
Engineering and Analyzing Multi-Switch Networks
with Single Point of Control

M. Behnam
Mälardalen Real-Time Research Centre

P.O. Box 883, SE-721 23 Västerås, Sweden

Z. Iqbal, P. Silva, R. Marau, L. Almeida, P. Portugal
IT / DEEC

University of Porto, Portugal

Abstract—Recent trends in distributed embedded systems have
shown an increase in the amount and heterogeneity of the
information that needs to be exchanged, together with a growing
importance of supporting dynamic reconfiguration and adaptive
behaviors. In this paper we focus on Ethernet technology and
we address the case of middle-size networking infrastructure
with a few switches. We use the FTT-SE protocol to support
dynamic heterogeneous real-time transactions with temporal
isolation and we propose the needed scheduling adaptations
to support multi-hop network configurations. The paper also
includes a companion worst-case response-time analysis that
allows verifying the timeliness of the system.

I. INTRODUCTION

The complexity of Network Embedded Systems (NES) is
increasing rapidly due to growing requirements on advanced
functionality, with increasing amount and heterogeneity of the
information that is exchanged. This high complexity imposes
major development challenges when non-functional properties
must be enforced, such as real-time response and adaptability
to varying operational conditions, on which this paper will
focus.

One of the networking technologies that is gaining more
acceptance in NES is switched Ethernet technology given its
attractive high throughput, low cost, wide availability and gen-
eral maturity. However, when using COTS Ethernet switches,
network interface cards (NIC) and IP stacks, guaranteeing
real-time behavior is still challenging due to possible uncon-
trolled packet arrival patterns that will lead to packet queuing
inside the switches and potentially to buffer overflows and
consequently to packet drops. Moreover, the queues of COTS
switches are typically FIFO, which are known to exhibit a
poor real-time behavior due to potentially long blocking. This
problem can be slightly alleviated using queues of different
priorities but the IEEE 802.1D standard allows up to 8 priority
levels, only, which is insufficient for priority scheduling of
traffic streams.

Therefore, several real-time Ethernet (RTE) protocols were
developed that in one way or another control the traffic sub-
mitted to the network and allow enforcing real-time response,
such as AFDX, TTEthernet, PROFINET-IRT, EtherCAT and
EthernetPOWERLINK. However, these protocols base their
real-time properties on a static definition of the traffic, which is
known before hand, thus their suitability to combine real-time
response with adaptability is rather low.

On the other hand, the FTT-SE protocol [8] was proposed
as a solution to achieve such combination. On one hand it
enforces global coordination among different streams, thus
controlling the load submitted to the switch at each instant
and avoiding the potential queue overflow problems. On the
other hand, it provides the possibility for fast and atomic
updates to the traffic streams properties at runtime, it supports
virtually any streams periods, it allows for arbitrary scheduling
algorithms and it handles different types of streams efficiently
such as real-time synchronous, real-time asynchronous and
non real-time streams, with temporal isolation using strictly
defined phases for each type.

However, the scalability of FTT-SE networks was consid-
ered in a limited way in previous works, i.e., assuming a single
switch network [8]. Recently, three different architectures were
proposed to extend the scalability of this protocol [9]. The
first solution keeps the FTT single Master that schedules
the whole network. The other two approaches consider the
network broken into segments, each scheduled by its own
Master. A qualitative assessment of the three architectures
showed that none of them was superior to the others.

In this paper, we focus on the first architecture, i.e., based on
a single Master that controls the whole network, which favors
adaptability under real-time behaviour rather then efficiency of
using the aggregated network bandwidth, being thus suited to
systems that must reconfigure in a prompt and synchronized
way. We show how to engineer such a multi-switch FTT-
SE network, particularly how to schedule the traffic, and we
present a preliminary traffic schedulability analysis based on
the streams response-times, which are the respective end-to-
end delays. A simulator allows us to validate the results of the
analysis in one particular test case.

The remainder of the paper is organized in the following
way. The next section discusses some related work, followed
by a section describing the basics of the FTT-SE protocol.
Then, Section IV presents the traffic scheduling model while
Section V discusses the network architecture. Section VI
describes the FTT-SE scheduling algorithm and Section VII
discusses how the scheduler operates online. Section VIII
presents the response-times upper bounds computation and
Section X concludes the paper and presents on-going work.



II. RELATED WORK

In the area of scheduling real time traffic over multi-hop
switched Ethernet, some work has been done to compute
the worst case response time of real-time traffic using sim-
ilar COTS switches without any hardware modifications. For
example, [4] presented a method to compute the worst case
communication delay based on timing analysis of the switched
Ethernet. The calculation of the worst case delay is based on
the assumption of having all messages generated by all source
nodes except the destination node, arrive to the switch attached
to the destination node simultaneously.

