
22 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /11/ $ 2 6 . 0 0 © 2 011 I E E E

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

AT THE FIRST software engineering
(SE) conference in 1968, Doug Mc-
Ilroy introduced the concept of soft-
ware components during his keynote
speech, “Mass-Produced Software
Components.”1 That components hold
such an esteemed place in SE history
should come as no surprise: compo-
nentization is a fundamental engineer-
ing principle. Top-down approaches
decompose large systems into smaller
parts—components—and bottom-up
approaches compose smaller parts—
components—into larger systems. Since
1968, components have played a role in
both SE research and practice. For ex-
ample, components have been an im-
manent part of software architecture
from its early days.2 In 1998, the In-
ternational Conference on Software

Engineering introduced component-
based software engineering (CBSE)
as a specific area within SE at the first
workshop on CBSE, an event that even-
tually evolved into a series of symposia
(http://cbse-conferences.org). In paral-
lel, other events have addressed various
CBSE-specific topics such as compos-
ability, predictability of functional and
extrafunctional properties, modeling
of component-based systems, reusabil-
ity, deployment, software architecture
and components, dynamic architecture,
and middleware (see the sidebar “CBSE
Terminology and Basic Concepts”).
These topics have also become stan-
dard parts of many SE conferences (see
the sidebar “CBSE Events”). Research-
ers and developers have taken notice:
by March 2011, the Web of Science re-

ported 1,546 publications containing
both software and component in their
titles; IEEE Xplore had 907 publica-
tions, and the ACM Digital Library had
1,254 titles. Clearly, this is a field expe-
riencing a lot of growth.

A Shifting Paradigm
CBSE aims to build software from pre-
existing components, build components
as reusable entities, and evolve applica-
tions by replacing components. This re-
quires significant changes in the devel-
opment paradigm, from both technical
and business viewpoints. They require
us to think from a top-down approach
to a combination of top-down and bot-
tom-up approaches, from analysis to
predictability, from open source reuse
to black-box reuse, and from selling

Software Components
beyond Programming:
From Routines to Services

Ivica Crnkovic, Mälardalen University

Judith Stafford, Tufts University

Clemens Szyperski, Microsoft

FOCUS: GUEST EDITORS’ INTRODUCTION

 MAY/JUNE 2011 | IEEE SOFTWARE 23

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

final products to building up a market
for components.

SE has witnessed significant ad-
vances in component-based develop-
ment over the past two decades. De-
velopers and researchers have created
and deployed new technologies—for
example, MS COM/DCOM, J2EE, the
Corba Component Model, OSGi, and
.NET MEF—that are widely used in
many application domains, including
distributed systems, office, and desk-
top applications. Many large software
companies have built their own compo-
nent-based technologies—for example,
Koala and BlueAx, developed at Philips
and Robert Bosch, respectively.

But in spite of its many successes,
CBSE has also experienced certain

drawbacks. Several promising con-
cepts, such as component markets and
automatic component search and de-
ployment, remain realized only in small
scale, and many concepts developed in
the research community, such as for-
mal component composition proofs,
have only partially been established in
practice.

The latest trend is component-based
applications in embedded and real-time
systems—for example, the Automo-
tive Open System Architecture (Auto-
sar). In recent years, CBSE’s focus has
seemingly shifted from components to
services specified similarly to compo-
nents through their interfaces—partic-
ularly, as just-in-time components used
in dynamic application configuration to

form the essential elements of service-
oriented architecture, Web services, dis-
tributed systems, and cloud computing.

In This Issue
This special issue of IEEE Software
highlights the wide variety of domains
that utilize CBSE. It opens with a Point/
Counterpoint that discusses the role of
components in bridging the gap between
software architecture and implementa-
tion. In the point piece, “Predictability
by Construction: Meeting Program-
mers’ and Architects’ Concerns,” Kurt
Wallnau emphasizes a misconception
in separating design from implemen-
tation. A component-based approach,
with components as well-defined
executable units and a predictable

CBSE EVENTS
Over the last 10 years, topics related to component-based soft-
ware engineering (CBSE) have been regularly included at software
engineering conferences. These topics include requirements man-
agement, software modeling and design, software testing, and
software life cycle, as well as component-specific topics such as
component compositions, interfaces, component models, and de-
ployment. Conferences dedicated to components and CBSE itself
also feature such topics.

