
NW
PT

2011
Technical	report	254/2011

October	2011
ISSN	1404‐3041

Mälardalen	Real‐Time	Research	Centre	
Mälardalen	University
Box	883,	721	23	Västerås,	Sweden

Proceedings	of	the	23rd	

Nordic	Workshop	on
Programming	Theory

October	26	‐	28,	2011
Västerås,	Sweden

Paul	Pettersson	and	
Cristina	Seceleanu	(Eds.)

i

Preface

The objective of the Nordic Workshop on Programming Theory is to bring
together researchers from (but not limited to) the Nordic and Baltic countries
interested in programming theory, in order to improve mutual contacts and
cooperation.

The 23rd Nordic Workshop on Programming Theory took place at Mälardalen
University, Sweden, 26-28 October 2011. The previous workshops were held in
Uppsala (1989, 1999, and 2004), Aalborg (1990), Göteborg (1991 and 1995),
Bergen (1992 and 2000), Åbo (1993, 1998, 2003, and 2010), Aarhus (1994),
Oslo (1996 and 2007), Tallinn (1997, 2002 and 2008), Lyngby (2001 and 2009),
Copenhagen (2005), and Reykjavk (2006).

There were 36 regular presentations at the workshop. In addition, the following
four invited speakers gave presentations: Werner Damm (University of Old-
enburg and OFFIS, Germany), Björn Lisper (Mälardalen University, Sweden),
Michael Williams (Ericsson AB, Sweden), and Glynn Winskel (University of
Cambridge, United Kingdom).

The organizers would like to thank the invited speakers, the programme com-
mittee, and all the researchers who submitted papers to NWPT 2011.

Programme Committee

Michael R. Hansen Techn. Univ. of Denmark, Denmark
Einar Broch Johnsen Univ. of Oslo, Norway
Kim G. Larsen Aalborg Univ., Denmark
Anna Ingólfsdóttir Reykjavk Univ., Iceland
Bengt Nordstrom Chalmers, Univ. of Gothenburg, Sweden
Olaf Owe Univ. of Oslo, Norway
Paul Pettersson Mälardalen Univ., Sweden
Gerardo Schneider IT Univ., Chalmers — Univ. of Gothenburg, Sweden, and

Univ. of Oslo, Norway
Andrei Sabelfeld Chalmers, Univ. of Gothenburg, Sweden
Cristina Seceleanu Mälardalen Univ., Sweden
Tarmo Uustalu Inst. of Cubernetics, Estonia
Juri Vain Tallinn Technical University, Estonia
Marina Waldén Åbo Akademi Univ., Finland
Uwe Wolter Univ. of Bergen, Norway
Wang Yi Uppsala Univ., Sweden

Local Organizing Committee

Leo Hatvani, Ellinor Karlsson, Anna Lind, Paul Pettersson (co-chair), Malin
Rosqvist, Cristina Seceleanu (co-chair), and Jagadish Suryadevara.

ii

iii

Table of Contents

Ensure you are wearing fireproof clothes before trying to intro-

duce disruptive technology

Michael Williams . 1

Accelerating Backward Reachability Analysis

Tim Strazny . 2

From functional programming to multicore parallelism: A case

study based on Presburger Arithmetic

Dung Phan Anh and Michael R. Hansen 5

GSPeeDI - a reachability checker for planar, polygonal hybrid

systems using incomplete acceleration

Hallstein Asheim Hansen . 8

Compositionality with Strong Assumptions

Hardi Hungar . 11

Towards a Programming Language for Declarative Event-based

Context-sensitive Reactive Services

Søren Debois, Thomas Hildebrandt, Raghava Rao Mukkamala and Francesco

Zanitti . 14

A Verified Design Pattern for Long-running Nested Transactions

Saleem Vighio, Anders Ravn and Zhiming Liu 18

Formal Modelling of Inter-Peer Relations in Peer-to-Peer Media

Distribution Systems

Luigia Petre and Petter Sandvik . 21

A Functional Language for Specifying Business Reports

Patrick Bahr . 24

Software Verification Using k-Induction

Alastair Donaldson, Leopold Haller, Daniel Kroening and Philipp Ruem-

mer . 27

Verification and Code Generation for Invariant Diagrams in Is-

abelle

Viorel Preoteasa, Ralph-Johan Back and Johannes Eriksson 30

A Proof System for Adaptable Class Hierarchies

Johan Dovland, Einar Broch Johnsen, Olaf Owe and Ingrid Yu 33

Refinement for Open Mixed Trees

Marco Carbone, Thomas Hildebrandt and Hugo A. López 35

Evaluation à la Carte – Non-Strict Evaluation via Compositional

Data Types

Patrick Bahr . 38

iv

Does it pay to extend the parameter of the world model?

Werner Damm . 41

Towards a Behavioral Analysis of Computer Algebra Programs

Muhammad Taimoor Khan and Wolfgang Schreiner 42

Integrating Resource-Restricted Execution Contexts with Abstract

Behavioral Specifications

Einar Broch Johnsen, Rudolf Schlatte and Silvia Lizeth Tapia Tarifa . 45

Polymorphic behavioural lock effects for deadlock checking

Ka I Pun, Martin Steffen and Volker Stolz 48

A Succinct Canonical Register Automaton Model

Sofia Cassel, Falk Howar, Bengt Jonsson, Maik Merten and Bernhard

Steffen . 51

The winning ways of concurrent games

Glynn Winskel . 54

Stuttering in Abstract Probabilistic Automata

Benoit Delahaye, Kim Guldstrand Larsen, Axel Legay and Mikkel L.

Pedersen . 55

Towards quantitative evaluation of stochastic pharmacy workflows

Luke Herbert and Robin Sharp . 59

Correctness of Constraint-aware Model Transformations

Xiaoliang Wang and Yngve Lamo . 63

An Architecture-based Verification Technique for AADL-specifications

Andreas Johnsen, Paul Pettersson and Kristina Lundqvist 66

The Guided System Development Framework

Jose Quaresma, Christian W. Probst and Flemming Nielson 70

Formalising Metamodel Evolution based on Category Theory

Florian Mantz, Alessandro Rossini, Gabriele Taentzer, Yngve Lamo

and Uwe Wolter . 73

Parametric WCET Analysis

Björn Lisper . 76

Estimating Resource Bounds for Software Transactions

Thi Mai Thuong Tran, Martin Steffen and Hoang Truong 77

Value sensitivity in information flow analysis

Bart Van Delft . 80

Static Analyis of Bounded Polyhedra

Stefan Bygde, Björn Lisper and Niklas Holsti 83

Towards a Real-Time, WCET Analysable JVM Running in 256

kB of Flash Memory

Kasper Søe Luckow, Bent Thomsen and Stephan Erbs Korsholm . . . 86

v

An Optimal Resource Sharing Protocol for Generalized Multi-

frame Tasks

Pontus Ekberg, Nan Guan, Martin Stigge and Wang Yi 89

Adaptive Task Automata: A Framework for Verifying Adaptive

Embedded Systems

Leo Hatvani, Paul Pettersson and Cristina Seceleanu 92

Towards Integrated Modeling: Analytic Real-time Interfaces for

Timed Automata based Component Models

Kai Lampka and Lothar Thiele . 95

A Mode Switch Logic for component-based multi-mode systems

Hang Yin and Hans Hansson . 98

A Categorical View of Bisimulation for Higher Dimensional Au-

tomata

Elena Oshevskaya, Irina Virbitskaite and Eike Best 102

A Semantic Hierarchy for Erasure Policies

Filippo Del Tedesco, Sebastian Hunt and David Sands 105

Unifying synchronous data and control flow in the lazy lambda-

calculus

Michael Mendler, Joaquin Aguado and Marc Pouzet 108

Inheritance and Observability

Erika Abraham, Thi Mai Thuong Tran and Martin Steffen 112

Compositional Transfinite Semantics of While

Härmel Nestra . 115

vi

vii

Ensure you are wearing fireproof clothes before

trying to introduce disruptive technology

Michael Williams

Ericsson AB, Sweden

Abstract

About 15 years ago, we proposed that we should use functional pro-

gramming languages to implement our telecommunication switching sys-

tems. We had developed and successfully used our own functional lan-

guage, Erlang to develop a small PABX. We tried to introduce this to

Ericsson on a broad scale but found unexpected problems. This talk will

examine to problems of introducing new disruptive software technology in

an industrial context.

Page 1 of 117

Accelerating Backward Reachability Analysis

Tim Strazny

Carl von Ossietzky University of Oldenburg

tim.strazny@informatik.uni-oldenburg.de

Abstract

In the context of depth-first backward reachability analysis, we identify two general operations

which allow for performance improvements, while covering well-known techniques such as partial

order methods and pruning. We instantiate these operations with novel backward acceleration tech-

niques and employ methods of guided search in this context. Further, we introduce support-based

search trees, a data structure to represent upward-closed sets (ucs’s) which allows for efficient im-

plementation of operations necessary for the analysis.

1 W := F ; V := /0;

2 while W 6= /0 do

3 x := select(W);W :=W \ {x} ;

4 if x ∈ ↓I then

5 V := min(V ∪ {x});
6 W := /0

7 else

8 if x /∈ ↑V then

9 V := min(V ∪ {x});
10 W := min(W ∪opt(I,V,pb(x)))

11 fi

12 fi

13 od

Algorithm 1: Reachability analysis.

Introduction. The performance of backward coverability

analysis [2] for certain classes of well-structured transition

systems [5], such as reset post self-modifying Petri nets, can

be vastly improved by employing heuristics—as known in di-

rected model checking—to guide the search during a depth-

first traversal, utilizing the system’s structure. We identify

general conditions for optimizing the search and introduce an

instantiation of Algorithm 1 making use of backward accel-

eration, a novel means to identify and exploit recurring pat-

terns in the search space. Furthermore, we advocate the use

of place bounds for pruning in a Petri net context. As the effi-

ciency of the underlying data structure plays a major role for

the algorithm’s performance, we investigate necessary condi-

tions to implement equivalence classes of states, which are

then represented by support-based search trees, a data struc-

ture we develop to provide efficient operations for the depth-first variant of the search algorithm.

Foundations. For a well-structured transition system S = (S,→,≤) [5], where S is a set of states, →⊆
S× S is a transition relation, and ≤⊆ S× S is a well-quasi ordering, it is decidable whether a transition

sequence σ starting in the downward-closure ↓I := {y ∈ S | ∃x ∈ I : y ≤ x} of a finite set I ⊆ S of initial

states and ending in the upward-closure ↑F := {y ∈ S | ∃x ∈ F : x ≤ y} of a finite set F ⊆ S of final states

exists, i.e. ∃x ∈ ↓I,y ∈ ↑F : x
σ
−→ y. When the variation of the backward reachability analysis [2] shown in

Algorithm 1 terminates, ↑V either forms the backward reachable state space or the loop prematurely was

exited as a sequence from ↓I to ↑F was found. In both cases ↓I ∩↑V 6= /0 ⇔ ↓I ∩Pred∗(↑F) 6= /0 holds,

where Pred∗(↑F) represents the predecessors of the elements in ↑F w.r.t. the reflexive, transitive closure

of the transition relation. The algorithm uses the four functions

• select, which chooses an element from W (basis of states to process), allowing for guided search,

• min, which minimizes a finite base and depends on an efficient data structure,

• pb, to compute a finite basis of the set of one-step predecessors, and

• opt, allowing for optimization of pb’s output, such as backward acceleration.

Guided Search. The order in which elements are chosen from W does neither influence correctness

nor termination of the algorithm. However, certain orderings are preferable as they lead to fewer loop

iterations and in the best case—if ↑F is reachable from ↓I—an according transition sequence is found

immediately.

1

Page 2 of 117

tim.strazny@informatik.uni-oldenburg.de

Accelerating Backward Reachability Analysis Strazny

In the setting of Petri nets, we are able to describe a notion of distance to ↓I for a state x by taking

the length of the shortest path through the net’s structure from a place marked in I to a place marked

in x. We propose selecting one of those states from W which are closest to ↓I as a heuristic for search

guidance. Also, simple orderings such as on the number of tokens can be employed and tend to improve

the overall running time, too.

Backward Acceleration. The result O = opt(I,V,pb(x)) of the newly introduced function opt, has to

satisfy three conditions:

• to achieve termination, it has to be finite,

• to achieve correctness, if and only if ↓I is backward reachable from ↑pb(x), then ↓I has to be

backward reachable from ↑O, i.e. ↓I ∩Pred∗(↑pb(x)) 6= /0 ⇔↓I ∩Pred∗(↑O) 6= /0, and

• to be able to present a transition sequence leading from ↓I to ↑F (if it exists), every element in o is

backward reachable from x, i.e. ∀y ∈ O ∃p ∈ pb(x) : y ∈ Pred∗(↑p).
These conditions leave room for well-known techniques such as pruning [4], partial-order methods [1],

as well as a new path-learning method we call backward acceleration. Moreover, the condition for

correctness is compatible with the loop invariant of Algorithm 1

(Pred∗(↑W)∪↑V)⊆ Pred∗(↑F) ∧
(

↓I ∩Pred∗(↑F) 6= /0 ⇔↓I ∩ (Pred∗(↑W)∪↑V) 6= /0
)

,

which expresses that ↑V is backward reachable from ↑F and ↓I is backward reachable from ↑F if and

only if it is backward reachable from ↑W or has a non-empty intersection with ↑V , by which partial

correctness of Algorithm 1 can be shown.

During inspection of the backward search space for several case studies, certain transition sequences

appeared in recurring patterns. The idea of backward acceleration is to identify such repeating patterns

x
σ
−→ y, e.g. at the second occurrence, and exploit it by computing the maximal extension of the transition

sequence σ , x
τ
−→ y′, s.t. τ = σ k, k maximal. Two problems arise: On one hand, exploitable transition

sequences have to be recognised—for Petri nets, the token sum may be required to have decreased in

order to guarantee y′ < y—, and on the other hand, the maximal extension of σ has to be computed. If

successfully applied, backward acceleration is capable of reducing the backward reachable state space

by large amounts.

As backward search algorithms suffer from traversing portions of the state space which are not (for-

ward) reachable, pruning techniques come in handy, i.e. using over-approximations of the (forward)

reachable state space to prevent states outside of the over-approximation from being explored any fur-

ther. Considering the implementation of pruning by structural invariants for Petri nets [4], we decided to

use a standard algorithm with a running time complexity cubic in the problem size to identify invariants,

and again utilize the net’s structure in order to derive more, yet weaker invariants (covering fewer places

per invariant). In the extreme, we derive bounds on the number of tokens on individual places, while

preserving more complex invariants and the relationships between places they express. Testing the vio-

lation of bounds of places is considerably faster and thus provides a good precursor to testing violation

of invariants.

Support-based Search Trees. For a set X ⊆ S, the function min returns the minimal basis s.t. ↑X =
↑min(X), i.e.

{

x ∈ X | ∀y ∈ X : y � x
}

. In the context of Algorithm 1, min is applied to the union of

two sets: A basis of a ucs, V or W , and some set of states. In our implementation, adding a set of states

to a ucs is done sequentially. Thus, the three primary operations to optimize for when considering a state

x are (1) check if y in the ucs exists with y ≤ x, (2) remove those elements y from the ucs which are

x ≤ y, and (3) add x to a ucs. We propose to use necessary conditions γ , s.t. x ≤ y ⇒ γ(x,y), to construct

data structures allowing for efficient implementations of the operations to access ucs’s. By intersecting

several such necessary conditions, the number of comparisons to be carried out can be narrowed down

drastically.

2

Page 3 of 117

Accelerating Backward Reachability Analysis Strazny

For example, when states are represented by vectors in Nd and x ≤ y ⇔ ∀1 ≤ i ≤ d : x(i) ≤ y(i),
e.g. in Petri net settings, we define the function supp : S → P(N≤d) mapping a state x to a set of indices

s.t. supp(x) := {1 ≤ i ≤ d | x(i) 6= 0} . Given two states x,y ∈ Nd , x ≤ y implies supp(x) ⊆ supp(y).
Thus the support gives rise to a necessary condition for x ≤ y. A support-based search tree is a binary

tree where nodes are labelled with indices and sets of states, and edges are labelled with ⊥ or ⊤, stating

whether the label of the parent node belongs to the support of the states in sets attached to child nodes.

This data structure allows for efficient implementations of the operations mentioned above: e.g, if x ∈ ↑V

is to be checked and V is stored as a support-based search tree with the root node being labelled with

index 1 and 1 /∈ supp(x), then the branch with edge labelled ⊤ can be safely ignored since no y ∈V with

1 ∈ supp(y) can satisfy y ≤ x.

Furthermore, we define ∑x to be the sum ∑
d
i=1 x(i) and again observe a necessary condition: Given

two states x,y ∈ Nd , x ≤ y implies ∑x ≤ ∑y. By collecting sets of states of equal sum in classes and

constructing a support-based search tree for each such class, a forest of support-based search trees is

formed, increasing the performance further (cf. [3]). Of course, further necessary conditions may be

employed.

Experiments. The methods presented here have been implemented as a part of PETRUCHIO/BW1

which solves coverability / control-state reachability problems for reset post self-modifying Petri nets

and belongs to the PETRUCHIO tool [7]. A preliminary comparison with tool MIST2/BW [4], which

performs a breadth-first backward search using the interval sharing-tree data structure [6], showed that

our implementation is able to solve a large number of problem instances delivered with MIST2/BW (in

their .spec format) about two orders of magnitude faster. For example, repeating benchmarks for 2 hours

each, the problem instance pncsacover.spec was solved in roughly 10 milliseconds average by our tool

and in roughly 1 minute average by MIST2/BW. For problem instance delegatebuffer.spec, our tool took

5 minutes and MIST2/BW took over 1 day to solve it (average of three iterations). Further comparisons

with other tools are to be carried out.

References.

[1] Parosh Aziz Abdulla, Bengt Jonsson, Mats Kindahl, and Doron Peled. A general approach to partial order

reductions in symbolic verification. In Alan Hu and Moshe Vardi, editors, Computer Aided Verification,

volume 1427 of Lecture Notes in Computer Science, pages 379–390. Springer Berlin / Heidelberg, 1998.

[2] Parosh Aziz Abdulla, Kārlis Čerāns, Bengt Jonsson, and Yih-Kuen Tsay. General decidability theorems for

infinite-state systems. In Proceedings of the 11th Annual IEEE Symposium on Logic in Computer Science,

LICS ’96, pages 313–323. IEEE Computer Society, 1996.

[3] Gianfranco Ciardo and Andrew S. Miner. Storage alternatives for large structured state spaces. In Raymond A.

Marie, Brigitte Plateau, Maria Calzarossa, and Gerardo Rubino, editors, Computer Performance Evaluation,

volume 1245 of Lecture Notes in Computer Science, pages 44–57. Springer Berlin / Heidelberg, 1997.

[4] Giorgio Delzanno, Jean-François Raskin, and Laurent Van Begin. Attacking symbolic state explosion. In

Gérard Berry, Hubert Comon, and Alain Finkel, editors, Computer Aided Verification, volume 2102 of Lecture

Notes in Computer Science, pages 298–310. Springer Berlin / Heidelberg, 2001.

[5] Alain Finkel and Philippe Schnoebelen. Well-structured transition systems everywhere! Theoretical Computer

Science, 256:63–92, April 2001.

[6] Pierre Ganty, Cédric Meuter, Laurent Van Begin, Gabriel Kalyon, Jean-François Raskin, and Giorgio

Delzanno. Symbolic data structure for sets of k-uples of integers. Technical Report 570, Université Libre

de Bruxelles, 2007.