In [3] a schedulability analysis of hard real-time traffic
transmitted over multi-hop switched Ethernet was presented
assuming FIFO queues. This work assumed a more general
network model, e.g., switches could have different bit rate and
the deadline of messages could be arbitrary, i.e., greater, equal
or less than message period. Finally, an upper bound of the
buffer size for each output port was derived.

In the context of Avionic Full Duplex (AFDX) switched
Ethernet, [2] presented three methods based on network calcu-
lus, simulation and model checking to evaluate the end-to-end
delays. However, the network calculus approach adds a high
pessimism in the analysis while simulation approach may not
be able to find the worst case scenario and the model checking
approach is more accurate but not scalable. The pessimism
in the network calculus was decreased by considering the
serial transmission of messages that are sent from the same
source node and also the possibility of considering the offset
associated with the periodic traffic in [5]. A fourth approach
based on trajectory principle was presented and optimized
in [1]. The optimization in this approach is based on the
serialization of messages from the same source node (similar
to the optimization approach proposed for network calculus).
A comparison study in [1] showed that the trajectory approach
gives tighter (in average) results than the network calculus
approach when calculating the worst case response time of
messages.

Network calculus was also used in [10] to compute the
upper delay bound of hard real-time traffic communication.
Unlike all related work presented above, the network archi-
tecture considered in this work is based on using multi-master
network architecture where master nodes are used as gateways
to connect switches with each others. A traffic smoothing
protocol is proposed to control all streams to ensure that all
hard real-time messages meet their deadlines.

However, the analysis used in the previously mentioned
works can not be applied directly to the network architecture
considered in this paper due to the strict cycle-based traffic
scheduling used by the FTT-SE protocol. Therefore, we first
present the online traffic scheduler of FTT-SE and then we de-
velop our own analysis based on response-time upper bounds.

III. FTT-SE BASICS

FTT-SE [8] is a research real-time communication protocol
that exploits the Master/Slave paradigm to control the whole
traffic in the network in a timely and flexible way. However,

it relies on a specific technique known as Master/Multi-slave
to reduce the typical high overhead of that paradigm while
maintaining its advantages. In particular this technique takes
advantage of the absence of collisions in the switches to
parallelize streams within a given cycle called Elementary
Cycle (EC), thus exploiting parallel forwarding. The Master
node coordinates all transmissions in the network by sending a
specific message in the beginning of every EC, called Trigger
Message (TM), that contains the schedule for that EC.

TM
Master

Node B

u

d

u

d

Node C
u

d

Sync.window
Asynch 
window

Elementary Cycle

NRT window

t ime

TM

TM

SM1 SM2 SM3

SM5SM4

SM4

SM2

SM3

AM31

AM31

AM31

Real-time window

IP UCST

IP UCST

IP BCST

IP BCST

IP BCST
cc Tr

Node A
u

d TM

IP BCST

Fig. 1. The FTT-EC structure.

The traffic scheduling activity is carried out on-line and
locally in the Master, invoked once per EC. The EC duration
sets the timing resolution in the system. It is tunable and can be
adapted to suit the application needs. Typically EC durations
range from 1ms to tens of ms, depending on the application
dynamics. Since the traffic scheduling is local to the Master,
it is easy to enforce any kind of scheduling policy as well
as to perform atomic changes in the communication require-
ments. This last feature facilitates on-line stream admission
and removal under guaranteed timeliness as well as on-line
bandwidth management.

The protocol supports real-time synchronous and asyn-
chronous messages, as well as non real-time traffic. The syn-
chronous traffic is time-driven, being activated autonomously
by the scheduler. The asynchronous traffic and non real-time
traffic are issued by the application at arbitrary time instants.
These messages are locally queued and the status of the queues
is periodically reported to the Master by means of a special
message, called Signaling message (SIG). The Master collects
the requests of the slaves and builds a global request queue
which is then fed to the scheduler that schedules these and the
synchronous messages in any desired integrated way.

As depicted in Figure 1, the EC is organized in two
independent time windows, namely Real-time and Non-real-
time. The former is further subdivided in Synchronous and
Asynchronous. Each one of these windows is associated to
a specific message class (real-time synchronous, real-time
asynchronous and non-real-time). The windows have a user-
defined maximum duration, which in enforced at run-time



by the scheduler. Consequently, no window overruns should
occur, providing strict traffic isolation among traffic classes.
Non real-time traffic is handled in a best-effort policy, with
respect to the asynchronous traffic. Further details about the
FTT-SE protocol can be found in [8] and [6].

