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Abstract
Standard static WCET analysis methods today are based on the IPET technique, where WCET esti-
mation is formulated as an integer linear programming (ILP) problem subject to linear program flow
constraints with an objective function derived from the hardware timing model. The estimate is then
calculated by an ILP solver. The hardware cost model, as well as the program flow constraints, are
often derived using a static program analysis framework such as abstract interpretation.

An alternative idea to estimate the WCET is to add time as an explicit variable, incremented for each
basic block in the code. The possible values of this variable can then be bound by a value analysis. We
have implemented this idea by integrating the time estimation in our Abstract Execution method for
calculating program flow constraints. This method is in principle a very detailed value analysis. As
it computes intervals bounding variable values, it bounds both the BCET and the WCET. In addition,
it derives the explicit execution paths through the program which correspond to the calculated BCET
and WCET bounds.

We have compared the precision and the analysis time with the traditional IPET technique for a
number of benchmark programs, and show that the new method typically is capable of calculating
as tight or even tighter WCET estimates in shorter time. Our current implementation can handle
simple timing models with constant execution times for basic blocks and edges in the CFG, but it is
straightforward to extend the method to more detailed hardware timing models.

1. Introduction

The worst-case execution time (WCET) is a key parameter for verifying real-time properties. Static
WCET analysis finds an upper bound to the WCET of a program from models of the hardware and
software involved. If the models are correct, the analysis will derive a safe timing estimate i.e., greater
than or equal to the WCET. Static WCET analysis is traditionally divided into three phases [14]:
1. A flow analysis phase, where program flow constraints such as upper bounds on the number of loop

iterations are obtained.
2. A low-level analysis phase, where upper bounds on the execution time of basic blocks are obtained.
3. A bound calculation phase, where the flow- and timing bounds for instructions, derived in the first

two phases, are combined to derive a WCET bound for the whole program.

The IPET approach [9, 11], which today is the preferred technique for WCET analysis, follows this
scheme. In IPET, the flow analysis results are expressed as linear constraints on execution counters
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for different program parts, and the WCET estimate is calculated by solving an integer linear pro-
gramming (ILP) problem subject to these constraints. The scheme above is modular, and IPET allows
for taking quite general program flow constraints into account in the WCET bound calculation.

However, the approach has some potential problems. We have shown [7] that detailed flow constraints
are important for tight WCET estimates; only loop bounds are not always sufficient1. Further, during
flow analysis it is hard to identify flow facts that will not affect the resulting estimate and therefore
can be excluded from the IPET solving. Thus, to guarantee tight WCET bounds, maximal production
of flow facts are often required. Since ILP is NP-hard, this leads to a potential complexity problem.
For instance, abstract execution [7], when run with full precision, generates more than 2.5 million
flow constraints for the program nsichneu (4253 LoC) from the Mälardalen benchmark suite [5].

Thus, it is interesting to investigate other, more integrated approaches to WCET calculation. One
interesting approach, first suggested by Holsti [8], is to add time as an explicit variable in the program.
For each basic block in the code, the time is incremented with the maximal execution time of that
block. The execution time of the program can now be bounded by a conventional value analysis, e.g.,
based on Abstract Interpretation (AI) [1]. This approach has some potential advantages:
• AI can be used both for program flow analysis [4, 7], and low-level analysis [13]. This makes it eas-

ier to integrate the WCET calculation, and eliminate the need to generate explicit flow constraints.
• There are many tradeoffs between analysis time and precision for static value analyses with respect

to choice of abstract domain, context sensitivity, etc. This allows for adjusting the precision of the
WCET calculation to obtain reasonable calculation times. E.g., value analyses can be designed to
run in polynomial time, which eliminates the risk of exponential running time associated with ILP.
• It is easy to add a BCET analysis by using an abstract domain that bounds values from below.
• If a relational abstract domain is used, such as Halbwachs’ polyhedral domain [2], then parametric

WCET estimates can be calculated.

The basic approach assigns constant execution times to each basic block. If basic blocks have varying
execution times, the increment of the time variable can be modeled by a safe execution time interval
in the value analysis. Pipeline overlap can be modeled by decrements of the time variable. Context-
sensitive basic block execution times, arising from a precise low-level analysis, can also be taken into
account by making the value analysis sensitive to the same contexts as the low-level analysis.

