
Fuzzy-enabled Failure Behaviour Analysis for

Dependability Assessment of Networked Systems

Barbara Gallina

MRTC, Mälardalen University,
Västerås, Sweden

barbara.gallina@mdh.se

Aleksandar Dimov

University of Sofia,
 Sofia, Bulgaria

aldi@fmi.uni-sofia.bg

Sasikumar Punnekkat

MRTC, Mälardalen University,
Västerås, Sweden

sasikumar.punnekkat@mdh.se

Abstract— Dependability assessment of networked component-

based systems requires fine-grained modelling of the failure

behaviour and propagation aspects of individual components. We

have recently introduced a formalism called FI4FA, enabling the

analysis of I4 (incompletion, inconsistency, interference and

impermanence) failures as well as the analysis of the

corresponding mitigations.

FI4FA, like its predecessors, assumes that the failure behaviour of

individual components is well defined in a deterministic way.

However, in reality there exist multiple sources of uncertainty

(e.g. in the estimates of individual component failure attributes,

in the semantics of their composition, etc.) that require

consideration.

In this paper, we propose a new technique for the assessment of

the failure behaviour of networked component-based systems.

The proposed technique builds on FI4FA and incorporates the

specificities of failure behaviours of networked systems in the I4.

The specification of the failure behaviour of individual

components is based on fuzzy sets, which have the potential to

model and thus address the uncertainty aspect.

Keywords-networked systems-specific failure behaviour,

dependability assessment, uncertainity, failure propagation, fuzzy-

based failure behaviour analysis

I. INTRODUCTION

Dependability assessment and evaluation had been a
growing area of research for several decades, with a multitude
of techniques and tools being proposed by academia as well as
industry. The pervasive nature of software systems and their
growing importance (especially of embedded systems) in our
daily lives make their dependability assessment a necessity.
However, technological advances as well as changing models
of interactions bring forth newer dependability threats (i.e.
faults, errors and failures), thus making such assessments
obsolete at a faster pace than being developed. The recent
advances in component-based software development pose a
great opportunity in approaching the assessment of
dependability in a composable manner provided the nature of
the interfaces and interactions between the components are
well-understood and formally characterised.

The literature (e.g. in [12] and [2]) offers techniques that
exploit these advances and analyse the system’s failure
behaviour in a composable way. FI4FA [2], for instance, is one
of them. FI4FA enables the analysis of I4 (incompletion,
inconsistency, interference and impermanence) failures as well
as the analysis of the corresponding mitigations. FI4FA,
however, makes an assumption that is rarely true: it assumes

that the failure behaviour of individual components can be
defined in a deterministic way. FI4FA does not take into
consideration the multiple sources of uncertainty that can
prevent a deterministic evaluation.

In this paper, we are interested in building on FI4FA and
extending it to tackle the uncertainty aspect. Our aim is to offer
a technique to the system designer, in the context of networked
systems, to assess the failure behaviour of the composed
system. The main contribution of this paper is such a
technique that allows the designer to take into account the
knowledge related to the failure behaviour of individual
components and the system architecture.

The paper is organised as follows: Section II provides the
essential background of FI4FA technique as well fuzzy set
theory, upon which lies the foundations of our proposal.
Section III presents our proposal. Finally, Section IV concludes
the paper and provides a brief road map of planned future
works.

II. BACKGROUND

In this section, we briefly present the essential background on
which we base our work to achieve a new technique to analyse
the failure behaviour of component-based networked systems.
We take into consideration the uncertainty that can be
introduced in the estimations. In particular, in Section II.A we
present the recently introduced technique, called FI4FA, for
failure behaviour analysis and, in Section II.B, we present the
fuzzy sets, which permit the uncertainty to be modelled.