IV. SYSTEM MODEL

In this paper, we consider a system composed by a single
Master node and a set of Ntotal nodes and Nstotal switches,
where each switch SWi holds Np full-duplex ports. On each
port, the switch-input link is referred to as uplink ulj,k and
the switch-output is referred to as downlink (dlj,k), where k is
the switch identifier and j is the port number. The network is
organized in a logical tree topology, for example by means of a
spanning-tree protocol. A message transmission from one node
to another, follows a single and unique route, crossing different
switches that forward the message to the final destination.
The Master node is connected to the root of the tree. Ndepth

defines the maximum number of branches, i.e, the maximum
number of switches, in the route between any node and
the Master. The switches are assumed to switch packets on
store-and-forward fashion as most COTS switches do. That
means a packet is only forward to a downlink upon complete
arrival from the uplink. Currently, the topology and forwarding
tables in the switches are assumed to be specified statically.
However, a topology discovery mechanism is currently under
development.

Synchronous message streams (SM ) are modelled using the
periodic real-time model mi(Ci,Mmaxi, Di, Ti, Si, Dsi, Ri),
where Ci is the total transmission time of the message and Di

and Ti are the relative deadline and period. Large messages
are fragmented by the protocol into a sequence of packets
with maximum Mmaxi packet transmission time. Finally,
Ri denotes the set of switches in the route of mi from the
source Node Si to the destination node Dsi. Asynchronous
message streams (AM ) are modelled using a sporadic real-
time model which is identical to the periodic model explained
above except that Ti is defined as the minimum inter arrival
time, i.e., mi(Ci,Mmaxi, Di, Ti, Si, Dsi, Ri).

V. MULTIPLE SWITCHES UNDER A SINGLE MASTER

Extending FTT-SE to multiple switch networks using a
single Master substantially increases the complexity of the
traffic scheduling due to the following reasons:

a) : Nodes may not receive the trigger message (TM) at
the same time, as the TM message is delayed at each switch
that it crosses. The delay of receiving the TM message, at each
node, depends on the location of the node in the topology, i.e.,
the number of switches in the path to the Master. Moreover,
at each node, the transmission of the signaling message and
data traffic is synchronized with the reception of the TM.
Receiving it at different times in different nodes leads to the
nodes starting transmitting their traffic at different instants.
For instance, the nodes that are closer to the Master will start
their transmission earlier than the others and this should be
taken into account when building EC schedules, i.e., when
deciding which messages to transmit in each EC. Looking to

the example in Figure 2, Nodes A, B and C receive the TM
message before Nodes D and E since nodes A, B, C and the
master are connected to the same switch while the other nodes
are connected to a different switch (see Figure 3).

b) : As mentioned above, the transmission of the signal-
ing message (from each node) is synchronized to the reception
of the TM, inheriting any delay affecting it. In addition,
the signaling messages are also delayed when routed on the
reverse-path to the Master node. As a result, the total delay
imposed on the signaling messages might be too long, possibly
causing mutual interference between these messages and data
messages. Thus affecting the reception of signaling messages
in the Master node and the scheduling of the elementary cycle
(EC).

c) : In the switches, whenever multiple messages are
ready to be sent on the same downlink, the switch employs
FCFS policy to sort the transmission order. The order of the
message transmission has a great effect on the scheduling of
messages, specially if the link serves the way to a number of
message streams such as when providing connectivity between
two switches. However, it is hard to predict the order of
transmission at each downlink of each switch because of the
possible jitter in the activation of messages (at their nodes)
and also the jitter in the switch delays.

E D

A B

C

SW1

SW2

Fig. 2. An example of network with two switches and single Master

A. Message delay

The FTT-SE protocol fragments large messages into a
sequence of packets that are individually scheduled. The
scheduler in the Master takes into account all possible delays
that packets may suffer when it builds the EC schedule to
make sure that the scheduled traffic in one EC can always be
fully transmitted within that EC.

A packet sent from one node to another node suffers from
the following delays (see Figure 3):

1) SLD - Switch fabric Latency Delay: maximum process-
ing time required by a switch to execute the internal
forwarding functionality.

2) SFD - Store and Forward Delay: time required to save
a message before forwarding it.

3) NQ - Source node queuing delay: caused by higher
priority packets that are sent from the same source node.

4) SQD - Switch queuing delay: caused by all other packets
that share downlinks with the packet.



5) TMD - Trigger message delay: delay of receiving the
TM message at the source node.

6) IFD - Inter-frame delay: maximum delay between two
consecutive frames. In this work we assume that IFD is
included in the transmission time of messages.

7) TRD - Turn around delay: maximum time interval
needed by a node to start its transmissions after receiving
the TM message, it includes the processing time of the
node to receive the TM message and to start sending the
scheduled messages.

