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Abstract—Embedded real-time systems are increasingly being
assembled from software components. This raises the issue how
to find the timing properties for the resulting system. Ideally,
these properties can be inferred from the properties of the
components: this is the case if the underlying timing model
is compositional. However, compositional timing models tend
to provide a simplified view. An important question is then:
when is a compositional model “accurate enough” to meet the
requirements for an analysis that is based on the model?

In this paper we consider a simple, statistical compositional
model for execution time distributions of sequentially composed
components, which assumes that the distributions of the under-
lying random variables are independent. This assumption isonly
approximately correct in general, as dependencies can appear
due to both software and hardware effects. We have made an
experimental investigation of how hardware features affect the
validity of the timing model. The result is that for the most
part, the effect of hardware features on the validity of the model
is small. The hardware feature with the strongest influence in
the experiment was the reorder buffer, followed by branch table
associativity, L2 cache size, and out-of order execution.

I. I NTRODUCTION

Many embedded systems have requirements on the timing
properties. These can be requirements on the worst-case
timing, but also on “softer” properties such as throughput,
performance, and “soft” worst-case behaviour where the re-
quirements may be expressed using probabilities for overruns.

Analysis of timing properties is often divided intosystem-
level analysis andcode-levelanalysis. An example of worst-
case system-level analysis is response-time analysis (RTA).
On code level, the archetypal worst-case analysis is Worst-
Case Execution Time (WCET) analysis. However, also other
analyses are concievable. For throughput and performance,
it is of interest to characterize the timing behavior also for
other than the worst case. A possibility is to consider the
execution time to be a random variable, and characterize the
timing behavior by its probability distribution. If we know
the probability distributions on code level, for individual
tasks, then the distributions for system-level timings canbe
estimated from these [1]. Soft real-time requirements that
are expressed in probabilistic terms, like the probabilityof a
violated deadline, can then be decided from these distributions.

Component-based software development [2] is a strong
trend that is gaining ground also for embedded systems.

Software is then built out of predefined components, which
are combined to achieve the desired functionality. For such
systems it is interesting to derive properties of the systemfrom
the properties of its parts. A model where properties can be de-
rived in this fashion is calledcompositional. Let composition
of components be expressed by the binary operator⊗, consider
the propertyp(c) of componentsc, and let⊕ be a binary
operator composing properties. Ifp(c1 ⊗ c2) = p(c1)⊕ p(c2),
then the model for propertiesp(c) is compositional. If⊕
is inexpensive to evaluate, then properties for a system can
be quickly derived from the properties of its parts using the
model.

However, compositional models are usually approximate:
the simpler they are, the more approximate they tend to be. In
a given situation it is important to know whether an estimate
of a property, which is derived using a compositional model,
is accurate enough. Thus, compositional models need to be
investigated w.r.t. precision.

We consider code-level component models, where function
block-like components are used to implement sequential tasks.
Since the tasks are sequential, the codes for the components
will be executed in some sequential order. Thus, we con-
sidersequential compositionof componentsc1; c2, expressing
a composite component wherec1 and c2 are executed in
sequence. We assume a probabilistic timing model where
the timing property for a componentc is its execution time
distribution T (c). Under the assumption of an underlying
additive timing model for sequential composition, and inde-
pendence of execution times for different components, the
distributionT (c1; c2) can be calculated fromT (c1) andT (c2)
by convolution [3]. This provides a simple, compositional
timing model for execution time distributions, which can be
used to quickly estimate the execution time distributions for
tasks from the distributions of its components.

However, this timing model rests on the assumption that the
execution times for components are independent. This is in
general not true: covariations in execution time can arise both
on software level, for instance through shared, or dependent
inputs to the components, and on hardware level through
the influence of the hardware state on the execution time of
instructions. Especially for modern high-end processors,with
features such as caches, parallel functional units, and out-of-



order pipelines, this influence can be strong. We therefore need
to know how strong the covariations of execution times are that
it can cause in practice.

We have made an experimental evaluation of how hardware
architecture features affect the validity of the compositional
model for execution time distributions above. We have mea-
sured the execution time distributions for code running in
isolation, composed them, and compared with the distribu-
tions for the codes executing in sequence. We have used
the Kolmogorov-Smirnov goodness-of-fit test [4] to test the
hypothesis that the probability distributions are equal. Further-
more, we have investigated which architectural features have
the largest influence on the validity of the model. For this
purpose we have used another statistical method,fractional
factorial design[5], which is a systematic method to find out
the likely cause for an observed variation. In order to applythis
method we needed to do experiments with different hardware
configurations, and therefore we used the SimpleScalar tool
chain [6] to simulate these configurations.