This paper describes how we have extended our WCET analysis tool [7] with such an integrated
method. SWEET performs a program flow analysis by Abstract Execution (AE), which in principle
is a very context-sensitive AI. The underlying AI framework is used to bind the possible variable
values at different program points in a context-sensitive manner. The following sections describe how
we have extended AE to also compute bounds for the execution time: thus, SWEET can perform a
direct WCET estimation without generating program flow constraints, nor using an IPET calculation.
In Section 6, we compare the analysis speed and precision of WCET estimates calculated with this
extended AE to the traditional three-phase WCET analysis of SWEET. Our results show that the
extended AE method often runs considerably faster, with preserved or improved precision.

1Some examples in Table 2 in Section 6 also show this clearly.
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Figure 1. Traditional WCET analysis by SWEET

2. Related work

There are many types of advanced flow analysis methods presented in the WCET literature, see e.g.,
[14]. However, to our knowledge, there are few methods presented, where the flow information
extraction is integrated with a precise WCET bounds calculation. We have already mentioned Holsti’s
work [8] where time is introduced as an explicit variable. His idea has similarities to our outlined
method. However, while Holsti proposes using a Presburger solver to find relations that can bound
the values of the time variable, we instead use AE, a type of detailed value analysis, to derive both a
WCET bound. We also include extensive evaluations of our method, while Holsti does not.

Our method has some similarities with the work of Lundqvist [10], which derives a WCET bound by
a combined hardware- and flow analysis method. However, AE uses a more detailed value domain
and is based on an AI framework. Also, our low-level timing analysis is made in a modular step,
clearly separated from the WCET bound calculation.

3. SWEET and Abstract Execution

SWEET is a WCET analysis tool developed at Mälardalen University. As shown in Figure 1, it is
modularly built, using the standard WCET analysis tool architecture with a flow analysis, a low-level
analysis, and a final WCET estimate calculation. The low-level analysis of SWEET supports the
NECV850E and ARM9 processors.

The main flow analysis method of SWEET is called Abstract Execution (AE) [7]. AE can be seen
as a fully context-sensitive abstract interpretation (AI), where each loop iteration or function call is
analysed separately. Rather than using traditional fixed-point analysis, AE executes the program in
the abstract domain, with abstract values of variables and abstract versions of language operators. The
abstract value held by a variable, at some point, corresponds to a set containing the actual concrete
values that the variable can hold at that point. An abstract state is a collection of all abstract variables.

As an illustration of AE, using intervals as abstract values, please consider Figure 2. When entering
the loop, the variable i can hold any integer value from 1 to 4. Each execution of an abstract state
by the while condition might give rise to at least one, and at most two resulting states (the true and
false branch). During the first three executions of the loop condition, there is no value of i which
terminates the loop. However, the fourth time the condition is executed, i will have a value of [7..10],
giving that the analysis produces two resulting states. Thus, i will have a value of [7..9] at point p,
and [10..10] at point q. Similarly, during the following execution of the loop condition both branches
can be taken. At the sixth execution of the loop condition, the set of values for the true branch of the
loop condition is empty, i.e., only the false branch is possible, and AE of the loop terminates.



i = INPUT; // i = 1..4

while (i < 10) {
// point p

...

i=i+2;

}
// point q

(a) Example

iter i at p
1 1..4
2 3..6
3 5..8
4 7..9
5 9..9
6 ⊥

(b) Analysis

minimal number
of iterations: 3

maximal number
of iterations: 5

(c) Loop bounds

Figure 2. Example of Abstract Execution

The normal output of AE is a set of flow facts [3], i.e., constraints on the program flow, which is
given as input to the subsequent calculation phase. To derive these constraints, AE extends abstract
states with recorders, used to collect flow information. Program parts to be analyzed are extended
with collectors, which are used to successively accumulate recorded information from the states. For
example, in Figure 2 each state may be given a loop bound recorder for recording the number of
executions it makes in the loop. Similarly, a loop bound collector can be used to accumulate the loop
body executions (3, 4 and 5 respectively) recorded by the states. The accumulated recordings are
used to generate the loop bound constraints in Figure 2(c). Flow constraint generation supported by
AE include lower and upper (nested) loop bounds, infeasible nodes and edges, upper node and edge
execution bounds, infeasible pairs of nodes, and longer infeasible paths [7].