Some of these delays can be evaluated based on the
specification of the network, such as SLD, SFD and IFD,
while the others are dependent on the FTT-SE scheduler and
transmission load and should be computed on-line. Before
presenting the methods for computing these delays we will
explain the FTT-SE scheduling algorithm in a multi-switch
network scenario.

VI. FTT-SE SCHEDULING ALGORITHM

At every EC, the scheduler scans the Synchronous Require-
ments Database that holds the descriptions of the synchronous
streams, looking for ready messages. All such messages are
inserted in the global ready queue according to a scheduling
policy (FPS, EDF, ..) see Fig. 4. Then, it picks one message
at a time starting from the head of the global queue (highest
priority) and it checks whether that message still fits within
the scheduling window specified for that EC, which means
that it can be transmitted within that EC. This operation is
repeated for all messages in the ready queue in decreasing
priority order until no more messages fit in the EC. Those that
fit are encoded in the TM for transmission (EC-schedule) and
the remaining ones stay in the ready queue for the next EC.
The same procedure is applied for the Asynchronous streams.

The main goal of the scheduler is to schedule as much traffic
as possible during each EC without causing overrun in the
scheduling window. Therefore, a specific fitness test is used
to check whether the transmission of a message, in the worst-
case, fits in a given EC. The fitness function keeps track of
the transmissions in each link and in each EC using bins with
limited capacity that represent the scheduling windows, one for
each direction, i.e., 2 bins for each switch port, one for the
uplink and another for the downlink (Figure. 4). Returning to
the example shown in Figure. 2, suppose that the scheduler
tries to process a request to send a message from Node A to
Node E, it adds the message in all bins associated to the links
that the message will cross i.e., UA,DSW2,USW1,DE where
UA is the uplink connected to Node A and DE is the downlink
connected to Node E. Note that when the scheduler adds a
message to a bin associated with a downlink in a switch, it
takes into account the additional delay imposed by the switch
on the message. If the message under analysis fits in all the
bins along its path considering all the other messages that also
fitted before in their respective bins, then that message is added
to the EC-schedule of the next EC to be later encoded in the
TM.

Another problem that must be considered during the
scheduling is the difficulty of evaluating the message order in

UA UB UC DA DB DC
USW2 DSW2

UD UE USW1 DD DE DSW1
SW1

SW2

mi mk mp mn Ready Q

Fig. 4. Master scheduling.

the queues of the switches (downlinks). We assume the worst
case scenario in which the message under consideration will
be forwarded after all other scheduled messages, independent
of the priority and the transmission time of the messages.
Based on this assumption, whenever analyzing the fitness of
a new message mi in an EC, the scheduler assumes that the
message is forwarded as the last message in each downlink that
it traverses until reaching its destination. Also the scheduler
considers the interfering effect of mi over all other scheduled
messages ({mz}) that share the same downlinks with mi on
the route. A similar test is repeated on all messages in {mz} to
make sure that these messages do not overrun their scheduling
windows. The online scheduling algorithm is summarized in
Algorithm VI.1.

Algorithm VI.1: ONLINE SCHEDULING ALGORITHM()

1 RQ //global ready queue
2 SRQ //sorted ready queue
3 {mTM} //scheduled messages
4 interf(mi, k) //set of messages that share links with mi

in SWk and are ∈ {mTM}
5 SRQ = SortRQ(RQ) //sort messages according to the

scheduling policy
6 for all mi ∈ SRQ //from the highest to the lowest

priority messages
7 {testMsg} = mi

8 for all SWk ∈ Ri

9 {testMsg} = {testMsg}
∪
interf(mi, k)

10 end for
11 add(mi, {mTM}) //add mi in {mTM}
12 for all mj ∈ {testMsg}
13 isScheduled=checkSchedule(mj) //check

the schedulability of mj based on Eq. 5 and 6
14 if isSchedule==false
15 remove(mi, {mTM})
16 end if
17 end for
18 end for
19 return {mTM}



Node ANode B
SW1->SW2Node C
Node DNode E CTM+SFD

ABTRDMaster ADBC BD BEBCAB AD BD BEDC DC DC DB DE DEDC DC DC DBDC DC DC DB
DE BEDETRD

NQD(mAE)
SQD(mAE,SW1)

SQD(mAE, SW2) 

TMSIGMSG
AD BD

AE
AE

AE
SW1(SLD+SFD)

SW2(SLD+SFD)

updownupdownupdownupdownupdown
Fig. 3. A scenario for packets transmission of the network shown in Figure 2

VII. ONLINE SCHEDULING TEST

To determine the fitness of the ready messages, the sched-
uler must compute the following parameters for each message
and for each EC:

- TRD All packets (including the TM and signaling messages)
that cross switches suffer from a delay called switching delay
(SD) due to both the SLD and SFD delays. These delays
may cause interference between signaling messages and data
messages and may affect the FTT-SE protocol. To avoid such
interference, TRD in each node is selected to be high enough
to guarantee that all signaling messages will be received by the
master node before any node starts to send data packets. Since
the transmission of the signaling message is synchronized
with the reception of the TM, if a node knows its relative
position to the switch where the Master is located, then it
can compute the time instant when the Master sends the
TM and it can synchronize the transmission of the signaling
message with that time. However, we do not want to provide
such information to nodes and we assume that all nodes,
except the Master, have no knowledge about the network
topology and connection. Let us assume CSIG and CTM are
the transmission times of the signaling message and the TM
message respectively. Then, to avoid any interference between
the signaling messages and the data messages TRD stands as
follows:

TRD > (Ndep − 1)× (SDTM ) +Ntotal × CSIG

+Ndep × (SDSIG), (1)

where (Ndep − 1) × (SDTM ) is the longest time delay of
receiving the TM message by a node relative to the time
that nodes connected to the master switch receive the TM
message. Note that, when transmitting the TM message, the
store and forward delay is equal to the transmission time of
the TM message and the switch delay becomes SDTM =
CTM +SLD. Also Ntotal×CSIG is the longest time required

by a signaling message to be received at the master node
assuming that all signaling messages arrive simultaneously
to the master node. This assumption might be pessimistic
because the simultaneous arrival of all signaling messages
to the master may never happen, for example the signaling
messages from the nodes connected to the master switch, will
always arrive earlier than the signaling messages that are sent
by all other nodes. Finally, Ndep × (SDSIG) is the longest
time delay for the signaling messages to reach the master node
crossing Ndep switches. Similar to the trigger message, the
store and forward delay is equal to the transmission time of
the signaling message and the switch delay is computed as
SDSIG = CSIG + SLD.

The computed value of TRD evaluated using Eq. 1 will be
used by all nodes, which guarantees that all signaling messages
will be received by the Master before any node starts to send
its data traffic independent on the location of nodes.

- SFD since we assume the store and forward switch type,
each message that crosses a switch will be delayed and the
delay depends on the transmission time of the message itself
and all other messages that cross the same downlink. Let us
assume that a message mi is crossing switch SWk through
its downlink dlj,k, the upper bound of the store and forward
latency SFD(mi,k) that mi may suffer from is computed as
follows

SFD(mi, k) = max
∀mo∈{dlj,k}&(mo∈{mTM}|mo=mi)

(Co), (2)

where {dlj,k} is the set of all messages that cross the downlink
dlj,k and {mTM} is the set of messages that are already
selected to be transmitted (in the EC-schedule).

- NQD for a message mi, the NQD(mi) delay is computed
by summing up the transmission time of all messages with
priority higher than that of mi and these messages have the
same source node as mi and are selected to be transmitted at
the current elementary cycle, i.e.,



NQD(mi) =
∑

mj∈interf(mi)

(Cj), (3)

where interf(mi) = ∀mo ∈ {ulj,k}&mo ∈ {mTM} and
ulj,k is the uplink that connects the source node that sends
mi. Note that the scheduler in the Master, as explained
earlier, starts first by processing the highest priority messages
and continues to the lower priority ones, then all messages
currently in {mTM} have a priority higher than that of mi.

- SQD for a message mi crossing a switch SWk, this delay is
caused by the packets that share the same downlink with mi

at SWk. In this case and since we cannot estimate correctly
the order of the messages transmission inside the queues of
switches, we assume that all messages that share the same
downlink dlj,k with mi will be transmitted before mi. Let
us redefine the function interf(mi, k) such that it returns
the set of all messages that may interfere with mi at SWk,
excluding the messages that were considered in the previous
switches, i.e., interf(mi, k) = ∀mj ∈ {dli,k}&mj ∈
{mTM}&mj /∈ interf(mi, l)|∀SWl ∈ SW(s−1), , SW(k−1),
where interf(mi, s− 1) = interf(mi) and SWs, , SW(k−1)

is the set of switches that mi should pass to reach SWk from
the switch SWs that source node is connected to, then SQD
is evaluated as follows,

SQD(mi, k) =
∑

mj∈interf(mi,k)

(Cj). (4)

A. Scheduling test

One important aspect for the scheduling test is to determine
the exact boundaries of the synchronous window in each EC,
in order to decide whether a given message fits in a certain
EC or not. Let us assume that LSW is the length of the
synchronous window. The starting time of this window is after
TRD + the time of receiving the TM message, i.e., when nodes
are ready to transmit after receiving the TM message. While
the finishing time of the synchronous window FSW is equal
to the starting time + LSW, i.e.,

FSW k = Nk
dep×(CTM+SLD)+CTM+TRD+LSW. (5)

Note that FSW k is the finishing time relative to the begin-
ning of the EC and Nk

dep is the number of switches between
SWk and the master switch and Nk

dep×(CTM+SLD)+CTM

is the time needed to receive the TM message by all nodes
that are connected to SWk.

