

Tutorial

F1

Evaluating Dependability Attributes of

Component-Based Specifications

Ivica Crnkovic and Lars Grunske

Day: Sunday 20 May 2007, Full Day Tutorial

Venue: Ramsey

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
1

Evaluating Dependability Attributes of
Component-Based Specifications

Ivica Crnkovic, Mälardalen University
Department of Computer Science and Electronics
Box 883, 721 23 Västerås, Sweden
http://www.idt.mdh.se/~icc, ivica.crnkovic@mdh.se

Lars Grunske, School of ITEE
ARC Centre for Complex Systems, University of Queensland
4072 Brisbane (St.Lucia), Australia
http://www.itee.uq.edu.au/~grunske/, grunske@itee.uq.edu.au

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
2

Presenter Introduction: Ivica Crnkovic

Mälardalen University, Vasteras (Västerås)
Prof. in Software Engineering
http://www.idt.mdh.se/~icc
ivica.crnkovic@mdh.se

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
3

Presenter Introduction: Lars Grunske

Dr. rer. nat. Lars Grunske
Boeing Postdoctoral Research Fellow,
School of ITEE, University of Queensland,
4072 St Lucia, Brisbane, Australia
Webpage: http://www.itee.uq.edu.au/~grunske/

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
4

Dependable Systems

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
5

Outline of the Tutorial
1. Introduction
2. Basic concepts of dependable component-based systems

and dependability
3. Overview of Component Models
4. Specification and composability of dependability properties
5. Overview of the State of the Art in Component-Based

Dependability Evaluation Methods
6. Session Concluding remarks

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
6

Component-based software systems

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
7

� The size & complexity of software increases rapidly
� Single products become part of product families
� Software is updated after deployment
� Demands of decreasing time to market
� Costs of software development increasing

Problems of software development

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
8

Observations of the practice of software engineering

� About 80% of software development deals with changing
(adaptation, improvement) of existing software

� Time to market is an important completive advantage:
� Importance of incorporation of new innovations quickly

� System should be built to facilitate changes
� Easy removal and addition of functionality

� Systems should be built to facilitate reuse
� Easy integration of existing functions

Requirements:
� Provision of approach, technologies to facilitate

Reuse, easy update and modification of software

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
9

Answer: Component-based
Development

� Idea:
� Separate development of components from development

of systems
� Build software systems from pre-existing components

(like building cars from existing components)

� Building components that can be reused in different
applications

� Component-based Software engineering - supporting all
aspects of activities in lifecyle of components and component-
based systems

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
10

Main principles: (1)
Reusability

� Reusing components in different
systems

� The desire to reuse a component
poses few technical constraints.
� Similar systems architecture
� Good documentation

(component specification…)
� a well-organized reuse

process
� ….

C1

C1 C2

C3 C4

Application A1

C1 C5

C6 C7

Application A2

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
11

Main principles: (2) Substitutability

� Alternative implementations of a
component may be used.

� The system should meet its
requirements irrespective of which
component is used.

� Substitution principles
� Function level
� Non-functional level

� Added technical challenges
� Design-time: precise definition

of interfaces & specification
� Run-time: replacement

mechanism

C1 C2

C3 C4

Application A1

C1´ C2

C3 C4

Application A1

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
12

Main principles: (3)
Extensibility

� Comes in two flavors:
� Extending system functionality by adding

components that are part of a system
� Extending system functionality by

increasing the functionality of individual
components

� Added technical challenges:
� Design-time: extensible architecture
� Run-time: mechanism for discovering

new functionality

C1 C2 C3

C1 C2 C4 C3

C1 C2 C3

C1 C2+
C4

C3

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
13

C1

Main principles: (4)
Composability

� Composition of components
� P(c1 o c2) =P(c1) o P(c2) ??

� Composition of functions
� Composition of extra-functional

properties

� Many challenges
� How to reason about a system

composed from components?
� Different type of properties
� Different principles of compositions

C2

assembly

C

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
14

Compositional Reasoning

� Calculating properties of a system by
combining properties of its
constituents (components)

� Compositional reasoning: Function
� If P(C) of program C is a

function from input to output
(pipe & filter)
then the composition is modeled
as a functional composition:

� If S = C1 o C2
Then P(S) = P(C1) o P(C2)

C1 C2
assemblyC

P(C1) P(C2)

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
15

Predictable assembly

� Functional composition is not always possible
� Question with extra-functional properties

� Example: dynamic memory usage M
� If S = C1 o C2

then what is the composition M(S) =
M(C1) o M(C2)

� M is not defined only by properties M(Ci), but
also on properties of the platform “scheduling
policy for example”

� Information supplied with C1 is not enough

C1 C2
assemblyC

P(C1) P(C2)

Platform

Predictable assembly = ability to predict properties of an assembly
from properties of the involved components

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
16

CBSE Terminology

To make the things easier we need first some definitions...

� Software Component
� Component-based systems
� Component specification
� Component composition
� Component and sytsems properties

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
17

Summary CBSE – basic definitions

� The basis is the Component
� Components can be assembled according

to the rules specified by the component
model

� Components are assembled through their
interfaces

� A Component Composition is the
process of assembling components to form
an assembly, a larger component or an
application

� Component are performing in the context
of a component framework

� All parts conform to the component model
� A component technology is a concrete

implementation of a component model

c1 c2

Middleware

Run-time system
framework

Component Model

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
18

Component Technology

Component Framework

Platform

Com
ponents

Repository

Supporting Tool

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
19

Software Component Definition (I)

Szyperski (Component Software beyond OO
programming)

� A software component is
� a unit of composition
� with contractually specified interfaces
� and explicit context dependencies only.

� A software component
� can be deployed independently
� it is subject to composition by third party.

Szyperski

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
20

Another definition

� A software component is a software element that
� confirms a component model
� can be independently deployed
� composed without modification according to a

composition standard.
� A component model defines specific interaction and

composition standards.

G. Heineman, W. Councel, Component-based software engineering, putting the
peaces together, Addoson Wesley, 2001

G. Heineman

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
21

Variety of component models

� The generalized definition allows different component models
� In different domains there are different requirements and

constraints
� Different interactions (architectural styles)
� Different extra-functional properties
� Different integration and deployment policies

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
22

Component models classifications

� Lifecycle. The lifecycle dimension identifies the
support provided (explicitly or implicitly) by the
component model, in certain points of a lifecycle of
components or component-based systems.

� Constructs. The constructs dimension identifies (i)
the component interface used for the interaction with
other components and external environment, and (ii)
the means of component binding and communication.

� Extra-Functional Properties. The extra-functional
properties dimension identifies specifications and
support that includes the provision of property values
and means for their composition.

� Domains. This dimension shows in which application
and business domains component models are used.

lifecycle

constructs

EFP

Domain A Domain B

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
23

Classifications

� Lifecycle
� Modeling
� Implementation
� Packaging
� Deployment

� Constructs
� Interface types
� Interface specification

language
� Interface Level (signature,

contract-based, semantics)
� Interaction

� EFP
� General support for properties
� Properties specification
� Composition support

� Domain
� Specific
� General-purpose

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
24

Some of component models

� AUTOSAR
� BIP
� CCM
� Fractal
� KOALA
� EJB
� MS COM

� MS .NET
� OSGi
� PIN
� PECOS
� ROBOCOP
� RUBUS
� SaveCCM
� SOFA 2.0
� ….