A. F I
4
FA

FI4FA [2] is a technique to analyze the failure behaviour of
an entire system given the failure behaviour of its components.
FI4FA builds on the Fault Propagation Transformation
Calculus (FPTC) [3] technique. A twofold motivation makes
FI4FA more attractive in comparison with FPTC: FI4FA allows
users to carry out a more fine-grained analysis of the failure
behaviour and it also enables the analysis of the mitigation
behaviour. FI4FA makes possible a more fine-grained analysis
by introducing additional failure types, which enable the
analysis of Incompletion, Inconsistency, Interference and
Impermanence (I4) failures (which are typically of concern in
transactional systems). Similarly, the analysis of the mitigation
behaviour is made possible thanks to the introduction of
mitigation types.

The failure behaviour of a component is specified as a
collection of expressions and each expression is composed of
two parts: the left-hand-side part specifies the behaviour
received in input and the right-hand side specifies the
behaviour in output. The behaviour on each input port may be
normal or failure behaviour. A normal behaviour on an output
port may be the consequence of the successful application of
mitigation means. The failure behaviour may be due to the
failure types, mentioned in Section III.A, or a combination of
them.

Similar to FPTC, FI4FA allows a user to evaluate from a
qualitative point of view the failure behaviour of the whole
system. Both techniques make a strong assumption: they
consider that given a specific input the behaviour on the output
is deterministic. As discussed in Subsection III.B, due to
multiple sources of uncertainty, this assumption is not realistic
and therefore FI4FA should be further developed to allow users
to take into consideration the non-determinism.

B. Fuzzy sets and logics

In classical set theory, it is said that a given element either
belongs to a set or it does not. Fuzzy sets [5] enrich classical
set theory with the ability to express that an element may
belong to a set in some extent. In other words, fuzzy sets
enable reasoning about the belief that an element belongs to a
set with a degree in the interval between zero and one.
Formally, fuzzy set is defined as a pair F=(A, m), where A is a
set and m: A→[0, 1] is a membership function of F. For each x
in A, m(x) is called the grade of membership of x in F.

Generally speaking, membership functions characterize the
extent to which an element belongs to a set. As a rule, they
accept non-negative values. Fuzzy sets differ from statistics
and probability theory in the sense that the area under the curve
of a membership function need not be equal to one (like in
probability density functions) and may be any value between 0
and ∞, including them. Another distinction between the fuzzy
set theory and the classical one (actually, the entire theory of
classical mathematics) is that a member of a fuzzy set may
assume two or more (even conflicting) membership values. For
example, as shown in Fig. 1, the number a may be regarded
both as small and big to some extent.

Figure 1. Fuzzy set membership functions

Fuzzy logic is based on the assumption that every variable
may be true to some extent. In fuzzy logic, the traditional
Boolean values of true and false are enriched. More
specifically, a fuzzy variable is associated with a tuple of

values (µ, ν) in the interval [0, 1]. µ is the degree of belief that

the variable is true and ν is the degree of belief that the

variable is not true. Since in classical fuzzy sets µ+ν=1, the ν

information is usually omitted.

Fuzzy logic allows to model uncertainty in establishing the
ownership to a set.

Let x=(µx, νx), y=(µy, νy) be two fuzzy variables. The NOT,
OR and AND operators of Boolean logic, in fuzzy logic, are
usually defined by the following equations:

¬x=(νx, µx) (1)

µx∪y=max(µx, µy)

νx∪y=1-µx∪y=min(νx, νy)
(2)

µx∩y=min(µx, µy)

νx∩y=1-µx∩y=max(νx, νy)
(3)

III. PROPOSED TECHNIQUE

In this section, we present a new technique to evaluate in a
fine-grained way the failure behaviour of component-based,
networked systems on the basis of the failure behaviour of
single components. Our technique permits users to take into
consideration uncertainty by combining fuzzy sets with failure
behaviour analysis techniques. In the following subsections, we
present: a) the failure types addressed; b) the types of
uncertainty’s sources; c) the integration of fuzzy knowledge in
the FI4FA technique and d) the process to be followed to apply
our new technique.