[7] Roland Meyer and Tim Strazny. Petruchio: From dynamic networks to nets. In Tayssir Touili, Byron Cook,

and Paul Jackson, editors, Computer Aided Verification, volume 6174 of Lecture Notes in Computer Science,

pages 175–179. Springer Berlin / Heidelberg, 2010.

1http://csd.informatik.uni-oldenburg.de/~critter/petruchio.tar.gz

3

Page 4 of 117

http://csd.informatik.uni-oldenburg.de/~critter/petruchio.tar.gz

From functional programming to multicore parallelism:

A case study based on Presburger Arithmetic

Phan Anh Dung and Michael R. Hansen

DTU Informatics, Technical University of Denmark

The overall goal of this work is studying parallelization of functional programs with the specific

case study of decision procedures for Presburger Arithmetic (PA). PA is a first order theory of integers

accepting addition as its only operation. Whereas it has wide applications in different areas, we are

interested in using PA in connection with the Duration Calculus Model Checker (DCMC) [5]. There are

effective decision procedures for PA including Cooper’s algorithm and the Omega Test; however, their

complexity is extremely high with doubly exponential lower bound and triply exponential upper bound

[7]. We investigate these decision procedures in the context of multicore parallelism with the hope of

exploiting multicore powers. Unfortunately, we are not aware of any prior parallelism research related to

decision procedures for PA. The closest work is the preliminary results on parallelism in the SMT-solver

Z3 [8] which has the capability of solving Presburger formulas.

Functional programming is well-suited for the domain of decision procedures, and its immutability

feature helps to reduce parallelization effort. While Haskell has progressed with a lot of parallelism-

related research [6], we choose F# to be able to have explicit control over parallelism on the .NET

framework and utilize its option to resort to mutation when optimizing performance.

1 Parallelization of Cooper’s algorithm

The algorithm removes quantifiers in the inside-out order using the following transformation [5]:

∃ x. φ ⇐⇒
δ∨

i=1

(φ [⊤/ax < t, ⊥/ax > t] ∨
∨

ax<t

φ [t+i/ax]∧δ ′ | t+i) (1)

where a > 0, δ is the least common multiple of the coefficients of x in φ and δ ′ is the least common

multiple of the divisors in divisibility constraints.

Before parallelization, several optimizations have been considered for Cooper’s algorithm. Interest-

ingly, eliminating blocks of quantifiers [3] has shown its good performance on the multicore platform.

This procedure is superior as quantifiers are distributed into inner formulas for quantifier removal, result-

ing in manipulation of small data structures which is extremely fast when data is likely to fit in cache.

Our preliminary test with several small formulas shows that this optimization leads to 20× performance

gain compared to the baseline variant [4].

Cooper’s algorithm works with Presburger formulas in negation normal form (NNF). In an ideal

case, many formulas need to be resolved simultaneously and we can employ parallelism constructs to

utilize multicore powers efficiently. In other cases, parallelism can be extracted from the structure of

Cooper’s transformation. In Equation 1, denote B as the number of ax < t constraints in φ . Despite the

symbolic representation of disjunctions, B+1 substitutions should be performed in the formula. As these

substitutions are totally independent, we are able to execute them in parallel. The value of B increases

after each elimination step; therefore, the chance of parallelism is ensured.

Degree of parallelism is even more significant if we keep Presburger formulas in disjunctive normal

form (DNF). The advantage is the utilization of all available cores for parallel execution and the disad-

vantage is the explosion of memory usage which could go beyond the capability of the system. We have

implemented this idea for parallel execution of the Omega Test where using DNF is inevitable. Detailed

discussion of this procedure could be found in the next section.

1

Page 5 of 117

From functional programming to multicore parallelism Phan and Hansen

!

∀

#

∃

%

&

!
∀
#
#
∃
%
∀

∋

(

)

() ! ∀ # ∃ % & ∗ (∋

&#∋()∗+,

(a) Cooper’s algorithm

!

∀

#

∃

%

&

!
∀
#
#
∃
%
∀

∋()∗+,−)./

011−2+,−)./

3

4

5

4 5 ! ∀ # ∃ % & 6 43 44 45 4! 4∀ 4#

&#∋()∗+,

011−2+,−)./

(b) The Omega Test

Figure 1: Speedup factors on an 8-core machine

2 Parallelization of the Omega Test

The Exact Shadow is an element of the Omega Test which is presented in the form of strict comparisons

as follows [4]:

∃ x. β < bz∧cz < γ ⇐⇒ cβ +1 < bγ (2)

The Exact Shadow has the similar idea to the Fourier-Motzkin elimination for real arithmetic; neverthe-

less, the discrete property of integer arithmetic requires either b = 1 or c = 1 to proceed the equivalence.

To employ this shadow, we first convert a formula into DNF and apply the shadow until the condition

of coefficients is no longer satisfied. Parallelism in our algorithms is evaluated by a language-based

parallel cost model, namely the DAG model of multithreading [2]. For example, we consider a Presburger

instance in the form of a quantified formula with k quantifiers and a conjunction consisting of m literals

and n disjunctions of two literals. Transformation of this formula into DNF results in a disjunction of 2n

conjunctions of (m+n) literals. Because these conjunctions are resolved independently based on the rule

∃ x1...xn.
∨

i

∧
j Li j ⇐⇒

∨
i∃ x1...xn.

∧
j Li j, the parallelism factor of this example is Θ(2n). The algorithm

contains enough parallelism; therefore, the degree of parallelism is only bounded by the number of used

processors. The DAG model of multithreading is helpful when it allows us to predict parallel efficiency

of an algorithm before proceeding further with implementation.

3 Experimental results

Due to the lack of test suites for Presburger Arithmetic, we attempt to generate some test formulas

controllable in terms of size and complexity. Test formulas are formulated by using Pigeon Hole Principle

as follows: given N pigeons and K holes, if N ≤ K there exists a way to assign the pigeons to the holes

where no hole has more than one pigeon; otherwise, no such assignment exists.

Let xik be the predicate where pigeon i is in hole k, and the detailed construction is described below.

One important point is that functional programming allows us to express this construction in a natural

way which is very close to the logical formalism.

P(N, K) =
∧

1≤ i≤ N
1≤ k≤ K

(xik ⇒
∧

1≤ j≤ N
j 6=i

¬xjk) ∧
∧

1≤ i≤ N

(
∨

1≤ j≤ K

xij) ∧
∧

1≤ i≤ N
1≤ k≤ K

(xik ⇒
∧

1≤ j≤ K
j 6=k

¬xij) (3)

Satisfiability of Pigeon Hole formulas is known as a provably difficult case for SAT solvers [1]. We

define quantified formulas with an arbitrary number of quantifiers in the form of ∃ x11 ... xab. P(N,K)
where xik is encoded as simple equalities, inequalities and divisibility constraints [4]. By doing so, we

create quite challenging Presburger instances with predetermined truth values for testing purpose.

2

Page 6 of 117

From functional programming to multicore parallelism Phan and Hansen

We construct the test set for Cooper’s algorithm from Pigeon Hole formulas with 21-30 holes, one

pigeon and 3 quantifiers for each formula. Each formula is a combination of several independent for-

mulas, which helps to increase degree of parallelism. Results on an 8-core machine are illustrated in

Figure 1a showing 4−5× speedup of the parallel version compared to the corresponding sequential one.

The results could be improved if one pays more attention to cache usage and minimizes the number of

memory allocations.

Another group of test formulas is extracted from Presburger fragments generated by DCMC [5]. We

do not describe the details of those formulas, but they have the same form as the example presented in

Section 2. Moreover, they consist of many inequalities with very small coefficients (1, -1 or 0) making

them become an ideal input for the Exact Shadow discussed above.

The test set for the Omega Test consists of formulas extracted from the model-checking problem

with 5, 7 and 9 disjunctions respectively. Figure 1b shows speedup factors for the List-based and

the Array-based implementations on the 8-core machine. In general, their speedups are really high

with an approximate 5× speedup in the worst case. One should notice that the Array-based variant is

always more scalable than the List-based one. Although the number of cache misses has influence on

scalability, the array-based representation is suitable for parallelization due to its advantage of keeping

data close together in memory. The result here shows the advantage of using the Exact Shadow for

alternating quantifiers. Moreover, the parallelization process is fully applicable for the Fourier-Motzkin

elimination which is widely used in decision procedures for real numbers.

4 Conclusions

In this paper, we have presented our parallelism concerns regarding decision procedures for PA. A lesson

learned is that cache has a huge influence on performance, and even a small change to make data fit in

cache could result in 20× performance gain. Moreover, multicore powers are easy to leverage using

functional programming when good speedup could be obtained without much parallelization effort. We

have achieved good speedups in parallelizing two decision procedures for PA, but the idea should fit

the Fourier-Motzkin elimination very well. Although the results may be promising, full exploitation of

multicore powers is still an open question for further research.

References

[1] Fadi A. Aloul, Arathi Ramani, Igor L. Markov, and Karem A. Sakallah. Solving difficult SAT instances in the

presence of symmetry. In Proceedings of the 39th annual Design Automation Conference, 2002.

[2] Guy E. Blelloch. Programming parallel algorithms. Communications of the ACM, 1996.

[3] Aaron R. Bradley and Zohar Manna. The calculus of computation - decision procedures with applications to

verification. Springer, 2007.

[4] Phan Anh Dung. Presburger Arithmetic and its use in verification. Master’s thesis, Technical University of

Denmark, DTU Informatics, 2011.

[5] Michael R. Hansen and Aske W. Brekling. On Tool Support for Duration Calculus on the basis of Presburger

Arithmetic. In 18th International Symposium on Temporal Representation and Reasoning, 2011.

[6] Simon Marlow, Patrick Maier, Hans-Wolfgang Loidl, Mustafa K Aswad, and Phil Trinder. Seq no more:

Better strategies for parallel haskell. In Haskell ’10: Proceedings of the Third ACM SIGPLAN Symposium on

Haskell, 2010.

[7] Derek C. Oppen. A 222pn

upper bound on the complexity of Presburger Arithmetic. Journal of Computer and

System Sciences, 1978.

[8] Christoph M. Wintersteiger, Youssef Hamadi, and Leonardo Moura. A Concurrent Portfolio Approach to SMT

Solving. In Proceedings of the 21st International Conference on Computer Aided Verification, 2009.

3

Page 7 of 117

GSPeeDI - a reachability checker for planar, polygonal hybrid

systems using incomplete acceleration

Hallstein A. Hansen

Buskerud University College, Kongsberg, Norway

hallsteinh@hibu.no

Abstract

The Generalized Polygonal Hybrid System (GSPDI) is a class of hybrid automata that are re-

stricted to modeling planar systems without resets, but where the reachability problem is decidable.

We present the latest version of our reachability checker for GSPDIs, GSPeeDI, which implements a

recently developed reachability search algorithm, and give a case study which illustrates the advan-

tages of the new method.

1 Introduction

The theory of hybrid systems has been developed as a formal way of modeling and analyzing control

systems [1]. Hybrid automata allow for modeling very expressive systems, as the system state can evolve

following non-linear differential inclusions and change through discrete jumps. On the other hand, most

properties of hybrid automata are undecidable and for automata with non-linear evolution there does not

even exist an efficient algorithm for answering reachability questions [8].

The Generalized Polygonal Hybrid System (GSPDI) is a class of hybrid automata where the reach-

ability problem is decidable [10]. GSPDIs are restricted to modeling planar systems without resets, but

many real-world systems can be over-approximated by a GSPDI, such as systems controlled by a pro-

portional controller [4]. Algorithms for solving the reachability problem have all been forced to handle

iteration of cycles in the reachability graph [2, 9], but recently we have introduced a method, incomplete

acceleration, that removes the need to iterate any cycle [5].

In this paper we present an updated version of GSPeeDI, a GSPDI reachability checker [6, 3], with

an algorithm that implements the new method. Through a system based on the van der Pol equations we

show the savings in execution time gained from not having to iterate cycles.

2 Generalized Polygonal Hybrid Systems

A Generalized Polygonal Hybrid System (GSPDI), Figure 1al, is defined on the plane and partitioned

into a set of regions, separated by edges. Note that in a GSPDI we consider edge-to-edge reachability.

The possible evolution of the state of a GSPDI is constrained, region-wise, by an affine differential

inclusion. In Figure 1a we see a region R with its differential inclusion illustrated by the angle ∠
b
a . We

also see a trajectory ξ , a particular evolution of the GSPDI in question, which is traversing the edges

of the GSPDI in a cycle [2]. In general, a GSPDI may contain many such (simple) cycles, and a naive

implementation of a reachability checker would both have to generate and iterate all cycles, which can

be computationally expensive [9, 7]. Previous work has dealt with developing techniques to accelerate

cycles instead [2, 7], by immediately computing the set reachable by any number of iterations, but this

work has been restricted to continuous cycles where the reachable set grows from some initial interval

(see Figure 1b). Recently we had introduced incomplete acceleration, a method for analyzing cycles

whose iterations create a sequence of disjoint intervals [5] (see Figure 1c). Incomplete acceleration

enables us to determine whether any point on the edges comprising the cycle is reachable or not, and to

compute whether and where trajectories leave the cycle to another part of the GSPDI. This is all done

without actually computing the reachable set on the cycle, hence the term ’incomplete’.

1

Page 8 of 117

hallsteinh@hibu.no

GSPeeDI - a reachability checker for planar, polygonal hybrid systems Hallstein A. Hansen

ξ

R

b a

(a) A GSPDI

(b) A continuous cycle

(c) A disjoint cycle

Figure 1: GSPDI concepts

3 The GSPeeDI tool

The tool GSPeeDI solves the reachability question for GSPDIs, and we have updated this tool (version

2.2) with an implementation of incomplete acceleration. GSPeeDI implements a tool chain of three

separate stages:

• System to GSPDI: A system with possibly non-linear dynamics is approximated by a GSPDI. The

current version of GSPeeDI non-conservatively approximates non-linear autonomous systems.

• GSPDI to edge-graph: A graph of the region edges is built from a GSPDI.

• Reachability search: Given a GSPDI, a starting point and final point, the tool decides whether the

final point is reachable from the initial point for the given GSPDI.

4 Case study: The van der Pol equation

The van der Pol oscillator is used in electrical engineering, neurology, and seismology. It is described by

the following equations:

x′(t) = y(t) y′(t) =−1.5(x(t)−1)y(t)− x(t).

The van der Pol oscillator contains a limit cycle, and so GSPDIs generated from such systems give

us, as shown in the screen shot of Figure 2, the opportunity to demonstrate the cycle handling capabilities

of GSPeeDI. In table 1 we give some experimental results showing the difference in reachability search

execution time between version 2.1.0 of GSPeeDI, which required the computation of all cycles in the

GSPDI, and version 2.2.0, where cycles are accelerated when they first occur during the search. As can

2

Page 9 of 117

GSPeeDI - a reachability checker for planar, polygonal hybrid systems Hallstein A. Hansen

GSPDI # Number of regions Time old version (2.1.0) Time new version (2.2.0) Note

1 378 50s 6s

2 789 316s 45s Figure 2

Table 1: Difference in reach set computation running time between GSPeeDI versions 2.1.0 and 2.2.0

be seen the old version, which used several ad-hoc optimizations to reduce running time, is more than

seven times slower than the new version.

Figure 2: GSPeeDI screen shot: A GSPDI approximating the van der Pol oscillator. Reach set in violet.

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and

S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computuer Science, 138:3–34, February

1995.

[2] Eugene Asarin, Gerardo Schneider, and Sergio Yovine. Algorithmic analysis of polygonal hybrid systems,

part I: Reachability. TCS, 379(1-2):231–265, 2007.

[3] Hallstein A. Hansen. GSPeeDI. http://heim.ifi.uio.no/hallstah/gspeedi/.

[4] Hallstein A. Hansen. Safety verification of non-linear, planar control systems with differential inclusions. In

8th IEEE International Conference on Embedded Software and Systems (IEEE ICESS-11), Changsha, China,

16-18 November 2011. IEEE Computer Society. To appear.

[5] Hallstein A. Hansen and Gerardo Schneider. Reachability analysis of complex planar hybrid systems. Un-

published.

[6] Hallstein A. Hansen and Gerardo Schneider. GSPeeDI –A Tool for Analyzing Generalized Polygonal Hybrid

Systems. In ICTAC’09, volume 5684 of LNCS, pages 336–342, August 2009.

[7] Hallstein A. Hansen and Gerardo Schneider. Reachability Analysis of GSPDIs: Theory, Optimization, and

Implementation. In 25th Annual ACM Symposium on Applied Computing –Software Verification and Testing

track (SAC-SVT’10), pages 2511–2516, Sierre, Switzerland, March 22-26 2010. ACM.

[8] T.A. Henzinger, Pei-Hsin Ho, and H. Wong-Toi. Algorithmic analysis of nonlinear hybrid systems. Automatic

Control, IEEE Transactions on, 43(4):540 –554, April 1998.

[9] G. J. Pace. A new breadth first search algorithm for deciding spdi reachability. Technical Report CSAI2003-

01, Department of Computer Science & AI, University of Malta, 2003.

[10] Gordon J. Pace and Gerardo Schneider. Relaxing goodness is still good. In ICTAC’08, volume 5160 of LNCS,

pages 274–289, 2008.

3

Page 10 of 117

http://heim.ifi.uio.no/hallstah/gspeedi/

Compositionality with Strong Assumptions

Hardi Hungar∗

OFFIS – Institute for Information Technology

Oldenburg, Germany

hungar@offis.de

1 Overview

To develop a complex system which involves information processing, perhaps embedded into a phys-

ical enviroment, is a nontrivial task, which needs to be structured into several steps. The design will

evolve, getting more precise as detail is added, and will be distributed into interacting parts, which them-

selves will be further elaborated until a working implementation is generated as the final result. For

this implementation to meet the requirements, it is important to have clear notions of refinement and

decomposition. Refinement means that a unit in design gets described with more accuracy. Sometimes,

this just consists in adding detail. In other cases an abstract or conceptual point of view gets replaced

by one which is closer to its technical realization so that the change is of a more fundamental nature.

Decomposition introduces a level of interconnected subsystems whose collaboration shall provide all

that is required of the decomposed unit. These parts—if they are already available components used in a

new context—then become objects of design activities themselves and get refined or decomposed. And

of course the activities on the parts should be largely independent of each other, to simplify work by

limiting the required focus of attention, and to be able to perform development in a distributed fashion.

And when a part is replaced by another meeting the part’s original specification, this change should not

affect the correct functioning of the composed system.

This sketches the landscape of what we call compositional design. The central notion is that of a

component—every design entity at each stage of development, from the full system down to an atomic

part of the final implementation—is called by that name. Design consists in creating components, de-

scribing them and relating them to previously designed ones. Means of descriptions may be manyfold.

In this work, we consider explicitly two forms, operational ones in the form of behaviors, provided e. g.

by models, and declarative ones, given as specifications. These two forms are related by explaining their

meaning in a common semantical domain of traces.

The trace semantics permits to directly relate behaviors and specifications: If all traces of the behavior

of a component adhere to its specification, the component is correct. Similarly, refinement is explained as

trace inclusion—the refined component should be described more precisely, with less ambiguity. When

the level of abstraction changes significantly, or the viewpoint gets more technical, refinement must be

generalized to a relation of realization, where data types get changed, or structures permuted, or com-

munication concepts replaced. It is shown that if sufficiently good specifications of the new components

are available, all these design steps can be checked on the level of specifications, i. e. enabling virtual

integration.