<<component>>
Client

<<component>>
ServerIdenticalItf

C1
wcet1
f1

A

C2
wcet2
f2

Input
ports

Output
ports System

Sub 1 Sub 2

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
25

Example: Component-based embedded systems

Vehicle mechanics

ECU

Sensor ActuatorSensor

ECU

Sensor ActuatorSensor

ECU

Sensor ActuatorSensor

gateway
(CAN) BUS

brake injection

Infotaiment

ECU – Electronic Control Unit
Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications

26

sensors

The architectural design challenge

Vehicle

actuators

Engine Control Local brake Control Transmission ……… Local
control

Vehicle stability

Cruise control
Antispin Global

(complex)
functions

Hardware

Input/output drivers

Middleware
ECU ECU ECU

Applications

SOFTWARE COMPONENTS

Collision detection

How to keep efficiency, predictability and reusability?

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
27

Distributed Software Components

Hardware

Input/output drivers

Middleware

ECU ECU
ECU

Applications

Component 1 Component 2

ECU

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
28

Software Architecture and components

� Architecture Specification
� Structure specification
� Set of interface specification

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
29

Components and system properties

What are properties?
What are dependable systems?

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
30

Properties

� Attribute/property
� “a construct whereby objects and individuals can be distinguished”
� “a quality or trait belonging to an individual or thing”

� A required attribute/property is expressed as a need or desire
on an entity by some stakeholder.

� An exhibited attribute/property is an attribute/property
ascribed to an entity as a result of evaluating (for example
measurement of) the entity.

� The need for properties is motivated by their explanatory roles they have to
fill. They describe phenomena of interest – There are no “absolute”
properties

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
31

Some example of properties

� Reusability, Configurability, Distributeability, Availability, Confidentiality,
Integrity, Maintainability, Reliability, Safety, Security, Affordability,
Accessibility, Administrability, Understandability, Generality, Operability,
Simplicity, Mobility, Nomadicity, Hardware independence Software,
independence, Accuracy, Footprint, Responsiveness, Scalability,
Schedulability, Timeliness, CPU utilization, Latency, Transaction,
Throughput, Concurrency, Efficiency, Flexibility, Changeability,
Evolvability, Extensibility, Modifiability, Tailorability, Upgradeability,
Expandability, Consistency, Adaptability, Composability, Interoperability,
Openness, Heterogenity, Integrability, Audibility, Completeness, ,
Conciseness, Correctness, Testability, Traceability, Coherence,
Analyzability, Modularity, ….

Kazman, R., L. Bass, G. Abowd, M. Webb,
“SAAM: A method for analyzing properties of software architectures,”
Proceedings of the 16th International Conference on Software Engineering, 1994.

Kazman et al, Toward Deriving Software Architectures from Quality Attributes,
Technical Report CMU/SEI-94-TR-10, 1994.

McCall J., Richards P., Walters G., Factors in Software Quality, Vols I,II,III',
US Rome Air Development Center Reports, 1977.
Bosch, J., P. Molin, “Software Architecture Design: Evaluation and Transformation,”
Proceedings of the IEEE Conference and Workshop on Engineering of Computer-Based Systems, 1999.

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
32

Classification of properties

� Different classification
� Run-time properties
� Life cycle properties
� Run time

� Reliability, safety, performance, robustness
� Life cycle

� Maintainability, portability, reusability,…
� CBSE

� Component properties
� System properties

� Emerging properties

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
33

Quality model in ISO 9126-I

Example
having source code reviews” (a Software development process quality) influences
the source code in that “the number of not initialized variables” (an internal quality
attribute of a software product) is minimized. This positively influences the
reliability, of the system (an external quality attribute of a software product).

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
34

General Concepts of the ISO/IEC 9126-1

Existing Components

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
35

Quality characteristics, sub-characteristics and
attributes

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
36

ISO/IEC 9126-1 quality attributes

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
37

Other views – example: Dependability

1. Ability of a system to deliver service that can justifiably be trusted
2. Ability of a system to avoid failures that are more frequent or more

severe than is acceptable to user(s)

Related to
1. Trustworthiness (assurance that a system will perform as expected)
2. Survivability (capability to fulfill its mission in a timely manner)

Dependable
systems

Safety-critical
systems

Mission-critical
systems

Business-critical
systems

Avizienis, A.; Laprie, J.-C.; Randell, B.; Landwehr, C., “Basic concepts and taxonomy of
dependable and secure computing”, IEEE Trans. Dependable Sec. Comput., Vol. 1, Issue
1, 2004

Other systems – embedded systems
- Desktop systems Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications

38

Dependability

Availability Reliability Safety Confidentiality Integrity Maintainability

Readiness
for usage

Continuity
of services

Absence of
catastrophic
consequences

Absence of
unauthorized
disclosure of
information

Absence
of improper
system
alternations

Ability to
Undergo
repairs and
evolutions

Attributes of Dependability

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
39

Dependability Challenges

� How can system quality attributes be accurately evaluated, from the
specification of components properties which are determined with a
certain (in)accuracy?

� Given the required system quality attributes, which properties are
required from the components?

� To which extent, and under which constraints can the emerging
system properties (i.e. the system properties non-existent on the
component level) be derived from the component properties?

� Given a set of component properties, which system properties are
predictable?

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
40

Composition of properties
What do we need to know to predict system properties

from component properties?

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
41

Component development (COTS type)
Known: Architectural Framework, component model
Unknown: system architecture, products, usage,..

Product line
Known: domain, architectural framework, application skeleton,
Variation (integration) points
Unknown: Final products

Open systems
Known: similar to PLA,
but integrators are not necessary known

Final product ready to use
(usage not necessary known)

Final product in use

What can we predict (or guarantee) about the system
properties In each stage of development?

Given a set of component properties, which system
properties are predictable?

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
42

Properties Classification

1. Directly composable properties. A property of an assembly which is a function
of, and only of the same property of the components involved.

2. Architecture-related properties. A property of an assembly which is a function of
the same property of the components and of the software architecture.

3. Derived (emerging) properties. A property of an assembly which depends on
several different properties of the components.

4. Usage-depended properties. A property of an assembly which is determined by
its usage profile.

5. System context properties. A property which is determined by other properties
and by the state of the system environment.

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
43

1. Definition: A directly composable property of an assembly is a
function of, and only of the same property of the components.

� Consequence: to derive (predict) an assembly property it is not
necessary to know anything about the system(s)

))(,),(),(()(
}1:{

component assembly, attribute,

21 n

i

cPcPcPfAP
nicA

cAP

K=
≤≤=

===

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
44

Example

� “Physical characteristics”
� Static memory

� (the “function” can be much more complicated)
� (the functions are determined by different factors, such as

technologies)

componentsassembly,size,memory

)()(
1

===

=∑
=

i

n

i
i

cAM

cMAM

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
45

2. Definition: An architecture-related property of an assembly is a
function of the same property of the components and of the
software architecture.

