
  

  

Abstract—This paper presents an embedded vision system 
based on reconfigurable hardware (FPGA) and two CMOS 
cameras to perform stereo image processing and 3D mapping 
for autonomous navigation. We propose an EKF based visual 
SLAM and sparse feature detectors to achieve 6D localization 
of the vehicle in non flat scenarios. The system can operate 
regardless of the odometry information from the vehicle since 
visual odometry is used. As a result, the final system is compact 
and easy to install and configure.  

I. INTRODUCTION 
UTOMATIC guided vehicles, commonly known as  
AGVs, are able to drive autonomously while 

transporting materials and goods, and are present on the 
market since the middle of the 20th century. They are both 
used in indoor and outdoor environments for industrial as 
well as for service applications for improving the production 
efficiency and reducing the staff costs.  

In field robotics, fully autonomous vehicles are of great 
interest and still a challenge for researchers and industrial 
entrepreneurs. Although the large amount of automatic 
moving platforms already present on the market, almost no 
one is able to perform automatic navigation in dynamic 
environments without predefined information. In indoor 
environments, traditional AGVs typically rely on magnetic 
wires placed on the ground or other kind of additional 
infrastructures, like active inductive elements and reflective 
markers, located in strategic positions of the working area. 
Such techniques are mostly used in industrial sites, (Danaher 
Motion, Corecon, Omnitech robotic, Egemin Automation), 
and in the public service sectors like hospitals (TransCar 
AGV by Swisslog, ALTIS by FMC and MLR). These 
systems mainly rely on bi-dimensional views from 
conventional laser based sensors and sometimes need pre-
defined maps. As a consequence they show very low 
flexibility to environment changes. Furthermore, 2D 
environmental representations typically provided by laser 
scanners cannot capture the complexity of unstructured 
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environments, especially in not flat scenarios. To overcome 
this limitation, often conventional planar scanners are 
coupled and synchronized with rotational mechanisms but a 
new-class of 3D ranging sensors has been recently 
developed. In this class there are high speed 3D laser 
sensors like the Flash LADAR (LAser Detection And 
Ranging) SwissRanger SR3000 and the high resolution 
range finder VelodyneHDL-64E S2 able to deliver a data 
rate of up to 1.8 million distance measurements per second. 
The drawback of these sensors is that they use costly and 
complex equipments. 

On the other hand, vision is broadly recognized as the 
most versatile sensor in non controlled situations with high 
potential to drastically reduce the costs. At present, modern 
industrial vision systems are equipped with fast image 
processing algorithms and highly descriptive feature 
detectors that provide impressive performances in highly 
controlled situations. Some solutions available on the market 
use image processing for recognizing different unique planar 
patterns placed in strategic positions of the environment 
(Sky-trax). The obvious drawback is the additional effort 
required to “dress” the working space with artificial 
landmarks not related to the production lines. Sometimes it 
is also impossible to modify the environmental setting due to 
the highly dynamic conditions in the production operations. 

To overcome these drawbacks, a more versatile vision 
system is required using only pre-existing information from 
the working setting (“natural landmarks”). This concept 
requires a new paradigm for the traditional image processing 
approach that shifts the attention from the two dimensions to 
the more complete and emerging 3D vision. In this paper we 
propose a low cost solution for industrial AGVs based on 
one high speed stereo camera, able to cope with natural 
landmarks in non flat scenarios and dynamic auto re-
calibration of the extrinsic parameters. The system has been 
designed to be more versatile and cost efficient with respect 
to existing solutions available on the market. 

II. THE STEREO VISION MODULE 
The stereo vision system is made of two 5-megapixel 

CMOS digital image sensors from Micron (MT9P031) and a 
Spartan-3A-DSP FPGA with 1800K system gates, 84 block 
RAM (18KB each) and 84 DSP 48A blocks. The board can 
hold up to seven different configurations for the FPGA 
stored in Flash, enabling seven different algorithms to be 
selected at run-time. The FPGA can communicate with the 
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external systems over USB, and Ethernet. On the board, 
there are also a 32 MB SDRAM and 16 MB non volatile 
Flash. The system architecture is shown in Fig.1. The final 
configuration of the stereo system includes also a Qseven 
module featuring an Intel Atom Z530 CPU (not used for the 
work presented in this paper). All is packed in a compact 
aluminium box easy to install and configure through the 
USB connection [2]. The lenses adopted are fisheye lenses 
with 2.1mm focal length from Mini-Objektiv, with F2.0 
aperture and 100 degrees field of view.  

