block
cipher algorithm can vary depending on the used algorithm,
number of rounds, key size and so on. Therefore, these
influencing parameters are required to be annotated at the
model to enrich and make analysis more accurate. However,
many of the currently available security profiles do not provide

sufficient semantics to model and include the details necessary
to perform these types of analyses and generate code.

B. Modeling Security Using MARTE

In this section, we discuss how MARTE modeling language
can help to include timing costs of security mechanisms and
include them in timing analysis of the system.

In order to alleviate the mentioned issues regarding secu-
rity modeling in embedded systems, we propose extending
MARTE with security concepts and building modeling seman-
tics for security upon it. MARTE offers rich semantics for
modeling non-functional requirements in real-time embedded
systems and provides dedicated packages for schedulability
and performance analysis. It also includes concepts for model-
ing deployment, hardware and annotating models with energy
usage values. By extending MARTE with security concepts,
it becomes possible to include impacts of security design
decisions in the model for timing analysis, and evaluate their
side effects before starting the implementation phase. There-
fore, the code that will be generated from these models will
better satisfy the requirements and constrains of an embedded
system with less unknown and unmanaged side effects on other
properties of the system such as timing, energy consumption,
and memory usage.

Figure 3 shows part of our suggested MARTE extension for
modeling block ciphers.

Fig. 3. Definition of BlockCipher stereotype

Using such concepts we can now annotate the operation of
sending the CreditCardInfo, in the Payment System Example
mentioned before, with the information that follows:
�BlockCipher� CreditCardInfo() {algorithm=AES

, blockSize=(128,bit), keySize=(128,bit), rounds=12,
operationMode=ECB}

C. Introducing Timing Costs of Security Mechanisms

So far, we have managed to annotate sensitive operations in
the model, such as CreditCardInfo, with parameters (type of
algorithm, blocksize, keysize,etc.) of the encryption algorithms
that are selected to protect them. This information is not
only required to generate code that implements each selected



encryption algorithm, but also enables us now to evaluate their
timing costs at model level by using the result of studies such
as [4] and [12] that have performed measurements of timing
costs of encryption algorithms. We assume the existence of
such measurements for the platform used in the automatic
payment system example, in the form of Table I.

Algorithm Key Size BlockSize Rounds OperationMode Execution Time (Bytes/Sec)
AES 128 128 10 ECB 490
AES 192 128 12 ECB 560
AES 256 128 14 ECB 710

. . .

TABLE I
EXECUTION TIMES OF ENCRYPTION ALGORITHMS

Using this information, execution times of modeled encryp-
tion algorithms can be determined. In [11], we have discussed
in more detail how the model can also be analyzed for energy
costs of security mechanisms using a similar approach. The
result would be similar to what follows:
�GaCommStep� �BlockCipher� CreditCardInfo()

{algorithm=AES , blockSize=(128,bit), keySize=(128,bit),
rounds=10, operationMode=ECB, msgSize=(150,B),
execTime=(306,ms,min,calc) }

GaCommStep is a MARTE concept which is a specializa-
tion of MARTE Step to describe communication workloads
and is used in generic quantitative analysis contexts. Specifica-
tion of execution time values are done here based on MARTE
NFP concepts.

This way, the impact of security requirements on timing
requirements in the system are identified. At this point, it is
now possible to determine whether the chosen security mech-
anism is feasible considering specification and constraints
on the allowed execution times. If not, blocksize, keysize,
number of rounds, operationmode or even the size of the input
message can be tweaked to balance security level with timing
properties. This is done by iterating over steps A, B, C, and D
of Figure 2. That is, timing costs for security mechanisms in
the original model (A) are calculated resulting in a model with
timing values for its security mechanisms using the MARTE
concepts introduced above. These values are then checked
against the timing specifications of the system. If violations are
detected, the user modifies security mechanisms in the original
model and goes through steps B, C and D again. After this
phase, it is feasible to generate implementation of the defined
security features for CreditCardInfo.

While, this approach seems to also enable energy consump-
tion analysis on the model, this topic deserves a separate study;
especially that detecting energy consumption violations later
at runtime is a much bigger challenge than the detection of
timing violations.