� Consequence: System/assembly architecture must be known
� Ok when building systems of particular class

� (product-line architectures)

 rearchitectu software
)),(,),(),(()(

}1:{

21

=
=

≤≤=

SA
SAcPcPcPfAP

nicA

n

i

K

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
46

Clients

Client tier Web server tier Business logic tier Data tier

Web server

Business
components

Data access
components Data

Variability
points

tionimplementaparticularaforfactorsalproportion,,
componentsofnumber;clientsofnumber

ntransactiopertimeexecution/

/

=
==

=

++=

cba
yx

NT

cy
y
xbaxNT

Example (J2ee or .NET distributed systems)

Yan L., Gorton I., Liu A., and Chen S.,
"Evaluating the scalability of enterprise javabeans technology",
In Proceedings of 9th Asia-Pacific Software Engineer-ing Conference,
IEEE, 2002.

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
47

3. Definition: A derived property of an assembly is a property that
depends on several different properties of the components.

� Consequence: we must know different properties and their
relations (might be quite complex)

attributescomponent...
attributeassembly

)(,),(),(

),(,),(),(
),(,),(),(

)(

}1:{

1

21

22212

12111

=
=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

≤≤=

k

nkkk

n

n

i

PP
P

cPcPcP

cPcPcP
cPcPcP

fAP

nicA

L

M

L

L

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
48

C1
wcet1
f1

A

C2
wcet2
f2

Output
ports

end-to-end deadline is a function of different component properties, such as
worst case execution time (WCET) and execution period.

Example

wcetc
Tc
cL

cBwcetccL j
chpc j

i
n

iii
n

ij

.
.

)(
)(.)(

)(

1 ∑
∈∀

+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
++=

fixed priority scheduling

Input
ports

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
49

4. Definition: A Usage-dependent property of an assembly is a
property which is determined by its usage profile.

Consequence: It is not enough to know which system will be built. It
must be known how the system will be used

 profileusagecomponent'
profileusageassembly

profileusageparticularaforattribute
,:))'((),(

,

,,

=

=

=

∈=

ki

k

kiik

U
U
P

NkiUcPfUAP

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
50

Example: Reliability

� the probability that a system will perform its intended function during
a specified period of time under stated conditions.

� Mean time between failure
� How to calculate reliability for Software System?

� Start from from a usage profile
� Identify probability of the execution of components
� Find out (measure) reliability of components
� Calculate reliability of the system

Ralf H. Reussner, Heinz W. Schmidt, Iman H. Poernomo, Reliability prediction for component-based software architectures
The Journal of Systems and Software 66 (2003) 241–252

Claes Wohlin, Per Runeson: Certification of Software Components,IEEE Trans. Software Eng. 20(6): 494-499 (1994)

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
51

Uk

Ul

P(U)

Uk-min Uk-max

Ul -min Ul -max

Pl

Pk

Uk

Ul

P(U)

Uk-min Uk-max

Ul -min Ul -max

PlPl

PkPk

Can we predict reliability using existing usage profiles?
Reuse problem:

mapping system usage profile to component usage profile
When the known (measured) properties values can be reused?

),(),(),(maxmin kkllkkkl UAPUAPUAPUU −−⇒ ≤≤⊆

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
52

5. Definition: A System Environment Context property is a property which is
determined by other properties and by context of the system environment.

� Consequence: It is not sufficient to know the systems and their
usage, it is necessary to know particular systems and the context
in which they are being performed

profile usageComponent ´
System

contexttEnvironmen

 profile; usage System
,,);),´((),(

,

,,,

=
=
=

=

∈=

ki

l

k

lkiiklkk

U
S
E

U
NlkiEUcPfEUSP

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
53

Example

� safety property
� related to the potential catastrophe
� the same property may have different degrees of safety

even for the same usage profile.

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
54

Summary - Classification

1. (DIR) - Directly composable properties. A property of an assembly which is a function of,
and only of the same property of the components involved.

2. (ART) - Architecture-related properties. A property of an assembly which is a function of the
same property of the components and of the software architecture.

3. (EMG) - Derived (emerging) properties. A property of an assembly which depends on
several different properties of the components.

4. (USG) - Usage-depended properties. A property of an assembly which is determined by its
usage profile.

5. (SYS) - System context properties. A property which is determined by other properties and
by the state of the system environment.

DIR – component context

DIR – Architecture (assembly) context

EMG – Architecture and other components context

USG – Use context

Sys – System (including external environment) context

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
55

Conclusion

� Most of the emerging properties are impossible (or difficult)
predict from pure composition reasoning

� Different analysis methods of the systems are applied

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
56

A General Framework for Model-Based
Quality Evaluation of Component-Based

Systems

Encapsulated Evaluation Models
Operational Profiles

Composition Algorithms
Analysis Algorithms

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
57

A General Framework for Model-Based
Quality Evaluation of CB Systems

� Encapsulated Evaluation Models
� Independent from the deployment and the environment of

a component
� Similar to datasheets of electrical elements
� Why?
� Components are not self-contained and require external

services
� Components depend on the deployment environment

� Examples:
� WCET Å hardware platform
� Reliability Å reliability of the external services
� Performance Å frequency the environment calls

services

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
58

A General Framework for Model-
Based Quality Evaluation

� Motivation: Encapsulated Evaluation Models

Usage Model

Hardware

External Services

Dependability?

…
if (a>b)
c = a;

…

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
59

A General Framework for Model-Based
Quality Evaluation of CB Systems

� Operational Profile
� Operational/usage profile OP describes the usage of the

component-based system
� Example
� Performance attributes depend on the number of

requests per second from the system’s users
� Reliability depends on the operational mode (continuous

vs. on demand usage)

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
60

Operational Profile: Usage
modeling and usage profile

� Intended to model external view of the use of the
component

� Component reuse – also reuse of usage model
� Use of Markov chains (FSM + probability of transition

between states)
� Problem – for complex systems Markov chains

become very large

� Attempt to solve the complexity by introduction of
State Hierarchy Model [Claes Wohlin & Per Runesson
1994]

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
61

Operational Profile: State
Hierarchy Model

Usage level

User type level

User level

Behavior level

Service level

Usage model

Services available for users

Usage of a single service
as a single service

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
62

Operational Profile:
Probabilities of Usage

Usage level

User type level

User level

Behavior level

Service level

0.7 0.3

0.8 0.2 1.0

1.0 1.0
0.4 0.6

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
63

A General Framework for Model-Based
Quality Evaluation of CB Systems

� Composition Algorithm
� Construction of a quality evaluation model for a

hierarchical design specification
� Analysis Algorithm
� “Extract” relevant measures of certain dependability

attributes (eg. hazard probabilities)

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
64

Safety

*German :-)

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
65

Safety Terminology (1)

� (Accident). An accident is an undesired
event that causes loss or impairment of
human life or health, material,
environment or other goods

� (Hazard). A hazard is a state of a
system and its environment in which the
occurrence of an accident only depends
on factors which are not under control of
the system.