The rest of this paper is organized as follows: in Section II,
we introduce our statistical timing model and the different
statistical tests and analyses that we have used. Section III
describes the experimental setup: method, simulator, and
benchmarks used. In Section IV we present the results of the
experiments. Section V gives an account for related work, and
in Section VI we wrap up and give ideas for future research.

II. STATISTICAL MODEL AND ANALYSIS

A. Model

We model the execution time of a component (or a piece
of code in general) by a random variable. Now consider two
software componentsc1 and c2. Let their execution times be
modeled by the random variablesX1 and X2, respectively.
For the sequentially composed componentc1; c2 we model its
execution time by the random variableX1 + X2, capturing
the assumption that execution times of sequentially executing
pieces of code simply add up.

B. Convolution of Distributions

For a random variableX , denote its probability density
function by fX . In general, if the random variablesX and
Y are independent then the probability density function for
X + Y is given by [3]:

fX+Y (y) =

∫

fX(y − x)fY (x)dx

The integral defines a binary operation on functions called
convolution. A similar convolution operation is defined for
discrete probability functionspX , and a corresponding result
holds for discrete independent random variables [7]:

pX+Y (y) =
∑

∀x

pX(y − x)pY (x)

This operation has some interesting and useful properties:
it is associative and commutative, and can be generalized to
any number of variables. For discrete random variablesX and

Truth H0 is true H0 is false

Decision
rejectH0 type I error right decision
acceptH0 right decision type II error

Fig. 1. Types of errors in hypothesis testing.

Y it can be computed in timeO(mn), wherem andn are the
number of elements in the probability spaces ofX and Y ,
respectively.

C. Hypothesis Testing

Hypothesis testing means to decide, from a number of
samples (tests, or sets of observations), whether one should
consider a property to be true or not. How can we find out?
We may never know for sure, but a statistical test will give us
guidance in making a decision. In statistics we can state this
problem using two hypotheses: letH0 denote the hypothesis
that the property is true, and letH1 denote the hypothesis that
it is false.. The hypothesisH0 is callednull hypothesisand
H1 is calledalternative hypothesis. We must decide whether to
accept or reject the hypothesisH0 based on a sample. In doing
so, we might be making a mistake. For example, suppose the
property really is true. If we decide to acceptH0, then we
made the right decision. But if we reject it then we will make
an error, called atype I error. On the other hand, if the real
truth is that the property is false, and we rejectH0, then we
would make the right decision. However, if we decide to accept
H0 in this situation, we would be doing atype II error. Figure
1 summarises the types of errors. The probability of a type I
error is usually denoted byα and is commonly referred to as
the significance levelof a test. The probability of a type II
error is usually denoted byβ. The power of a test is defined
as 1 − β, i.e., the probability of correctly rejecting the null
hypothesis.

The general aim in hypothesis testing is to use statistical
tests that makeα andβ as small as possible. This goal requires
compromise, since makingα small involves rejecting the
null hypothesis less often, whereas makingβ small involves
accepting the null hypothesis less often. These actions are
contradictory; that is, asα increases,β will decrease, while
asα decreases,β will increase. The general strategy is to fix
α at some specific level, and to use the test that minimisesβ.
A common choice isα = 0.05.

D. Kolmogorov-Smirnov Test

In order to test that the two samples come from the
same distribution, we have used the two-sample Kolmogorov-
Smirnov goodness-of-fit test (KS test) [4]. It is a nonparametric
statistical method for comparing two sets of data, and is
independent of the underlying distribution. Given two inde-
pendent samplesS and S′, the test evaluates the following
null hypothesis:the two independent samplesS andS′ came
from the same distributionagainst the alternative hypothesis:
the two samples came from different distributions. The test
uses theempirical cumulative distribution function(ECDF)



for each of the samples: letS = {x1, ..., xn} be a random
sample of sizen. The ECDFFS(x) is defined by

FS(x) =
1

n
× [Number of observations≤ x]

The statistic of the test is given by

DS,S′ = max
x

|FS(x) − FS′(x)|

I.e., the test statistic is the maximum vertical distance between
the ECDF’s ofS and S′. The null hypothesis is rejected at
significance levelα if

DS,S′ > Kα

√

n+ n′

nn′

wheren andn′ are the sizes of the two samples, respectively.
The coefficientKα is the critical value of the Kolmogorov
distribution, and it depends on the significance level and on
the sizes of the samples.