A distinguishing feature of the approach exposed in this work is that behaviors as well as specifica-

tions consist of two parts, a (so-called strong) assumption, which spells out requirements on the usage

context of the component, and a promise, which describes how the component behaves if the strong as-

sumption is met. The intended meaning of the strong assumption is to define conditions under which the

modeling of the component is reliable. If the occurrence of phenomena not existing on a certain level of

∗The work has been funded by the German Federal Ministry of Education and Research (BMBF) as part of the project

“Software Plattform Embedded Systems 2020”, Grant No. O1|S08045 W. The responsibility for the content rests with the

author.

1

Page 11 of 117

hungar@offis.de

Compositionality with Strong Assumptions Hungar

abstraction or not represented in the world of a particular model can be excluded by giving certain extra

conditions on available observables, collecting them in a strong assumption provides a way to simplify

descriptions without sacrificing accuracy. The notions of refinement and realization take this specific na-

ture of strong assumptions into account, and the relation between the strong assumption of a composition

and those of its parts is characterized in a formal way.

Many of the concepts and ideas presented here have their root in the results of the SPEEDS project

[3] (Speculative and Exploratory Design in Systems Engineering, EU, 6th Framework), and draw on

classic research on compositionality, see e. g. the overview in [2], as well as more recent ones [1].

Current activities, to which this work contributes, are performed within the projects CESAR (Cost-

Efficient methods and processes for SAfety Relevant embedded systems, ARTEMIS JU) and SPES 2020

(Software Platform Embedded Systems 2020, Federal Ministry of Education and Research, Germany).

2 Main Definitions and Results

Definition 1 (Variables, Formulas, Specifications).

1. X is a set of variables, x,y ∈ X . The set of ports P is a subset of X . An interface I is a finite

set of ports.

2. F is the set of formulas.

3. A specification is a pair of formulas H = (A,F) with strong assumption A and promise F.

Definition 2 (Implementation, Behavior).

1. The set of implementations M (I) are atomic operational descriptions, e. g. models (for the inter-

face I).

2. A behavior is a pair N = (A,M) of a strong assumption A and an implementation M. The strong

assumption may be a formula from F (I) or again an implementation from M (I).

3. A component over I is a tuple U = (I,H,B), where H is a specification and B is either a behavior

or a composition.

4. A composition is U0 = I0,L
‖n

i=1 Ui is given by an (external) interface I0, parts Ui with interfaces Ii

and connectors L linking ports of the parts and the external interface.

For ease of exposition in this abbreviated presentation, we will ignore most issues related to connec-

tions and corresponding renamings and assume that connected ports have the same name.

Definition 3 (Traces, Semantical Domain, Refinement).

1. T is the set of points in time, V is the domain of values the variables may take.

2. The set of traces S is a subset of [X → [T → V]].

3. S 2 =def P(S)×P(S) is the set of assume-promise pairs (AP pairs).

4. [[(Σ,ϒ)]] =def Σ
C ∪ϒ is the trace extract of an AP pair.

5. (Θ,Ξ) ∈ S 2 refines (-) (Σ,ϒ) if [[(Θ,Ξ)]] ⊆ [[(Σ,ϒ)]] and Θ ⊇ Σ.

2

Page 12 of 117

Compositionality with Strong Assumptions Hungar

6. The parallel composition of a set of AP pairs is defined as:

‖n
i=1 (Σi,ϒi) =def

(

(

⋂

i

Σi

)

∪
⋃

i

(Σi ∩ϒ
C
i),

⋂

i

ϒi

)

The first component of an AP pair is the strong assumption, and the trace extract interprets a pair

like an implication: Either the assumption is violated, or the promise is kept. The first condition in

the definition of refinement is the common reduction on the set of possible traces (becoming more con-

strained). The second condition reflects the additional role of the strong assumption as defining the scope

where the description is reliable: A refining entity must be at least as reliable as the refined one. Similar

consideration guide the definition of the semantics of the parallel composition.

Definition 4 (Semantics).

1. The semantics of implementations and formulas are sets of traces [[M]] and [[F]].

2. The semantics [[[(Z1,Z2)]]] of a specification Z = (A,F) or a behavior Z = (A,M) is the AP pair

([[Z1]], [[Z2]]).

3. The semantics of a composition is given by [[[‖n
i=1 Ui]]] =def‖

n
i=1 ([[[Ui]]])

4. A component U = (I,H,B) is correct if [[[B]]] - [[[H]]].

Proposition 5 (Main Properties).

1. Refinement is a preorder, i. e. reflexive and transitive.

2. Parallel composition is monotonic w. r. t.. the refinement preorder, i. e.

Ui - Vi ⇒
(

‖n
i=1 Ui

)

-
(

‖n
i=1 Vi

)

.

3. If the parts of a composition are correct, and the main specification follows from the composition

of their specifications, the composition is correct.

Ui - Hi ∧
(

‖n
i=1 Hi

)

- H ⇒
(

‖n
i=1 Ui

)

- H

Item 3. is the virtual integration mentioned in the overview section, which enables distributed devel-

opment. It suffices to ensure that the final implementations of the parts meet their specification for the

full design to be correct. This relies mainly on the monotonicity of the parallel operator w. r. t. refinement

(Item 2.).

The result can further be generalized to compositional realizations crossing abstraction levels, which

may involve changing data types or communication paradigms or connection structures. For that, we

can use more general forms of refinements, refinement (-ρ) w. r. t. a representation function ρ from the

abstract trace domain to a concrete one, or α - , which employs an abstraction function α in the other

direction.

References

[1] Albert Benveniste, Benoı̂t Caillaud, and Roberto Passerone. Multi-viewpoint state machines for rich compo-

nent models. In Pieter Mosterman and Gabriela Nicolescu, editors, Model-Based Design of Heterogeneous

Embedded Systems. CRC Press, 2009.

[2] Willem-Paul de Roever. The need for compositional proof systems: A survey. In Willem P. de Roever, Hans

Langmaack, and Amir Pnueli, editors, Compositionality: The Significant Difference, (Int. Symp. COMPOS

97), volume LNCS 1537, pages 1–22. Springer, 1997.

[3] SPEEDS. SPEEDS core meta-model syntax and draft semantics, 2007. SPEEDS D.2.1.c.

3

Page 13 of 117

Towards a Programming Language for Declarative Event-based

Context-sensitive Reactive Services

Søren Debois Thomas Hildebrandt Raghava Rao Mukkamala Francesco Zanitti
∗{debois, hilde, rao, frza}@itu.dk

IT University of Copenhagen

Programming, Logic and Semantics Group

Rued Langgaards Vej 7, DK-2300 Copenhagen S, Denmark

Abstract

We present ongoing work on a new declarative and purely event-based programming language,

tentatively named DECoReS, for Declarative Event-based Context-sensitive Reactive Services. The

language is based on an extension of the recently developed declarative Dynamic Condition Response

(DCR) Graphs model for concurrent processes, which generalizes the classical model of prime event

structures to a systems model in which infinite behavior and progress constraints can be represented

by finite structures. To give semantics for the DECoReS programming language the DCR Graph

model is extended with parametrized events, auto events, sub processes, time and exception handling.

1 Introduction

The Dynamic Condition Response (DCR) Graph model has been developed as part of the CosmoBiz [1]

and TrustCare [2] research projects with the goal to provide a formal foundation for adaptable and flexible

pervasive workflow processes and services as found e.g. within the healthcare domain.

The development of the DCR Graph model takes its outset in the declarative Process Matrix work-

flow model [7, 8] implemented by our industrial partner Resultmaker and generalizes the classical event

structure model for concurrency [10,11] to allow for finite descriptions of infinite behavior (also referred

to as a systems model [9]) and specification of progress constraints.

The key elements of a DCR Graph is a set of (labelled) events (e.g. representing executions of human

activities in a workflow or service requests and responses), two dual relations between events referred

to as the condition and response relations respectively, and two relations for dynamically including and

excluding events from the process.

An unconstrained event can happen at any time and any number of times as long as it is included in

the process. The included conditions of an event e are the events that must happen at some point before

event e happens. Dually, the responses of an event e are the events that must happen at some point after

event e happens, or infinitely often become excluded. Despite its simplicity, the DCR Graph model can

express all ω-regular languages and thus in particular all processes that can be specified in Linear-time

Temporal Logic (LTL).

Moreover, the model allows for an intuitive operational semantics and effective execution expressed

by a notion of markings of the graphs. A marking is given by three sets of events (Ex,Re, In), where

Ex is the set of previously executed events, Re the activities required to be executed in the future (i.e.

pending responses), and In is the currently included activities.

∗Authors listed alphabetically. This research is supported by the Danish Research Agency through a Knowledge Voucher

granted to Exformatics (grant #10-087067, www.exformatics.com), the Trustworthy Pervasive Healthcare Services project

(grant #2106-07-0019, www.trustcare.eu) and the Computer Supported Mobile Adaptive Business Processes project (grant

#274-06-0415, www.cosmobiz.dk). This work funded in part by the Danish Research Agency (grant no.: 2106-080046) and

the IT University of Copenhagen (the Jingling Genies projects).

1

Page 14 of 117

DECoReS Debois, Hildebrandt, Mukkamala and Zanitti

The DCR Graph model has been applied to healthcare and cross-organizational case management

processes identified in case studies carried out jointly with industrial partners [3,4]. The case studies led

to extensions of the core model to allow nested events and a new relation between events describing a

milestone relation [5]. An event e is not enabled for execution if any of its included milestones is in the

set Re of pending responses. The case studies also revealed the need for distributed implementations,

which led to the development of a general technique for distributing a DCR Graph based on a notion of

projections [6].

Below we exemplify current work on defining and implementing a new declarative and purely event-

based language based on DCR Graphs, tentatively named DECoReS, for Event-based Context-sensitive

Reactive Services. To support the formal semantics of DECoReS, we propose extending the model of

DCR Graphs with parametrized events, sub processes, automatic events, time and exception handling.

The languages and extensions are illustrated by the following example workflow process adapted

from [7, 3]. The process consists of five events: The prescription of medicine and signing of the pre-

scription by a doctor (represented by the events prescribe and sign respectively), a nurse giving

the medicine to the patient (represented by the event give, and the nurse indicating that he does not

trust the prescription (represented by the event distrust) and the doctor removing the prescription,

represented by the event remove.

treatment process{

doctor may prescribe<$id, $med, $qty> {

response: administer<$id,$med,$qty>

}

administer<$id, $med, $qty> process

{

doctor must sign { exclude: remove }

nurse must give {

condition: Executed(sign) &

not Executed(remove) &

not Response(sign)

exclude: sign, give, distrust, remove

}

nurse may distrust {

response: sign

include: remove

exclude: give

}

doctor may remove {

exclude: sign,give,distrust,remove

}

}

}

To capture that every prescription event prescribe leads to the possible execution of a “fresh”

set of events sign, give, distrust and remove, we propose as the first extension of DCR Graphs

to allow sub process events that instantiate a DCR Graph as a sub process when they are required as a

response. This allows us to group the four events inside the sub process event administer.

The result is a process model which is more expressive than ω regular languages but still have an

intuitive operational semantics as dynamically unfolding graphs.

2

Page 15 of 117

DECoReS Debois, Hildebrandt, Mukkamala and Zanitti

A third proposed extension is to allow events to be called automatically. Such events are called “auto-

events” and they can be emitted in order to communicate to the external world some important state of

the process.

Finally, we work on adding time deadlines to the constraints, i.e. making it possible to specify that a

given response must happen within a given time interval. This then again leads to the need for handling

violations of such constraints. The modified process below illustrates how time constraints and exception

handling can be added to the language, while also giving a small example of how the language can be

used for implementing context-sensitive services.

doorsensor process {

door may open {

response: close within 15s throw door_left_open

}

door may close

door_left_open process {auto leftopen}

}

In the above sample process, we model a process that senses when a door is being opened and

closed. This is conveniently written using the role door for sensor at the door. The timing constraint

within 15s specifies that in response to an open event, a close one must follow within 15 seconds,

otherwise an instance of the sub process door left openwill be created, which executes an autoevent

leftopen.

Informally, an event that is required as a response can be annotated with a timing constraint

interval in Start within End must happen after Start time units but before End time units;

omitting the Start constraint is a shortcut for in 0 within End. Dually, a timed condition

event, annotated with a time constraint since Start within End, must have happened at least

Start time units before and at most End time units before. Omitting the Start constraint is a shortcut

for since 0 within End.

Lastly, timed responses can be annotated with an throw Event construct, which requires Event

to happen as a response, if the response do not happen within the required interval. Similarly, conditions

may throw such exception events if an event happen and the condition is not satisfied.

References

[1] Thomas Hildebrandt. Computer supported mobile adaptive business processes (CosmoBiz) research project.

Webpage, 2007. http://www.cosmobiz.org/.

[2] Thomas Hildebrandt. Trustworthy pervasive healthcare processes (TrustCare) research project. Webpage,

2008. http://www.trustcare.dk/.

[3] Thomas Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats. Declarative modelling and safe distribution

of healthcare workflows. In International Symposium on Foundations of Health Information Engineering

and Systems, Johannesburg, South Africa, August 2011.

[4] Thomas Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats. Designing a cross-organizational case man-

agement system using dynamic condition response graphs. In Proceedings of IEEE International EDOC

Conference, 2011. to appear.

[5] Thomas Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats. Nested dynamic condition response graphs.

In Proceedings of Fundamentals of Software Engineering (FSEN), April 2011. to appear.

[6] Thomas Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats. Safe distribution of declarative processes. In

9th International Conference on Software Engineering and Formal Methods (SEFM) 2011, 2011. to appear.

3

Page 16 of 117

http://www.cosmobiz.org/
http://www.trustcare.dk/

DECoReS Debois, Hildebrandt, Mukkamala and Zanitti

[7] Karen Marie Lyng, Thomas Hildebrandt, and Raghava Rao Mukkamala. From paper based clinical practice

guidelines to declarative workflow management. In Proceedings of 2nd International Workshop on Process-

oriented information systems in healthcare (ProHealth 08), pages 36–43, Milan, Italy, 2008. BPM 2008

Workshops.

[8] Raghava Rao Mukkamala, Thomas Hildebrandt, and Janus Boris Tøth. The resultmaker online consultant:

From declarative workflow management in practice to LTL. In Proceeding of DDBP, 2008.

[9] Vladimiro Sassone, Mogens Nielsen, and Glynn Winskel. A classification of models for concurrency. In

Proceedings of CONCUR’93, volume 715 of LNCS, 1993.

[10] Glynn Winskel. Event structures. In Wilfried Brauer, Wolfgang Reisig, and Grzegorz Rozenberg, editors,

Advances in Petri Nets, volume 255 of Lecture Notes in Computer Science, pages 325–392. Springer, 1986.

[11] Glynn Winskel and Mogens Nielsen. Models for concurrency. pages 1–148, 1995.

4

Page 17 of 117

Verified Design Patterns for Long-running Nested Transactions

Saleem Vighio

Department of Computer Science

Aalborg University

Aalborg, Denmark

vighio@cs.aau.dk

Anders P. Ravn

Department of Computer Science

Aalborg University

Aalborg, Denmark

apr@cs.aau.dk

Zhiming Liu

International Institute for Software Technology

United Nations University

Macau SAR, China

lzm@iist.unu.edu

Abstract

We present formal analysis of web services patterns which support compensation in complex

distributed business processes. The patterns separate business logic including compensating actions

from coordination protocols. The patterns are illustrated by a version of the well known travel reser-

vation process example which is extended with a nested transaction. Our analysis is performed with

the model checking tool UPPAAL. and it is shown that the model satisfies key lproperties.

1 Introduction

Transactions are a very important concept for SOA-based applications for the use by enterprises interact-

ing beyond their organizational boundaries. The transactions may run for a longer time and here the Web

Services Business Activity (WS-BA) standard [4], support long-running business transactions and ad-

dress cross-organizational communication. Yet, it is far from trivial to implement the protocols correctly,

for instance i[10] analyzes use of the WS-BA standard, and a key finding is that, compensations should

be handled at the WS-BA standard level, rather than in application business logic. Thus they propose a

standardized middleware. Also in [9] a transactional middleware is introduced to separate coordination

logic from business logic, for easier client implementation. This approach is further extended in [2], to

uncouple initiator and coordinator and thus suggests possible extensions to the standard. We investigate

an alternative light-weight solution, where the business logic is embedded in compensation protocol pat-

terns. Thus we achieve the same goal without proposing any changes to the standard or introduction

of new standardized middleware. Another important property of the WS-BA standard , is its ability to

deal with nested transactions [3]. Thus, a nested transaction is an extension of a simple/flat transaction,

whose operations execute sequentially. Nested transactions can have a hierarchical tree-like structure,

where every leaf is a simple transaction and every intermediate node is a nested transaction. This adds to

the power of the concepts, but requires some care in defining the pattern.

The service implementation patterns, proposed here, are complex, thus we want to ensure that they

are correct. This we do by modelling an instance of them in the model checker UPPAAL [1] and checking

key proerties, for instance consistent termination.

2 Patterns and Verfication

The patterns are illustrated by the well-known travel reservation process. Initially, a Client sends a

reservation request for an air-ticket and a hotel room to the TravelAgent. The TravelAgent in turn requests

a room from the Hotel and a seat from the Airline. We enhance the example with a nested transaction so

1

Page 18 of 117

vighio@cs.aau.dk
apr@cs.aau.dk
lzm@iist.unu.edu

Verified Design Patterns for Long-running Nested Transactions Vighio, Ravn, and Liu

Figure 1: Complex service

that the Airline after receiving a request from the TravelAgent requests a room and a car for the Hotel and

the RentACar (car-rental-agency) respectively, for the pilot. After the Airline has coordinated responses

from the Hotel and the RentACar, it sends a response to the TravelAgent. Finally, the TravelAgent after

coordinating responses from the Airline and the Hotel sends a decision to the Client.

Client The UPPAAL model of the Client process is simple. Initially, it sends a service request on a

channel service!. A variable contains the arguments for the message: a ClientRequest specifies the

kind of request. a CoLinkId identifies a potential coordinator for services, and coordinate indicates

whether coordination is required.

It is worth mentioning that the communication between processes follows a standard rendezvous

pattern, so these interactions may be replaced by procedure calls when appropriate in an implementation.

Complex Service Services may be simple, without coordination, or complex. The model is shown in

Figure 1. a simple one omits coordination. Once the process receives a service request (service?), it

executes simple business logic, action(msg value). if the simple logic succeeds, response.result

= = COMPLETED, the service invokes (invoke!) a more complex business logic which requires coordi-

nation with other services , thus it gets and sets the coordination link. When the logic returns, the service

invokes (coord!) the coordination protocol. The coordination ends with release of a coordination link,

releaseCLink(). Now the service has to check whether it has to participate in coordination with a

higher level service with its (par!) participant protocol. In the location COORDINATING, the complex

service can be told (compensate?), to perform a compensation. If nothing goes wrong at the participant

protocol then the complex service is informed of the successful completion of the service.

Participant and Coordination Protocols Services communicate using the coordination and partici-

pant protocols. We refer the reader to [4] [7] for an in-depth description of the protocols. The coordina-

2

Page 19 of 117

Verified Design Patterns for Long-running Nested Transactions Vighio, Ravn, and Liu

tion protocol we implement is BAwPC and the coordination logic we implement is AtomicOutcome.

Verification We formulate properties using the UPPAAL query language (a subset of TCTL). The first

property we verify is termination. All processes (TravelAgent, Airline, Hotel and RentACar) and their

corresponding business logic and protocols finish in their final idle state. Furthermore, we verify by

simulation that in a case when one of the transactions fails, its corresponding compensation is performed.