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
66

Safety Terminology (2)

� (Failure). A failure is any behavior of a component or system, which
deviates from the specified behavior, although the environment
conditions do not violate their specification.
� tl timing failure of a service (expected event or service is delivered

after the defined deadline has expired - reaction too late)
� te timing failure of a service (event or service is delivered before it

was expected -reaction too early)
� v incorrect result of requested service (wrong data or service result -

value)
� c accomplish an unexpected service (unexpected event or service -

commission)
� o unavailable service (no event or service is delivered when it is

expected - omission)
� (Fault). A fault is a state or constitution of a component that deviates

from the specification and that can potentially lead to a failure.

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
67

Safety Terminology (3)

� (Risk). Risk is the severity combined with the probability of a hazard.
� (Acceptable Risk). Acceptable risk is the level of risk that has

deliberately been defined to be supportable by the society, usually based
on an agreed acceptance criterion
� ALARP
� MEM
� GAMAB

� (Safety). Safety is freedom from
unacceptable risks

� (Safety Requirements). A safety requirement is a (more or less formal)
description of a hazard combined with the tolerable probability of this
hazard.
� Hazard Spec. +THP/THR

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
68

Failure Propagation and
Transformation Notation (FPTN)

� Failure Propagation and Transformation Notation (FPTN)
� Introduced by Fenelon, McDermid, Nicholson, Pumfrey
� Benefits

� Failure categorization (reaction too late(tl), reaction too early(te),
value failure(v), commission(c) and omission(o))

� First modular safety evaluation model
� Weaknesses

� No process support
� No tool support
� Event-based

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
69

Failure Propagation and Transformation Notation
(FPTN) Example

� Steam Boiler
Example

Valve

Propagation
Open:o = Command:o || Intern1||

 Intern2
Internal
Intern1 Generated by [Electrical Defect]
with [Probability=0.1];
Intern2 Generated by [Mechanical Defect]
with [Probability=0.1];

SIL=4

Controller

Transformation
Cmd:o = Intern1|| (P1:v&&P2:v ||

 P1:v&&P3:v || P2:v&&P3:v)
Internal
Intern1 Generated by [Hardware Defect]
with [Probability=0.1];

ID SIL=4

Sensor

Transformation
Pressure:v = Intern1|| Interen2
Internal
ntern1 Generated by [Electrical Defect]
with [Probability=0.1];
Intern2 Generated by [Mechanical
Defect] with [Probability=0.1];

ID

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
70

Component Fault Trees (CFTs)

+=

FT Component corresponds to Technical Component.
Components have (Failure-)Ports.

System Component1

&

&

System.e1
p=0.4

System.e2
P=0.1

System.e3
p=0.2

&

Comp1.e1
P=0.3

Sub-
Component1 :
Component1

Comp1.in1

Comp1.out1

System.out1

Input Port

Output Port

Subcomponent
Internal Event

� Component Fault Trees (CFTs)
� Introduced by Kaiser,

Grunske
� Benefits

� First modular fault tree
model

� Failure categorization
(reaction too late(tl),
reaction too early(te), value
failure(v), commission(c)
and omission(o))

� Tool support UWG

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
71

CFT Example

1:Controller

>=1

Hardware
Fault2 out of 3

P1.Value

Command.Omission

P2.Value P3.Value

1:Valve

>=1

Electrical
Defect

Mechanical
Defect

Command.Omission

1:Sensor

>=1

Electrical
Defect

Mechanical
Defect

Pressure.
Value

Open.Omission 2:Valve

>=1

Electrical
Defect

Mechanical
Defect

Command.Omission

Open.Omission

2:Sensor

>=1

Electrical
Defect

Mechanical
Defect

3:Sensor

>=1

Electrical
Defect

Mechanical
Defect

Pressure.
Value

Pressure.
Value

Controller

Controller

>=1

Hardware
Fault2 out of 3

P1.Value

Command.Omission

P2.Value P3.Value

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
72

Analysis of the Top-Level CFT: The
UWG3 Tool

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
73

State Event Fault Trees (SEFT)

� State Event Fault Trees (SEFT)
� Introduced by Kaiser, Gramlich, Grunske, Papadopoulos
� Benefits
� Automatic generation of system-level SEFT
� State-event based semantic
� Tool support (www.essarel.de)

� Weaknesses
� Complex Evaluation
� For real world application only simulation-based results

achievable

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
74

State Event Fault Trees - Syntax

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
75

State Event Fault Trees
Semantics/ Tool Support

� Semantics (transformational)
� Deterministic and Stochastic Petri Nets (DSPNs)
� Used also for probability evaluation

� Tool Support
� ESSaRel (Embedded Systems Safety and Reliability

Analyser) Project www.essarel.de
� Translation to DSPNs
� Analysing via TimeNET 3.0 http://pdv.cs.tu-

berlin.de/~timenet/
� Model-based safety evaluation
� Based on HiP-HOPS and CFT safety evaluation process
� Generation and Connection of SEFTs

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
76

State Event Fault Trees
Example (1)

� Fire alarm system
� Controller unit (hardware +software), smoke sensor, sprinkler,

watchdog

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
77

State Event Fault Trees
Example (2)

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
78

State Event Fault Trees
Example (3)

� Hazard Description
� Fire breaks out

and the sprinkler is
not turned on
within 10s Delay t=10s

&

Upon
=1

S

Sprinkler

Sensor

Environment WatchdogControler HW

Controler SW

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
79

HiPHOPS

� Tabular Failure Annotations and HIP-HOPS
(Hierarchically Performed Hazard Origin and
Propagation Studies)
� Introduced by Papadopoulos and McDermid in cooperation

with Daimler Chrysler
� Benefits
� Automatic generation of system-level fault trees
� Automatic generation of FMEA tables
� Tool support/ Matlab Simulink

� Weaknesses
� Tabular failure annotations
� Event-based

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
80

HIPHOPS Example (1)

From Papadopoulos Y., McDermid J. A., Sasse R., Heiner G., Analysis and synthesis of the behaviour of complex programmable electronic
systems in conditions of failure, Int. J. of Reliability Engineering and System Safety, 71(3):229-247, Elsevier Science, 2001.

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
81

HIPHOPS Example (2)

From Papadopoulos Y., McDermid J. A., Sasse R., Heiner G., Analysis and synthesis of the behaviour of complex programmable electronic
systems in conditions of failure, Int. J. of Reliability Engineering and System Safety, 71(3):229-247, Elsevier Science, 2001.

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
82

HIPHOPS Example (3)

� Generation of traditional fault trees
� Fault Tree+

From Papadopoulos Y., McDermid J. A., Sasse R., Heiner G., Analysis and synthesis of the behaviour of complex programmable electronic
systems in conditions of failure, Int. J. of Reliability Engineering and System Safety, 71(3):229-247, Elsevier Science, 2001.

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
83

Safety Evaluation Techniques &
Generic Framework

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
84

Safety Evaluation Case Study

Safety Evaluation of a Computer Assisted
Braking System with SaveCCM

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
85

SaveCCM

� SaveCCM is a architecture description language for
embedded control applications in automotive (vehicular)
systems.