Then, to make sure that a synchronous message will not
overrun the scheduling window when it crosses a downlink in
SWk, the message finishing time f(mi, k) should be no later
than FSW k, i.e., f(mi, k) ≤ FSW k for all SWk that mi

crosses from the source to the destination node, i.e,SWk ∈ Ri.
To compute the finishing time of a synchronous message

mi at SWk, the maximum delay that the message may suffer
should be computed starting from the source node and going
through all switches up to SWk.

f(mi, k) =
∑

∀SWq∈Ri

(
SQD(mi, k) + SFD(mi, k) + SLD

)
+Ci +NQD(mi) + TRD + CTM

+Ns
dep × (CTM + SLD). (6)

The summation in Eq. 6 represents the switching delay that
mi will suffer from when it crosses all switches in its route
and TRD+CTM +Ns

dep × (CTM + SLD) is the maximum
delay at the source node including the delay of receiving the
TM message by the source node.

Finally, the scheduling of the asynchronous traffic follows
a similar procedure. Once the signaling messages arrive at the
master informing of the pending asynchronous requests, the
messages are handled by some appropriate mechanism, e.g.,
servers, and then inserted in a specific global ready queue.
After this instant, they are handled using the same fitness func-
tion as described before for the synchronous traffic in order
to decide whether they can be inserted in the EC-schedule of
the current EC. The only difference is that they are handled
after the synchronous traffic and they can be scheduled until
the end of the EC using the time left free by the synchronous
traffic. Therefore, the asynchronous window at each switch
SWk finishes at the end of the EC and starts at the finishing
time of the synchronous window. Then, the fitness function
considers the previously synchronous messages already in the
EC-schedule and allows adding the asynchronous messages
whose finishing time fa(mi, k) is no later than the end of the
EC, i.e., fa(mi, k) ≤ LEC.

VIII. RESPONSE-TIME CALCULATION

In this section we present an analysis method to evaluate
the response time of messages scheduled using the algorithm
presented in the previous section with fixed priority schedul-
ing.

Based on the proposed scheduling algorithm, the messages
that share links with the message under consideration mi have
a grate effect on the response time of the message mi. That
means, the interference from messages that share the same
links should be taken into account in the analysis of mi which
makes the analysis more complex. The following example
shows the complexity of this problem.

Let us consider the example shown in Figure 5, where
6 nodes are connected through 3 switches and Node-A and
Node-F send messages to Node-C and Node-B and Node-D
send messages to Node-E. Let us assume that the message
send from Node-A to Node-C mAC has the lowest priority
and mFC requires one EC to be transmitted and mBE+mDE

require also one EC to be transmitted. Based on the proposed
algorithm and depending on the activation times of messages,
we can distinguish 4 transmission scenarios for message mAC :

• mAC and mFC are activated simultaneously, since mFC

has higher priority than mAC , it will be transmitted first
EC and then mAC will be transmitted at the second EC.

• mAC , mBE and mDE are activated simultaneously, since
mAC has the lowest priority than the other two messages,



A B
C SW1SW2 SW3

D
F Master

E
Fig. 5. Multi-hop Switched Ethernet example.

it will be transmitted at the second EC. Even though mAC

has different destination than the other two messages, it
should be transmitted later than them because transmit-
ting mAC at the first EC may delay mBE and making it
overrun its scheduling window. If mDE was not activated
then it would be possible to schedule mAC at the first EC
as the size of mAC is assumed to be small.

• All messages are activated simultaneously, in this case
mFC , mBE and mDE are scheduled to be transmitted at
the first EC and mAC will be transmitted at the second
EC.

• mAC and mFC are activated simultaneously and mBE

and mDE are activated one EC later, at the first EC mFC

will be scheduled, then at the second EC mBE and mDE

will be scheduled and later mAC will be scheduled at the
third EC.

From this example, we can conclude that the simultaneous
activation of all messages may not yield the worst case
response time (critical instant). In addition, messages that
do not share links with other messages can still affect their
response time (mDE affect the response time of mAC even
when they do not share any link) we call this effect as indirect
effect.