Finally, we verify the consistency on the outcome of the transaction by ensuring that if all the parties

finish their work without failing then the overall outcome of the transaction is positive(COMPLETED).

3 Conclusion and Future Work

In this paper, we provided formal verification of service patterns based on the well-known example of a

travel reservation process. The main contributions of our work arethe separation of business logic from

coordination protocols and implementation of nested transactions.

One immediate extension of this work is to present the pattern in WS-BPEL notatios so it is accessible

to application programmers. A more intricate point is to be able to detect loops in transaction nesting,

because a loop will destroy nesting. However this is beyond static model checking.

References

[1] G. Behrmann, A. David, and K.G. Larsen. A tutorial on UPPAAL. In Proceedings of the 4th International

School on Formal Methods for the Design of Computer, Communication, and Software Systems (SFM-RT’04),

number 3185 in LNCS, pages 200–236. Springer-Verlag, 2004.

[2] Hannes Erven, Georg Hicker, Christian Huemer, and Marco Zaptletal. The web services-businessactivity-

initiator (ws-ba-i) protocol: an extension to the web services-businessactivity specification. IEEE Interna-

tional Conference on Web Services, 0:216–224, 2007.

[3] J. E.B. Moss. Nested transactions: an approach to reliable distributed computing. Massachusetts Institute

of Technology, Cambridge, MA, USA, 1985.

[4] E. Newcomer and I. Robinson (chairs). Web services business activity (WS-businessactivity) version 1.0,

2005. http://specs.xmlsoap.org/ws/2004/10/wsba/wsba.pdf.

[5] E. Newcomer and I. Robinson (chairs). Web services atomic transaction (WS-atomic transaction) version

1.2, 2009. http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec.html.

[6] E. Newcomer and I. Robinson (chairs). Web services coordination (WS-coordination) version 1.2, 2009.

http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-os/wstx-wscoor-1.2-spec-os.html.

[7] Anders P. Ravn, Jiřı́ Srba, and Saleem Vighio. Modelling and verification of web services business activity

protocol. In Proceedings of the 17th international conference on Tools and algorithms for the construc-

tion and analysis of systems: part of the joint European conferences on theory and practice of software,

TACAS’11/ETAPS’11, pages 357–371, Berlin, Heidelberg, 2011. Springer-Verlag.

[8] S. Vighio, A.P. Ravn, and Z. Liu. UPPAAL model of the travel reservation process, 2011.

http://people.cs.aau.dk/∼vighio/nwpt2011.zip.

[9] Friedrich H. Vogt, Simon Zambrovski, Boris Gruschko, Peter Furniss, and Alastair Green. Implementing web

service protocols in soa: Ws-coordination and ws-businessactivity. In Proceedings of the Seventh IEEE In-

ternational Conference on E-Commerce Technology Workshops, pages 21–28, Washington, DC, USA, 2005.

IEEE Computer Society.

[10] Frederic Wenzel, Patrick Freudenstein, and Martin Nussbaumer. Strengths and weaknesses of ws-

businessactivity for cross-organizational soa applications. In Proceedings of the 2009 ICSE Workshop on

Principles of Engineering Service Oriented Systems, PESOS ’09, pages 42–49, Washington, DC, USA, 2009.

IEEE Computer Society.

3

Page 20 of 117

Formal Modelling of Inter-Peer Relations in

Peer-to-Peer Media Distribution Systems

Luigia Petre1 and Petter Sandvik1,2

1Department of Information Technologies, Åbo Akademi University
2Turku Centre for Computer Science (TUCS)

Joukahaisenkatu 3–5, 20520 Turku, Finland

{luigia.petre,petter.sandvik}@abo.fi

1 Introduction

In recent years, there has been a trend of moving away from the traditional client-server model in network

software towards peer-to-peer networks and other many-to-many relations. Especially when it comes to

large scale content transfer, peer-to-peer applications and protocols such as BitTorrent [7] have become

popular [18], and even found their way into electronic appliances such as network routers [4] and tele-

vision sets [20]. In short, the paradigm switch from client-server communication models to BitTorrent-

supporting networks amounts to enabling “clients” that are already downloading e.g., video streams, to

also become “servers” for other potential clients that may download the same content. The participation

of every peer in content communication provides a tremendous increase in the communication efficiency,

in the communication model flexibility, and in the content availability. It is therefore highly beneficial

to have a thorough understanding of this communication paradigm, to uncover its potential weaknesses

and recognise how to avoid them. We aim towards this goal by developing and analysing models of a

peer-to-peer media distribution system, in which all the parts, from the network structure up to the con-

tent playback, have been formally modelled and verified. We have previously looked at and modelled

different parts of such a system, including algorithms for acquiring pieces of media content [16, 17] and

parts of a video decoding process [15], and here we expand into modelling how peers in a peer-to-peer

media distribution system could discover and interact with each other, i.e., inter-peer relations.

In swarm-like peer-to-peer systems, where peers interact only when interested in the same content,

a peer that is unable to receive incoming connections, for instance when it is behind a firewall, is at a

serious disadvantage compared to other peers [9]. Extensions to the original BitTorrent protocol such as

peer exchange (PEX) and “distributed sloppy hash table” (DHT) [14] have been developed to alleviate

this problem, and we need a reusable, extendable model of peer discovery and connectivity to be able

to model these. Peer-to-peer systems and other distributed architectures have been formally modelled

before [12, 22, 23], but our focus here is on creating a reusable formal model of inter-peer relations using

BitTorrent as our base protocol.

2 Event-B

We develop our models based on the Event-B formalism [2], which offers excellent tool support in form

of the Rodin platform [3, 10]. Event-B has its roots in the B Method [1] and the Action Systems frame-

work [5, 6, 21]. When developing models in Event-B, the primary concept is that of abstraction [2], as

models are created from abstract specifications and then refined stepwise into more concrete implemen-

tations. By using superposition refinement [13], i.e., adding new variables and functionality to our model

in a way that prevents the old functionality from being disturbed [19], we achieve a reliable system. We

prove the correctness of each step of the development using the Rodin platform, which automatically

generates proof obligations. These are mathematical formulas to prove in order to ensure correctness;

the proving can be done automatically or interactively using the Rodin platform tool. The immediate

feedback from the provers makes it possible to adapt our model to better suit automatic proving, and

this ability to interleave modelling and proving is a big advantage of development in Event-B using the

Rodin platform.

1

Page 21 of 117

Formal Modelling of Inter-Peer Relations Petre and Sandvik

Initial!

model!

Events!

discovery!

connection!

First!

refinement!

Events!

discovery!

connection!

connectionattempt!

disconnect!

abortattempt!

Second!

refinement!

Events!

discovery!

connection!

connectionattempt!

disconnect!

abortattempt!

join!

leave!

refines! refines!

Figure 1: Model Development

3 Modelling Inter-Peer Relations

We illustrate our model development in Fig. 1. Our initial model is very abstract, with only two major

functions. The first concerns one peer becoming aware of other peers. This corresponds to receiving a

list of other peers from a tracker, i.e., a server that keeps track of which peers are involved in sharing

a particular content, in BitTorrent. The second major function creates a connection between a peer and

another peer, where the first peer must be aware of the second but not necessarily vice versa. To model

these functions, we create sets of relations between peers, assuming peers are represented by natural

numbers for simplicity. An “awareness” relation from 1 to 2 thereby means that peer 1 is aware of peer

2, which is different from a relation from 2 to 1. For the “connection” relation, we note that in practice

we only have one connection between two peers, because in BitTorrent connections are symmetrical and

traffic can flow in both directions [8]. For that reason, we allow only one connection per peer pair here,

e.g., if a “connection” relation exists from 1 to 2 we do not allow one from 2 to 1. Our initial model

therefore is composed of two events; discovery, which creates “awareness” relations from a peer to a

subset of other peers, and connection, which creates a “connection” relation between a peer and another

if there is an “awareness” relation from the first to the second.

For our first refinement step, we limit the amount of connections a peer can have, because otherwise

every peer would eventually end up being connected to all other peers. While this would be possible

when the number of peers is low, it would be unrealistic for a large system, and we therefore introduce a

connection limit specific to each peer. This means that a connection between two peers may not always

be possible, and therefore we also need to modify our connection functionality. Because peers do not

know whether another peer can accept their connection or not, we replace our single connection event

with two events. The connectionattempt event takes a peer whose connection limit has not been reached

and another peer that the first peer is aware of but not connected to, and adds a “connection attempt”

relation from the first peer to the second one. The connection event here takes a peer whose connection

limit has not been reached and another peer such that there is a “connection attempt” relation from the

second to the first, and creates a “connection” relation from the second to the first while removing the

corresponding “connection attempt” relation. We also add two more events, abortattempt for aborting a

connection attempt, which in practice would happen after a time limit, and disconnect for removing the

connection between two peers, which could occur because of network issues or that the peer is no longer

participating in the swarm. However, peers also close connections that have not seen any traffic for a

while, and Iliofotou et al claim that the differences in download speed between BitTorrent clients can be

partly attributed to differences in when they decide to do so [11]. For this reason it is important for us to

model such an event that later can be refined into different types of disconnection events.

In later refinement steps, we introduce the concept of peers not being able to accept incoming con-

nections, i.e., not being able to have “connection” relations from another peer to itself. First we achieve

this in an abstract way, by simply having a boolean variable for each peer and checking the value of that

variable before allowing the connection to be created. Later we refine this into a set of more complex

relations, such as in the real-life situation where two peers are behind the same firewall and thereby able

to accept incoming connections from each other but not from other peers. We also refine the discovery

2

Page 22 of 117

Formal Modelling of Inter-Peer Relations Petre and Sandvik

event from its abstract form into more concrete ones that correspond to actual peer discovery protocols,

including the DHT and PEX protocols mentioned in Section 1. Furthermore, we refine our model to

include join and leave events for when peers join and leave the swarm, respectively.

Based on this complete model of connections between peers, we can further refine our model into in-

cluding the message passing that later occurs between peers, thereby creating a bridge onto our previous

work [17].

4 Conclusions

With the aim of modelling and analysing a whole, fully featured peer-to-peer media distribution system,

we have used Event-B to model inter-peer relations in a BitTorrent-like peer-to-peer network. We have

started from an abstract specification and stepwise introduced functionality until approaching a concrete

implementation. Our focus has been on creating our model of such a system in a way that allows it to be

reused and extended for different protocol additions, while keeping the reliability of the system intact.

This gives us a foundation from which we can develop a well behaving and scalable peer-to-peer media

distribution system.

References

[1] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press, 1996.

[2] J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University Press, 2010.

[3] J.-R. Abrial, M. Butler, S. Hallerstede, T.S. Hoang, F. Mehta, and L. Voisin. Rodin: An Open Toolset for Modelling and
Reasoning in Event-B. International Journal on Software Tools for Technology Transfer (STTT), 12(6):447–466, 2010.

[4] ASUS RT-N56U Black Diamond Combines High Speed Network Performance and Unique Design in Style. http:
//www.asus.com/Networks/Wireless_Routers/RTN56U/ (Accessed September 2011).

[5] R.J.R. Back and R. Kurki-Suonio. Decentralization of Process Nets with Centralized Control. In Proceedings of the 2nd
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pages 131–142, 1983.

[6] R.J.R. Back and K. Sere. From Modular Systems to Action Systems. Software - Concepts and Tools, 13:26–39, 1996.

[7] B. Cohen. Incentives Build Robustness in BitTorrent. In 1st Workshop on Economics of Peer-to-Peer Systems, June 2003.

[8] B. Cohen. The BitTorrent Protocol Specification. http://www.bittorrent.org/beps/bep_0003.html (Accessed
September 2011), January 2008.

[9] L. D’Acunto, M. Meulpolder, R. Rahman, J.A. Pouwelse, and H.J. Sips. Modeling and Analyzing the Effects of Firewalls
and NATs in P2P Swarming Systems. In IEEE International Symposium on Parallel & Distributed Processing, Workshops
and PhD Forum (IPDPSW), 2010.

[10] Event-B and the Rodin Platform. http://www.event-b.org/ (Accessed September 2011).

[11] M. Iliofotou, G. Siganos, X. Yang, and P. Rodriguez. Comparing BitTorrent Clients in the Wild: The Case of Download
Speed. In USENIX IPTPS (in conjunction with NSDI 2010), April 2010.

[12] M. Kamali, L. Laibinis, L. Petre, and K. Sere. Self-Recovering Sensor-Actor Networks. In FOCLASA, 2010.

[13] S.M. Katz. A Superimposition Control Construct for Distributed Systems. ACM Transactions on Programming Languages
and Systems, 15(2):337–356, April 1993.

[14] A. Loewenstern. DHT Protocol. http://www.bittorrent.org/beps/bep_0005.html (Accessed September 2011),
2008.

[15] K. Lumme, L. Petre, P. Sandvik, and K. Sere. Towards Dependable H.264 Decoding. In Workshop Proceedings of the
Fifth IFIP WG 11.11 International Conference on Trust Management (IFIPTM 2011), pages 325–337, June 2011.

[16] P. Sandvik and M. Neovius. The Distance-Availability Weighted Piece Selection Method for BitTorrent: A BitTorrent
Piece Selection Method for On-Demand Streaming. In Proceedings of AP2PS ’09, October 2009.

[17] P. Sandvik and K. Sere. Formal Analysis and Verification of Peer-to-Peer Node Behaviour. In Proceedings of AP2PS ’11,
November 2011.

[18] H. Schulze and K. Mochalski. Ipoque Internet Study 2008/2009. http://www.ipoque.com/en/resources/
internet-studies (Accessed September 2011).

[19] K. Sere. A Formalization of Superposition Refinement. In Proceedings of the 2nd Israel Symposium on the Theory and
Computing Systems, June 1993.

[20] Vestel to Launch the First Bittorrent Certified Smart TV. http://www.bittorrent.com/company/about/vestel_
to_launch_the_first_bittorrent_certified_smart_tv (Accessed September 2011).

[21] M. Waldén and K. Sere. Reasoning About Action Systems Using the B-Method. Formal Methods in Systems Design,
13:5–35, 1998.

[22] L. Yan. A Formal Architectural Model for Peer-to-Peer Systems. In X. Shen, H. Yu, J. Buford, and M. Akon, editors,
Handbook of Peer-to-Peer Networking 2010 Part 12, pages 1295–1314. Springer US, 2010.

[23] L. Yan and J. Ni. Building a Formal Framework for Mobile Ad Hoc Computing. In Proceedings of the International
Conference on Computational Science (ICCS’04), June 2004.

3

Page 23 of 117

http://www.asus.com/Networks/Wireless_Routers/RTN56U/
http://www.asus.com/Networks/Wireless_Routers/RTN56U/
http://www.bittorrent.org/beps/bep_0003.html
http://www.event-b.org/
http://www.bittorrent.org/beps/bep_0005.html
http://www.ipoque.com/en/resources/internet-studies
http://www.ipoque.com/en/resources/internet-studies
http://www.bittorrent.com/company/about/vestel_to_launch_the_first_bittorrent_certified_smart_tv
http://www.bittorrent.com/company/about/vestel_to_launch_the_first_bittorrent_certified_smart_tv

A Functional Language for Specifying Business Reports

Patrick Bahr

Department of Computer Science, University of Copenhagen

Universitetsparken 1, 2100 Copenhagen, Denmark

paba@diku.dk

Abstract

We describe our work on developing a functional

domain specific language for specifying business

reports. The report specification language is part of

a novel enterprise resource planing system based

on the idea of a providing a lean core system that

is highly customisable via a variety of domain spe-

cific languages.

1 Introduction

Process-oriented event-driven transaction systems

(POETS) is a novel software architecture for en-

terprise resource planning (ERP) systems, intro-

duced by Henglein et al. [1]. Rather than storing

both transactional data and implicit process state

in a database, POETS employs a pragmatic sepa-

ration between (a) transactional data, that is what

has happened; (b) reports, that is what can be de-

rived from the transactional data; and (c) contracts,

that is which transactions are expected in the fu-

ture. Moreover, rather than using general purpose

programming languages to specify business pro-

cesses, POETS utilises declarative domain-specific

languages (DSLs) to customise the different as-

pects of a system. The use of DSLs not only en-

ables explicit formalisation of business processes,

it also minimises the gap between requirements and

a running system.

A simplified overview over the POETS architec-

ture is presented in Figure 1. At the heart of the sys-

tem is the event log, which is an append-only list of

transactions. Transactions represent relevant events

that may occur, such as a payment by a customer, a

delivery of goods by a shipping agency, or a move-

ment of items into an inventory. This does not only

satisfies the legal requirement for ERP systems to

archive all transaction data that is relevant for au-

diting but also makes it possible to compute reports

incrementally as shown by Nissen and Larsen [3].

2 The Report Language

The purpose of the report engine is to provide a

structured view of the data base that is constituted

by the system’s event log. This structured view of

the data in the event log comes in the form of a

report, a collection of condensed structured infor-

mation compiled from the event log. Conceptually,

a report is compiled from the event log by a func-

tion of type EventLog→ Report, a report function.

The report language provides a means to specify

such a report function in a declarative manner.

The report language is – much like the query

fragment of SQL – a functional language with-

out side effects. It only provides operations to

non-destructively manipulate and combine values.

Since the system’s storage is based on a shallow

event log – basically a list of event representations

– the report language has to provide operations to

relate, filter and aggregate pieces of information.

Moreover, as the data stored in the event log is in-

herently heterogeneous – containing data of differ-

ent kind – the report language needs to offer a com-

prehensive type system that allows to safely operate

in this setting.

The entire system is based on a common basis

of base types consisting of strings, Booleans, in-

tegers, lists etc. Apart from that the system offers

user-defined record types with an inheritance sys-

tem based on nominal subtyping. To this end, PO-

ETS also offers an ontology language that is used to

describe record types, their fields and their interde-

pendence. The central record type is Event, which

represents the events that are registered in the event

log. In fact, as far as the report language is con-

cerned, the event log is a value of type [Event].

Every interaction with the running system is re-

flected with a corresponding value of (a subtype of)

type Event in the event log. The simplest exam-

ple is the interface to the report engine itself. It

allows to add, modify and remove reports. Each

such operation is reflected by an event of type

1

Page 24 of 117

paba@diku.dk

Functional Language for Specifying Business Reports Patrick Bahr

Contract engine

Running

contracts

start contract

register event

end contract

Report engine

Report

definitions

add/delete report

modify report

query report

Event

log

events updates

query results

Figure 1: Bird’s-eye view of the POETS architecture [1].

CreateReport, UpdateReport, and DeleteReport,

respectively. The former two are subtypes of

PutReport, which in turn is – like DeleteReport

– a subtype of ReportEvent.

This allows us to write the following simple re-

port function that creates the report which lists the

names of all active (i.e. not deleted) reports:

reportNames : [String]

reportNames = [pr.name |
cr : CreateReport← events,

pr : PutReport = head [ur |
ur : ReportEvent← events,

ur.name ≡ cr.name]]

Every report function implicitly has as its first

argument the event log of type [Event] – a list of

events – bound to the name events. The syntax

of the report language – and to large parts also its

semantics – is based on Haskell [2]. The central

data structure is that of lists. In order to formulate

operations on lists concisely, we use list compre-

hensions [4] as seen in the above example. A list

comprehension of the form [e | c] denotes a list

containing elements of the form e generated by c,

where c is a sequence of generators and filters.