Equivalently, the acceptance of the null hypothesis can be
based on the so-called “p-value”, which is the probability
of finding a distance bigger than (or equal to)DS,S′ in the
population assuming that the null hypothesis is true. The null
hypothesis is accepted if thep-value is greater than the chosen
significance levelα. This is just another way of expressing the
acceptance test.

E. Fractional Factorial Design

Fractional factorial designis a methodology for experi-
mentally determining the influence of factors on some entity.
Rather than testing with all combinations of possible values
of the factors, a reduced set of combinations is tested. It is
usually assumed that combined effects of different factorson
the entity are low compared to the direct influence of each
factor. Under this assumption, the number of tests can be
significantly reduced.

The Plackett and Burman design [5] is an instance of
fractional factorial design. It can accurately quantify the effects
of single factors, and usingfoldover it can also quantify the
combined effects of pairs of factors. For each factor ahigh
and alow value is selected. The experiment is then run with
different combinations of high and low values, for the different
factors, in a systematic fashion. ForN factors, the number of
runs of the experiment in this design is the next integerK

multiple of four greater thanN (2K for foldover). The high
and low values need not be numeric: they can, for instance,
be two different ways of doing branch prediction. In [8] the
use of the methodology was proposed to provide a sound
methodological basis for experimental computer architecture
design.

Table I shows how to estimate the influence from different
factorsPi on an entityR from the experiment. In the matrix,
−1 stands for low value and1 for high value. Each row
represents one run, with the combination of high/low-values
for the factors given by the matrix entries and the rightmost
element the resulting value ofR. For each factorPi, its
influence onR is now estimated as the inner product of column

P1 P2 P3 P4 P5 P6 P7 R

−1 −1 −1 −1 −1 −1 −1 1

+1 +1 +1 −1 +1 −1 −1 9

+1 +1 −1 +1 −1 −1 +1 2

+1 −1 +1 −1 −1 +1 +1 3

−1 +1 −1 −1 +1 +1 +1 7

+1 −1 −1 +1 +1 +1 −1 4

−1 −1 +1 +1 +1 −1 +1 3

−1 +1 +1 +1 −1 +1 −1 6

1 13 7 −5 11 5 −5

TABLE I
EXAMPLE OF A CONFIGURATION OF RUNS FOR THE FRACTIONAL

FACTORIAL DESIGN. WHEN USING FOLDOVER, THE LINES ARE REPEATED

AND THE SIGNS FORP1 TO P7 ARE INVERTED.

i and the column forR. The influences are shown in the last
row of the table.

III. E XPERIMENTS

We represented code for componentsc1, c2 by compiled
code for for C functionsc1(), c2(). Call these codesC1,
C2. We then emulated the effect of sequential composition
c1; c2 of components by sequential executionC1;C2 of the
compiled codes. One can argue that execution of sequentially
composed components also will include the transfer of values
between ports and similar, which renders this simple model
a bit crude. However, a realistic assumption is that this is
effectuated by some “glue code”g executing in-betweenC1
and C2. Then sequential composition of components can
be reduced to sequential composition of code, albeit also
involving code for g. We can simply considerg as code
for a “virtual” componentg, and then consider the sequential
compositionc1; g; c2. The execution time distribution for this
composition can now be estimated by the convolutions of
the three individual distributions, and the validity of this
estimation can be tested in the same way as described below.

Given some selected C functionsc1(), c2() representing
component code, the experiment would proceed as follows:

• compilec1(), andc2() into C1, andC2, respectively,
• run C1;C2 for a number of inputs to give an ECDF for

its execution time,
• run C1 and C2 in separation for different inputs, to

provide estimated distributions from which an ECDF for
their convolution can be calculated;

• apply the Kolgomorov-Smirnoff test to test, for some
selected significance level, the null hypothesis that the un-
derlying distributions for the execution times ofC1;C2,
and the convolution of distributions of the execution times
for C1 andC2, are the same, and

• repeat the above for a number of different pairs of
benchmarks.