A. Failure types and mitigations in networked systems

A packet transmission in networked systems can be seen as
a transaction in transactional systems. Similar to a transaction,
a packet transmission is also supposed to make the system
transit from a consistent state to another consistent state. A
consistent and successful state-change takes place when from
the initial state (in which the packet to be transmitted is located
at the source) the system transits to a state in which the packet
is located at the destination. Ideally, the packet moves from
source to destination through the transmission channel as if it
were an instantaneous transition and as if it were the only user
of the channel.

In reality, since the transition cannot be instantaneous and
since the channel is a shared resource, inconsistent state-
changes may take place. A packet can be subjected to multiple
threats while it is being transmitted. More specifically, in
networked systems, global consistency can be hindered by the
following types of threats [1]:

• loss: the packet disappears from the
channel/destination point.

• cut: some adjacent bits of the transmitted packet
disappear from the channel.

• duplicate: the transmitted packet is sent twice.
• bit corruption: some bits of the transmitted packet

are flipped.
• collision: the channel is used by more than one

source at the time.
• late: the packet reaches the destination late.
• early: the packet reaches the destination in

advance.
Taking into consideration the causality chain that inter-

relates the dependability threats in complex systems (e,g.

1

-∝ +∝

small big

a

hierarchical component based-systems) [13], these threats in
some circumstances can be classified as failures and in some
others as faults. It is well known that a failure in one
component can represent a failure in another. Thus, as
explained in [2], we only use the term failure.

The transaction-oriented point of view can also be used to
interpret the failure types that may threat the correct behaviour
of the transaction (packet transmission). In particular, we
propose the following interpretation:

• a loss can be seen as an impermanence failure;
• a cut can be seen as an incompletion failure;
• a duplicate can be seen as an incompletion failure;
• a collision can be seen as an interference failure;
• a bit corruption can be seen as an inconsistency

failure;
This interpretation permits techniques conceived for

transactional systems to be reused in the context of network-
systems.

To be able to avoid or mitigate these failures, it is necessary
to detect them. In case of availability of means to carry out a
fine-grained detection, corresponding fine-grained counter-
measures need to be proposed. The above-mentioned failures
can be addressed through the following mitigation strategies:

• collision avoidance, which conceptually is
equivalent to serializability, allows the system to
face interference failures.

• (partial) retransmission, which conceptually is
equivalent to (compensation) all or nothing
semantics, allows the system to face incompletion
as well as impermanence.

• (partial) packet reconstruction which conceptually
is equivalent to (partial) full consistency, allows
the system to face inconsistency.

Since, conceptually, these types of failures and their
counter-measures present interesting analogies with the failure
types and counter-measures in the framework of transactional
systems, techniques that might be used to evaluate the failure
behaviour of transactional systems might be used in the context
of networked systems as well.

B. Uncertainty in failure information collection and

modelling

Zhang and Pham [15] state that the factors of uncertainty in
software systems include software characteristics such as
program complexity, test coverage, development environment
and many others, appearing during the development lifecycle.
In the specific context of software reliability, [14] defines
uncertainty as a deviation of the reliability estimate given by
the model, from the ‘true’ reliability of the system.

In the context of this paper, uncertainty is meant as the
impossibility to establish exactly the ownership to a class.
Uncertainty inherently characterizes the failure modelling task
and therefore, while modelling the failure behaviour, only a
belief can be given. In this section, we discuss possible types of
uncertainty sources in failure modelling. These sources require
to be taken into consideration to provide more realistic
measures:

• Uncertainty due to ambiguity in judging the
component behaviour (failure vs. normal behaviour) -
The oracle, in charge of establishing whether a

component behaves as expected or not, may fail or
may be imprecise.