As we have mentioned, access to type infor-

mation and its propagation to subsequent com-

putations is essential due to the fact that the

event log is a list of heterogeneously typed ele-

ments – events of different kinds. The generator

cr : CreateReport← events iterates through ele-

ments of the list events binding each element to the

variable cr. The typing cr : CreateReport restricts

this iteration to elements of type CreateReport.

This type information is propagated through the

subsequent generators and filters of the list compre-

hension. In the filter ur.name ≡ cr.name, we use

the fact that elements of type ReportEvents have a

field name of type String. When binding the first

element of the result of the nested list comprehen-

sion to the variable pr it is also checked whether

this element is in fact of type PutReport. Thus

we ignore reports that are marked as deleted via a

DeleteReport event.

The report language is based on the simply

typed lambda calculus extended with a polymor-

phic (non-recursive) let expression and a type case

expression. The core language is given by the fol-

lowing grammar:

e ::= x | c | λx.e | e1 e2 | let x = e in e′

| type x = e of {r→ e1; → e2}

where x ranges over variables, and c over constants

which includes integers, Booleans, tuple and list

constructors as well as operations on them like +,

if-then-else etc. In particular, we have a fold oper-

ation fold of type (α → β → β)→ β → [α]→ β .

This is the only operation of the report language

that permits recursive computations on lists. List

comprehensions are mere syntactic sugar and can

be reduced to fold and let expressions as for exam-

ple in Haskell [2].

The extended list comprehension of the report

language that allow filtering according to run time

type information depend on type case expressions

of the form type x = e of {r→ e1; → e2}. In

such a type case expression, an expression e of

some record type re gets evaluated to record value

v which is then bound to a variable x. The record

type r that the record value v is matched against can

be any subtype of re. The further evaluation of the

type case expression depends on the type rv of the

record value v. This type can be any subtype of re.

2

Page 25 of 117

Functional Language for Specifying Business Reports Patrick Bahr

If rv≤ r, the evaluation proceeds with e1, otherwise

with e2. Binding e to a variable x allows to use the

stricter type r in the expression e1.

Although, the subtyping discipline that we use

is nominal, the type system also allows the pro-

grammer to use record types as if the subtyping

was purely structural. This is needed in order to

allow the sharing of field names between distinct

record types. To this end, we use type constraints

of the form α. f : τ which intuitively states that α

is a record type with a field f of type τ . Field se-

lectors are merely postfix operators. For example

the .name field selector in the example is of type

α.name : β ⇒ α → β .

Another important aspect of POETS in general

and the report language in particular is the main-

taining of references and the access of the data

they refer to. This becomes necessary as certain

pieces of information, e.g. customer information,

are attached to a unique entity with lifecycle, e.g.

a customer. To this end, POETS allow to create

an entity with a unique id – a reference. Subse-

quently, information attached to this entity can be

updated and eventually, the entity can be removed

altogether. All these changes are, of course, re-

flected in the event log and can thus be examined by

a report function. Nevertheless, due to the impor-

tance of references, the report language offers dedi-

cated dereferencing operations that allow quick and

typesafe access to the data associated with entities.

While the type system is important in order to

avoid obvious specification errors, it is also impor-

tant to ensure a fast execution of the thus obtained

functional specifications. This is, of course, a gen-

eral issue for querying systems. In our system, it is,

however, of even greater importance since shifting

the structure of the data – from the data store to the

domain of queries – means that queries operate on

the complete data set of the data base and thus each

report has to be recomputed after each transaction.

In other words, if treated naı̈vely, the conceptual

simplification provided by the flat event log has to

be paid via much more expensive computations.

This issue can be addressed by transforming a

given report function f into an incremental func-

tion f ′ which updates a previously computed report

according to the changes that have occurred since

the report was computed before. That is, given an

event log l and an update to it l⊕e, we require that

f (l⊕ e) = f ′(f (l),e). The new report f (l⊕ e) is

obtained by updating the previous report f (l) ac-

cording to the changes e. In the case of the event

log, we have a list structure. Changes only oc-

cur monotonically, by adding new elements to it:

Given an event log l and a new event e, the new

event log is e# l, where # is the list constructor of

type α → [α]→ [α].
Here it is crucial that we have restricted the re-

port language such that operations on lists are lim-

ited to the higher-order function fold. The funda-

mental idea of incrementalising report functions is-

based on the following equation:

fold f e (x#xs) = f x (fold f e (xs))

Based on this idea, we are able to make the com-

putation of most reports independent of the size of

the event log but only dependent of the changes to

the event log and the previous report [3]. Unfortu-

nately, if we have for example list comprehensions

containing more than one generator, we get report

functions with nested folds. In order to properly in-

crementalise such functions, we need to move from

list structures to multisets. This is, however, only

rarely a practical restriction since most aggregation

functions are based on commutative binary opera-

tions and are thus oblivious to ordering.

References

[1] Fritz Henglein, Ken Friis Larsen, Jakob Grue Si-

monsen, and Christian Stefansen. POETS: Process-

oriented event-driven transaction systems. Journal

of Logic and Algebraic Programming, 78(5):381–

401, May 2009.

[2] Simon Marlow. Haskell 2010 Language Report,

2010.

[3] Michael Nissen and Ken Friis Larsen. FunSETL

— Functional Reporting for ERP Systems. In Olaf

Chitil, editor, IFL ’07, pages 268–289, 2007.

[4] Philip Wadler. Comprehending monads. Mathemat-

ical Structures in Computer Science, 2(04):461–

493, 1992.

3

Page 26 of 117

Software Verification Using k-Induction∗

Alastair F. Donaldson

Imperial College London

Leopold Haller

Oxford University

Daniel Kroening

Oxford University

Philipp Rümmer

Uppsala University

Abstract

We present combined-case k-induction, a novel technique for verifying software programs. This

technique draws on the strengths of the classical inductive-invariant method and a recent application

of k-induction to program verification. We present a new k-induction rule that takes an unstructured,

reducible control flow graph (CFG), a natural loop occurring in the CFG, and a positive integer k,

and constructs a single CFG in which the given loop is eliminated via an unwinding proportional to

k. Experiments, using two implementations of the k-induction method and a large set of benchmarks,

demonstrate that our k-induction technique frequently allows program verification to succeed using

significantly weaker loop invariants than are required with the standard inductive invariant approach.

This abstract is based on a paper presented at the 18th Intern. Static Analysis Symposium [5].

1 Introduction

We present a novel technique for verifying imperative programs using k-induction [10]. Our method

brings together two lines of existing research: the standard approach to program verification using in-

ductive invariants [8], employed by practical program verifiers (including [2, 3, 4, 9], among many

others) and a recent k-induction method for program verification [6, 7] which we refer to here as split-

case k-induction. Our method, which we call combined-case k-induction, is directly stronger than both

the inductive invariant approach and split-case k-induction.

The contributions made in this work are: 1. We formally present combined-case k-induction as a

proof rule operating on control flow graphs, and state soundness of the rule; 2. We state a confluence

theorem, showing that in a multi-loop program the order in which our rule is applied to loops does

not affect the result of verification; 3. We present two implementations of our method: K-INDUCTOR,

a verifier for C programs, and K-BOOGIE, an extension of the Boogie tool, and experimental results

applying these tools to a large set of benchmarks. The experiments demonstrate that combined-case

k-induction is an efficient automated verification technique for certain domains (in our case, checking

the absence of DMA races in data processing programs for the Cell BE processor [6]), but is also a

convenient and robust proof rule for deductive verification systems (such as Spec# [2] or Dafny [9]) that

frequently allows verification to succeed with weaker loop invariants than using previous loop rules [1].

Compared with our previous work on k-induction techniques for software [6, 7], which are restricted

to programs containing a single while loop (supporting multiple loops only via a translation of all pro-

gram loops to a single, monolithic loop), our novel proof rule handles multiple natural loops in arbitrary

reducible control-flow graphs. Furthermore, like existing loop rules for unstructured programs [1], our

proof rule does not generate separate base and step cases, but combines both cases into a single CFG.

This can lead to significant verification speed-ups in the presence of multiple loops, compared to split-

case k-induction. The combination of base and step case into a single CFG also enables more elegant

treatment of variables that are not modified in a loop, reducing the amount of auxiliary invariants that

have to be provided manually or derived using techniques like abstract interpretation.

Throughout the paper, we are concerned with proving partial correctness with respect to assertions:

establishing that whenever a statement assert φ is executed, the expression φ evaluates to true. We shall

simply use correctness to refer to this notion of partial correctness.

∗Supported by the EU FP7 STREP MOGENTES (project ID ICT-216679), the EU FP7 STREP PINCETTE (project ID

ICT-257647), EPSRC projects EP/G026254/1 and EP/G051100/1, and a grant from Toyota Motors.

1

Page 27 of 117

x:=0;

i:=0;

a:=1;

b:=2;

c:=3;

B1

assume i < n;

assert a 6= b;

a,b,c:=b,c,a;

i++;

B2

assume i ≥ n;

assert x = 0;

(a) Original CFG

B1

assert φ;

i,a,b,c := *;

assume φ;

B2

assume i ≥ n;

assert x = 0;

assert φ;

(b) CFG after loop cutting

x:=0;

i:=0;

a:=1;

b:=2;

c:=3;

assume i < n;

assert a 6= b;

a,b,c:=b,c,a;

i++;

B2

B2

B2

i,a,b,c:=*;

assume i < n;

assume a 6= b;

a,b,c:=b,c,a;

i++;

Ba
2

Ba
2

Ba
2

B2

assume i ≥ n;

assert x = 0

(c) Result of applying combined-case k-induction

Figure 1: A simple program, and verification using inductive invariants and combined-case k-induction.

2 Combined-case k-Induction by Example

We present programs as control flow graphs (CFGs) and use the terms program and CFG synonymously.

We follow the standard approach of modelling control flow using a combination of nondeterministic

branches and assume statements. During execution, a statement assume φ causes execution to silently

(and non-erroneously) halt if the expression φ evaluates to false, and does nothing otherwise.

Consider the simple example program of Figure 1(a). The program initialises a, b and c to distinct

values, and then repeatedly cycles their values, asserting that a and b never become equal. The condition

for the loop is i < n, and is encoded using assume statements at the start of the loop body, and at the

start of the node immediately following the loop. Variable x is initialised to zero, and after the loop an

assertion checks that x has not changed. The program is clearly correct.

The inductive invariant approach. To formally prove a program’s correctness using inductive invari-

ants, one first associates a candidate invariant with each loop header in the program. One then shows that

1. the candidate invariants are indeed loop invariants, and 2. these loop invariants are strong enough to

imply that no assertion in the program can fail.

A technique for performing these checks in the context of unstructured programs is detailed in [1].

The technique transforms a CFG with loops into a loop-free CFG. Each loop header in the original

CFG is prepended in the transformed CFG with a basic block that: asserts the loop invariant, havocs

each loop-modified variable,1 and assumes the loop invariant. Loop entry edges in the original CFG

are replaced with edges to these new blocks in the transformed CFG. Each back edge in the original

CFG is replaced in the transformed CFG with an edge to a new, childless basic block that asserts the

invariant for the associated loop. Otherwise, the CFGs are identical. This is illustrated in Figure 1(b)

for the program of Figure 1(a), where invariant φ is left unspecified. Cutting every loop in a CFG leads

to a loop-free CFG, for which verification conditions can be computed using weakest preconditions (an

efficient method for this step is the main contribution of [1]). These verification conditions can then be

discharged to a theorem prover, and if they are proven, the program is deemed correct. In Figure 1(b),

taking φ to be (a 6= b∧b 6= c∧ c 6= a) allows a proof of correctness to succeed. The main problem with

the inductive invariant approach is finding the required loop invariants.

1A variable is havocked if it is assigned a nondeterministic value. A loop-modified variable is a variable that is the target

of an assignment in the loop under consideration.

2

Page 28 of 117

Our contribution: combined-case k-induction. In combined-case k-induction, the strengths of k-

induction and the inductive invariant approach are brought together. Like the inductive invariant ap-

proach, combined-case k-induction works by cutting loops in the input CFG one at a time, resulting in

a single program that needs to be checked, but due to the use of a strong form of induction no external

invariant is required.

A non-negative integer kL is associated with each loop L in the input CFG. Loop L is then kL-cut by

replacing it with: a base case, which consists of kL copies of the loop body and checks that no assertion

can be violated within kL loop iterations; and a step case, in which first all loop-modified variables are

havocked, followed by kL copies of the loop body where all assertions are replaced with assumptions

(removing all edges exiting the loop), and finally a regular copy of the loop body, in which back edges

to the loop header are removed. This is illustrated in Figure 1(c) (for kL = 3) for the CFG of Figure 1(a):

the left half of Figure 1(c) constitutes the base case, whereas the right blocks belong to the step case.

As in the inductive invariant approach, verifying the correctness of the loop-free program in Fig-

ure 1(c) implies that also the original program (Figure 1(a)) is correct. k-Induction, however, has the

advantage that verification may succeed using weaker loop invariants. In fact, we can observe that the

program in Figure 1(c) is correct; unlike the inductive invariant approach, no external invariant (like

a 6= b∧b 6= c∧ c 6= a) is required. Intuitively, the use of k-induction has implicitly strengthened the as-

sertion a 6= b, resulting in an invariant sufficient to verify the program. We also say that the formula a 6= b,

albeit not inductive, is 3-inductive. Further, note that the final assertion x = 0 can be verified due to the

fact that x is not assigned to in the loop; with earlier forms of k-induction that generate separate base and

step cases, verifying this assertion would require auxiliary invariants to be provided.

References

[1] Michael Barnett and K. Rustan M. Leino. Weakest-precondition of unstructured programs. In PASTE, pages

82–87. ACM, 2005.

[2] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming system: an overview. In

CASSIS, volume 3362 of LNCS, pages 49–69. Springer, 2005.

[3] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors. Verification of Object-Oriented Software:

The KeY Approach, volume 4334 of LNCS. Springer, 2007.

[4] Dino Distefano and Matthew J. Parkinson. jStar: towards practical verification for Java. In OOPSLA, pages

213–226. ACM, 2008.

[5] Alastair F. Donaldson, Leopold Haller, Daniel Kroening, and Philipp Rümmer. Software verification using

k-induction. In Proceedings of the 18th International Static Analysis Symposium (SAS’11), volume 6887 of

LNCS, pages 351–368. Springer, 2011.

[6] Alastair F. Donaldson, Daniel Kroening, and Philipp Rümmer. Automatic analysis of scratch-pad memory

code for heterogeneous multicore processors. In TACAS, volume 6015 of LNCS, pages 280–295. Springer,

2010.

[7] Alastair F. Donaldson, Daniel Kroening, and Philipp Rümmer. Automatic analysis of DMA races using model

checking and k-induction. Formal Methods in System Design, 2011. To appear, DOI: 10.1007/s10703-011-

0124-2.

[8] R.W. Floyd. Assigning meaning to programs. In Mathematical Aspects of Computer Science, volume 19 of

Proceedings of Symposia in Applied Mathematics, pages 19––32. AMS, 1967.

[9] K. Rustan M. Leino. Dafny: an automatic program verifier for functional correctness. In LPAR (Dakar),

volume 6355 of LNCS, pages 348–370. Springer, 2010.

[10] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking safety properties using induction and a

SAT-solver. In FMCAD, volume 1954 of LNCS, pages 108–125. Springer, 2000.

3

Page 29 of 117

Verification and Code Generation for Invariant Diagrams in
Isabelle

Viorel Preoteasa and Ralph-Johan Back and Johannes Eriksson

Åbo Akademi University
Department of Information Technologies

Joukahaisenkatu 3-5A, 20520 Åbo, Finland

Introduction. Invariant-based programming (IBP) is a correct-by-construction programming methodol-
ogy in which the invariants of a program are developed before the code [1]. We describe here a method for
fully automatic translation of an invariant diagram into a functional program, together with the associated
consistency, termination and liveness proofs. The generated theorems are the obligations derived using
the proof rules of invariant diagrams. The generated program is a refinement of the invariant diagram,
and can be directly converted to executable code by Isabelle. This allows verified compilation of invariant
diagrams into any of the languages supported by Isabelle code generator.

Invariant diagrams. Programs in IBP are expressed as invariant diagrams. An invariant diagram is a
directed graph of situations (labeled predicates) connected by transitions (guarded assignment statements).
Figure 1 shows an invariant diagram representing a program that searches for the first occurrence of
the value x (of the generic type ′a) in an array a (of type nat → ′a). We use throughout mathematical
notation close to the Isabelle syntax; e.g., application of function a to argument i is denoted by a i.

n : nat ∧ x : ′a
a : nat → ′a

i : nat ∧ i ≤ n

(∀ j : nat . j < i ⇒ a j 6= x)

i < n∧a i = x

Found

i = n

NotFound

Loop n− i : nat

[i < n∧a i = x] [i = n]

Init i := 0
[i < n∧a i 6= x] ; i := i+1

Figure 1: Searching for the first occurrence of x in a

The situations in Figure 1 are Initial, Loop,
NotFound, and Found. Nesting means strength-
ening the predicate; e.g., the invariant of situation
Found is the conjunction of all predicates in Initial,
Loop and Found. A transition from situation s1 to
situation s2, guarded by the predicate g, and as-
signing the value e to the variable x is written as
[g]; x := e on the arrow between s1 and s2. When
omitted, the guard defaults to true. The execution
starts from an initial situation and follows the tran-
sitions which are enabled (the guards are true). At
each step the invariant of the current situation must
be satisfied by the current value of the program
variables. The execution terminates in the current
situation if there are no enabled transitions. We
note that an invariant diagram can have multiple
postconditions: the above program terminates in

Found if the value x is found in the array, and otherwise it terminates in NotFound. A diagram is correct

iff each transition establishes its target situation (consistency), execution does not terminate in a situation
other than the postconditions (liveness), and there are no infinite loops (termination). Sound and complete
Hoare like proof rules for invariant diagrams are given in [2].

Isabelle/HOL. In the sequel, we describe an embedding of the program in Figure 1 into the logical
framework of Isabelle/HOL. Isabelle is a theorem prover developed by Nipkow et al [6]. It includes a
higher-order logic (HOL) deduction system, proof language (Isar), and a resolution-based prover. Notably,
Isabelle supports modular locales for dealing with parametric theories and interpretations [3], mutually
recursive function definitions, and a code generation facility with OCaml, ML, Scala and Haskell targets
[5].

1

Page 30 of 117

Invariant representation. An Isabelle locale declaration introduces a local scope of constants, assump-
tions, definitions, and theorems. We encode each one of the situations of the program in Figure 1 as a
locale as follows:

locale Init =

fixes n : nat

and a : nat → ′a

and x : ′a

locale Loop = Init +

fixes i : nat

assumes i ≤ n

and (∀ j . j < i ⇒ a j 6= x)

locale Found = Loop +

assumes i < n

and ai = x

locale NotFound = Loop +

assumes i = n

Program variables introduced in a situation translate into constants in the corresponding locale, whereas
the predicates translate into assumptions. Nesting translates naturally to locale extension.