V. NEXT STEPS AND FUTURE WORK

In this paper, we presented the idea of generating security
implementations from models of embedded systems. The chal-
lenges of designing secure embedded systems were identified.

We discussed impacts of security on other requirements on
the system, namely timing requirements, and the importance
of trade-off analysis among requirements to predict the side
effects of the generated code. Therefore, to generate security
implementations, it was realized that the main challenge is at
the model level so that the generated code respects the con-
straints of embedded systems. We proposed using MARTE as
the basis for modeling embedded systems to enable necessary
analyses on security decisions before generating code for them.
However, as pointed out, timing violations can still happen at
runtime. Therefore, it is needed to relate requirements in the
model to their corresponding implementations in the generated
code, and report any timing violations back to the user at
the model level. As a solution to develop this feature, we are
investigating suitability of Java Modeling Language (JML) to
annotate the code and define pre/post-conditions for generated
methods as suggested in [13].

REFERENCES

[1] P. Kocher, R. Lee, G. McGraw, and A. Raghunathan, “Security as a
new dimension in embedded system design,” in Proceedings of the 41st
annual Design Automation Conference, ser. DAC ’04, 2004, pp. 753–
760, moderator-Ravi, Srivaths.

[2] S. Colin and L. Mariani, “Run-time verification,” in Model-Based Testing
of Reactive Systems, ser. Lecture Notes in Computer Science, M. Broy,
B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner, Eds., vol. 3472.
Springer Berlin / Heidelberg, 2005, pp. 525–555.

[3] MARTE specification version 1.0 (formal/2009-11-02), http://www.
omgmarte.org, Last Accessed: June 2011.

[4] A. Nadeem and M. Javed, “A performance comparison of data encryp-
tion algorithms,” in First International Conference on Information and
Communication Technologies, ICICT 2005., 2005, pp. 84 – 89.

[5] T. Lodderstedt, D. A. Basin, and J. Doser, “Secureuml: A uml-based
modeling language for model-driven security,” in Proceedings of the
5th International Conference on The Unified Modeling Language, ser.
UML ’02. London, UK: Springer-Verlag, 2002, pp. 426–441.

[6] K. Alghathbar and D. Wijesekera, “authuml: a three-phased framework
to analyze access control specifications in use cases,” in FMSE ’03:
Proceedings of the 2003 ACM workshop on Formal methods in security
engineering. New York, NY, USA: ACM, 2003, pp. 77–86.

[7] K. P. Peralta, A. M. Orozco, A. F. Zorzo, and F. M. Oliveira, “Specifying
security aspects in uml models,” in First International Modeling Security
Workshop, ser. MODSEC08, Toulouse, France, September 2008.

[8] J. Jürjens, “Umlsec: Extending uml for secure systems development,”
in UML ’02: Proceedings of the 5th International Conference on The
Unified Modeling Language. London, UK: Springer-Verlag, 2002, pp.
412–425.

[9] V. Thapa, E. Song, and H. Kim, “An approach to verifying security and
timing properties in uml models,” in Engineering of Complex Computer
Systems (ICECCS), 2010 15th IEEE International Conference on, 2010,
pp. 193 –202.

[10] R. J. Rodrı́guez, J. Merseguer, and S. Bernardi, “Modelling and
Analysing Resilience as a Security Issue within UML,” in SERENE’10:
Proceedings. of the 2nd International Workshop on Software Engineer-
ing for Resilient Systems. ACM, 2010, accepted for publication.

[11] M. Saadatmand, A. Cicchetti, and M. Sjödin, “On the need for extending
marte with security concepts,” in International Workshop on Model
Based Engineering for Embedded Systems Design (M-BED 2011),
March 2011.

[12] J. Lee, K. Kapitanova, and S. H. Son, “The price of security in
wireless sensor networks,” Computer Networks, vol. 54, pp. 2967–2978,
December 2010.

[13] J. Lloyd and J. Jürjens, “Security analysis of a biometric authentication
system using umlsec and jml,” in Proceedings of the 12th International
Conference on Model Driven Engineering Languages and Systems, ser.
MODELS ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 77–91.

http://www.omgmarte.org
http://www.omgmarte.org