• Uncertainty due to ambiguity in failure classification
– Different users may classify one failure as
belonging to different failure types. For example, a
cut during a packet transmission, for instance, can be
perceived in various ways according to the user. A
user for whom the lost information is the only one that
matters classifies the cut as an omission, whereas a
user for whom the lost information is not essential
classifies the cut as a normal behaviour. In some
cases, a user for whom the lost information is partially
useful may classify the cut as an incompletion, Due to
this diverse possible user viewpoints, a failure cannot
be classified with certitude. In component-based
systems, a component may be used to compose
different types of systems. Its behavioural
specification should thus reflect this source of
uncertainty, which cannot be simply neglected by
considering a single-user-point-of-view.

• Uncertainty due to ambiguity in the component
behaviour modelling (transformation) rules - Here
bias in the individual judgments of the designer could
be an issue. This is due to the fact, that there does not
exist an exhaustive and well-defined theory behind
transformation rules, which leaves room for different
interpretations by the system designers.

• Uncertainty due to ambiguity in the estimation of
component failure properties - The individual
component failure behaviours are estimated using
diverse sources of data. The way in which we collect
these data may be one of the following: (1) based on
expert decisions during design; (2) based on test data;
(3) based on real-world (field) operation of the
software. Combining all such multiple sources of
inputs and synthesizing them to get reliable estimates
are often time consuming or even infeasible, which
leads designers to use a single source of information
adding to uncertainty in the estimation.

All of the above-listed uncertainty sources may be
experienced into real practice either in the phase of collection
of failure data (for instance by testing) or in the phase of failure
modelling.

C. Integration of fuzzy knowledge in FI
4
FA

In this subsection, we motivate the need for the incorporation
of the fuzzy method within FI4FA. As seen in the background,
FI4FA represents an appealing technique to be able to carry
out fine-grained evaluation of the failure behaviour as well as
evaluation of the mitigation behaviour. Moreover, in the
context of networked systems, the I4 failures, as discussed
previously, might have crucial interpretations. FI4FA,
however, being based on standard FPTC does not allow users
to take into consideration the uncertainty discussed in Section
III.B. Fuzzy sets, as recalled in the background, allow users to
represent uncertainty. Thus, we integrate fuzzy knowledge
within FI4FA. The result of the integration is called F2I4FA.
The syntactical rules of F2I4FA are given in the textbox below.
The main addition in comparison with FI4FA is the non-
terminal ‘tb’ which permits qualifying the behaviour with

additional information concerning the belief. More precisely,
the three rules that are affected by the addition are listed at the
end of the textbox and they are emphasized in italics.

These syntactical rules allow a user to specify the failure

behaviour of individual components. The behaviour consists of
a collection of expressions and each expression, in turn,
indicates a propagation/transformation rule. More specifically,
an expression indicates how the component behaves in
response to a specific input (token), specified on the left-hand
side of the arrow. The component may propagate the token as
it is or it may transform it. The response to the token received
in input is specified on the right-hand side of the arrow and a
belief is associated to it. The response of the component is
specified on the right-hand side of the arrow.

The semantics of a F2I4FA specification is given by using
the classical fuzzy logic to calculate the belief and by using a
similar algorithm as done in [11] to calculate the failure
information as a fixed-point calculation.

To give an informal intuition of the semantics, we show
how to reason about failure propagation of two components CA

and CB, connected in series and resulting in a composition. Let
us have the following two rules, each of which defines the
failure behaviour of a single component:

tokenA
�{{token1; µ1A},{token2; µ2A},…,{tokenn; µnA}}

tokenB=tokenn
�{{token1; µ1B},{token2; µ2B},…,{tokenm; µmB}}

Let us suppose that the following conditions hold:

i={1..n},

 j={1..m}

By applying equation (3), given in Section II.B, we obtain:





























→

=





























∩

∩

∩

→

→

),min(,t

),min(,t

),min(,t

,

,t

,t

,t

,t

,

 ,t

22

11

22

11

22

11

22

11

nBnAn

BnA

BnA

n

A

A

nBnAn

BnA

BnA

n

A

A

A

oken

oken

oken

token

token

oken

oken

oken

oken

token

token

oken

token

µµ

µµ

µµ

µ

µ

µµ

µµ

µµ

µ

µ

M

M

M

M

(4)