 
The calibration procedure has been performed using the 

camera calibration toolbox for Matlab®. The intrinsic 
parameters identified include the lens distortion map, the 
principle point coordinates for the two sensors and the focal 
lengths in pixel units. For simplicity, the lens distortion has 
been assumed to be radial, identified by a sixth order 
polynomial containing only even exponential terms. It is 
worth to note that the original image resolution 640x480 has 
been expanded by a factor of 1.6 (1024x768) in order to 
compensate for the image expansion due to the radial 
distortion correction, and use all the visual information 
acquired. The principle point and all pixels have been 
rescaled according to the new image resolution. The 
extrinsic parameters are computed through the essential 
matrix factorization as in [7].  

The Harris and Stephens combined corner and edge 
detection algorithm has been implemented in hardware on 
the FPGA working in real-time. To gain real-time speed of 
the system, the algorithm is designed as a pipeline, so each 
step executes in parallel. (Three different window generators 
are used for the derivative, factorization, and comparison 
masks of 5x5 pixels size). 

From the autocorrelation mask M and its convolution with 
the Gaussian kernel G two methods for extracting the 
“cornerness” value R against a fixed threshold are 
universally accepted by the research community: the original 
method from Harris [3] and the variation proposed by Noble 
[4] in order to avoid the heuristic choice of the k value 
(commonly fixed to 0.04 as suggested by Harris). The 
choice of the two methods are rather equivalent and both 
effective for the case analyzed in our proposed applications. 
The main difference is the dynamic threshold that has to be 
three magnitude orders more in the Harris case than for the 
Noble one. This is due to the division in the Noble case that 
keeps the “cornerness” lower. In our implementation we 

decided to implement the original method by Harris since 
the division implementation in the FPGA would have 
required a lot more resources. Currently, the frame rate 
achieved is around 40 fps, even if the actual usable speed is 
14 fps due to the bottleneck of the USB communication. 

To reduce the computational load, the matching of the 
interest points in the different cameras has been 
implemented using binary images. The advantage is to 
simplify the cross correlation implementation in the FPGA 
by reducing the amount of information. The binary images 
are compared with the XOR bitwise operator instead of the 
binary multiplication, as shown in (1).  
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As well known from the multiple view projective 
geometry theory, for each feature extracted from the left 
image, the corresponding point in the right image lies on the 
corresponding epipolar line on the right image whose 
analytical coefficients are easily extracted from the 
fundamental matrix F. A proper search window has to be 
defined in order to apply the correlation function (1) to the 
possible corresponding candidates along the epipolar line. 
The search window is defined to be large enough to cover 
the maximum disparity at the investigated depth of view. 
The search window is heuristically defined and strongly 
depends on the interested depth and the camera vergence. 
The proposed system has theoretically zero vergence, so that 
the corresponding feature in the right camera always lies on 
the left side along the epipolar line with respect to the left 
feature coordinates (this is not the case of stereo cameras 
with non zero vergence). In Fig. 2 an example of the 
described technique is shown. The feature in the left image 
defines the epipolar line in the right image, as well as the 
related search window along the epipolar line. 

 

III. STEREO TRIANGULATION AND DEPTH ERROR MODELING 
The stereo triangulation projects the interest points 

collected from the two images in the 3D space. 
Unfortunately the triangulation is affected by 
heteroscedastic error (non homogeneous and non isotropic) 
as described in [5]. An error analysis has been performed to 
provide an uncertainty modeling of the stereo system. The 

 
Fig. 1. The stereo vision system and the algorithm blocks diagram. 

 
Fig. 2. Stereo matching using the epipolar constraint and the 
correlation on the right candidate matches. The search window is 
represented by the two red lines under and above the epipolar line 
blue, and the contained candidates within the window are marked in 
red. Also the correlation window is shown around the correspondent 
feature indicated by the red square. 



  

uncertainties in the 3D reconstruction directly affect the 
covariance matrices used in the localization and mapping 
algorithm that is based on probabilistic estimation. A 3D 
error modelling is derived assuming that the feature points 
are affected by a uniform distributed Gaussian noise, 
represented by two uncertainty circles in the left and in the 
right images. The corresponding 3D uncertainty is obtained 
by the solid intersection of the two projective cones as 
shown in Fig.3. 