As illustrated in Figure 2, when using abstract values, conditionals cannot always be decided. In
these cases, AE must then execute both branches separately in two different abstract states. This
means that AE may have to handle many abstract states, representing different possible execution
paths, concurrently. In order to curb the growing number of paths, merging of abstract states for
different paths can take place at certain program points (merge points). If the states are merged
using the least upper bound operator “t” on the abstract domain of states, then the result is one
abstract state safely representing all possible concrete states. Thus, a single-path abstract execution,
representing the execution of the different paths, can continue from the merge point. Merge points
can be selected at will, but typical placements are join points where different program flows meet,
like after if-statements, and exits from functions and loops.

The underlying algorithm for processing abstract states is outlined in Figure 3. It is a quite straight-
forward worklist algorithm, which iterates over a set of abstract states, generating new abstract states
from old ones. Abstract states at merge points are moved to a special merge list, and final states are
removed. When the worklist is empty, all states in the merge list which are at the same merge point
are merged, and the resulting states are inserted in the worklist. The algorithm terminates when both
the merge list and the worklist are empty.

The AE is input-sensitive. For example, in Figure 2, the restricting interval for the initial value of i
is directly influencing the resulting loop iteration bounds. SWEET includes an expressive annotation
language for allowing the user to give input value constraints. The analysis methods of SWEET are
general and not a priori tied to any language or instruction set. To take advantage of this generality,
SWEET’s flow analysis analyses the code format ALF [6]. ALF is an intermediate format designed
to be able to faithfully represent code on different levels, from source to binary level. Thus, SWEET
can analyse code both on binary and source level provided that a translator to ALF is present.



work list <- {init state};
merge list <- empty;

final list <- empty;

REPEAT

WHILE work list /= empty DO {
s <- select from(work list);

work list <- work list \ {s};
new states <- ae(s);

FOREACH s’ in new states DO

CASE merge point(s’): merge list <- merge list U {s’}
final state(s’): final states <- final states U {s’}
otherwise: work list <- work list U {s’};

}
WHILE merge list /= empty DO {

s <- select from(merge list);

merge list <- merge list \ {s};
FOREACH s’ in merge list DO

IF same merge point(s, s’) THEN

s <- merge(s, s’);

merge list <- merge list \ {s’};
work list <- work list U {s};

}
UNTIL work list = empty

Figure 3. Underlying AE algorithm
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Figure 4. AE-based WCET analysis by SWEET

4. Abstract Execution with WCET calculation

As explained above, SWEET’s flow analyses, and particular the AE, may generate large amount of
flow facts. Both the flow fact generation in itself and the ILP solving may take a lot of time. To
overcome this problem, we have developed an extension to SWEET where WCET estimates are
derived directly in the AE. Figure 4 illustrates the extended AE analysis and its inherent phases.

We extend the abstract states of the AE to keep track of the smallest (min t) and the largest (max t)
cost for all the executions that have resulted in the particular state. Each state also holds the execution
paths, min path and max path, that resulted in these timing values. We also need to update the ae

and merge functions, see Figure 3, according to the added state content.

Figure 5 shows the new versions of the ae and merge operations. Basically, whenever a basic block
is abstractly executed, see Figure 5(a), its corresponding cost is looked up in the timing model (tm),
and the best and worst case timing for the state are updated accordingly. The executed basic block is
also added to the best- and worst-case paths held in the state. It is straightforward to extend the ae



ae(s) :-

return states <- empty;

s.min t <- s.min t + tm.min cost(s.node);

s.max t <- s.max t + tm.max cost(s.node);

s.min path.push back(s.node);

s.max path.push back(s.node);

FOREACH successor node n of s.node in cfg DO

s’ <- s.copy();

s’ <- abstractly execute to succ(s’, s.node.stmt, n);

IF feasible(s) THEN

s’.node <- n;

return states <- return states U {s’};
RETURN return states;

(a) Execution of abstract state

merge(s1, s2) :-

s <- s1.copy();

FOREACH variable v in s DO

s.v <- s1.v U s2.v;