Further, by applying equation (2), we calculate the union of

all equal tokens that appear. Finally, we get the following:














→

−−−

),min(,t

)),min(,max(,

)),min(,max(,

)),min(,max(,t

111

222

111

nBnAn

BnnAAnn

BnAA

BnAA

A

oken

token

token

oken

token

µµ

µµµ

µµµ

µµµ

M

(5)

Similarly, we may obtain the system-level rules for the case

when m<n, n<m or when we have more different expressions
for the LHS of F2I4FA specification.

To illustrate the approach more concretely we consider the
following simple example.

Let us suppose that the component CA represents a sender
and CB – a receiver. If chained, these two components form a
composed system (CA+CB) that may represent a transmission
system. Let us suppose that the behaviour of each single
component (specified according to the F2I4FA rules) is:

 CA behaviour:
�{{; 0.2},{late;0.5},{coarse.incompletion; 0.65}}

The above behaviour consists of a single rule which specifies
that in response to a normal behaviour, the sender is expected:
to keep on behaving normally with a belief of 0.2; to generate
a late failure with a belief of 0.5; to generate a coarse
incompletion failure with a belief of 0.65.

CB behaviour:
coarse.incompletion�{{*;0.1},

{late;0.75},{coarse.incompletion; 0.6}}

The above rule specifies that in response to a coarse
incompletion failure, the receiver is expected to behave
normally with a belief of 0.1; to transform the coarse
incompletion failure into a late failure with a belief of 0.75; to
propagate the coarse incompletion failure with a belief of 0.6.

Given the behaviour of the single components, the

behaviour of the composed system (CA+CB) is calculated as the
result of the union of the intersection of the behaviour of the
single components.

According to equation (3), the intersection is calculates as
follows:

behaviour = expression | expression (‘;’ expression)+
expression = LHS ‘�’ RHS
LHS= token | ‘(’ token (‘,’ token)+ ‘)’
token = no-failure | alphachar | failure |
‘{’failure (‘,’ failure)+ ‘}’
failure = basic-standard | combined
basic-standard = timing | value | sequence
timing =‘early’ | ‘late’
value =‘coarse’ | ‘subtle’
sequence = ‘omission’ | ‘commission’
combined = basic-standard‘.’basic-standard |
basic-standard‘.’A-avoidable‘.’C-avoidable‘.’I-
avoidable‘.’D-avoidable
A-avoidable = ‘incompletion’ | no-failure
C-avoidable = ‘inconsistency’ | no-failure
I-avoidable = ‘ww-cycle-based-interference’ |
‘all-cycle-based-interference’ | no-failure
D-avoidable = ‘impermanence’ | no-failure
no-failure = basic-star | detailed-star
basic-star = ‘*’
detailed-star = basic-star‘.’A-mitigation‘.’C-mitigation‘.’I-
mitigation‘.’D-mitigation
A-mitigation = ‘all-or-nothing’ | ‘all-or-compensation’ |
’none’
C-mitigation = ‘full-consistency’ | ‘partial/consistency’ |
’none’
I-mitigation = ‘serializable’ | ‘none’
D-mitigation = ‘no-loss’ | ‘partial-loss’ | ‘none’

RHS = tb | ‘{’ tb (‘,’ tb)+ ‘}’
tb = ‘{’ token ‘;’ belief‘}’
belief = real

























→

→

0.6) min(0.65; ompletion;coarse.inc

0.75) min(0.65; late;

0.1) min(0.65; *;

ompletion coarse.inc

0.5 late;

2.0*;

*

(6)

Then, according to (2), we calculate the union and we obtain
the system’s behaviour, which is:

• Normal behaviour with a belief of 0.2
• Late with a belief of 0.65
• Coarse incompletion with a belief of 0.6

D. Generic application process for fuzzy FI4FA

To apply the F2I4FA technique, the following three steps
have to be performed:

1) Analysis of the components’ behaviour. The response
of a component to its input is analysed in isolation
from the rest of the system. From this analysis it is
possible to establish the belief with which a
component: a) propagates a failure received in input
as it is; b) transforms a failure; c) generates a failure
(source behaviour); d) stops a failure (sink behaviour).