To solve the problem of finding the critical instant, we can
assume that all messages that share links with the message
under consideration will be forwarded to the same destination,
i.e., all such messages can be added in the response time
analysis. On other hand, the indirect effect is resulting from
the messages that do not share links with the message under
consideration but delay the messages that share links (mDE

delays mBE that shares a link with mAC). Then adding all
such messages in the calculation of the response time will
solve the problem of the indirect effect. Note that to be general,
indirect effect should include the all messages that cause NQD,
SQD, SFD on the messages that share links with the message
under consideration in addition to the SLD.

Now to find the response time analysis for a message mi,
all interfering messages should be defined, and the interfering
messages can be classified into the following categories:

- Source node interference message set: which is the set
of messages that cause NQD on mi. This set is similar to

interf(mi) defined in the previous section with one difference
which is using all higher priority message instead of the set
{mTM}, i.e., the source node interference messages set is
defines as S interf(mi) = ∀mj ∈ {uli,k}&mj ∈ hp(mi),
where hp(mi) is the set of messages with priority higher than
the priority of mi.

- Direct interference message set: which are the mes-
sages that cause SQD for mi. This set is also similar
to interf(mi, k) with one difference which is using all
higher priority message instead of the set {mTM}, i.e.,
the direct interference messages set is evaluated as fol-
lows, D interf(mi) =

∪
∀SWk∈Ri

D interf(mi, k) which
is the combination of interference messages in all switches
that mi crosses from the source to destination nodes and
D interf(mi, k) = ∀mj ∈ {dli,k}&mj ∈ hp(mi)&mj /∈
D interf(mi, l)|∀SWl ∈ SW(s−1), , SW(k−1)

- Indirect interference message set: which is the set
of messages that delay the messages that cause the direct
interference on mi. For each element in mj ∈ D interf(mi),
the messages that cause delay on mj are the same that
cause direct and source interference on mj which are
D interf(mj) and Sinterf(mj). Then the indirect
interference message set for mi is I interf(mi) =∪

∀mj∈D interf(mi)

(
D interf(mj)

∪
S interf(mj)

)
and

excluding any redundant message that has been considered in
S interf(mi) and D interf(mi).

Note that the network bandwidth is not available for mes-
sage transmission all the time, message are allowed to be
transmitted within a scheduling window every EC, then this
factor should be taken into account when performing the
response time analysis. This problem has been considered
previously in [7] and the proposed solution was to inflating
the transmission times of all message by the percentage of
the bandwidth resource availability, i.e., the inflation factor is
α = (LSW − I)/EC, where I is the idle time that is used
to prevent scheduling window overrun and it is equal to the
maximum packet size of messages that have priorities equal
or higher than mi. Then all transmission times will be divided
by α, i.e., C ′

j = Cj/α and the response time of mi can be
evaluated as follow:

xℓ = C ′
i +

∑
SWk∈Ri

(
SFD(mi, k) + SLD

α

)
+

∑
mj∈S interf(mi)

⌈
xℓ−1

Pj

⌉
(C ′

j) +

∑
mt∈D interf(mi)

⌈
xℓ−1

Pt

⌉ (
C ′

t +

∑
SWk∈Rt

(
SFD(mt, k) + SLD

α

))
+

∑
mq∈I interf(mi)

⌈
xℓ−1

Pq

⌉
(C ′

q), (7)



Where SFD(mi, k) is similar to the one defined in the
previous section with one difference which is using hp(mi)
instead of {mTM} and ℓ > 0 and x0 = C ′

i and the response
time of mi is equal to RT (mi) = xℓ when xℓ = xℓ−1.

IX. EVALUATION

We have carried out a few preliminary experiments to
validate the scheduler and analysis, and assess the level of
pessimism embodied in our analysis compared with the actual
implementation of the proposed on-line scheduling algorithm.
The results were similar with respect to the level of pes-
sismism of the analysis. As an example, in one experiment
we considered the network shown in Figure 5 having 10
synchronous messages scheduled with fixed priorities, with
parameters shown in table I and deadline equal to period. The
other network parameters are TRD = 200µS, CSIG = 2µS,
CTM = 5µS, SLD = 17µS, and EC = 2mS. The response
time of each message is measured starting from the time when
the message is ready to be sent, up to the EC in which the
Master includes the message in the TM, measured in number
of EC (i.e., the maximum number of ECs needed by the
Master to schedule the message). Selecting LSW = 745µS
the response times of each message in the network measured
from the implementation and calculated using Eq. 7 are shown
under ”RT impl.” and ”RT analy.” respectively in table I. For
the analysis calculation, LSW = 745µS is the minimum
value that makes all messages meet their deadlines, while
for the implementation experiment, the minimum value is
LSE = 571µS. The results already show a small level of
pessimism of the analysis proposed in this paper. We expect
this level to increase as the message set dimension increases
and thus we are working on adapting other more efficient
analysis to this scenario.