•	 International	Symposium	on	Component	Based	Software	
Engineering (CBSE; http://cbse-conferences.org). This annual
conference focuses on various aspects of CBSE. It encom-
passes research (theoretical and applied) that extends the
state of the art in component specification, composition,
analysis, testing, and verification. CBSE is affiliated with
CompArch, a federated conference event that also includes
other events related to CBSE and software architecture.

•	 International	Symposia	on	Formal	Methods	for	Components	
and	Objects (FCMO; http://fmco.liacs.nl). FMCO’s objective is
to bring together software engineering and formal methods
researchers and practitioners to discuss concepts related to
component-based and object-oriented software systems.

•	 International	Conference	on	Software	Composition (SC; http://
swcomp2010.appspot.com). This conference addresses the
challenges of how to compose software parts to build and
maintain large systems.

•	 Model-Based	Development,	Components,	and	Services	Track
(MoCS; http://seaa2011.oulu.fi/index.php/mocs). Affiliated

with the Euromicro Software Engineering and Advanced
Application Conference, this track focuses on a combina-
tion of model-based, component-based, and service-based
software engineering.

•	 IFIP/ACM	Working	Conference,	International	Working	Confer-
ence	on	Component	Deployment (CD). This occasional
conference focuses on component deployment and related
issues.

•	 Specification	and	Verification	of	Component-Based	Systems	
Workshop (SAVCBS; www.eecs.ucf.edu/~leavens/SAVCBS).
Affiliated with the European Software Engineering Confer-
ence (ESEC) and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE) conferences, this
workshop concerns how formal techniques can help estab-
lish a suitable foundation for the specification and verifica-
tion of component-based systems.

•	 Workshop	on	Component-Oriented	Programming (WCOP;
http://research.microsoft.com/en-us/um/people/cszypers/
events/WCOP2011). Held as part of the Component-Based
Software Engineering and Software Architecture (CompArch)
conference series, this workshop serves as a doctoral sym-
posium for young researchers on CBSE, software architec-
ture, and software quality.

In addition, software engineering conferences such as the
International Conference on Software Engineering (ICSE), ESEC/
FSE, and Model Driven Engineering Languages and Systems
(MODELS) regularly have topics related to CBSE.

24 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FOCUS: GUEST EDITORS’ INTRODUCTION

behavior of component assemblies, can
help bridge the gap between architects
and programmers. In his counterpoint,
“Walking across the Seam,” Philippe
Kruchten states that this approach is
useful, but it isn’t enough and isn’t es-
sential to achieve productive communi-
cation between architects and program-
mers. Architect and programmer are
roles and don’t necessarily imply dis-
tinct individuals.

In their article “Facilitating Per-
formance Predictions Using Software
Components,” Jens Happe, Heiko
Koziolek, and Ralf Reussner show how
CBSE concepts can help model and pre-
dict evolving systems’ performance. A
component-based architecture and suit-
able component technology fi rst enable
annotations of a component’s extra-

CBSE TERMINOLOGY AND BASIC CONCEPTS
What is a software component? Is it a UML component, or is it a
part of a system, like a database or graphical package? What are
the specifi cs of CBSE, and which roles play components in CBSE?
The term software	component is almost as old as software en-
gineering itself, but its defi nition and related terminology remain
subjects of intensive discussions.

TERMINOLOGY

Software Component and Component Model

The most cited defi nition of software	components is “a unit of com-
position with contractually specifi ed interfaces and explicit context
dependencies only. A software component can be deployed inde-
pendently and is subject to composition by third parties.”1 Another
defi nition emphasizes the role of a component model: “A software
component is a software element that conforms to a component
model and can be independently deployed and composed without
modifi cation according to a composition standard.”2 Here, “a com-
ponent model defi nes a set of standards for component imple-
mentation, naming, interoperability, customization, composition,
evolution and deployment.”2 The second defi nition gives a different
meaning of a component—one defi ned by individual component
models.

Interface

A component	interface defi nes a set of component functional
properties, that is, a set of actions that’s understood by both the

interface provider (the component) and user (other components, or
other software that interacts with the provider). An interface has a
double role—it’s a component specifi cation, and it’s also a means
for interaction between the component and its environment. In
CBSE, component models distinguish the actions that components
provide to their environment (that is, the provided	interface) from
the actions they require from this environment (that is, the required	
interface). In certain component models, a component interface
also specifi es extrafunctional properties—for example, timing
properties, resource utilization, and dependability properties such
as reliability and security—and other component metadata.3

Deployment, Binding, and Composition

Component	deployment is a process that enables component inte-
gration into the system. A deployed component is registered in the
system and ready to provide services. Binding is the process that
establishes connections among components through their inter-
faces and interaction channels. In CBSE literature, binding is also
often called component	composition, which assumes a composi-
tion of the components’ functions. In addition to function composi-
tions, CBSE deals with the composition of the components’ extra-
functional properties.