<<SaveComp>>
Name

<<Assembly>>
Name

<<Switch>>
Name

Component Switch Assembly

Data Input Port Trigger Input Port Data and Trigger
Input Port

Data Output Port Trigger Output Port Data and Trigger
Output Port

Delegation

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
86

SaveCCM Syntax

� SaveCCM benefits for safety eval.
� Stongly Encapsulated Interfaces
� Hierarchical (De)Composition

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
87

SaveCCM vs. FPM

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
88

Failure Modes of Components

� Assumption
� Components exchange information (services, messages,

etc.) only via ports
� Derivation from expected information is called a failure
� For each service / message that some component produces

or consumes, different failure modes can be assigned, e.g.
� Value failure
� Timing failure (too early / too late)
� Omission failure (service not delivered when requested)
� Commission failure (undesired service provided)

� As ports in structural models designate information / service
propagation (failure propagation)

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
89

Safety Evaluation Process

Safety Evaluation Steps
1. Generate an encapsulated failure propagation model for each

SaveCCM Component and Switch.
2. Identify the relations between system output failures and

hazards.
3. Construct an encapsulated failure propagation model for each

SaveCCM Assembly.
4. Calculate the output failure probabilities of the system-level

Assembly and accordingly the hazard probabilities of the
system.

5. Compare the calculated hazard probabilities with the tolerable
hazard probabilities.

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
90

Case Study

� Computer Assisted Braking System

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
91

Step 1

SHARD

Generation of
a FPM

Repeat this
for all components

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
92

Step 2

Logical relationship between
system-level output failures
and hazards

PHI,PHA

SHARD

Generation of
OF2H

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
93

Step 3-5
Locical relationship between
system-level output failures
and hazards

FPM for all components

System-
architecture
fullfil or not
fullfils it
safety
requirement

Hazard
probability
prediction

comparison

compositionFN_RO.v

WRS::fr WRS::flfl WRS::rrrr WRS::rlrl
ALS::frfr ALS::flfl ALS::rrrr ALS::rlrl

LCB::Processo
r

Processor
ABS::Processo

r
Processor

BPS::11
BPS::22

ESD::Processo
r

Processor

Dual CAN
Bus::11

Dual CAN
Bus::2

2

OutputModule::
Proxy N42Proxy N42

FN_RO.o

FN_RO.c

FN_RO.e

FN_RO.l

FO_RN.o

FO_RN.c

FO_RN.e

FO_RN.l

FO_RN.v

= 1OrGate

SystemLevel::
CABS

CABS

= 1OrGate = 1OrGate = 1OrGate = 1OrGate = 1OrGate = 1OrGate

H1
2097.43787004194 FIT

H2
3124.60013791368 FIT

H3
3067.53799268783 FIT

H4
3067.53799268865 FIT

H5
2154.50486575704 FIT

H6
970.278397288977 FIT

H7
2097.4378700446 FIT

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
94

Safety Evaluation Exercise

Industrial Metal Press

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
95

in belt & roll-off area

operator panel

out belt

Press

danger zone

Industrial Press: operational
concept

formed product

operator

conveyor belt
conveyor belt

press

sheet metal

roll-off area

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
96

Industrial Press: system-level view

� Press main functions:
� Raise plunger to top (open the press)
� Release plunger (close the press)
� Abort operation (stop closing & reopen the press)

� System-level requirements/operational concept:
� Upon start-up, press will open fully
� If button is pushed while press is fully open,

press will start to close
� Upon closing, press will automatically reopen
� If safe to do so, closing can be aborted by releasing

the button
� Safe = above Point of No Return (PoNR)

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
97

Top sensor

PoNR sensor

Bottom sensor

PLC

Button

Plunger

Drive chain

Motor

Clutches

Guard

Industrial Press: Press physical
architecture

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
98

Industrial Press: Control Logic

Press open

Unconditional
closing

Press closingPress opening

Power on /
motor drive on

Top reached
Button pushed /
motor drive off

Button released /
motor drive on

PoNR reached

Bottom reached
/ motor drive on Note: this is not

necessarily a good design

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
99

Questions

� What are the safety requirenments?
� What are the system hazards?
� What are the tolerable hazard rates?
� What are the relations between system failures and system

hazards?
� What are the encapsulated evalution models?
� What are the component failure probabilities?
� Is the system safe?
� How could the system be improved?

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
100

Answers

� What are the system hazards?
� What are the safety requirenments?

� What are the tolerable hazard rates?
� SIL 2: 10-6 Hazards per hour

☺hidden☺

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
101

Open Problems and Future
Work

� How can we determine the probability of an internal software
defect or fault?
� Empirical data
� Measurement-based models
� It is hard to determine the resulting failure modes for a

given fault
� Effort for the COTS component vendors to produce the failure

propagation models
� All stakeholders must use compatible models / failure

categories
� Reuse potential promises pay-off

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
102

Performance, Realtime

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
103

RT Systems : Correct result at the right time

Example:

Collision
Too late

time

Too early

An air bag must not be inflated too late, nor too early!

Real-time systems

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
104

What are Real-Time Systems

Task 1

Worst Case Execution-TimeBest Case Execution-Time

Task 1

Period

Deadline

E2ED

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
105

Scheduling Analysis

� Schedule: assignment of
all jobs to available
processors, produced by
scheduler.

� Valid schedule: All jobs
meet their deadline

� Scheduling Algorithms
� Earliest Deadline First

(EDF)
� Rate Monotonic

scheduling (RM)
� Deadline Monotonic

scheduling (DM)

� Task Ti is a series of periodic Jobs Jij. Each
task has the following parameters
� pi - period, minimum interrelease interval

between jobs in Task Ti.
� ei - maximum execution time for jobs in

task Ti.

Task1

Task2

Comp1

Comp3 Comp2Comp4

Software Architecture

Task4

Runtime

Hardware
Plattform3

Hardware
Plattform1

Hardware
Architecture

Tasks
Comp5

Hardware
Plattform2

Task3

Assignment
of Tasks to
Hardware
plattforms

Assignment
of Software

Components
to Task

Annotations:
Services which are needed by

this component
Component Size (e.g. kbytes)

Annotations:
Period
WCET

Annotations:
Reliability

Memory size
Performance Characteristics

(e.g. max Instruction/sec)

Annotations:
Reliability

Thoughtput (e.g. kbytes/sec)

Annotations:
Median Msg Sizes

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
106

Scheduling

To decide when, in which order, and where different tasks will be
executedExample:
”Run task A at time 3 on CPU 1”
”Run task B after task A on CPU 2”

A
B

C

Tasks

CPU 1

CPU 2

time

time

A

Scheduler

B

C

Used to meet the demands in a best possible way

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
107

Simple classification of scheduling algorithms

Scheduling

Online Offline

Time
triggered

Priority based

Static priorities Dynamic priorities

RM FPS RM+PIP EDF

RM Rate Monotonic
FPS Fixed Priority Scheduling
EDF Earliest Deadline First
PIP Priority Inheritance Protoc

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
108

Offline scheduling

Also known as static or pre-run-time scheduling
• Static schedule (time table) created before we start

the system
• Run-time dispatching: just follows the generated

time table

Properties (compared to online scheduling)
(+) Allows more complex task models
(+) More difficult scheduling problems
(−) Less flexible

Analysis
• “proof by construction”

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
109

Online vs offline scheduling

Online scheduling
(+) flexible
(+) relatively simple analysis

(-) difficult to cope with complex constraints
(-) less deterministic

Offline scheduling
(+) deterministic
(+) simplier to test and verify
(+) handles complex constraints

(-) new schedule must be generated if we add a new function
(-) it could take a long time to produce a schedule

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
110

Online vs. offline scheduling
When to use each of the methods?