MSG Priority Ti Ci (µS) RT impl. RT analy.
mED 1 1 EC 18 1 EC 1 EC
mDE 2 1 EC 90 1 EC 1 EC
mCD 3 1 EC 49 1 EC 1 EC
mCA 4 1 EC 49 1 EC 1 EC
mBC 5 1 EC 18 1 EC 1 EC
mAB 6 1 EC 18 1 EC 1 EC
mEB 7 3 EC 90 1 EC 2 EC
mDA 8 3 EC 90 1 EC 3 EC
mEC 9 4 EC 49 2 EC 3 EC
mDC 10 4 EC 90 2 EC 3 EC

TABLE I
MESSAGES PARAMETERS.

X. CONCLUSION AND FUTURE WORK

Distributed embedded systems have evolved towards com-
plex network infrastructures, frequently with multi-hop con-
figuration, to support growing requirements for more infor-
mation exchange and more heterogeneity of such information,
together with dynamic reconfigurations and adaptability. Fo-
cusing on the specific case of Ethernet, this paper proposed
using the FTT-SE protocol to support heterogeneous real-time
transactions in a dynamic way in a medium-scale multi-hop

network infrastructure. For this purpose, the on-line traffic
scheduler had to be adapted and a new analysis based on
worst-case response-time upper bounds was proposed. This
work is a first step in the referred direction towards using
FTT-SE in multi-switch Ethernet architectures. On-going work
aims at further verifying the proposed scheduler and analysis
as well as characterizing their overhead and efficiency using a
real application. These latter aspects are essential to assess
the price to pay for enforcing a synchronous view on a
multi-hop system as a means to provide prompt dynamic
reconfigurability.

REFERENCES

[1] Henri Bauer, Jean-Luc Scharbarg, and Christian Fraboul. Improving
the worst-case delay analysis of an afdx network using an optimized
trajectory approach. IEEE Trans. Industrial Informatics, 6(4):521–533,
2010.

[2] H. Charara, J.-L. Scharbarg, J. Ermont, and C. Fraboul. Methods for
bounding end-to-end delays on an afdx network. In Proc. of the 18th
EUROMICRO Conference on Real-Time Systems (ECRTS’06), pages 10
pp. –202, 0-0 2006.

[3] Xing Fan, Magnus Jonsson, and Jan Jonsson. Guaranteed real-time com-
munication in packet-switched networks with fcfs queuing. Computer
Networks, 53:400–417, February 2009.

[4] Kyung Chang Lee, Suk Lee, and Man Hyung Lee. Worst case com-
munication delay of real-time industrial switched ethernet with multiple
levels. IEEE Transactions on Industrial Electronics, 53(5):1669–1676,
oct. 2006.

[5] Xiaoting Li, J.-L. Scharbarg, and C. Fraboul. Improving end-to-end
delay upper bounds on an afdx network by integrating offsets in worst-
case analysis. In Proc. of the 15th IEEE Conference on Emerging
Technologies and Factory Automation (ETFA’10), pages 1 –8, sept. 2010.

[6] R. Marau, P. Pedreiras, and L. Almeida. Signaling asynchronous traffic
over a Master-Slave Switched Ethernet protocol. In Proc. on the 6th Int.
Workshop on Real Time Networks (RTN’07), Pisa, Italy, 2 July 2007.

[7] Ricardo Marau, Luı́s Almeida, Karthik Lakshmanan, Raj Rajkumar, and
Paulo Pedreiras. Utilization-based Schedulability Analysis for Switched
Ethernet aiming Dynamic QoS Management. In Proc of the 15th
IEEE Conference on Emerging Technologies and Factory Automation
(ETFA’10), 2010.

[8] Ricardo Marau, Luı́s Almeida, and Paulo Pedreiras. Enhancing real-time
communication over COTS Ethernet switches. In Proc. of the IEEE Int.
Workshop on Factory Communication Systems (WFCS’06), pages 295–
302, June 2006.

[9] Farahnaz Yekeh, Mostafa Pordel, Luis Almeida, and Moris Behnam.
Scaling ftt-se to large networks. In Proceedings of the Work-In-Progress
(WIP) session of 6th IEEE International Symposium on Industrial
Embedded Systems (SIES11), June 2011.

[10] Minghu Zhang, Jian Shi, Ting Zhang, and Yong Hu. Hard real-time
communication over multi-hop switched ethernet. In Proceedings of
the 2008 International Conference on Networking, Architecture, and
Storage, pages 121–128, 2008.