BASIC CONCEPTS AND PRINCIPLES
By its very name, CBSE implies building systems from components
as reusable units and keeping component development sepa-
rate from system development. This separation has signifi cant

Learn about computing history
and the people who shaped it.

COMPUTING
THEN

http://computingnow.
computer.org/ct

 MAY/JUNE 2011 | IEEE SOFTWARE 25

functional properties and then enable
the analysis of system performance on
the basis of component properties in
different system architectures.

In “Components in the Pipeline: The
MeDICi Approach,” Ian Gorton, Adam
Wynne, Yan Liu, and Jian Yin describe
a component-based framework that ef-
ficiently manages a very large amount
of scientific data with respect to scal-
ability, modifiability, and complexity.
The framework, which uses the pipe-
line paradigm, enables a direct mapping
between architectural concepts and the
resulting implementation.

In “Rigorous Component-Based Sys-
tem Design Using the BIP Framework,”
Ananda Basu, Saddek Bensalem, Mar-
ius Bozga, Jacques Combaz, Mohamad
Jaber, Thanh-Hung Nguyen, and Jo-

seph Sifakis present a component-based
framework for the development of em-
bedded and real-time systems. This do-
main is especially challenging because
it has difficult requirements for timing
properties, dependability, and resource
utilization. The component-based
framework the authors present allows
a system specification at different lev-
els of abstraction, including software
and hardware components, transfor-
mations, and model composition, while
preserving correct timing properties in
the implementation.

Finally, in “Managing Evolving Ser-
vices,” Michael P. Papazoglou, Vasilios
Andrikopoulos, and Salima Benbernou
discuss an important issue: service evo-
lution. Services and components have
many things in common, such as in-

terfaces and interaction. But they also
have differences, such as deployment
and composition. In addition to de-
scribing types of service changes, this
article gives a brief overview of compo-
nent and service evolution management
mechanisms.

D uring several decades of SE
development, software com-
ponents have changed their

form and their purpose. Starting as
elements of source code, such as rou-
tines, procedures, modules, or objects,
they transformed to architectural units
and ready-to-execute blocks that are
dynamically plugged into the running
systems. CBSE contributed to advances
in software development by giving

implications for business goals (for example, building a market for
components), technologies (for example, on-the-fly deployment of
new functionality), and legal and social issues (for example, trust,
responsibility, and maintenance). To achieve its primary goals of
increased development efficiency and quality and decreased time
to market, CBSE is built on the following four principles.

Reusability

The entire CBSE approach is fully utilized only if the components,
developed once, have the potential for reuse many times in different
applications. Industry has established several reusability types as
best practices: COTS (commercial off-the-shelf) components, prod-
uct-line components, and open source components. CBSE is also
useful in building architectural components for a particular system,
without intention to reuse the components in other systems.

Substitutability

With substitutability, systems maintain correctness even when one
component replaces another. This requirement boils down to the
Liskov substitution principle:

Let q(x) be a property provable about objects x of type T. Then q(y)
should be true for objects y of type S where S is a subtype of T.

This principle is feasible for functional properties, but it isn’t
obvious for extrafunctional properties because it depends on other
factors, such as a system context—for example, a faster compo-

nent can cause a deadlock and break timing requirements in a sys-
tem using a nonpreemptive scheduling mechanism.

Extensibility

In CBSE, extensibility aims to support evolution by adding new
components or evolving existing ones to extend the system’s func-
tionality. A typical solution to support component evolvability is to
provide components multiple interfaces.

Composability

Composability is a fundamental CBSE principle. Every compo-
nent-based technology supports the composition of functional
properties (component binding). More rarely, there’s support for
composition of extrafunctional properties, for example composition
of components’ reliability, or execution time, or memory usage.
Composition of extrafunctional properties remains one of the major
challenges of CBSE research.

References
 1. C. Szyperski, Component	Software:	Beyond	Object-Oriented	Programming,

Addison-Wesley Professional, 1997.
 2. G.T. Heineman and W.T. Councill, Component-Based	Software	Engineering:	

Putting	the	Pieces	Together, Addison-Wesley Longman, 2001.
 3. I. Crnkovic et al., “A Classification Framework for Software Compo-

nent Models,” IEEE	Trans.	Software	Eng., vol. PP, no. 99; doi: 10.1109/
TSE.2010.83.