2) Specification of the component’s behaviour. The
component’s behaviour analysed at step 1 must be
specified as a collection of propagation or
transformation expressions, using F2I4FA syntax.

3) Calculus of the whole system’s behaviour. The inter-
connected components are considered as a token
(failure and believe)-passing network and a fixed-
point calculation is performed. In particular, a similar
algorithm to that one proposed in [3] is used to
calculate the failure behaviour at system level and the
fuzzy operators, as explained in Section III.C, are
used to calculate the belief associated to that failure
behaviour.

Once the result of the analysis is available, it can be used to
select a specific counter-measure to react to the system’s
behaviour in case of failure (as explained in [16] as well as in
[2]). It is crucial to observe, however, that only if the belief
associated to the failure behaviour is reasonably high, a
specific counter-measure should be selected. In case of a low
belief, the level of uncertainty would be too high and in that
case it would be better to treat the failure behaviour as an
arbitrary one. As a reaction to an arbitrary failure, a general
instead of a specific counter-measure should be selected. The
user can re-engineer the architecture by introducing a
component capable of mitigating the arbitrary behaviour.

IV. RELATED WORK

To assess dependability, it is crucial to have: the system’s
threats (fault, error and failure) model and techniques to
perform analysis of the system’s behaviour with respect to the
threats model. In [1], authors propose a network-based fault
model and they use finite-state automata to describe the
system’s behaviour. Their work contributes in putting in

evidence the importance of having a fine-grained classification
of failures. Their work, however, does not provide any
contribution in failure propagation analysis techniques.

In [11], authors propose an extension of FPTC to consider
the probability of the failure propagation. One drawback of
probabilistic approach is that it usually requires a lot of input
data in order to make statistically correct estimations about
given probabilistic value. Moreover, as mentioned in the
background, a probabilistic approach does not allow users to
model the degree with which an element belongs to a set.

Another direction of work, related to ours is concerned with
application of fuzzy based approach to software reliability and
error propagation modelling. In [6], an architecture based fuzzy
reliability model is proposed, which is able to take into account
uncertainty in reliability estimates. A profound survey of
application of fuzzy techniques in lot of fields of systems
engineering, including software engineering is presented in [7].
Other approaches [8], [9] aim towards estimation of reliability,
based on fuzzy reasoning on system testing data. A model for
description of operational profile of software systems is
proposed in [10] and is based on input data from experts.

These last efforts, however, do not consider either analysis
of failure behaviour of components within software systems, or
mitigation behaviour.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a new technique for the
analysis of networked and component-based systems. A
twofold motivation makes the proposed technique
advantageous with respect to its predecessors: it allows users to
take into consideration the uncertainty that typically affects the
estimation of the failure behaviour (thus a more realistic
measure can be obtained); it allows reasoning on the specificity
of failures that threaten networked systems (fine-grained
analysis).

Our technique, currently, is in its initial stages of
development. In the future, to advance its development, first of
all we plan to improve its formalization. Moreover, to allow
users to perform the analysis automatically, we intend to
provide an adequate tool-support. Finally, to validate the
usefulness of our approach, we intend to carry out an
experimental evaluation, potentially in safety/mission critical
industrial settings, which, we believe may benefit from this
analysis to provide dependability arguments in the context of
system certification.

ACKNOWLEDGMENT

This work has been partially supported by the European Project
ARTEMIS-JU100022 CHESS [4], the National Science Fund
of Bulgaria under the PD01-0106 ARECS project (contract №
Д002-298/2008) and Knowledge Foundation, Sweden and
RISE Holding AB through the ARIES project. We would also
like to thank the anonymous reviewers for their valuable
remarks and comments on the submitted version of this paper.