Proof obligations: consistency, termination and liveness An invariant diagram is consistent if for
every transition [g];x := e, from a situation with predicate P to a situation with predicate Q, the condition
P∧ g ⇒ Q[x := e] is true, where Q[x := e] is the substitution of the variable x in Q by expression e.
We express these proof obligations in Isabelle by interpretation of the above locales. For instance, the
transitions from Loop generate the following lemmas:

lemma tr_loop_loop:

assumes start: Loop n a x i

and grd: i < n∧a i 6= x

shows Loop n a x i+1

lemma tr_loop_found:

assumes start: Loop n a x i

and grd: i < n∧a i = x

shows Found n a x i

lemma tr_loop_not_found:

assumes start: Loop n a x i

and grd: i = n

shows NotFound n a x i

The loop transition additionally introduces an obligation that the termination function n− i, with lower
bound 0, is decreased by the assignment i := i+1:

lemma termination: i < n∧a i 6= 0 ⇒ (n− i)[i := i+1]< n− i

Finally, liveness entails that the disjunction of the guards from situations that are not postconditions is
always true. In our example, the transition from Init is unconditional, and the disjunction (i < n∧a i =
x)∨ (i = n)∨ (i < n∧a i 6= x) follows from the invariant of Loop. The above obligations are expected to
be proved by the programmer as part of the IBP workflow.

Program definition in Isabelle. The transition graph of the program in Figure 1 translates into the
following collection of mutually recursive functions:

function
init_fun n a x = loop_fun n a x 0
loop_fun n a x i = if i < n ∧ a i 6= x then loop_fun n a x (i+1)

else if i < n ∧ a i = x then found_fun n a x i

else if i = n then notfound_fun n a x i

else (i, Loop)
found_fun n a x i = (i, Found)
notfound_fun n a x i = (i, NotFound)

Each function corresponds to a situation in the invariant diagram; the parameters are the variables defined
in the corresponding situation. Each function returns a pair of an integer i and a situation index s. In
general the functions associated to a diagram return a tuple containing values for all variables updated by
the diagram and additionally the situation index. The values returned by a function corresponding to a
situation s are the values that would be computed by the diagram as described earlier when starting from
s. The situation component of the result stores the final situation in which the termination occurred. For
example, the execution of the search diagram starting from the init situation is equivalent to computing
(i,s) = init_fun n a x. The termination proof for this mutually recursive function definition can be
constructed mechanically using the theorem termination.

We define the predicate for the total correctness of the diagram also as a locale.

2

Page 31 of 117

locale Correctness =

fixes n, a, x, i, s

assumes s = Init ⇒ false
and s = Loop ⇒ false
and s = NotFound ⇒ NotFound n a x i

and s = Found ⇒ Found n a x i

In this locale the constant s represents the situation in
which the execution of the diagram terminates. The
locale states the predicate that must be true at the end
of the execution. If for example s = NotFound, then the
final values must satisfy the locale NotFound. If s = Init

or s = Loop, then the final values must satisfy false,
which is not possible. This means that the program is

live, it would never terminate in these two situations. Next theorem states the correctness of the program.

theorem correctness:

Init n a x ⇒ let (j, s) = init_fun n a x in Correctness n a x j s

and Loop n a x i ⇒ let (j, s) = loop_fun n a x i in Correctness n a x j s

and Found n a x i ⇒ let (j, s) = found_fun n a x i in Correctness n a x j s

and NotFound n a x i ⇒ let (j,s) = notfound_fun n a x i in Correctness n a x j s

If for example n, a, and x satisfy the Init locale, then the final values calculated by the program
when started in the initial situation satisfy the Correctness locale. The proof of this theorem can be
mechanically constructed by applying the induction theorem generated by Isabelle from the definition of
the mutually recursive functions, followed by applying the lemmas for the transitions, and for liveness.

Code generation. We can invoke the built-in code generator in Isabelle to export the functions defined
above to any of the supported target languages. For instance, the Haskell rendition of loop_fun is:

loop_fun n a x i =

(if less_nat i n && not (a i == x) then loop_fun n a x (plus_nat i one_nat)

else (if less_nat i n && a i == x then found_fun n a x i

else (if equal_nat i n then notfound_fun n a x i

else (i, Loop))));

As Haskell optimizes tail recursion, the program remains iterative throughout translation.

Conclusion and future work. We have described a translation validation-based approach to both veri-
fication and code generation for IBP. A program is (mechanically) translated into an Isabelle/HOL theory
containing the invariants (as locales), the proof obligations of the program, a functional representation,
and consistency and liveness theorems stating that the functional representation terminates in the intended
postcondition. The proof obligations should be proved by the programmer; they become lemmas for
the (automatically constructed) consistency and liveness proofs for the functional representation. The
functional representation can be directly translated into executable code by Isabelle. As future work,
we plan to automate the translation in Socos [4], a verification tool for invariant diagrams. The current
translation does not assume the loop invariant in the termination proof. For more realistic examples, this
will be required together with more general terminating functions to handle, e.g., nested loops.

References

[1] Ralph-Johan Back. Invariant based programming: Basic approach and teaching experiences. Formal Aspects

of Computing, 21(3):227–244, 2009.
[2] Ralph-Johan Back and Viorel Preoteasa. Semantics and proof rules of invariant based programs. In Proceedings

of the 2011 ACM Symposium on Applied Computing. ACM, 2011.
[3] Clemens Ballarin. Locales and locale expressions in isabelle/isar. In TYPES FOR PROOFS AND PROGRAMS

(TYPES 2003), LNCS 3085, pages 34–50. Springer, 2004.
[4] Johannes Eriksson and Ralph-Johan Back. Correct-by-construction programming in the Socos (2) environment.

In THedu’11 (CTP Components for Educational Software), workshop associated to CADE’2011.
[5] Florian Haftmann and Tobias Nipkow. Code generation via higher-order rewrite systems. In M. Blume,

N. Kobayashi, and G. Vidal, editors, Functional and Logic Programming (FLOPS 2010), volume 6009, 2010.
[6] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assistant for Higher-Order

Logic, volume 2283 of LNCS. Springer, 2002.

3

Page 32 of 117

A Proof System for Adaptable Class Hierarchies

Johan Dovland, Einar Broch Johnsen, Olaf Owe, and Ingrid Chieh Yu

Department of Informatics, University of Oslo, Norway

{johand,einarj,olaf,ingridcy}@ifi.uio.no

An intrinsic property of software in the real world is that it needs to evolve. This can be as part of the

initial development phase, improvements to meet new requirements, or as part of a software customization

process such as, e.g., feature selection in software product lines or delta-oriented programming [1]. As

the code is enhanced and modified, it becomes more complex and drifts away from its original design [9].

For this reason, it may be desirable to redesign the code base to improve its structure, thereby reducing

software complexity. For example, the process of refactoring in object-oriented software development

describes changes to the internal structure of software to make it easier to understand and cheaper to

modify without changing its observable behavior [5]. In this paper, the term adaptable class hierarchies

covers transformations of classes during the development, improvement, customization, and refactoring

of class hierarchies.

Reasoning about properties of object-oriented systems is in general non-trivial due to complications

including class inheritance and late binding of method calls. Object-oriented software development is

based on an open world assumption; i.e., class hierarchies are typically extendable. In order to have

reasoning control under such an open world assumption, it is advantageous to have a framework which

controls the properties required of method redefinitions. With a modular reasoning framework, a new

subclass can be analysed in the context of its superclasses, such that the properties of the superclasses

are guaranteed to be maintained. This has the advantage that each class can be fully verified at once,

independent of subclasses which may be designed later. The best known modular framework for class

hierarchies is behavioral subtyping [8]. However, behavioral subtyping has been criticized for being

overly restrictive and is often violated in practice [10].

Incremental reasoning frameworks generalize modular reasoning by possibly generating new veri-

fication conditions for superclasses in order to guarantee established properties. Additional properties

may be established in the superclasses after the initial analysis, but old properties remain valid. Observe

that these frameworks subsume modularity: if the initial properties of the classes are sufficiently strong

(for example by adhering to a behavioral contract), it will never be necessary to add new properties later.

Lazy behavioral subtyping is a formal framework for such incremental reasoning, which allows more

flexible code reuse than modular frameworks. The basic idea underlying lazy behavioral subtyping is a

separation of concerns between the behavioral specifications of method definitions from the behavioral

requirements to method calls. Both specifications and requirements are manipulated through a bookkeep-

ing framework which controls analysis and proof obligations in the context of a given class. Properties

are only inherited by need. Inherited requirements on method redefinition are as weak as possible for

ensuring soundness. Lazy behavioral subtyping seems well-suited for the incremental reasoning style de-

sirable for object-oriented software development, and can be adjusted to different mechanisms for code

reuse. It was originally developed for single inheritance class hierarchies [3], but has later been extended

to multiple inheritance [4] and to trait-based code reuse [2].

Adaptable class hierarchies add a level of complexity to proof systems for object-oriented programs,

as superclasses in the middle of a class hierarchy can change. Unrestricted, such changes may easily

violate previously verified properties in both sub- and superclasses. The management of verification

conditions becomes more complicated than in the case of extending a class hierarchy at the bottom with

new subclasses. We consider a version of Featherweight Java [6] extended with behavioral interfaces, in

which methods are annotated with pre/postconditions, and consider a number of basic update operations

for adapting class definitions. We consider a series of “snapshots” of a class hierarchy during a develop-

1

Page 33 of 117

ment and adaptation process, in which the developer applies class updates and analysis steps to the class

hierarchy.

The paper presents a calculus which tracks verification conditions when the program changes, based

on an incremental reasoning framework. In our approach, a requirement holds if it has a proof (or fol-

lows from another proven property). The basic update operations defined in this paper include addition,

removal, and redefinition of code, and may be composed to form more complex modifications, e.g., the

Pull Up Method refactoring [5] is illustrated by an example. The work in this paper extends [7], which

deals with static typing, to handle behavioral specifications of methods. To allow incremental reasoning

in a flexible manner, we extend the lazy behavioral subtyping mechanism to deal with program transfor-

mations not limited to behavioral preserving evolution. Consider some method m, originally equipped

with a pre/post specification. As the system evolves, methods that call m may be modified such that m

is called with weaker requirements, and calls to m may even disappear. If m is later changed, the new

version need not adhere to the original specification of m; the new version only needs to respect the

behavior required by call-sites at the time when the modification of m is performed. The specified and

required properties of method definitions and method calls are tracked through the adaptation steps. We

prove soundness of the proposed verification system.

A complementary line of work is proof adaptation, which has been studied in the automated theorem

prover communities. Proof adaptation considers how to adapt a proof when a specification changes.

Such techniques would fit naturally into an implementation of the reasoning framework proposed in this

paper, to alleviate the overhead of additional proof activity resulting from the flexibility of the proposed

framework.

References

[1] D. Clarke, N. Diakov, R. Hähnle, E. B. Johnsen, I. Schaefer, J. Schäfer, R. Schlatte, and P. Y. H. Wong. Mod-

eling spatial and temporal variability with the HATS abstract behavioral modeling language. In M. Bernardo

and V. Issarny, editors, Proc. 11th Intl. School on Formal Methods for the Design of Computer, Communica-

tion and Software Systems (SFM 2011), LNCS 6659, pages 417–457. Springer, 2011.

[2] F. Damiani, J. Dovland, E. B. Johnsen, and I. Schaefer. Verifying traits: A proof system for fine-grained

reuse. In Proc 13th Workshop on Formal Techniques for Java-like Programs (FTfJP’11). ACM, 2011. To

appear.

[3] J. Dovland, E. B. Johnsen, O. Owe, and M. Steffen. Lazy behavioral subtyping. Journal of Logic and

Algebraic Programming, 79(7):578–607, 2010.

[4] J. Dovland, E. B. Johnsen, O. Owe, and M. Steffen. Incremental reasoning with lazy behavioral subtyping

for multiple inheritance. Science of Computer Programming, 76(10):915–941, 2011.

[5] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley, Aug. 1999.

[6] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a minimal core calculus for Java and GJ. ACM

Transactions on Programming Languages and Systems, 23(3):396–450, 2001.

[7] E. B. Johnsen, M. Kyas, and I. C. Yu. Dynamic classes: Modular asynchronous evolution of distributed

concurrent objects. In A. Cavalcanti and D. Dams, editors, Proc. 16th International Symposium on Formal

Methods (FM’09), LNCS 5850, pages 596–611. Springer, 2009.

[8] B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions on Programming

Languages and Systems, 16(6):1811–1841, Nov. 1994.

[9] T. Mens and T. Tourwé. A survey of software refactoring. IEEE Transactions on Software Engineering,

30(2):126–139, 2004.

[10] N. Soundarajan and S. Fridella. Inheritance: From code reuse to reasoning reuse. In P. Devanbu and J. Poulin,

editors, Proc. Fifth International Conference on Software Reuse (ICSR5), pages 206–215. IEEE Computer

Society Press, 1998.

2

Page 34 of 117

Refinement for Open Mixed Trees

Marco Carbone

IT University of Copenhagen

Copenhagen, Denmark

carbonem@itu.dk

Thomas Hildebrandt

IT University of Copenhagen

Copenhagen, Denmark

hilde@itu.dk

Hugo A. López

IT University of Copenhagen

Copenhagen, Denmark

lopez@itu.dk

Abstract

We propose a new denotational behavioral model called open mixed trees which generalizes

standard model of labelled trees (where labels are marked as negative, positive or both) by annotating

each state with a set of so-called open actions and a flag indicating if termination is allowed in the

state or not. We then propose a generalization of covariant-contravariant simulation that also takes

account of termination and allows intermediate open parts of the specification.

1 Introduction

Consider a healthcare workflow process in which you have a patient Alice, a doctor Bob, and a Social

Worker Charlie. The following set of activities are included in the first specification S:

1. Alice comes to Bob for a medical appointment.

2. Bob receives Alice and gathers her symptomatology.

3. After consultation, Bob formulates a medicine treatment for Alice.

4. Bob sends the medicine formulation to Charlie, so he can deliver it to Alice.

5. Alice gets the medicine from Charlie and starts taking her treatment regularly as specified by Bob.

6. After some days, Alice comes back to Bob for a control, and the symptoms have disapeared.

Many details have been hindered from this example. First of all, it only details the interaction be-

tween three of the main actors involved. We may have a private health care institution that has to fulfill

the auditing processes, where between activity 2 and 3. other actors will come into play. Our specifica-

tion S could be extended accordingly to a new model S′ including the two actions

• On insuficiency of information, Bob will take blood samples and supplementary tests from Alice.

• On cases with high variability, Bob will consult a pool of specialists on Alice’s case.

between action 2. and 3.

It is to note, that even when S′ has more behavior than S, it is still constrained to a set of activities that

can be performed. The extra set of activities can be repeated many times and with different execution

orders, but activities outside this set have to be ruled out. For instance, Bob cannot start operating Alice

just after having gathered her symptomatology.

How is S related to S′? It is clear that the notion that we are looking for has a lot to do with the

notion of refinement. In many cases we will specify systems by adding up more and more roles (and

their respective behaviors) over the time. This, will lead us to start with a specification like S, knowing

that each of the actions can be further refined with more and more behavior. We propose a new controlled

way, called open refinement, to specify where and which actions can be inserted. The idea is in addition

to standard transitions P
a
−→ P′ where a process P exhibits an immediate action a before evolving into P′

1

Page 35 of 117

carbonem@itu.dk
hilde@itu.dk
lopez@itu.dk

Refinement for Open Mixed Trees Carbone, Hildebrandt, and López

to also specify open states PA 99
a
−→ P′, where the process P can exhibit a finite series of actions in A

before evolving with a into P′. The open state allows us to describe explicit stages in a process in which

a process can be refined with any of the actions in a constrained set A. Here, transitions become weaker,

as they might need more than one step for moving from P to P′, but they also become broader than the

standard weak transitions, as the set A can involve several (and possibly visible) actions and not just a

dedicated internal action.

These changes lead us to proposing a new notion of refinement we call open mixed refinement. Start-

ing from the covariant-contravariant simulations (that allow mixed, externally and internally controlled,

activities and captures the necessary difference between such) we add the new notion of open states and

also the ability to specify explicitly if a system may terminate in a state from which additional internally

controlled activities are possible.

We believe the proposed model has both good uses in practice and good properties, i.e. can be given

a clean categorical representation. We start in this brief abstract by giving the definition and the first

result that open mixed refinement specializes to covariant-contravariant simulation if one allows no open

states and always allows termination.

2 Open Mixed Trees and Refinement

Definition 1 (Open Mixed Trees). An open mixed tree is a tuple T = 〈S,s0,Act
−,Act+,σ ,→〉 where

• S is a set of states,

• s0 ∈ S is the initial state,

• Act = Act
−∪Act

+ is a set of actions characterized as externally controlled actions in Act
− (de-

noted by a−) and internally controlled actions in Act
+ (denoted by a+).

• →⊆ S×Act×S is a labelled transition relation between states

• σ : S → P(Act∪{X}) defines for each state the open actions and the possibility of terminating

• X 6∈ σ(s) =⇒ ∃s
b+

−→, i.e. an internally controlled action must be possible from every non-

terminating state

• ∀s ∈ S, there exists a unique path S0 −→
∗ s (i.e. the transition relation forms a tree)

An open mixed tree where σ(s) = {X} for all s ∈ S, i.e. an open mixed tree with no open actions and

which allow termination in every state, is referred to as just a mixed tree. A mixed tree is equivalent to a

normal tree labelled with positive and negative labels.

Intuitively, an open mixed tree represents the specification of a reactive, non-deterministic system

with both internally controlled actions (e.g. output) and externally controlled actions (e.g. input). Note

that there may be actions in Act
−∩Act

+ that are both externally and internally controlled.

In any state with at least one internally controlled action any implementation must be able to do at

least one of the internally controlled actions, or terminate if termination is also allowed by the specifica-

tion. The states in which it is allowed to terminate is defined by the set T . Note that in order to not have

any contradictions a state which is not in T (i.e. termination without further internally controlled actions

is not allowed) must have at least one internally controlled action out of it.

Finally, the function σ pairs each state with a set of open (or underspecified) behavior, which allows

an implementation to perform any action within the set a finite number of times before progressing (or

terminating if the state is in T . We can depict open trees easily:

2

Page 36 of 117

Refinement for Open Mixed Trees Carbone, Hildebrandt, and López

◦

{ f−,g+}

 �

?r

a+

��

b+

c+

��

d−

��

e−

��
◦ ◦ ◦ ◦ ◦

Below we write s1
ℓd

−→ s2 when {s1, ℓ,s2} ∈→ and ℓ ∈ Act
d . Similarly, we write σ

+(s1) for the set of

transitions such that s1
a+

−→ s′1 ∈ σ

Definition 2 (Refinement). A binary relation R ⊆ S1×S2 between the state sets of two open mixed trees

Pj = 〈S j, i j,Act
−, Act+,σ j,→ j〉 for j ∈ {1,2} is a refinement if i1Ri2 and s1Rs2 implies

1. ∀s1
a−

−→1 s′1, implies ∃s2
a1−→2 s2,1

a2−→2 · · ·
an−→2 s2,n

a−

−→2 s′2,n+1, ai ∈ σ1(s1), and s1Rs2,i

2. ∀s2
a+

−→2 s′2 implies (i) ∃s1
a+

−→1 s′1, and s′1Rs′2 or (ii) a ∈ σ
+
1 (s1) and s1Rs′2

3. σ2(s2)⊆ σ1(s1),

4. X ∈ σ(s1) =⇒ s2
a1−→2 s2,1

a2−→2 · · ·
an−→2 s2,n and ai ∈ σ1(s1), s1Rs2,i and X ∈ σs(s2,n).

5. if s2 = s2,0
a0−→2 s2,1

a1−→2 s2,2
a2−→ ·· · , s1 = s1,0 and (s1,i

ai−→ s1,i+1 or (s1,i = s1,1+1 and ai ∈ σ1(s1,i))

and s1,iRs2,i for i ∈ ω , then |{s1,i}i∈ω |= ω .

We say that Q is a refinement of P, written P ⊑ Q, whenever there exists a relation R such that PRQ.