IF s1.min t > s2.min t THEN

s.min t <- s2.min t;

s.min path <- s2.min path;

IF s1.max t < s2.max t THEN

s.max t <- s2.max t;

s.max path <- s2.max path;

RETURN s;

(b) Merge of abstract states

Figure 5. Extended AE operations

to take into account more complex timing models, e.g., assigning timing to individual statements or
transitions between basic blocks. When two abstract states are merged, see Figure 5(b), their included
variable values are, as before, merged using the least upper bound operator. Moreover, the smallest
and largest timings of the two states are extracted, as well as their corresponding execution paths, and
are set to be the smallest and largest timings and paths of the resulting state.

5. An illustrative example

For an illustration on how the extended AE works consider the example program in Figure 6(a). For
illustration purposes C code is given, instead of ALF code. We have identified six basic blocks in the
code, labeled A to F. Figure 6(b) holds the resulting control-flow graph (CFG). To each basic block
a cost has been associated, as illustrated in Figure 6(c). This cost corresponds to the clock cycles,
e.g., derived by some low-level analysis, it takes to run its inherent code on a given target platform.
We here assume a rather simple target, e.g., an 8- or 16-bit processor, giving that most nodes have
a constant cost. However, some nodes, such as B and D, have lower and upper costs associated to
them, e.g., due to what parameters the multiply instruction is run with. On more advanced targets,
non-constant basic block costs may come from hardware features such as pipelines, caches or branch
predictors [14]. For such targets the timing model may also need to include more long-reaching
timing effects. The x and res variables are global, and have also been given initial value constraints.

Figure 7 illustrates how the extended AE analysis would process the code in Figure 6(a) when using
merge of states after if-statements. The first abstract state S1 holds the initial values of x and res. At
the execution of the last statement in A the state will be split into two states, S2 and S3, corresponding
to the true and false branches. The res = res + 1; statement will update the res variable to
hold values in between 2 and 11, while the following if-condition will constrain the values of the x

variable according to the true or false branches. For example, the state proceeding to the B node, S2,
is constrained to only hold values of x which are smaller than 10. Each state has also been updated
with the cost for executing A, and A has been appended to the min and max paths.

S2 is then updated according to the code in B to become S2’. Next, S2’ and the S3 are merged into
S4. The new values of variables in S4 are the least upper bound of the corresponding variable values
in S2’ and S3. The smallest min time is found in S3, and correspondingly the min path of S4 is set to
the min path of S3. Similarly, the largest time and the corresponding max path is found in S2’.



// x = 1..100 res = 1..10

int foo(void) { // A

res = res + 1;

if(x < 10)

res = res * 2 + 1; // B

res = res + x; // C

if(x > 32)

res = res * 3; // D

else

res = res - 1; // E

return res; // F

}
(a) Example code

start

B

C

D E

exit

F

A

(b) CFG

node cycles
A 22
B 11..18
C 6
D 8..15
E 3
F 14

(c) Timing model

Figure 6. Example code with timing model
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(a) AE run

state program variable values time paths
name point x res min max min max
S1 start→A 1..100 1..10 0 0 - -

S2 A→B 1..9 2..11 22 22 A A

S2’ B→C 1..9 5..23 33 40 A,B A,B

S3 A→C 10..100 2..11 22 22 A A

S4 →C 1..100 2..23 22 40 A A,B

S5 C→D 33..100 3..123 28 46 A,C A,B,C

S5’ D→F 33..100 9..369 36 61 A,C,D A,B,C,D

S6 C→E 1..32 3..123 28 46 A,C A,B,C

S6’ E→F 1..32 2..122 31 49 A,C,E A,B,C,E

S7 →F 1..100 2..369 31 61 A,C,E A,B,C,D

S7’ F→exit 1..100 2..369 45 75 A,C,E,F A,B,C,D,F

(b) AE states

Figure 7. AE run with merge at joins
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(a) AE run

state program variable values time paths
name point x res min max min max
S1 start→A 1..100 1..10 0 0 - -