26 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FOCUS: GUEST EDITORS’ INTRODUCTION

components formal specifi cations and
identifying a clear role for them as reus-
able units. In parallel to CBSE, com-
ponents are essential elements of other
SE approaches—for example, soft-
ware reuse, software product lines and
model-driven development. Such wide-
spread adoption throughout various
disciplines shows that software compo-
nents will remain a key aspect of SE for
a long time to come.

References
 1. M.D. McIlroy, “Mass-Produced Software

Components,” Software Engineering: A
Report on a Conf. Sponsored by the NATO
Science Committee, NATO, 1969, pp. 138–
155; http://www.cs.dartmouth.edu/~doug/
components.txt.

 2. M. Shaw et al., “Abstractions for Software Ar-
chitecture and Tools to Support Them,” IEEE
Trans. Software Eng., vol. 21, no. 4, 1995, pp.
314–335.

IVICA CRNKOVIC is a professor of industrial software engineering
at Mälardalen University. His research interests include component-
based software engineering, software architecture, software evolution,
embedded systems software, and software development environments
and tools. Crnkovic has a PhD in computer science from the University
of Zagreb. He coauthored the book Building	Reliable	Component-Based	
Software	Systems. Contact him at ivica.crnkovic@mdh.se.

JUDITH STAFFORD is a member of the faculty of the Department
of Computer Science at Tufts University. She is also visiting scientist
at the Software Engineering Institute at Carnegie Mellon University.
Her research interests center around component-based software
engineering and software architecture, more specifi cally the develop-
ment of compositional analysis techniques for reasoning about quality
attributes of assemblies of software components. Stafford has a PhD
in computer science from the University of Colorado at Boulder. She

coauthored the book Documenting Software Architectures. Contact her at jas@cs.tufts.edu.

CLEMENS SZYPERSKI is a principal software engineer at Microsoft.
His recent work includes the Managed Extensibility Framework, a
system enabling self-directed composition that’s part of the .NET
Framework 4.0. Szyperski has a PhD in computer science from ETH
Zurich. He’s the author of the books	Component	Software	and	Software	
Ecosystem. Contact him at Clemens.Szyperski@microsoft.com.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

C A L L F O R P A P E R S

Software Engineering for Cloud Computing
SUBMISSION DEADLINE: 1 JUNE 2011
PUBLICATION: MARCH/APRIL 2012
Cloud computing has rapidly become a new computing paradigm
of great interest to the software practitioner community. A num-
ber of providers of cloud computing platforms now offer “comput-
ing, data storage, and communication services for hire” models.
The potential benefi ts of this approach to service delivery include
reduced complexity, a focus on the core business, a rental model
for platform capabilities, and an increase in business agility due
to the platform provider’s capabilities (for example, pay-per-use,
service integration, systems security, and hardware and operating
system maintenance).

Many open issues remain. Articles should address challenging,
outstanding issues in the engineering of software applications for
cloud platforms. These include the following:

 � Portability and standardization of cloud services
 � Cloud security and privacy including multi-tenant issues
 � Challenges in migrating on-premise applications to cloud
platforms

 � New business models leveraging business agility for cloud-
hosted services

 � New software architecting, design, or testing approaches for
cloud-hosted services

 � New development methods and tools for engineering cloud
services

 � Experience reports—reporting success or failure with a cloud-
oriented software solution or approach to an industrial problem

 � Tutorials—how to use a particular cloud service software engi-
neering approach or tool to solve challenging issues

 � Quality-of-service engineering (performance, reliability, avail-
ability) and certifi cation for cloud applications

 � Counter-cloud articles—that is, when is a cloud-based ap-
proach appropriate? When is it unsuitable? When is the choice
unclear?

Submissions must address the software engineering aspects of
developing services for cloud computing and be oriented towards
IEEE Software’s audience of software practitioners.

QUESTIONS?
 � For author guidelines: www.computer.org/software/author.htm
 � For complete CFP: www.computer.org/software/cfp2
 � For more information about the focus: guest editor
John Grundy, Swinburne Univ. of Technology,
jgrundy@swin.edu.au

 � For submission details: software@computer.org
 � To submit an article: https://mc.manuscriptcentral.com/sw-cs