 
Since the projective lines could be skew lines in absence of 
epipolar constraints a general model for the stereo 
triangulation has been adopted. The triangulation makes use 
of a least square solution to minimize the re-projection error 
in both images. The initial hypothesis comes from the 
extrinsic parameters R and T that relates the two 
cameras TPRP LR +⋅= , that can be rewritten as 

TFPRFP LZLRZR +⋅⋅=⋅ , using the projective transformations 
for each camera. 
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Using the matrix formulation the problem can be rewritten. 
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Posing [ ]LR FRFA ⋅−=  and solving using the LSM, the 3D 
point P can be computed both in the left and right reference 
frames.  
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To make the analysis of the triangulation accuracy, the 
analytical relation between the uncertainty in the image 
space and the related uncertainty in the 3D space has been 
defined. The partial derivatives of the reconstructed 
landmarks with respect to the feature points in the two 
images have been computed through the jacobian matrix JPS 
shown in (5).  The error propagation in the 3D space ∆P is 
related to a given uncertainty ΔR and ΔL in X and Y in both 
images.  
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In Fig. 4 the 3D distribution of the uncertainty along the 

principle axis of the 3D diamond shape is presented, 
showing the heteroscedastic behaviour of the stereo model 
adopted. Indeed they have different behaviours in the three 
dimensions (non isotropic) and non linear along each axis 
(non homogeneous).  

 
The known grid pattern, shown in the upper part of Fig. 4, 

has been used to measure the triangulation error under the 
hypothesis of three pixels uncertainty in the image space re-
projection. For the stereo system adopted, the 3D 
reconstruction mostly suffers of uncertainty along the 
principle axis of the 3D diamond, that is, along the 
projective line connecting the observed landmark with the 
centre of the stereo rig. Extending the reference plane to 
arbitrary heights, so that the image projections remain 
unchanged, the average uncertainty in the three dimensions 
has been reported in Fig. 5 for distances to the stereo rig 
from 1 to 30 meters, showing the non linear behaviour as 
expected. The distribution of the error in the three directions 
is also presented in the left-most pictures for the specific 
depth of 3 meters. 

 
The covariance matrix w associated with the 3D uncertainty 
of each reconstructed landmark can be computed using the 
error propagation model as in [6] through the jacobian J, 
where wL, wR are the image covariance matrices for the two 
images. 
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IV. VISUAL SLAM 
The SLAM algorithm has been implemented using an 

 
 
Fig. 3. The diamond shaped 3D uncertainty produced by a circular
uncertainty in both the left and right images.  

Fig. 4. The 3D uncertainty of the major axis of the ellipsoid related to
a grid pattern analyzed at different depths from the cameras.  

 

 
Fig. 5. Top : The reference pattern used to analyse the triangulation 
error at 3 m distance from the ceiling. Bottom: The distribution of 
the error along the three dimensions for a fixed depth of view of 3 m 
is also shown together to the non linear behaviour of the average 
errors increasing the depth from 1 to 30 m. 



  

Extended Kalman Filter (EKF) able to estimate the complete 
6D pose of the vehicle. It is based on the visual information 
coming from the stereo-camera, and the quaternion algebra 
has been adopted to efficiently deal with the 3D orientations. 
During an initial calibration phase, the odometry coming 
from the vehicle is used to simultaneously estimate the 
camera parameters together with some specific landmark 
positions, as detailed in [2]. The state variables to be 
estimated are 7+3N+C, corresponding to the robot position 
and orientation (3 DoFs for the position and 4 for the 
normalized quaternion Q), three dimensional coordinates of 
N landmarks in the environment, and camera parameters C, 
constituting the state vector. The inputs to the system are the 
robot velocities for both position and orientation, whereas 
the outputs are 4N feature coordinates for the right and left 
cameras.  
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The non linear function f, representing the system non linear 
model )()),(),(()1( kvkkukxfkx +=+  according to the EKF 
theory imposes a zero dynamics for the landmarks, and a 
state propagation in the predict phase as presented in (8) 
where Rq indicates the Rodrigues tensor associated to q. 
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The system model and the measurement uncertainties are 
respectively indicated by a 7x7 and 4x4 diagonal matrices v 
and w containing the variances terms. The model uncertainty 
are computed based on the specific kinematics involved, 
whereas the uncertainties in the measurements are based 
each time on the depth involved as reported in the previous 
section. 