S2 A→B 1..9 2..11 22 22 A A

S2’ B→C 1..9 5..23 33 40 A,B A,B

S3 C→D ⊥ 6..31 39 46 A,B,C A,B,C

S4 C→E 1..9 6..31 39 46 A,B,C A,B,C

S4’ E→F 1..9 6..31 41 49 A,B,C,E A,B,C,E

S4’’ F→exit 1..9 6..31 55 63 A,B,C,E,F A,B,C,E,F

S5 A→C 10..100 2..11 22 22 A A

S6 C→D 33..100 12..111 28 28 A,C A,C

S6’ D→F 33..100 36..333 36 43 A,C,D A,C,D

S6’’ F→exit 33..100 36..333 50 57 A,C,D,F A,C,D,F

S7 C→E 10..32 12..111 28 28 A,C A,C

S7´ E→F 10..32 11..110 31 31 A,C,E A,C,E

S7’’ F→exit 10..32 11..110 45 45 A,C,E,F A,C,E,F

S8 →exit 1..100 6..333 45 63 A,C,E,F A,B,C,E,F

(b) AE states

Figure 8. AE run with merge at program end

Similarly to how S1 was split into two states, S4 is split into S5 and S6, corresponding to the true and
false branches, respectively. S5 is then updated according to the code in the D node, and S6 is updated
according to the code in the E node. The resulting states are then merged at the E node, and the
resulting state S7 is updated with the code of the E node. This gives the resulting BCET and WCET
bounds of 45 and 75 clock cycles respectively. The explicit paths corresponding to these bounds are
also returned. Please note that the resulting WCET bound is a safe but somewhat pessimistic value.
This is because the A,B,C,D,F path actually is infeasible, since x can’t be less than 10 and larger than



Program Description #LC #F #L #C #CSF #CSL
adpcm Adaptive pulse code modulation algorithm. 879 17 18 37 38 27
bs Binary search in an array of 15 integer elements. 114 2 1 3 2 1
bsort100 Bubblesort program, sorting 100 integers. 128 3 3 6 3 3
cnt Counts non-negative numbers in a matrix. 267 6 4 5 6 4
cover Program with many paths (using loops and switches). 640 4 3 6 4 3
crc Cyclic redundancy check computation on 40 data bytes. 128 3 3 9 5 6
edn Finite Impulse Response (FIR) filter calculations. 285 9 12 12 9 12
expint Series expansion computing an exponential integral. 157 3 3 6 3 3
fdct Fast Discrete Cosine Transform. 239 2 2 2 2 2
fibcall Iterative Fibonacci, used to calculate fib(30). 72 2 1 1 2 1
fir Finite impulse response filter (signal processing). 276 2 2 4 2 2
inssort Insertion sort on an array of size 30. 92 1 2 2 1 2
jcomplex Nested loop program. 64 2 2 4 2 2
jfdctint Discrete-cosine transformation on 8x8 pixel block. 375 2 3 3 2 3
loop3 Loops with context-sensitive execution behaviour 76 1 150 150 1 150
matmult Matrix multiplication of two 20x20 matrices. 163 6 5 5 8 7
nsichneu Simulates an extended Petri net (many paths). 4253 1 1 253 1 1
statemate Automatically generated code. 1276 8 1 99 8 1
ud Linear equations by LU decomposition. 161 2 11 13 2 11

Table 1. Benchmark programs

32 at the same time. The reason why this is not detected is due to the merge of states made at node C,
which remove the previous connections between the possible variable values and the nodes executed.

Figure 8 illustrates how the AE would process the code when using merge only at the end of the
program. Thus, merging of states is no longer made at the C or F nodes. As a result, more concurrent
states will be generated, but with more precise value constraints, time and path information. We can
first observe that the A,B,C,D,F path no longer is considered feasible. This is because that S3 state,
which originates from the split of S2’ state at the end of node C, can’t assign any feasible value to
the x variable, and therefore the AE can’t proceed further with S3. This gives that we now get a
tighter WCET bound, 63 cycles instead of 75, and a different resulting WCET path: A,B,C,E,F. We
conclude that merging allows us to trade BCET- and WCET bound precision with analysis time. In
the following section this fact will be shown for a number of benchmark programs.