Offline scheduling
• High demands on timing and functional verification, testability and

determinism
• Safety-critical applications, e.g., control system for Boeing 777

Online scheduling
• Demands on flexibility, meny non-periodic activities
• Example: multimedia applications, webservers,..

Combination of both
• Combined offline and online scheduling
• The time critical parts scheduled offline and non-critical parts online

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
111

From component model to RT
execution model

Task
Allocation

Win 32

APPLICATION

components

- composition presentation

Design-
Time

Compile-
Time

Run-
Time

<<SaveComp >>
PC

<<SaveComp >>
Compose

<<Assembly >>
P

Set Actual
Control

Attribute
Assignment

Glue Code Generation
& Analysis

C-compiler

RTXC

APPLICATION
Simulation Target

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
112

From component model to RT
execution model

Design-
Time

Component model

Real-Time
Analysis

Real-time model

Synthesis

Compile-
Time

Model transformation

Run-
Time

Target application

RTOS

t

Task
Allocation

Attribute
Assignment

Analysis

Glue Code
Generation

Target
Compiler

Component
model

RTOSRTOS

FullyFully AutomatedAutomated
CompileCompile--TimeTime StepStep

Component
code loading

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
113

Allocating components to real-time tasks

� Today one-to-one allocation is commonly used
� Not efficient in terms of cpu-overhead and stack usage
� However, highly analyzable

� How can the mapping between components and tasks be analyzable and
efficient?

� Infeasible to calculate due to the many different possible mappings in a large
system

� Limitations
� Only pipe-and-filter architectures
� No advanced real-time constraints

c1

c5

c2

c3

c4

c6 Actuator

Actuator

Event

Timer

Timer

tr1

tr2

tr3

tr4

t1 Actuator

Actuator

Event

Timer

Timer

tr1

tr23

tr4

t2

t3 Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
114

Parametric Contracts

� Lifting the Design-by-Contract Principle
to Software Components

� Linking the provided and required services
of the same component

� Specified by the QML+ Service Effect Automata

a:

c

b

Parametric Contract

b

c

a 10ms

5ms

28ms 20ms33ms?

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
115

Stochastic Petri Nets
� Petri Nets

� Places,
� Transition,
� Token

� Petri nets are extended by
associating time with the
firing of transitions,
resulting in timed Petri nets.
� A special case of timed

Petri nets are stochastic
Petri nets (SPN) where
the firing times are
determined by random
variables.

� exponentially distributed
firing times

� Generalized SPN (GSPN)
� Transition with zero

firing times

p1

t2

p2

t1p3

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
116

Performance Evaluation
Techniques & Generic Framework

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
117

Availability, Reliability,
Maintainability

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
118

Very simple model for terminating
batch sequel systems [late 70ies]

� Comp is the set of components that can be called.
� qi is the probability that the component Ci will be called and ri

is the binary reliability of the component Ci (ether the
component will produce the correct output or not).

� The reliability of the system can be determined as follows:

� The problems of this model are obvious

i

i i
C Comp

R q r
∀ ∈

= ∑

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
119

Reliability Evaluation Techniques &
Generic Framework

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
120

User Oriented Software Reliability
Model [Cheung 80]

� Assumptions:
� The operation profile of the system is defined by the

probabilities of the transfer of control between component
� This control transfer follows Markov-properties
� System has exactly one start and one end-component

� Notation
� Ri reliability

of component Ni
� Pij probability of

correct control
transfer from
component Ni
to component Nj

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
121

User Oriented Software Reliability
Model [Cheung 80]

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
122

User Oriented Software Reliability
Model [Cheung 80]

� Pn is the the nth power matrix of P
� Consequently, Pn(i,j) is the

probability of reaching state Nj from
the starting state Ni within n steps

� Reliability of the system R=Pn(N1,C)

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
123

User Oriented Software Reliability
Model [Cheung 80]

� Probability calculation trick:

� [Cheung 80] shows that S =W-1=(I-Q)-1 and as a result the
reliability of a system can be calculated as follows:
R=S(1,n)Rn

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
124

Architecture-Based Software Reliability Model (1)
[Wang et al. 99]

� Based on the [Cheung 80] model
� Extension
� Multiple entry points &

multiple exit point
� Realistic operational

profile
� Extension for Architectural

Styles

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
125

Architecture-Based Software
Reliability Model (2) [Wang et al. 99]

� Batch-sequential/
pipeline style
� Analysis: identical

to [Cheung 80]
� Parallel/

Pipe-filter style
� Analysis

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
126

Architecture-Based Software
Reliability Model (3) [Wang et al. 99]

� Fault Tolerance
� Primary component C2 and

a set of backup components
� Analysis: Reliability (by

Induction)

times transition probability
� Assumption: Independent Failure

� Call- Return
� Analysis: identical

to [Cheung 80]
� Problem: Loop

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
127

Architecture-Based Software Reliability Model
[Wang et al. 99] Example

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
128

Architecture-Based Software Reliability Model with Error-
Propagation [Cortellessa,Grassi 07]

� Based on [Cheung 80] and [Wang et al.99]
� Each component has two reliability metrics
� Internal failure probability intf()
� Error propagation probability ep()

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
129

Architecture-Based Software Reliability Model with Error-
Propagation [Cortellessa,Grassi 07] Example

� Results are more
realistic

� Component Selection
is more accurate

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
130

Sensitivity Analysis

� Find the component Ci with the most influence on the system
reliability

� Identical to identifying architecture optimisation points, like
� Bottleneck (Performance)
� Single Point of Failure (Safety)

� With respect to the component reliability [Cheung 80], [Wang
et al. 99], [Cortellessa, Grassi 07] :

� With respect to the error propagation probability [Cortellessa,
Grassi 07]:

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
131

Sensitivity Analysis – Example

Source [Cortellessa, Grassi 07]
Sensitive Component C2, C4, C7, C8

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
132

Reliability Evaluation for Service
Oriented Architectures

� Based on the [Kubat 89] model (formulation in the SOA domain is still
pending)

� Notation:
� K describes a set of services of a system
� rk is the service call arrival rate (Operational Profile)

� Solution:

� R(k) is calculated traditionally based on the number of visits for each
component and the component reliabilities when the task is called.