Proposition 1. The refinement relation ⊑ between open mixed trees as defined above

1. is reflexive and transitive, and

2. contains the identity relation

As stated in the proposition below, refinement specializes for mixed trees (i.e. open mixed trees

with no open actions and which allow termination in every state) to the notion of covariant-contravariant

simulation defined in [2, 1].

Proposition 2. Refinement for mixed trees coincides with (Act+\Act−,Act−\Act+)-simulation as de-

fined in [2], taking Act
−∩Act

− as the set of actions with ”bi”-polarity, i.e. both internally and externally

controlled.

References

[1] L. Aceto, I. Fábregas, D. de Frutos Escrig, A. Ingólfsdóttir, and M. Palomino. Relating modal refinements,

covariant-contravariant simulations and partial bisimulations. Fundamentals of Software Engineering, FSEN,

2011.

[2] I. Fabregas, D. de Frutos Escrig, and M. Palomino. Logics for contravariant simulations. In Formal Techniques

for Distributed Systems: Joint 12th IFIP WG 6.1 International Conference, FMOODS 2010 and 30th IFIP

WG 6.1 International Conference, FORTE 2010, Amsterdam, The Netherlands, June 7-9, 2010, Proceedings,

volume 6117, page 224. Springer-Verlag New York Inc, 2010.

3

Page 37 of 117

Evaluation à la Carte

Non-Strict Evaluation via Compositional Data Types

Patrick Bahr

Department of Computer Science, University of Copenhagen

Universitetsparken 1, 2100 Copenhagen, Denmark

paba@diku.dk

Abstract

We describe how to perform monadic computations

over recursive data structures with fine grained con-

trol over the evaluation strategy. This solves the is-

sue that the definition of a recursive monadic func-

tion already determines the evaluation strategy due

to the necessary sequencing of the monadic oper-

ations. We show that compositional data types al-

ready provide the structure needed in order to delay

monadic computations at any point of the compu-

tation.

1 Introduction

Algebraic data types offer an excellent representa-

tion of abstract syntax trees (ASTs). The ease with

which functional programming languages allow us

to manipulate algebraic data types makes the func-

tional programming paradigm a powerful tool for

performing transformations on ASTs – an ubiqui-

tous tasks when writing compilers and interpreters.

As an example, consider the following

Haskell [4] definition of an algebraic data

type representing a simple expression language

over integers and pairs:

data Exp = Const Int | Pair Exp Exp

| Add Exp Exp | Fst Exp | Snd Exp

Apart from the constructors for integers and pairs,

the language contains addition and the projection

operators Fst and Snd. Implementing an evaluation

function for this language is a simple exercise:

eval :: Exp→ Exp

eval (Const i) = Const i

eval (Pair x y) = Pair (eval x) (eval y)
eval (Add x y) = case (eval x,eval y) of

(Const i,Const j)→ Const (i+ j)

eval (Fst p) = case eval p of Pair x y→ x

eval (Snd p) = case eval p of Pair x y→ y

While this function performs the desired evalu-

ation, its type is not as precise as we would ex-

pect. According to its type, eval produces an ex-

pression of type Exp which potentially can contain

additions and projections. This can be solved by

using as codomain of eval a separate type Value that

only contains (copies of) the constructors Const

and Pair. This means, however, that also code that

works on both Exp and Value has to be duplicated,

e.g. pretty printing and parsing.

2 Data Types à la Carte

Swierstra’s data types à la carte [5] offer an elegant

solution to this problem by representing expression

types as a fixed point of a functor:

data Term f = Term f (Term f)

This approach makes it possible to define the signa-

ture of the expression language in two components

– values and operations – and combine them via the

formal sum ⊕ of functors:

data (f ⊕g) e = Inl (f e) | Inr (g e)

We can then define the signatures of our expres-

sion language as follows:

data Value e = Const Int | Pair e e

data Op e = Add e e | Fst e | Snd e

type Sig = Op⊕Value

This allows us to represent values and expressions

as Term Value and Term Sig, respectively.

In addition, Swierstra also defines a binary type

class≺ on signature functors that approximates in-

clusion. That is, f ≺ g if g is equal to f or contains

1

Page 38 of 117

paba@diku.dk

Evaluation à la Carte Patrick Bahr

it as a summand. Most importantly, this type class

provide a function to inject a “smaller” signature

into a “bigger” one:

inject :: (f ≺ g)⇒ f (Term g)→ Term g

Functions of the form Term f → r are written as

catamorphisms induced by algebras, i.e. functions

of type f r→ r. This allows us to write functions

on a per signature basis, which is achieved by using

a type class:

class Eval f where

evalAlg :: f (Term Value)→ Term Value

The instantiation of this class for values is trivial:

instance Eval Value where

evalAlg = inject

For operator symbols we have to provide an im-

plementation that evaluates the arguments appro-

priately:

instance Eval Op where

evalAlg (Add x y) = case (x,y) of

(Term (Const i),Term (Const j))
→ inject (Const (i+ j))

evalAlg (Fst p) = case p of

Term (Pair x y)→ x

evalAlg (Snd p) = case p of

Term (Pair x y)→ y

Note that the case distinction in the above eval-

uation algebra as well as in the direct evaluation in

Section 1 is incomplete: In case that an argument

is not of the expected type, e.g. Fst is applied to an

integer constant, the evaluation halts with a runtime

error.

3 Monadic Algebras and Thunks

In order to recover from runtime errors, it is better

to use monads to indicate failure explicitly. This

can be easily achieved by defining a monadic al-

gebra [3, 1], i.e. a function of type f r→ m r for

a monad m. Such a monadic algebra gives rise

to a monadic catamorphism of type Term f → m r.

The evaluation algebra from Section 2 can be eas-

ily adapted to such a monadic style. Unfortunately,

this will determine the evaluation strategy: The ar-

guments of the operator symbols such as Fst have

to be evaluated to normal form (in order to de-

termine whether an error occurred). For exam-

ple, the evaluation of an expression of the form

fst (3,snd 5) will yield an error since the evaluation

of (3,snd 5) to normal form fails due to the second

component of the pair.

In order to regain control over the evaluation

strategy, we have to allow arbitrary nesting of

monadic computations in the result. Instead of the

monadic result type m (Term Value), we therefore

use the result type Term (m⊕Value) – making the

monad part of the target signature. A monadic

computation can thus be embedded into the term

structure.

thunk :: m (Term (m⊕ f))→ Term (m⊕ f)
thunk = inject

The evaluation of terms with such thunks to weak

head normal form (whnf) is implemented by se-

quencing all thunks until a proper constructor (i.e.

in the f -part of the signature) is reached:

whnf :: Monad m⇒
Term (m⊕ f)→ m (f (Term (m⊕ f)))

whnf (Term (Inl m)) = m>>=whnf

whnf (Term (Inr t)) = return t

We can now use this idea to define a non-

strict monadic evaluation function using the Maybe

monad to indicate failure:

class EvalT f where

evalAlgT :: f (Term (Maybe⊕Value))
→ Term (Maybe⊕Value)

Again, the case for the value constructors is trivial:

instance EvalT Value where

evalAlgT = inject

For evaluating the operator symbol applications,

we simply evaluate their arguments to whnf and

create a thunk in the end:

evalAlgT (Add x y) = thunk $ do

Const i← whnf x

Const j← whnf y

2

Page 39 of 117

Evaluation à la Carte Patrick Bahr

return (inject (Const (i+ j)))

evalAlgT (Fst v) = thunk $ do

Pair x y← whnf v

return x

evalAlgT (Snd v) = thunk $ do

Pair x y← whnf v

return y

By constructing the catamorphism of this algebra,

we obtain the following evaluation function

evalT :: Term Sig→ Term (Maybe⊕Value)
evalT = cata evalAlgT

With only mild assumptions on the signature func-

tors, we can also easily implement the evaluation to

normal form by simply iterating the whnf function:

nf :: (Monad m,Traversable f)⇒
Term (m⊕ f)→ m (Term f)

nf = liftM Term .mapM nf <=<whnf

Eventually, we obtain the desired non-strict evalu-

ation function:

eval :: Term Sig→Maybe (Term Value)
eval = nf . evalT

Using this evaluation function, the expression

fst (3,snd 5) now evaluates to the expected value

3.

Full non-strict evaluation, however, is only one

option that we now have. We can stipulate addi-

tional strictness if desired, similarly to Haskell’s

strictness annotations. The following function

makes every constructor strict by evealuating each

of its arguments to whnf:

strict :: (f ≺ g,Traversable f ,Monad m)⇒
f (Term (m⊕g))→ Term (m⊕g)

strict = thunk . liftM inject .

mapM (liftM inject .whnf)

Now we can, for example, make all value construc-

tors strict simply by replacing inject with strict:

instance EvalT Value where

evalAlgT = strict

We can even be more specific: It is possible

to define the following combinator, which takes a

specification of which arguments are supposed to

be strict and then performs the desired evaluation

strategy:

strictAt :: (f ≺ g,Traversable f ,Monad m, . . .)⇒
(∀ a .Ord a⇒ f a→ [a])→
f (Term (m⊕g))→ Term (m⊕g)

For example, we can make only the second compo-

nent of the Pair value constructor strict:

instance EvalT Value where

evalAlgT = strictAt spec

where spec (Pair a b) = [b]
spec = []

In a similar manner also other combinators can

be formed that allow to specify the evaluation strat-

egy in a very fine grained fashion.

4 Conclusions

This simple observation shows yet another use-

ful aspect of using compositional data types as a

framework for dealing with abstract syntax trees

[1, 2].

In addition to the example presented here, we

have applied similar techniques to also control

the evaluation strategy for other recursion schemes

such as tree homomorphisms, tree transducers and

attribute grammars.

References

[1] Patrick Bahr and Tom Hvitved. Compositional data

types. WGP 2011, to appear.

[2] Laurence Day and Graham Hutton. Towards Mod-

ular Compilers For Effects. In Proceedings of the

Symposium on Trends in Functional Programming,

Madrid, Spain, 2011.

[3] Maarten Fokkinga. Monadic Maps and Folds for

Arbitrary Datatypes. Technical report, Memoranda

Informatica, University of Twente, 1994.

[4] Simon Marlow. Haskell 2010 Language Report,

2010.

[5] Wouter Swierstra. Data types à la carte. Journal of

Functional Programming, 18(4):423–436, 2008.

3

Page 40 of 117

Does it pay to extend the parameter of the world

model?

Werner Damm

University of Oldenburg and OFFIS, Germany

(joint work with Bernd Finkbeiner, University Saarbrücken)

Abstract

Will the cost for observing additional real-world phenomena in a world

model be recovered by the resulting increase in the quality of the imple-

mentations based on the model? We address the quest for optimal models

in light of industrial practices in systems engineering, where the develop-

ment of control strategies is based on combined models of a system and its

environment. We introduce the notion of remorsefree dominance between

strategies, where one strategy is preferred over another if it outperforms

the other strategy in comparable situations, even if neither strategy is

guaranteed to achieve all objectives. We call a world model optimal if

it is sufficiently precise to allow for a remorsefree dominating strategy

that is guaranteed to remain dominant even if the world model is re-

fined. We present algorithms for the automatic verification and synthesis

of dominant strategies, based on tree automata constructions from reac-

tive synthesis.

Page 41 of 117

Towards a Behavioral Analysis of Computer Algebra Programs∗

(Extended Abstract)

Muhammad Taimoor Khan

DK Computational Mathematics

Johannes Kepler University

Linz, Austria

muhammad.khan@dk-compmath.jku.at

Wolfgang Schreiner

Research Institute for Symbolic Computation

Johannes Kepler University

Linz, Austria

Wolfgang.Schreiner@risc.jku.at

We present our initial results on the behavioral analysis of computer algebra programs. Computer

algebra programs written in symbolic computation languages such as Maple and Mathematica sometimes

do not behave as expected [5], e.g. by triggering runtime errors or delivering wrong results. There has

been a lot of research on applying formal techniques to classical programming languages, e.g. Java [7],

C# [1] and C [3] etc., but we aim to apply the same techniques to computer algebra languages. Therefore

our goal is to design and develop a tool for the static analysis of computer algebra programs [12]. The

tool will automatically find errors in programs annotated with extra information such as variable types

and method contracts [10], in particular type inconsistencies and violations of method preconditions.

The task of applying formal techniques to widely used computer algebra languages (Maple and Math-

ematica) is more complex as these are fundamentally different from classical languages. In particular, we

found the following challenges respectively differences to classical languages for formal type checking

respectively specifying Maple programs (which are typical for most computer algebra languages):

• The language supports some non-standard types of objects, e.g. symbols, unevaluated expressions

and polynomials.

• There is no clear difference between declaration and assignment. A global variable is introduced

by an assignment; a subsequent assignment may modify the type information for the variable.

• The language uses type information to direct the flow of control in the program, i.e. it allows some

runtime type-tests which selects the respective code-block for further execution. This makes type

inference more complex.

• The language allows runtime type checking by type annotations but these annotations are optional

which give rise to type ambiguities. This also makes type inference more complex.

• Maple values are organized in a kind of polymorphic type system with a sub-typing relationship

such that we can assign a value to different types. This also makes type inference more complex.

The challenge for a specification language for Maple is to overcome those particularities of the language

that hinder static analysis because Maple was not designed for this purpose (type checking respectively

verification).

There are various computer algebra languages, Mathematica and Maple being the most widely used

by far [13], both of which are dynamically typed. We have in our work chosen Maple for the following

reasons:

• Maple has an imperative style of programming while Mathematica has a rule-based programming

style with more complex semantics.

∗The research was funded by the Austrian Science Fund (FWF): W1214-N15, project DK10. .

1

Page 42 of 117

muhammad.khan@dk-compmath.jku.at
Wolfgang.Schreiner@risc.jku.at

Specification and Verification of CA Programs Khan and Schreiner

• Maple has type annotations for runtime checking which can be directly applied for static anal-

ysis. (There are also parameter annotations in Mathematica but they are used for selecting the

appropriate rule at runtime).

Still the results we derive with type checking Maple can be applied to Mathematica, as Mathematica has

almost the same kinds of runtime objects as Maple.

As a starting point, we have defined a subset of the computer algebra language Maple called Mini-

Maple [8, 9]. Since type safety is a prerequisite of program correctness, we have formalized a type

system for MiniMaple and implemented a corresponding type checker. Furthermore, we have defined

a specification language to formally specify the behavior of MiniMaple procedures and implemented a

corresponding type checker. As the next step, we will develop a tool to automatically detect errors in

MiniMaple programs with respect to their specifications.

In the following we will brief the main features of our work.

A Type System for MiniMaple: MiniMaple uses Maple type annotations for static analysis. Based

on these annotations we defined a language of types and a corresponding type system. The type system

supports the usual concrete data types, sets, lists and records. It also supports some non-standard types,

e.g. the union type of various types, symbols, unevaluated expressions and polynomials etc. Type

anything is the super-type of all types. The problem of statically type-checking MiniMaple programs

is related to the problem of statically type-checking scripting languages such as Ruby [11], but there are

also fundamental differences due to the different language paradigms.

In the following, we highlight the problems arising from type checking various MiniMaple programs.

• Global variables (declarations) can not be type annotated; therefore to global variables values of

arbitrary types can be assigned in Maple. We introduce global and local contexts to handle the

different semantics of the variables inside and outside of the body of a procedure respective loop.

– In a global context new variables may be introduced by assignments and the types of variables

may change arbitrarily by assignments.

– In a local context variables can only be introduced by declarations. The types of variables

can only be specialized i.e. the new value of a variable should be a sub-type of the declared

variable type.

– The sub-typing relation is observed while specializing the type of a variable.

• Maple supports type tests (i.e. type(I,T)) to direct the control flow of a program. Different branches

of a conditional may have different pieces of type information for the same variable. We keep track

of the type information introduced by the branches to allow only satisfiable tests.

• With the use of type-tests, the number of loop iterations might influence the type information and

one cannot determine the concrete type by the static analysis. To handle this non-determination of

types we put a reasonable upper bound (least fixed point) on the types of variables. As a special

case this upper bound is the type of a variable prior to the body of a loop.

The type checker has been applied to the Maple package DifferenceDifferential [4]. No crucial typing

errors have been found but some bad code parts have been identified that can cause problems.

A Specification Language for MiniMaple: Based on the formalism of our type system we have

defined a formal specification language for MiniMaple. The specification language is a logical formula

language that mainly uses Maple notations but also has its own notations. The language allows to for-

mally specify the behavior of the procedures as a state relationship, e.g. by specifying pre/post-conditions

of a procedure and other constraints. The specification language supports specification declarations, pro-

cedure and loop specifications and assertions. The language also supports abstract data types, while

2

Page 43 of 117

Specification and Verification of CA Programs Khan and Schreiner

the existing specification languages are weaker in such specifications. Currently we are defining formal

semantics of MiniMaple. Based on this semantics we will define formal semantics of the specification

language so that it specifies the intended algebraic properties. The specification language aims to realize

respectively bridge the gap between actual computer algebra algorithm and its corresponding implemen-

tation [4].

We may use this specification language to generate executable assertions that are embedded in Mini-

Maple programs and check at runtime the validity of pre/post conditions. Our main goal, however, is to

use the specification language for static analysis, in particular to detect violations of method precondi-

tions. Here we currently investigate two possibilities:

1. We may directly generate verification conditions and use Satisfiability Modulo Theories (SMT)

solvers or interactive theorem provers to prove their correctness.

2. We may use some existing framework to generate verification conditions and prove the correctness,

e.g. by the Boogie [2] framework developed by Microsoft and Why [6] by LRI-France. Here we

need to translate our specification annotated MiniMaple program into an intermediate language of

Boogie/Why and then use their various proving back-ends for verification.

The formal specification of the DifferenceDifferential package developed at our institute will be the

main test for our specification language and checking framework.

References

[1] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# Programming System: An Overview.

In Construction and Analysis of Safe, Secure and Interoperable Smart devices (CASSIS ’04), LNCS, volume

3362, pages 49–69. Springer, 2004.

[2] Mike Barnett, Bor yuh Evan Chang, Robert Deline, Bart Jacobs, and K. Rustan M. Leino. Boogie: A

Modular Reusable Verifier for Object-Oriented Programs. In Formal Methods for Components and Objects:

4th International Symposium, FMCO 2005, LNCS, volume 4111, pages 364–387. Springer, 2006.

[3] Patrick Baudin, Jean C. Filliâtre, Thierry Hubert, Claude Marché, Benjamin Monate, Yannick Moy, and

Virgile Prevosto. ACSL: ANSI C Specification Language (preliminary design V1.2), preliminary edition,

May 2008. http://frama-c.com/download/acsl_1.2.pdf.

[4] Christian Dönch. Bivariate Difference-Differential Dimension Polynomials and Their Computation in Maple.

Technical Report, Research Institute for Symbolic Computation, Johannes Kepler University, Linz, 2009.

[5] Richard J. Fateman. Why Computer Algebra Systems Sometimes Can’t Solve Simple Equations. SIGSAM

Bulletin, 30(2):8–11, 1996.

[6] Jean-Christophe Filliâtre. Why: a multi-language multi-prover verification condition generator. Research

report 1366, LRI - CNRS UMR 8623, Université Paris-Sud, France, March 2003.

[7] Gary T. Leavens and Yoonsik Cheon. Design by Contract with JML. A Tutorial, 2006. ftp://ftp.cs.

iastate.edu/pub/leavens/JML/jmldbc.pdf.

[8] Muhammad Taimoor Khan. Software for MiniMaple. http://www.risc.jku.at/people/mtkhan/

dk10/.