However, to simplify the measurement process we measured
the time for full compiled C programs rather than individual
functions. Such programs always include a call to amain()
function. In order to compensate for its execution time, we
measured the execution time for the “empty” C program
main(), and then subtracted this time from the measured



execution times formain(){c1();}, main(){c2();},
andmain(){c1();c2();}.

In the compilations of all these programs, the data and
object code forc1() and c2() were included so that the
executable code could have similar sizes for the different runs.

We selected C programs to represent components from the
MiBench benchmark suite [9]. The suite emphasises diversity
in order to reflect the needs of the wide range of applications
in the embedded systems domain. It is composed of freely
available standard C source code, where slight adaptations
have been made in some of them to increase portability. The
benchmarks are grouped into six categories:

• automotive and industrial control: as some embedded
processors do not have dedicated hardware, this category
provides basic math abilities, bit manipulation, simple
data organisation and image processing,

• network: benchmarks for devices like switches and
routers where the embedded processors need to do short-
est path calculations, tree and table lookups,

• security: common algorithms for data encryption, decryp-
tion and hashing,

• consumer devices: this category focus on multimedia
applications, with image, MP3 and MPEG processing and
HTML typesetting,

• office automation: category with text manipulation algo-
rithms and speech processing, and

• telecommunications: this category consists of voice en-
coding and decoding, frequency analysis and checksum
algorithms.

The sizes of the benchmarks vary from small, with a few
lines of source code (like quicksort), to big ones, like the
GhostScript interpreter. We used the following benchmarks:

• susan: an image processing benchmark. It has algo-
rithms for smoothing, and corner and edge recognition.
Object code size: corner 117872 bytes, smoothing 117128
bytes, edge 118300 bytes;

• fft: fast Fourier transform. Object code size: 15140
bytes;

• mm: matrix multiplication. Object code size: 4396 bytes;
• primes: test an array of integer, if they are prime or

not. Object code size: 2844 bytes;
• adpcm: adaptive differential pulse code modulation Ob-

ject code size; 26580 bytes;
• compress: compression of ASCII text. Object code

size: 11896 bytes;
• qsort: sort an array of strings. Object code size: 1504

bytes;
• pbmsrch: Pratt-Boyer-Moore string search. Object code

size: 3760 bytes;
• dijkstra: shortest path in a weighted graph - the graph

is the same in the simulations, with each run finding the
path between two different nodes. Object code size: 5596
bytes;

• sha: a hash algorithm. Object code size: 7564 bytes;
• rijndael: encryption of a message. Object code size:

85836 bytes;
• gauss: triangulation of sparse matrix with Gaussian

elimination algorithm. Object code size: 8488 bytes.

We used the SimpleScalar tool chain to run our experi-
ments [6], [10]. It can provide detailed simulations of mod-
ern out-of-order microprocessors, allowing a wide range of
hardware configurations. The tool chain has four simulators:
sim-outorder provides the most cycle-accurate execution
time, and is the one we use here. It implements the RUU
(Register Update Unit) structure in order to deal with out-of-
order execution.

The suite includes a gcc cross compiler (GNU GCC v2.7.2)
that generates executable code from C source code. The
simulator accepts as input binary code and configuration
parameters, executes the code, and outputs statistics about the
execution including the execution time measured in cycles.
For the detailed model, specific parameters can be used to
configure the processor core, the memory hierarchy and the
branch predictor. The architecture is derived from the MIPS-
IV ISA, with a few additions. The instruction length is 64 bits,
and the instruction set is called PISA (Portable Instructions Set
Architecture).

The benchmarks were compiled into object code with
the SimpleScalar compiler,sslittle-na-sstrix-gcc,
generating code for the PISA architecture using optimisation
level zero, and were adapted to perform IO of data from/to
global data structures. They were later linked to be executed
in isolation and together in sequential composition. Afterthe
linking, the sizes of the executable files varied from 8194 to
206172 bytes.

IV. RESULTS

We first tested the hypothesis that the convolution of execu-
tion time distributions accurately approximates the distribution
of sequentially composed code. We ran two sets of composi-
tions of two and three components, testing 100 compositions
of pairs (and triples, respectively) of benchmarks drawn from
the set described in Section III. For each composition we
made 100 runs each for each individual component and 100
runs of their composition to estimate their execution time
distributions. We used the R statistics package [11] to calculate
the greatest vertical distanceD between convolution and
measured cumulative distribution, and thep-value. Thep-value
was then used to evaluate the KS test. We used the commonly
used significance levelα = 0.05.