To keep the whole system simple to use and easy to 
maintain, more effort has been devoted to avoid to read the 
odometry data from the vehicle. At the same time, the 
localization algorithm results more robust to uncertainties 
that easily arise in the vehicle kinematic model. After the 
calibration phase, the calibrated stereo rig is used to estimate 
the vehicle motion using visual odometry. Back-projecting 
the features coordinates in the image space to the 3D space 
using triangulation, the problem is formalized as an 
orthogonal Procrustes problem [1] in estimating the rotation 
and translation terms that minimize the functional (9) 
between two subsequent camera views, using the SVD. 
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The complete computation is reported in [2]. The robustness 
of this method is strongly related to the accuracy in the 
reconstruction and on the cameras resolution related to the 
investigated landmarks depths. In the current 
implementation, for object farther than 10 meters from the 
cameras, a low pass filter has been applied to smooth the 
reconstruction noise. In some cases, a zero dynamics on the 
predict phase of the Kalman filter is preferable to a noisy 
visual odometry. In these cases, higher values of the 
Gaussian variances have been used to model the 
uncertainties reflecting the 3D reconstruction error 
modeling. 

V. EXPERIMENTAL RESULTS 

A. Small scale 6D vSLAM  
A 6D pose estimation of the stereo rig with respect to a 

generic 3D landmarks configuration is shown in the first 
experiment, performed holding the camera by hand and 
moving it freely in all 6 DoFs in front of a test pattern 
shown in Fig. 6. The test pattern is composed by a five LED 
deformable “non plane” structure, that allows the complete 
6D vSLAM without the aid of any homographic 
information.  

 
The landmarks covariance ellipses converge to an 

uncertainty within 1 cm after about 30 cycles, and so also 
the 6D pose estimation of the camera. The landmarks 3D 
reconstruction and the camera trajectory are shown in Fig 7.  

 
The full 6D pose estimation has been tested on a mobile 

 
Fig. 6. The reference pattern used to test the vSLAM algorithm 
moving the stereo camera by hand in different positions and 
orientations. The cyan marker indicates the camera pose, whereas 
the yellow one shows the starting pose. 

 
Fig. 7 From left to right: the principal axis of the covariance ellipses at 
the beginning of the test, and the final map after 150 cycles. The 
SLAM algorithm converges in about 30 cycles to 1 cm accuracy. 



  

platform to reconstruct the executed 6D path in not flat 
indoor environment using the S-shaped slope shown in Fig 
8. The system has been mounted on a wheeled table and was 
driven manually form the station A to the station B up to the 
slope.  

The system was pointing upwards while driven along the 
assigned path, extracting the interest features form the lamps 
in the ceiling. The vSLAM algorithm has been executed 
minimizing the re-projection errors of the estimated 
landmarks positions in the 3D space and estimating the 6D 
pose of the platform along the path. The platform was driven 
with a speed of 0.5 m/s and the corresponding precision of 
the pose estimation was within 5 cm in the planar 
coordinates X and Y, and 10 cm in height coordinate Z. The 
same accuracy has been registered in the landmarks 
estimation. The accuracy of the orientation estimation was 
within 10 degrees depending on the number of landmarks 
seen at the same. The accuracy of the vSLAM 
reconstruction gets worst if three or less lamps are seen at 
the same time. Fig 9 reports the reconstructed path and the 
convergence of the estimated landmarks positions with the 
related covariance. 

 
B. Large scale vSLAM 
To test the vSLAM in a bigger scale, some experiments 

have been performed inside the university hall. In the 

working platform at Mälardalen University, the stereo 
system has been placed on a passive wheeled table. The 
vision system looks upwards, extracts information from the 
lamps in the ceiling, builds a map of the environment and 
localizes itself inside the map with a precision within the 
range of 1-5 cm depending on the height of the ceiling. Two 
different tests are reported here. The first case, shown in Fig 
10, presents a localization and mapping experiment in which 
the table was moved at about 1m/s producing the map with 
40 landmarks on a surface of about 600 m2. The landmarks 
are mainly grouped in two layers (represents in red and blue 
in Fig 10), respectively 4 and 7 m far from the cameras, 
reflecting the architectural structure of the entrance hall. The 
accuracy of the reconstruction is within 5 cm.  

 
The second test presented in Fig. 11, shows a smaller scale 
platform motion area (about 10 m2), but a higher distance of 
the farthest landmarks, 16 m. The accuracy of the 
reconstruction decreases from 5 to 10 cm, revealing the high 
sensitivity of the system to higher depths of view. 