� The architecture is a DTMC with transition probabilities pij between
components

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
133

Further Models and Readings

� Classification of [Goseva-Popstojanova, Trivedi 01]
� State based models
� Reliability Prediction and Sensitivity Analysis Based on

Software Architecture [Gokhale et al. 02] [Gokhale, Trivedy
98]

� Software Dependabilty [Kanoun, Sabourin 87]
� Laprie model for dynamic failure behaivior [Laprie84]

[Laprie, Kanoun 92]
� Littlewood model [Littlewood 1979]

� Path based model (eg. [Yacoub et al. 99])
� Additive models (eg. [Xie, Wohlin 95])

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
134

Open Problems and Future
Work

� How can we determine the probability of an internal software
defect or fault?
� Empirical data
� Measurement-based models
� It is hard to determine the resulting failure modes for a

given fault
� How can we determine the transition probabilities
� What are the limitations and assumptions of these models

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
135

SHARPE: Symbolic-Hierarchical Automated
Reliability and Performance Evaluator

� Robin A. Sahner &Kishor S. Trivedi
� Evaluation Backend for multiple

Input Models

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
136

Probabilistic Model Checking

� Probabilistic model checking question:
� What’s the probability of reaching bad state?

� Model
� CTMC, DTMC, GSPN, …

� Property Specification
� CSL (Continuous Stochastic Logic)
� PCTL (Probabilistic Computation Tree Logic)

� Model Checker
� PRISM,
� ETMCC
� VESTA

� Problems: State Explosion, Limited Support of Counter Examples

...
...

0.3

0.5

0.2

“bad state”

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
137

Application of Dependability Evaluation
Techniques

Dependability Optimisation

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
138

How Can Quantitative Architecture
Evaluation be USED in practices

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
139

Background Dependability
Optimisation: Simple Solution

� Goal: Quality improvement by architecture transformation
� Solution:
� Evaluation algorithms to determine the quality of the

architecture (eg. Component Fault Trees (CFTs) Æ safety)
� Transformation operators:

� Improve the non-functional properties
� Preserve the functional properties

� Search with Backtracking system-/software architecture that fulfills all functional
requirements

architecture-
evaluation

architecture-
transformation

ok

architectural
problem

system-/software architecture that fulfills all functional and non-
functional requirements

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
140

Architecture Transformation: Quality
improving transformation operators

� Two-Channel-Redundancy

� Recovery Block

� Hardware Platform Reassignment

� Process Fusion

� Further transformation
operators /Viking-Plop 2003/
� Multi-Cannel-Redundancy with

Voting
� Protected-Single-Channel
� Hardware Platform Substitution
� Hardware Platform Reassignment
� Actuation-Monitor
� Integrity Check
� Watchdog

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
141

All Problems Solved???

� How to improve dependability aspects early in the system
development lifecycle?
� Rigorous assessment, evaluation and analysis of design specifications

(architecture specifications)
� because the earlier a quality problem can be identified, the better

and more cost effectively this problem can be fixed.
� Dependability Improving Action ÆEarly in the development process
� Problem: Dependability requirements conflicting with each other.

� Trade-Offs

� Motivation
� The fulfilment of dependability requirements is very important for the

success of a software project.

� How to improve dependability aspects early in the system
development lifecycle?
� Rigorous assessment, evaluation and analysis of design specifications

(architecture specifications)
� because the earlier a quality problem can be identified, the better

and more cost effectively this problem can be fixed.
� Dependability Improving Action ÆEarly in the development process
� Problem: Dependability requirements conflicting with each other.

� Trade-Offs

� Motivation
� The fulfilment of dependability requirements is very important for the

success of a software project.

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
142

Trade-off Analysis Method

(Semi)-Automated
Architecture Evaluation

(Semi)-Automated
Architecture Evaluation

System Architecture
Specification

Quality Requirements

(Semi)-Automated
Architecture Evaluation

(Semi)-Automated
Architecture Evaluation

(Semi)-Automated
Architecture Evaluation

Initial Architecture
Evaluation

Identification of Suitable
Design Decisions

...

(Semi)-Automated
Architecture Evaluation

(Semi)-Automated
Architecture Evaluation

(Semi)-Automated
Architecture Evaluation

(Semi)-Automated
Architecture Evaluation

(Semi)-Automated
Architecture Evaluation

(Semi)-Automated
Architecture Evaluation

Presentation of the
Results

Preliminary Application of
the Design Decision 1

Final Application of the
Design Decision

Preliminary Application of
the Design Decision 2

Preliminary Application of
the Design Decision n

TAFES Framework (Trade-off Analysis For Embedded Systems)

Architecture Design

Intermediate System
Architecture Specification

Intermediate System
Architecture Specification

Intermediate System
Architecture Specification

Transformation
Operators

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
143

General Introduction to Multiobjective
Optimisation Problems

� Multiobjective Optimization Problem
� Find a solution x which is an element of the solution space

X, satisfies a set of constrains gi(x) and optimizes a vector
function f(x)= [f1(x),f2(x),f3(x),…,fn(x)] whose elements
represent the objective functions.

� Pareto Optimal Solutions
� Set of non-dominated solutions
� a solution x1 is dominated by another solution x2 if x2

matches or exceeds x1 in all objectives.

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
144

Multiobjective Optimisation
Problem for Our Problem

� Problem Definition:
� Find a solution x (an architecture design) which is an

element of the solution space X (set of all possible design
solutions), satisfies a set of constrains gi(x) (economic and
engineering constrains) and optimizes a vector function
f(x)= [f1(x),f2(x),f3(x),…,fn(x)] whose elements represent the
objective functions (fulfillment of dependability
requirements).

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
145

Multiobjective Optimization and
Architecture Trade-Off Analysis

� Simple Solution
� Evolutionary Algorithms
� Mutation operators Æ Architecture refactorings
� Ranking procedureÆ Quantitative architecture

evaluations

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
146

Example (Multiobjective
Optimization)

� DLR’s BIRD (Bi-spectral InfraRed Detector)
� Two critical functions

� Function 1: Attitude Control Function (ACF) intended to control the satellite’s position
and rotation. Æneeded components (1,2,3,4,5,6)

� Function 2: Collection of infrared sensor data and the transmission of the data to the
ground station. Æneeded components (1,2,7,8)

� Evaluation (Cost Weight, Reliability [RBDs])

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
147

Limitation of the Approach

� Dependability Optimization for Conflicting Quality Objectives
� Multiobjective Optimization

� Currently based on Evolutionary Algorithms
� Future Tasks: Tabu-Search, Memetic algorithms, Swarm-based

optimisations (Particle Swarms)
� Empirical Validation

� General Framework for Model-Driven Quality Evaluation of
Component-Based Systems
� Safety, Performance, Reliability
� Validation and Experiments for other Quality Attributes

� Still a long way ahead!!!!

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
148

Conlusion

� CBD is an attractive approach
� CBD main concern is ability of composition
� Dependability includes attributes that are either not directly

composable or composable when system characteristics are
known

� Instead of composability, analysis of systems are used
� CBD make the analysis easier since the analysis elements

are on higher abstraction level comparing non-component
based systems.