SimpleScalar was configured to simulate a processor with
multiple functional units, cache memories, and branch predic-
tion according to the following: 128kb instruction L1 cache
with LRU (associativity 2), 256 kb direct-mapped L1 data
cache, 32 kb instruction L2 cache with LRU (associativity 8).
Latency 1 cycle to L1 caches, 5 cycles to L2 cache, 50 cycles
to main memory, memory access bus width 4, two-level branch
prediction, four integer ALU’s, four FP ALU’s, in-order issue.

The result was that withα = 0.05, the null hypothesis was
rejected by the KS test only for a few compositions: two for
compositions of two components, and one for compositions of
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Fig. 2. The sortedp-values for 100 random sample compositions of two
components.
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Fig. 3. The sortedp-values for 100 random sample compositions of three
components.

three components. The sortedp-values are plotted in Figures
2 and 3, respectively. As can be seen, mostp-values are very
close to one meaning that there is very little evidence against
the null hypothesis.

Fig. 4 shows an example where the KS test accepted the
null hypothesis. In this example,D is 0.047. Thep-value is
0.977, and as it is greater thanα = 0.05, we accept the null
hypothesis.

Next, we systematically investigated which hardware fea-
tures would most likely be responsible for a rejection of the
null hypothesis. We used the Plackett and Burman design
for this purpose. From the more than 40 hardware configura-
tion parameters available in the SimpleScalar simulation tool,
N = 37 parameters were chosen. These parameters were all
used in [8], and their high and low values were set to the same
values as there. The parameterK was set to 40 (next multiple
of four), resulting in 80 different hardware configurations(with

20 40 60 80
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F
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D = 0.047
p−value = 0.977
red: conv(T(a),T(b))
blue: T(a;b)

Fig. 4. Composition of two components: we accept the hypothesis that the
convolution has the same distribution as the execution timeof the composition.

Hardware feature N
I-tlb size ENTRIES 1
mem latency first next 1
D-tlb size ENTRIES 1
I-tlb assoc 1
lsq entries 1
L1 i-cache block size 1
memory ports 2
int alus 2
branch misprediction penalty 2
ras entries 2
speculative branch update 2
L1 d-cache latency 2
D-tlb assoc 2
L1 i-cache repl policy 2
L1 d-cache repl policy 2
btb entries 2
L1 i-cache latency 2
int mult div units 3
L1 i-cache assoc 3
L1 d-cache size KB 3
I-tlb latency 3
fetch queue entries 3
L2 cache latency 3
execution order 4
L2 cache size KB 4
btb assoc 4
ROB entries 5

TABLE II
NUMBER OF TIMES A HARDWARE FEATURE WAS THE MAIN VARIABLE

AFFECTING THE DEVIATION BETWEEN THE REAL EXECUTION TIME
DISTRIBUTION AND THE CONVOLUTION.
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Fig. 5. For this composition, using perfect branch prediction in the
simulation, the hypothesis is rejected.

foldover). Each configuration was then tested for 63 different
compositions of two components drawn from the selected
set of benchmarks, estimating the cumulative distribution
functions in the same way as before. For each composition,
we recorded which hardware feature had the biggest estimated
influence on the deviation between convolution and measured
execution time distribution. The result is given in Table II. For
this particular sample, the number of entries in the reorder
buffer (ROB) was the most frequent parameter having the
strongest influence.

For the 63 different compositions, we had two cases where
the null hypothesis was rejected and one case very close
to rejection. We examined these a bit closer to see how
strong the estimated influence of the 37 different hardware
parameters was. Table III shows the estimated influence of
each parameter on thep-value, and on the distanceD, for the
three cases. Interestingly, in all three cases the branch predictor
was deemed to have the largest influence and not the ROB.

One of these cases is shown in Fig. 5. The plot shows the
result with branch predictor set to “high”, which means perfect
branch prediction. Interestingly, if we change the configuration
to the “low” value, 2-level adaptive branch prediction, then the
null hypothesis is accepted. This case is shown in Fig. 6. So
for this example, the branch predictor really has a significant
influence on the validity of the convolution as composition
operator for execution time distributions.