 
C. Preliminary tests in industrial site 
During the frame of the MALTA project, some tests have 

been organized inside the Stora Enso paper mill in Karlstad, 
Sweden. The vehicle used during the experiments was the 
H50 forklift provided by Linde Material Handling, and 
properly modified by Danaher Motion to provide the low 
level trajectory control. The tests site, as well as the 
industrial vehicle used, are shown in Fig. 12. The 
stereovision navigation system has been placed on top of the 
vehicle, like shown in the picture, making the system 
integration extremely easy.  

 
Fig. 10. The 40 landmarks reconstructed from the faculty entrance 
hall are estimated in 250 cycles moving the platform in a closed 
path. The convergence of the covariance ellipses (right) and the 
estimated heights (left) are also reported. The green landmarks are 
other interest points coming from lower windows. 

 
Fig. 11.Second test performed inside the university building, in which 
four main different layers of 15 landmarks have been identified. 

 

 
Fig. 9. Vehicle path reconstruction and landmarks estimation. From 
top to bottom: 3D, lateral, top and front views of the estimated path. 
Convergence of the Z-position and covariance ellipses principal axis 
associated to the reconstructed landmarks.  

 
Fig. 8. S-shaped non planar path used to test the vSLAM algorithm. 
The path total length is 12 m, three 4m straight lines and three 1m 
diameter curves, covering 1 m difference in height. 



  

 
The environmental conditions were very different from 

the university both bigger and darker. The test area was 
about 2800 m2 and the height of the ceiling, and so the 
distance of the lamps from the vehicle (used as natural 
landmarks), was about 20 m. The tests have been performed, 
estimating the position of the robot and building the map of 
the environment. The estimated position and orientation of 
the vehicle were provided to the Danaher Motion navigation 
system as “epm” (external positioning measurement). In Fig. 
13 the path estimation is reported while the vehicle was 
performing a cubic b-spline driving with a speed of 0.5 m/s. 
Also a longer path was performed with the purpose of 
collecting as many landmarks as possible and build a more 
complete map. In this case the map employed a total of 14 
landmarks on 800 m2 surface with a precision of about 15 
cm at low speed. 

 
Table 1 reports a summary of the experimental results 

relating the accuracy of the stereo rig to the landmarks 
distance and the speed of the moving platform. Both 
increasing the distance and the vehicle speed worsen the 
reconstruction accuracy as expected.  Increaseing the speed 
of the vehicle to 1-1.5 m/s, the accuracy decays to 30-40 cm 

from the desired path in the worst cases.  

 
In order to address the target of autonomous navigation at 

full speed (30 Km/h required in many industrial sites to be 
comparable with human drives), the core of the vSLAM 
system (running in software at 3 Hz in the current version 
presented in this paper) is currently being updated to work at 
10 Hz, and speed up the low level communication with the 
trajectory control loop. The main bottlenecks of the system 
are represented by the 1Mbps USB communication that is 
currently being updated to 100Mbps Ethernet, and the 
vSLAM algorithm implementation that has not jet being 
parallelized into the FPGA.  

VI. CONCLUSION 
In this paper we propose a stereovision based vSLAM 

approach with high potential to be used in large 
environments and in not flat indoor terrains, due to the full 6 
DoFs vehicle pose estimation. The main contribution is 
related to the real time image processing on the FPGA and 
the use of vision as the only source of information. To make 
the system more robust, the accuracy has been analytically 
formulated and modeled. The choice of the EKF as vSLAM 
algorithm is motivated by a tradeoff between simplicity of 
implementation and reliability of the method. Even if the 
computation of the filter grows exponentially with the 
number of landmarks, in the specific applications targeted, 
sparse features clustered identifying lamps in the ceilings 
rarely produce more than 30-40 landmarks in the final map. 
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TABLE 1 
SUMMARY OF THE ACCURACY OF THE STEREO RIG 

Landmarks Distance Small scale  
≤ 1m 

Medium Scale 
≤ 10m 

Large Scale 
≤ 20m 

Accuracy at 0.5 m / s ± 1 cm ± 5 cm ± 10-15cm  
 

Accuracy at 1.5 m / s ± 5 cm ± 10 cm ± 30cm 
   

 
Fig. 12. The industrial set-up inside the Stora Enso paper mill. 

 
Fig. 13. Top: Vehicle path estimation while performing a b-spline 
trajectory inside a 12x5 m2 area. Bottom: Three dimensional 
representation of the vehicle path and map built inside a 20x40 m2 
area. On the left side, a screenshot of the feature extraction process 
is shown. 