� There exits many dependability analysis – they can be applied
on CB systems

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
149

References

� General
� Grunske L., Early Quality Prediction of Component-Based Systems - A Generic Framework, Journal of Systems and

Software, Elsevier, Volume 80, Issue 5, May 2007, pp. 678–686
� Performance

� Becker S., Grunske L., Mirandola R. Overhage S., Performance Prediction of Component-Based Systems: A Survey
from an Engineering Perspective, In R. Reussner, J. Stafford, and C. Szyperski, editors, Architecting Systems with
Trustworthy Components, volume 3938 of LNCS, Springer, 2006 pp 169–192.

� Architecture Optimisation
� Grunske L., Identifying "Good" Architectural Design Alternatives with Multi-Objective Optimization Strategies,

International Conference on Software Engineering (ICSE), Emerging Results, Shanghai, ACM 1-59593-085-
X/06/0005, 20-28 May 2006, pp. 849-852

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
150

References

� Safety
� Grunske L., Kaiser B., Papadopoulos Y., Model-Driven Safety Evaluation with State-Event-Based Component

Failure Annotations, Eighth International ACM SIGSOFT Symposium on Component-based Software Engineering
(CBSE 2005), St Luis, Missouri, May 14-15, Lecture Notes in Computer Science Volume 3489, Springer 2005, pp.
33-48

� Grunske L., Kaiser B., Automatic Generation of Analyzable Failure Propagation Models from Component-Level
Failure Annotations, Fifth International Conference on Quality Software, Melbourne, Sep 19 -20, IEEE Computer
Society, 2005, pp. 117-123

� Grunske L., Kaiser B., and Reussner R.H., Specification and Evaluation of Safety Properties in a Component-based
Software Engineering Process, book chapter, in Embedded System Development with Components, Lecture Notes
in Computer Science vol. 3778, ISBN: 3-540-30644-7, Springer, 2005, pp. 249 - 274

� Grunske L. and Kaiser B., An Automated Dependability Analysis Method for COTS-Based Systems, 4th
International Conference on COTS-Based Software Systems, ICCBSS 2005, Lecture Notes in Computer Science
Volume 3412, Springer, Feb 2005, pp 178-190

� Grunske L., Annotation of Component Specifications with Modular Analysis Models for Safety Properties,
Proceedings of the 1st International Workshop on Component Engineering Methodology, Erfurt (WCEM 03),
September 22, 2003, pp. 31-41

� Grunske L., Towards an Integration of Standard Component-Based Safety Evaluation Techniques with SaveCCM,
In proceedings of the conference Quality of Software Architectures (QoSA 2006), volume 4214 of LNCS, Springer,
2006, pp 199–213.

� Fenelon, P., McDermid, J., Nicholson, M., Pumfrey., D.J.: Towards integrated safety analysis and design. ACM
Computing Reviews, 2 (1994) 21–32

� Kaiser, B., Liggesmeyer, P., M¨ackel, O.: A new component concept for fault trees. In: Proceedings of the 8th
AustralianWorkshop on Safety Critical Systems and Software (SCS’03), Adelaide (2003) 37–46

� Papadopoulos, Y., McDermid, J.A., Sasse, R., Heiner, G.: Analysis and synthesis of the behaviour of complex
programmable electronic systems in conditions of failure. Int. Journal of Reliability Engineering and System Safety
71 (2001) 229–247

� Papadopoulos, Y., Maruhn, M.: Model-based synthesis of fault trees from matlab-simulink models. In: 2001
International Conference on Dependable Systems and Networks (DSN 2001) (formerly: FTCS), 1-4 July 2001,
Göteborg, Sweden, Proceedings, IEEE Computer Society (2001) 77–82

� Wallace, M.: Modular architectural representation and analysis of fault propagation and transformation. Electr. Notes
Theor. Comput. Sci. 141 (2005) 53–71

Ivica Crnkovic, Lars Grunske: Evaluating Dependability Attributes of Component-Based Specifications
151

References
� Reliability

� R.C. Cheung, A user-oriented software reliability model, IEEE Trans. Software Eng. 6 (2) (1980) 118–125
� V. Cortellessa V. Grassi, A modeling approach to analyze the impact of error propagation on reliability of component-

based systems, CBSE 2007, to appear
� S. Gokhale, W.E. Wong, K. Trivedi, J.R. Horgan, An analytical approach to architecture based software reliability

prediction, in: Proceedings of the Third International Computer Performance and Dependability Symposium (IPDS’98),
1998, pp. 13–22.

� S. Gokhale, K. Trivedi, Reliability Prediction and Sensitivity Analysis Based on Software Architecture, Proc. of 13th
International Symposium on Software Reliability Engineering (ISSRE’02), 2002.

� K. Goseva-Popstojanova, K.S. Trivedi, Architecture-based approach to reliability assessment of software systems,
Performance Evaluation 45 (2–3) (2001) 179–204.

� D. Hamlet, D. Woit, D. Mason, Theory of software reliability based on components, in: Proceedings of the International
Conference on Software Engineering, Toronto, Canada, 2001, pp. 361–370.

� P. Kubat, Assessing reliability of modular software, Oper. Res. Lett. 8 (35–41) (1989).
� K. Kanoun, T. Sabourin, Software dependability of a telephone switching system, in: Proceedings of the 17th

International Symposium on Fault-tolerant Computing (FTCS’17), 1987, pp. 236–241.
� S. Krishnamurthy, A.P. Mathur, On the estimation of reliability of a software system using reliabilities of its

components, in: Proceedings of the Eighth International Symposium on Software Reliability Engineering (ISSRE’97),
1997, pp. 146–155.

� J.C. Laprie, Dependability evaluation of software systems in operation, IEEE Trans. Software Eng. 10 (6) (1984) 701–
714.

� J.C. Laprie, K. Kanoun, X-ware reliability and availability modeling, IEEE Trans. Software Eng. 18 (2) (1992) 130–147.
� B. Littlewood, Software reliability model for modular program structure, IEEE Trans. Reliability 28 (3) (1979) 241–246.
� J.D. Musa, A. Iannino, K. Okumoto, Software Reliability: Measurement, Prediction, Application, McGraw-Hill, New

York, 1987.
� J.D. Musa, Operational profiles in software reliability engineering, IEEE Software 10 (2) (1993) 14–32.
� R.H. Reussner, H.W. Schmidt, I.H. Poernomo, Reliability prediction for component-based software architectures,

Journal of Systems and Software, no. 66, 2003, pp. 241-252.
� W.Wang,Y.Wu,M. Chen, An architecture-based software reliability model, in: Proceedings of the Pacific Rim

International Symposium on Dependable Computing, 1999, pp. 143–150.
� M. Xie, C. Wohlin, An additive reliability model for the analysis of modular software failure data, in: Proceedings of the

Sixth International Symposium on Software Reliability Engineering (ISSRE’95), 1995, pp. 188–194.
� S. Yacoub, B. Cukic, H. Ammar, Scenario-based reliability analysis of component-based software, in: Proceedings of

the 10th International Symposium on Software Reliability Engineering (ISSRE’99), 1999, pp. 22–31.