V. RELATED WORK

Timing analysis is of fundamental importance to the suc-
cessful design and execution of real-time systems. The execu-
tion time is needed, for example, in scheduling and schedu-
lability analysis [12]. Often, the analysis aims at determining
(or bounding) the worst-case timing. On code level, one key
timing measure is theworst-case execution time(WCET) of
a program, which is the largest possible execution time of a
program executing on a given hardware while not being inter-
rupted. It is often estimated through measurements; however,
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Fig. 6. The hypothesis for the same composition as in Figure 5is accepted
when we use the 2-level adaptive branch prediction algorithm in the hardware
simulator.

this is not reliable in general [13] as it is hard to find the input
parameters that cause the worst execution time.

Thus, WCET analysis methods usually attempt to estimate
the WCET from WCETs for small pieces of the program,
typically basic blocks, which are combined using program flow
information to form a WCET estimate. This is a bit similar
to sequential component composition in that estimation of the
total WCET typically is done by adding the local WCETs for
the identified longest path. However, WCET analysis differsin
that basic blocks typically are small, and their code is assumed
known, whereas components can be “black boxes” and may
contain larger code.

In static WCET analysis, a microarchitectural analysis at-
tempts to bound the WCET for basic blocks using their code,
and knowledge of the hardware timing model [14]–[17]. This
is a white-box approach.Hybrid methodsare more related to
our approach: there, basic blocks are treated as black boxes
and their WCETs are estimated from measurements [18], [19].
This work is closely related to ours in that timing profiles
are generated for the basic blocks, and combined using a
convolution model with possible dependencies to create a
probabilistic model for the total execution time from which
the WCET can be estimated. In [20], copulas were used to
model the dependencies.

The basic blocks considered in hybrid WCET analysis are
typically much smaller than the components that we consider.
Thus dependencies between their execution times can be
expected to have stronger correlations, which necessitates a
more elaborate treatment.

Instead of estimating a value for the WCET, the work in [21]
focusses on deriving a execution time probability distribution
for a component in isolation, using measurements of response
time, and does not tackle the problem of composition. A
special monitor component is responsible for the measure-
ments. Dynamic simulation and statistical analysis is alsoused
in performance analysis [22], and can be used to find code



Effect onp-values Effect on distances
HW feature A B C A B C
L2 cache latency 1.69 0.13 0.11 0.28 0.12 0
speculative branch update 1.07 0.14 0.11 0.2 0.04 0
ras entries 0.44 0.18 0.14 0.12 0.08 0.08
int mult div units 2.17 0.23 0.12 0.2 0.2 0.08
L1 i-cache latency 1.53 0.26 0.12 0.2 0.04 0.08
mem latency first next 0.59 0.57 0.79 0.32 0.16 0.64
D-tlb page size KB 0.2 0.6 0 0.08 0.08 0
memory ports 1.69 0.71 0.11 0.12 0.16 0
L1 d-cache block size 1.69 0.71 0.01 0.12 0.16 0.04
ROB entries 0.61 0.78 0.12 0.04 0.04 0.04
int alus 1.3 0.82 0.13 0.2 0.24 0.08
L1 i-cache assoc 1.71 0.91 0 0.28 0.2 0
L2 cache assoc 0.51 0.93 0 0 0.12 0
I-tlb assoc 1.07 1.05 0.03 0.16 0.12 0.07
L2 cache size KB 1.23 1.11 0.04 0.25 0.24 0.08
lsq entries 0.66 1.19 0.37 0.2 0.24 0.16
L2 cache block size BYTES 0.51 1.48 0.01 0.07 0.16 0.04
L2 cache repl policy 1.53 1.49 0 0.08 0.2 0
L1 d-cache latency 0.59 1.56 0.12 0.12 0.28 0.04
D-tlb assoc 1.23 1.62 0.01 0.24 0.24 0
execution order 1.23 1.64 0.13 0.2 0.16 0.08
L1 d-cache repl policy 0.59 1.68 0.03 0.16 0.28 0.08
mem bandwidth 0.51 1.71 0.12 0.09 0.25 0.09
L1 d-cache assoc 0.44 1.74 0.01 0.12 0.16 0.04
btb entries 1.69 1.94 0.04 0.4 0.25 0.09
btb assoc 0.44 2.26 0.05 0.07 0.24 0.12
I-tlb latency 0.77 2.42 0.11 0.12 0.32 0.04
L1 i-cache repl policy 0.61 2.63 0 0.12 0.37 0
I-tlb page size KB 2.33 2.65 0 0.24 0.4 0.01
fetch queue entries 0.2 2.78 0.11 0.08 0.4 0.05
branch misprediction penalty 0.59 3.22 0.72 0.32 0.52 0.53
I-tlb size ENTRIES 0.13 3.46 0.01 0 0.44 0
D-tlb size ENTRIES 0.2 3.91 0.02 0.12 0.44 0.04
L1 d-cache size KB 1.23 4.21 0.01 0.12 0.6 0.04
L1 i-cache size KB 2.81 5.34 0 0.24 0.88 0
L1 i-cache block size 0.66 6.4 0.05 0.08 0.84 0.11
branch predictor 9.29 10.87 38.76 33.65 1.08 7.1