REFERENCES

[1] F. Fummi, D. Quaglia, F. Stefanni. Network Fault Model for
Dependability Assessment of Networked Embedded Systems.
IEEE International Symposium on Defect and Fault Tolerance
of VLSI Systems, pp.54-62, 2008.

[2] B. Gallina and S. Punnekkat. FI4FA: A Formalism for
Incompletion, Inconsistency, Interference and Impermanence
Failures Analysis. In Proceedings of the IEEE International
workshop on Distributed Architecture modeling for Novel
Component based Embedded systems (DANCE), September,
2011.

[3] M. Wallace. Modular architectural representation and analysis
of fault propagation and transformation. Electronic Notes in
Theoretical Computer Science (ENTCS), volume 141 n.3,
pp.53-71, December, 2005.

[4] ARTEMIS-JU-100022 CHESS- Composition with guarantees
for High-integrity Embedded Software components aSsembly.

[5] G . Chen, and T. Pham. Introduction to Fuzzy Sets, Fuzzy
Logic, and Fuzzy Control Systems. CRC Press LLC, 2001.

[6] A. Dimov and S. Punnekkat. Fuzzy reliability model for
component-based software systems. In Proceedings of the 36th
EUROMICRO SEAA Conference, pp. 39-46, France,
September 2010.

[7] C. Cai. System failure engineering and fuzzy methodology – an
introductory overview, in Fuzzy Sets and Systems. Volume 83,
Issue 2, Fuzzy methodology in system failure engineering, pp
113-133, October 1996.

[8] G. Junhong, Y. Xiaozong, and L. Hongwei. Software Reliability
Nonliner Modeling and its Fuzzy Evaluation. In Proceedings of
the 4th WSEAS International Conference, Sofia, Bulgaria, Oct.
27-29, pp.49-54, 2005.

[9] O. Georgieva, and A. Dimov. Software Reliability Assessment
via Fuzzy Logic Model. In Proceedings of the International

Conference on Computer Systems and Technologies,
CompSysTech 2011, June 2011, Vienna, Austria, in press.

[10] K. Kumar, R. Misra and N. Goyal, Development of Fuzzy
Software Operational Profile. In Proceedings of the 2nd
International Conference on Secure System Integration and
Reliability Improvement (SSIRI), pp. 195-196, 2008.

[11] X. Ge, R. F. Paige, and J. A. Mcdermid. Probabilistic failure
propagation and transformation analysis. In Proceedings of the
28th International Conference on Computer Safety, Reliability,
and Security (SAFECOMP), Bettina Buth, Gerd Rabe, and Till
Seyfarth (Eds.). Springer-Verlag, Berlin, Heidelberg, pp. 215-
228, 2009.

[12] L. Grunske, J. Han. A comparative study into architecture-based
safety evaluation methodologies using AADL's Error Annex and
failure propagation models. 11th IEEE High Assurance Systems
Engineering Symposium (HASE), pp.283-292, 2008.

[13] A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr, Basic
concepts and taxonomy of dependable and secure computing. In:
IEEE Trans. Dependable Sec. Comput. 1(1): 11-33. 2004.

[14] S. Chandran, A. Dimov and S. Punnekkat, Modeling
uncertainties in the estimation of software reliability - a
pragmatic approach. In Proceedings of the Fourth IEEE
International Conference on Secure Software Integration and
Reliability Improvement (SSIRI), Singapore, pp. 227-236, June
2010.

[15] X. Zhang and H. Pham. An analysis of factors affecting software
reliability. In Journal of Systems and Software, 50(1), pp. 43-56,
2000.

[16] F. Ye and T. Kelly. Component failure mitigation according to
failure type. Proceedings of the 28th Annual International
Computer Software and Applications Conference (COMPSAC),
pp.258-264 vol.1, 28-30 Sept. 2004.