6. Evaluation

The outlined method has been evaluated using 16 programs from the Mälardalen WCET Benchmark
Suite [5]. Table 1 gives some basic data about the programs: lines of C code (#LC), number of
functions (#F), loops (#L), and conditional statements (#C). The #CSF column gives the number of
functions found in a fully context-sensitive call graph, and #CSL gives the corresponding amount of
loops found in this graph. The reason for giving the latter information is that SWEET can provide
flow facts in a context-sensitive manner. This is useful when we want very precise WCET bounds,
and we have code parts with context-sensitive flow behaviour. For example, a loop may get different
upper loop bounds in different calling contexts.

Table 2 and 3 compares traditional vs. AE-based WCET calculation2. The analysis was performed on
a Macintosh MacBook Pro with Intel Core 2 Duo 2.53 GHz and 4 GB memory, running OS X 10.5.8.
We use a timing model derived by the SWEET ARM9 low-level analysis.

Table 2 gives the analysis results when analysing the programs in the traditional way. Column #input
2We do not include evaluations of BCET calculations since SWEET’s low-level analysis currently does not derive safe
lower timing bounds for code parts.



Program #input Merge FF gene- Time #flow Time #linear WCET est.
comb. strategy ration AE facts IPET constr. cycles +%

adpcm 1 - all 13.8 16581 43.6 19461 87221 0
- ulb 7.9 27 1.6 2880 160034 83

bs 232 full all 0.10 261 0.04 351 124 0
full ulb 0.07 1 0.01 90 124 0

none all 0.10 261 0.04 351 124 0
none ulb 0.07 1 0.01 90 124 0

bsort100 23200 full all 23.8 321 0.07 467 99802 0
full ulb 16.2 3 0.01 146 196430 97

none all - - - - - -
none ulb - - - - - -

cnt 1 - all 0.35 434 0.14 644 11903 0
- ulb 0.27 4 0.02 210 12603 6

cover 1 - all 17.4 658316 - - - -
- ulb 1.0 3 2.2 3184 26123 24

crc 1 - all 3.8 2706 1.3 3184 83275 0
- ulb 2.9 6 0.07 481 165171 98

edn 44 full all 4.1 1286 0.7 2026 9241 0
full ulb 3.1 12 0.1 740 9241 0

none all 13.6 1286 0.7 2026 9241 0
none ulb 9.8 12 0.1 740 9241 0

expint 1 - all 0.18 646 0.14 840 645 0
- ulb 0.12 3 0.02 195 11337 1658

fdct 1 - all 0.14 122 0.05 428 37 0
- ulb 0.12 2 0.03 306 37 0

fibcall 1 - all 0.04 90 0.01 160 76 0
- ulb 0.03 1 0.01 70 76 0

fir 1 - all 0.28 393 0.01 561 877 0
- ulb 0.23 2 0.01 168 967 10

inssort 2320 full all 0.13 127 0.02 219 332 0
full ulb 0.10 2 0.01 92 404 22

none all - - - - - -
none ulb - - - - - -

jcomplex 900 full all 0.32 397 0.08 505 4508 634
full ulb 0.14 2 0.01 108 11557 1782

none all 142.4 402 0.01 510 614 0
none ulb 65.2 2 0.01 108 9133 1387

jfdctint 1 - all 0.14 166 0.05 561 321 0
- ulb 0.13 3 0.02 258 321 0

loop3 1 - all 2.04 33090 85.0 4832080 2549 0
- ulb 0.51 120 0.84 2068 2549 0

matmult 1 - all 10.5 688 0.34 968 12205 0
- ulb 7.1 7 0.03 280 12205 0

statemate 1 - all 5.98 166001 768 168343 1346 0
- ulb 0.64 1 1.56 2342 5096 279

nsichneu 1 - all 81.6 2598331 - - - -
- ulb 2.22 1 15.5 5388 23830 11

ud 1 - all 0.95 2112 1.15 2460 2160 0
- ulb 0.84 11 0.04 348 2905 34

Table 2. Results from traditional WCET calculation

comb. shows the number of input value combinations that the analysis is run with. If this value is 1,
we do a single path analysis, if it is > 1, we have a (potentially) multi-path analysis. For example,
we do a multi-path analysis for inssort with 10 input variables of size 32 bits which are all set to >,
i.e., unknown, yielding 2320 input value combinations. The possible input values of the program are
specified in SWEET’s input value annotation language. Merge strategy is only valid for multi-path
analysis; ”full” meaning that all possible merge points are used (see Section 3), ”none” indicates that
no merging is performed. FF generation shows the level of flow fact generation: ”all” means that all
types of flow facts are generated (see Section 3), ”ulb” means only upper loop bounds (required to
bind the WCET). Time AE gives SWEET’s analysis time (in seconds). The column #flow facts shows
the number of flow facts generated by SWEET. Time IPET shows the time spent in the IPET solver,
and #linear constr. the number of solved constraints. For some programs the time is represented with