TABLE III
ESTIMATED INFLUENCE OF EACH HARDWARE PARAMETER ON THE P-VALUES, AND DISTANCESD, USING THE FRACTIONAL FACTORIAL DESIGN FOR THE

COMPOSITIONSA=FFT;RIJNDAEL, B=FFT;MM AND C=GAUSS;RIJNDAEL.

bottlenecks, parts of the code where the program spend most
of the time, and optimisations can be focused in these specific
parts. In [8] statistical analysis is used to analyse computer
architecture performance, and the fractional factorial design
is used to analyse how changes in the architecture affect the
execution time.

The two-sample t-test is used in [23] as a hypothesis test
to measure performance similarities between benchmarks. This
test requires Student’s t distribution for the samples, while our
use of the Kolmogorov-Smirnov test has the advantage that it
can be used for any distribution.

VI. CONCLUSION

In this work we investigated the execution time of se-
quentially composed components using statistical methods: we
propose the use of convolution as a composition mechanism

for the execution time distributions of components. We used
the Kolmogorov-Smirnov goodness-of-fit test to evaluate how
well the convolution seems to approximate the real distribution
of the composed components when hardware influences are
taken into account. Our results indicate that for the most part,
the convolution provides a good approximation of the actual
execution time distribution.

We then investigated which hardware features seem to
influence the validity of the convolution approximation the
most. We found that several such features could have the most
significant influence, with high rankings for reorder buffer,
branch table associativity, L2 cache size, and out-of order
execution. However, for the the cases where the convolution
did not provide a very accurate model, the branch predictor
was found to have the largest influence on this discrepancy.
This indicates that the branch predictor is an important factor



affecting the validity of convolution as composition operator,
and thus should be taken into account when selecting hardware
for applications where timing-predictability is required.

The convolution model relies on an assumption that sequen-
tial timing models are additive, such that estimated execution
times for sequentially executing activities can simply be added
up. This assumption is used not only for sequential component
composition, but also in other parts of the real-time area like
schedulability analysis. Thus, our results can have significance
also in those areas.

A topic for future research is to make a more detailed
investigation how features of the composed codes interact
with hardware features to strengthen or weaken their influence
on the validity of simple compositional timing models like
the convolution model. Obviously, features such as control
structure (frequency and predictability of branches), memory
access patterns, etc. will interact with hardware featuressuch
as branch predictors, pipelines, and memory systems to make
the influence on timing model validity stronger or weaker. Is
it possible to come up with simple code characteristics that
can predict which hardware features will be influential for
composition of certain codes?

We have investigated sequential composition on single-
core architectures. For components running in parallel on a
multicore architecture, simple compositional timing models
are desirable as well as long as they are reasonably accurate.
A possible example isT (c1 |c2) = max(T (c1), T (c2)), where
“ |” is a parallel composition operator. As in the sequential case
such simple timing models are not exact, and an interesting
topic for future research is to investigate the influence of
different hardware features on the validity of parallel timing
models.

Another important topic for further work is to investigate the
influence of software data/control dependencies on the validity
of the convolution model. Such dependencies can cause covari-
ations in certain execution paths in the components, which in
turn may lead to covariations in execution time. It is important
to find out how likely this is to appear in practice. Besides a
statistical analysis, static program analysis could also be used
to find potential dependencies.
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