Program #input Merge Time WCET est.
comb. strategy AE -% vs. trad cycles +%

adpcm 1 - 8.2 86/14 87221 0
bs 232 full 0.07 50/13 124 0

none 0.07 50/13 124 0
bsort100 23200 full 16.6 30/-2 99802 0

none - - - -
cnt 1 - 0.27 45/7 11903 0
cover 1 - 1.0 -/69 21083 0
crc 1 - 3.0 41/-1 83275 0
edn 44 full 3.2 33/0 9241 0

none 9.6 33/3 9241 0
expint 1 - 0.13 59/7 645 0
fdct 1 - 0.12 59/7 37 0
fibcall 1 - 0.03 40/57 76 0
fir 1 - 0.23 21/4 877 0
inssort 2320 full 0.10 33/9 332 0

none - - - -
jcomplex 900 full 0.10 75/33 4508 634

none 67.3 53/-3 614 0
jfdctint 1 - 0.13 32/13 321 0
loop3 1 - 0.50 99/63 2549 0
matmult 1 - 7.20 34/-1 12205 0
nsichneu 1 - 2.22 -/87 21562 0
statemate 1 - 0.76 100/65 1346 0
ud 1 - 0.79 62/10 2160 0

Table 3. Results from AE-based WCET calculation

”-”, meaning that no result was obtained in reasonable time. WCET est. shows the WCET estimate
in cycles, and +% the overestimation compared to the tightest result we have got during our analyses.

Table 2 shows that SWEET can bind all loops in the benchmark programs and calculate a WCET
estimate. But it can be noticed that it is often necessary to generate a large amount of flow facts to
obtain a tight WCET-estimation; only loop bounds are not always sufficient. We can also see that the
these large amounts of flow facts can take a very long time, compared to using only loop bounds.

Table 3 gives the analysis results when performing the new AE-based WCET calculation. It has the
three first columns in common with Table 2. Time AE shows the SWEET analysis time. The column
Time -% vs. trad. shows the time savings in % compared to traditional WCET calculation. The
notion ”x/y” means x = compared to the total time when generating all flow facts, and y = compared
to the time for only loop bound generation. The last two columns are the same as in Table 2.

Table 3 shows that AE-based WCET calculation gives the same WCET estimates as the traditional
WCET calculation in Table 2, but in most cases much faster. For two benchmarks (cover and
nsichneu), the new method even gives a tighter estimation. In both tables, we also see that merging
cuts the analysis time considerably and that it can be necessary for getting a result at all (inssort
and bsort100). On the other hand, it may lead to overestimation (jcomplex).

7. Conclusions and future work

We conclude that our extension of AE is capable of deriving precise WCET estimates much faster than
traditional IPET-based methods, by eliminating the need for flow fact generation and ILP solving. It
can also find the execution path corresponding to the WCET estimate.

Future work includes to extend the method to handle more context-sensitive timing information, since
one instruction may get different execution time depending on the instructions executed before it. This



should be important when analysing processors with history-dependant timing behaviour, e.g., due to
caches or branch predictors [14]. Challenges includes how to extract such timing information, how
to define a suitable timing model (especially if the processor exhibits timing anomalies [12]), and
how to use the resulting timing model in the AE. Further, in our current implementation, only the
whole program’s WCET is extracted in the extended AE. However, using the recorder and collector
machinery, as described in Section 3, it should be straight-forward to also derive WCET bounds
for smaller code parts, such as individual functions or loops. Another upcoming challenge is to make
SWEET and its inherent flow analyses easily available for other WCET researchers. We are currently,
with researchers from Vienna University of Technology, developing a ALF translator, based on the
LLVM framework (www.llvm.org). LLVM supports a variety of languages and processor back-ends.
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