[9] Muhammad Taimoor Khan. A Type Checker for MiniMaple. RISC Technical Report 11-05, also DK Techni-

cal Report 2011-05, Research Institute for Symbolic Computation, Johannes Kepler University, Linz, 2011.

[10] Bertrand Meyer. Applying Design by Contract. Computer, 25:40–51, October 1992.

[11] Jeffrey S. Foster Michael Furr, Jong-hoon (David) An and Michael Hicks. Static Type Inference for Ruby. In

Proceedings of the 24th Annual ACM Symposium on Applied Computing, OOPS track, Honolulu, HI, 2009.

[12] Wolfgang Schreiner. Project Proposal: Formally Specified Computer Algebra Software. Doktoratskolleg

(DK), Johannes Kepler University, Linz, Austria, http://www.risc.jku.at/projects/dk10, 2007.

[13] Inna K. Shingareva and Carlos Lizárraga-Celaya. Maple and Mathematica: A Problem Solving Approach for

Mathematics. Springer, 2nd ed. edition, September 2009.

3

Page 44 of 117

http://frama-c.com/download/acsl_1.2.pdf
ftp://ftp.cs.iastate.edu/pub/leavens/JML/jmldbc.pdf
ftp://ftp.cs.iastate.edu/pub/leavens/JML/jmldbc.pdf
http://www.risc.jku.at/people/mtkhan/dk10/
http://www.risc.jku.at/people/mtkhan/dk10/
http://www.risc.jku.at/projects/dk10

Integrating Resource-Restricted Execution Contexts

with Abstract Behavioral Specifications

Einar Broch Johnsen, Rudolf Schlatte, and S. Lizeth Tapia Tarifa

Department of Informatics, University of Oslo, Norway

{einarj,rudi,sltarifa}@ifi.uio.no

1 Introduction

Formal approaches to performance analysis has traditionally been in the domain of embedded systems

(for an overview, see [6]). However, the virtualization of resources in, e.g., cloud computing makes

performance analysis at the modeling stage important also for general software in order to gain early

insights into the resource needs of a service or component. Autonomous and self-managing software

may even dynamically adapt its resource needs in response to changes in client behavior.

In order to specify, analyze, and predict non-functional system behavior at an early stage in the

software development process, models need to naturally capture and range over relevant deployment

scenarios. For this reason, it is interesting to lift aspects of low-level deployment concerns to the ab-

straction level of the modeling language and integrate different execution contexts with the behavioral

model. We propose an integration of deployment components in the abstract behavioral specification

language ABS, based on a generic cost model for resource consumption. Deployment components

reflect resource-restricted executions context, and are parametric in their allocated resources. The cost

model may be adapted to specific resources such as concurrent processing capacities or memory. We

use our simulation tool to analyze system response time for given usage scenarios, depending on the

amount of resources allocated to the deployment components and the specific cost model.

2 Deployment Components for Timed ABS

ABS is a formally defined, abstract behavioral specification language for executable object-oriented

models [4]. It is designed to model distributed systems that communicate by exchanging messages.

ABS consists of a functional part to define and modify user-defined datatypes, and an object-oriented,

imperative part that models distributed asynchronous communication between active objects. The

language has a Java-like syntax, a formal semantics given in rewriting logic, and it is executable in

Maude [3]. We work with a timed extension to ABS where time evolves uniformly (see [2]), and is

comparable to a system clock which updates every n milliseconds.

Deployment Components with Parametric Resources are resource-restricted execution con-

texts which allow us to specify and compare different execution environments for concurrent ABS

models [1, 5]. Deployment components restrict the inherent concurrency of objects in ABS by map-

ping the logical concurrency to a model which includes a parametric number of available resources.

These resources are shared between the component’s objects. Resource-restricted deployment com-

ponents are integrated in ABS as follows. Resources are modeled by a data type Resource which

extends the natural numbers with an “unlimited resource” ω . Deployment components can be dy-

namically created with a given amount of resources r. The execution inside a deployment component

is restricted by the resources currently available in the component; thus the execution in an object may

need to wait for resources to become available. The availability of resources depends on the resources

initially allocated to a deployment component and on the cost model M which reflects the resource

usage following the execution flow of the object-oriented model.

1

Page 45 of 117

{einarj,rudi,sltarifa}@ifi.uio.no

Integrating Resource-Restricted Execution Contexts. . . Johnsen, Schlatte, and Tapia Tarifa

Client Agent Session Database

getSession

Session

order
makeOrder

resultresult

free

Figure 1: Example scenario

In order to give the modeler explicit control over the consumption of resources, standard state-

ments s of ABS have associated cost, which can be specified as an expression e over the state vari-

ables of the object and the local variables of the method. If e evaluates to n in the current state, the

execution of s in this state can only happen if at least n resources are available, and the execution of

the statement consumes n resources from the deployment component. In a deployment component

with ω resources, a statement can always be executed immediately. In a deployment component with

less than n allocated resources, the statement can never be executed. Otherwise, the execution of the

statement may need to wait until time has advanced in order for sufficient resources to be available.

3 Example: A Distributed Shopping Service

We show the design of a simple model of a web shop with a given time budget (the expected response

time) for each client interaction. We envisage the following main sequence of events in a client

session, which is shown in Figure 1. Clients connect to the shop by calling the getSession method

of an Agent object, which hands out Session objects from a dynamically growing pool. Clients call

the order method of their Session instance, which in turn calls the makeOrder method of a Database

object that is shared across all sessions. The order call returns True if the order was completed within

the specified time budget. After completing the order, the session object is returned to the agent’s

pool. This scenario models the architecture and control flow of a database-backed website, while

abstracting from many details (load-balancing thread pools, data model, sessions spanning multiple

requests, etc.), which can be added to the model if needed.

Figure 2 illustrates the kind of results possible to obtain after running different simulations varying

in the number and behavior of clients and in the available resources; i.e., from 10 to 50 synchronous

clients and 10 to 50 available resources on a deployment component. For synchronous clients, starting

with 20 clients, the number of requests goes up linearly with the number of resources, indicating

that the system is running at full capacity. Moreover, the number of successful requests decreases

somewhat with increasing clients since communication costs also increase. For periodic clients, the

system gets overloaded much more quickly since clients will have several pending requests; hence,

only 2 to 10 periodic clients were simulated. It can be seen that the system becomes completely

unresponsive quickly when flooded with requests.

4 Conclusions

Software modeling and analysis usually abstracts from low-level deployment aspects. As software

is increasingly being developed for varying architectures, there is a need to model and to reason

about deployment choices and about how a targeted architecture affects the behavior of a software

2

Page 46 of 117

Integrating Resource-Restricted Execution Contexts. . . Johnsen, Schlatte, and Tapia Tarifa

Figure 2: Number of total and successful requests, depending on the number of clients and resources,

for synchronous (left) and periodic (right) clients.

system. The resources available to a software component influence the quality of service offered by

the component even if the functionality is unchanged, for example with respect to response time.

High-level modeling languages today do not meet this need in a satisfactory way. In order to specify

and analyze the effect of deployment choices early in the software development process, these choices

must be expressible at the abstraction level of the modeling language.

As a step in this direction, we propose to represent certain low-level deployment aspects in high-

level modeling languages in terms of resource allocation and usage. In order to integrate resource

usage into models in a natural way, it is essential that the model reflects the control flow of the system.

We argue that abstract executable modeling languages offer the best abstraction level for integrating

deployment aspects. Our approach is to introduce deployment components, which act as resource-

restricted execution contexts for groups of concurrent objects, and are parametric in the amount of

resources they make available to their objects. This makes it possible to analyze the behavior of a

model ranging over the resources available in different deployment scenarios.

References

[1] E. Albert, S. Genaim, M. Gómez-Zamalloa, E. B. Johnsen, R. Schlatte, and S. L. Tapia Tarifa. Simulating

concurrent behaviors with worst-case cost bounds. In M. Butler and W. Schulte, editors, FM 2011, LNCS

6664, pages 353–368. Springer, June 2011.

[2] J. Bjørk, E. B. Johnsen, O. Owe, and R. Schlatte. Lightweight time modeling in Timed Creol. Electronic

Proceedings in Theoretical Computer Science, 36:67–81, 2010. Proceedings of 1st International Workshop

on Rewriting Techniques for Real-Time Systems (RTRTS 2010).

[3] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and C. L. Talcott, editors. All

About Maude - A High-Performance Logical Framework, How to Specify, Program and Verify Systems in

Rewriting Logic, LNCS 4350. Springer, 2007.

[4] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A core language for abstract

behavioral specification. In Proc. 9th International Symposium on Formal Methods for Components and

Objects (FMCO 2010), LNCS 6957, pages 142–164. Springer, 2011. To appear.

[5] E. B. Johnsen, O. Owe, R. Schlatte, and S. L. Tapia Tarifa. Dynamic resource reallocation between de-

ployment components. In J. S. Dong and H. Zhu, editors, Proc. International Conference on Formal

Engineering Methods (ICFEM’10), LNCS 6447, pages 646–661. Springer, Nov. 2010.

[6] A. Vulgarakis and C. C. Seceleanu. Embedded systems resources: Views on modeling and analysis. In

Proc. 32nd IEEE Intl. Computer Software and Applications Conference (COMPSAC’08), pages 1321–

1328. IEEE Computer Society, 2008.

3

Page 47 of 117

Polymorphic behavioural lock effects for deadlock checking

Ka I Pun1, Martin Steffen1, Volker Stolz1,2

1 Department of Informatics, University of Oslo, Norway
2 United Nations University—Intl. Inst. for Software Technology, Macao

Deadlocks are a common problem for concurrent programs, in particular where multiple threads are

accessing shared mutually exclusive resources synchronized by locks. As the scheduling at run-time

affects the occurrence of a deadlock, deadlocks may only occur occasionally, and therefore are difficult

to detect. Whether or not a deadlock exists in a specific run in a particular program mainly depends on

if the running program encounters a number of processes forming a circular chain, where each process

waits for shared resources held by the others [4].

One common way to prevent deadlocks is to statically ensure that such cycles on locks or resources

in general can never occur. This can be achieved by arranging shared resources in some partial order

and enforcing that the resources are accessed in accordance with that order. This idea has, e.g., been

formalized in a type-theoretic setting in the form of deadlock types [3]. The static system presented in

[3] supports also type inference (and besides deadlocks, prevents race conditions, as well). Deadlock

types are also used in [1], but not for static deadlock prevention, but for improving the efficiency for

deadlock avoidance at run-time.

In contrast, we use a behavioural type and effect system [2, 6] to capture lock interaction and use that

behavioural description to explore an abstraction of the state space to detect potential deadlocks. The

effects of our system express the relevant behaviour of a concurrent program with regard to re-entrant

locks. To detect potential deadlocks, we execute the abstraction of the actual behaviour to spot cyclic

waiting for shared locks among parallel threads in the program. In our previous work [7], we define a

type and effect system formalizing the sketched approach. The system presented there has two important

restrictions: first of all, it is explicitly typed, which forces the user to declare functions by specifying

its expected lock behaviour (in terms of the function’s effect). Putting that burden on programmers is

clearly unwelcome. Secondly, based on sub-effecting as the only form of polymorphism, the formal-

ization suffers from a lack of precision and therefore reports more spurious deadlocks than necessary.

To improve the precision, we propose in this paper a lock-polymorphic extension , of that work, which

addresses the two mentioned weaknesses. The formulation also can serve as the specification for type

and effect inference system.

Parametric lock effects

We use a behavioural type and effect system to capture the interaction of shared locks. Characterizing the

behaviour of each thread in a program as sequences of lock interactions allows detecting the symptom of

deadlocks, i.e. waiting for shared locks in a cyclic chain.

The grammar of the effects which we use to abstractly represent the behaviour of a simple concurrent

calculus with reentrant locks is presented in Fig. 1. To track which locks are actually handled in the

interactions, we annotate each lock with the corresponding program point π of its creation to specify

which lock is referring to at static time. As we focus on detecting deadlocks due to shared locks, we

improve the precision by introducing location variables, ρ , representing lock locations. Effects can be

either global in a program, or local in one single thread. For the effect construct, ‖ represents multiple

threads running in parallel globally, while semicolon represents sequential composition and + a choice

among effects. The behaviour of function abstraction and recursive function is parametrized by the

location variable ρ . The behaviour of lock handling: creating, locking and releasing a lock, is represented

by νLr,Lr.lock, and Lr.unlock, respectively.

1

Page 48 of 117

http://www.ifi.uio.no
http://www.uio.no
http://rcos.iist.unu.edu/

2

Φ ::= 0 | p〈ϕ〉 | Φ ‖ Φ effects (global)

ϕ ::= ε | ϕ;ϕ | ϕ +ϕ | ee(~r) | α effects (local)

ee ::= X | λ~ρ.ϕ | recX(~ρ).ϕ parametric behavior

a ::= spawn ϕ | νLr | Lr .lock | Lr .unlock labels/basic effects

α ::= a | τ transition labels

r ::= π | ρ location annotations

Figure 1: Types and effects

A behavioural type and effect system

The type and effect system uses judgments of the form Γ ⊢ e : T :: ϕ , which is read as: under the

environment Γ, expression e has type T and effect ϕ . Three typical rules of system are sketched in

Fig. 2. They deal with thread creation as well as interaction with an existing lock, where Lr represents a

lock which is created at r, where r is either a program point or a location variable.

Γ ⊢ e : T :: ϕ
TE-SPAWN

Γ ⊢spawn e :Thread::spawn ϕ

Γ ⊢ v :Lr:: ϕ
TE-LOCK

Γ ⊢ v. lock: Lr:: ϕ;Lr . lock

Γ ⊢ v :Lr:: ϕ
TE-UNLOCK

Γ ⊢ v. unlock: Lr:: ϕ;Lr.unlock

Figure 2: Type and Effect System

σ ⊢ p1〈(spawn ϕ);ϕ ′〉
p〈spawn ϕ〉
−−−−−−−→ σ ⊢ p1〈ϕ

′〉 ‖ p2〈ϕ〉 RE-SPAWN

σ(π) = free∨σ(π) = p(n) σ ′ = σ +πp

RE-LOCK

σ ⊢ p〈Lπ . lock〉
p〈Lπ.lock〉
−−−−−−→ σ ′ ⊢ p〈ε〉

σ(π) = p(n) n > 1 σ ′ = σ −πp

RE-UNLOCK

σ ⊢ p〈Lπ . unlock〉
p〈Lπ.unlock〉
−−−−−−−−→ σ ′ ⊢ p〈ε〉

Figure 3: Operational semantics for effects

The effect system describes the behaviour of a program in terms of sequences of lock interactions

among parallel processes. We detect deadlocks by executing the abstraction of the actual behaviour and

spotting processes waiting for shared locks in a circular chain. The analysis of the abstract behaviour

easily leads to state space explosion as different interleavings of the threads must be considered. Three

rules of the operational semantics for effects corresponding to the typing rules in Fig. 2 are sketched in

Fig. 3. The notation
p〈ϕ〉
−−→ means that a step with effect ϕ of a thread p is executed. To tackle infinite

executions through recursion which may lead to an infinite reachable state space, we place an upper

bound on lock counters which are used to keep track of how often a re-entrant lock has been taken by

the same thread. In addition, we bound non-tail recursive function calls by putting a similar limit on the

recursion depth; for details, see [7]. Beyond that chosen limit, the behaviour is over-approximated by

arbitrary, chaotic behaviour. The state space of this abstraction is finite and therefore allows exhaustive

search for deadlocks. We furthermore define the notion of deadlock and termination sensitive simulation

[5] to show that the behaviour of a program has been correctly captured in the abstraction.

Current Research Results

With the proposed specification of a type and effect system, we can automatically check for deadlocks

in the five dining philosophers in around 2.5 minutes with 82269 states. Our approach correctly detects

the deadlock situation in the original program without reporting any false positives. Also, our approach

correctly certifies the amended version of the dining philosophers where one of the philosophers will

always pick the right fork first as safe. We prove the correctness of the abstraction with regard to this

Page 49 of 117

REFERENCES 3

simulation of the original program, i.e., if an abstraction is deadlock free, then its original program must

be deadlock free, but not vice versa: a deadlock in the abstraction, as an over-approximation, does not

necessarily exist in the concrete program.

Acknowledgements Supported by the ARV grant of the Macao Science and Technology Development Fund.

References

[1] R. Agarwal, L. Wang, and S. D. Stoller. Detecting potential deadlocks with state analysis and run-time mon-

itoring. In S. Ur, E. Bin, and Y. Wolfsthal, editors, Proceedings of the Haifa Verification Conference 2005,

volume 3875 of Lecture Notes in Computer Science, pages 191–207. Springer-Verlag, 2006.

[2] T. Amtoft, H. R. Nielson, and F. Nielson. Type and Effect Systems: Behaviours for Concurrency. Imperial

College Press, 1999.

[3] C. Boyapati, A. Salcianu, W. Beebee, and M. Rinard. Ownership types for safe region-based memory man-

agement in real-time Java. In ACM Conference on Programming Language Design and Implementation (San

Diego, California). ACM, June 2003.

[4] E. G. Coffman Jr., M. Elphick, and A. Shoshani. System deadlocks. Computing Surveys, 3(2):67–78, June

1971.

[5] R. Milner. An algebraic definition of simulation between programs. In Proceedings of the Second International

Joint Conference on Artificial Intelligence, pages 481–489. William Kaufmann, 1971.

[6] F. Nielson, H.-R. Nielson, and C. L. Hankin. Principles of Program Analysis. Springer-Verlag, 1999.

[7] K. I. Pun, M. Steffen, and V. Stolz. Deadlock checking by a behavioral effect system for lock handling.

Technical report 404, University of Oslo, Dept. of Informatics, Mar. 2011.

Page 50 of 117

A Succinct Canonical Register Automaton Model

Sofia Cassel∗, Falk Howar†, Bengt Jonsson∗, Maik Merten† and Bernhard Steffen†

∗Dept. of Information Technology, Uppsala University, Sweden

Email: {sofia.cassel,bengt.jonsson}@it.uu.se
†Chair of Programming Systems, University of Dortmund, Germany

Email: {falk.howar,maik.merten,steffen}@cs.tu-dortmund.de

Note: Supported in part by the European FP7 project

CONNECT (IST 231167). A conference version of this

work will be presented at ATVA 2011: 9th International

Symposium on Automated Technology for Verification and

Analysis Taipei, Taiwan, October 11-14, 2011.

Abstract—We present a novel canonical automaton model,
based on register automata, that can easily be used to specify
protocol or program behavior. More concretely, register automata
are reminiscent of control flow graphs: they comprise a finite
control structure, assignments, and conditionals, allowing to
assign values of an infinite domain to registers (variables)
and to compare them for equality. A major contribution is
the definition of a canonical automaton representation of any
language recognizable by a deterministic register automaton, by
means of a Nerode congruence. Not only is this canonical form
easier to comprehend than previous proposals, but it can also be
exponentially more succinct than these. Key to the canonical form
is the symbolic treatment of data languages, which overcomes the
structural restrictions in previous formalisms, and opens the way
to new practical applications, e.g., in automata learning.

I. INTRODUCTION

Automata models that process words or trees over infi-

nite alphabets are becoming increasingly important in many

areas, including specification, verification, and testing (e.g.,

[2], [22]), databases [1], and user modeling [6]. A natural

form for such models consists of a finite control structure,

augmented by a finite set of registers (aka state variables),

processing input symbols using a predefined set of operations

(tests and updates) over input data and registers. Specialized

classes, such as timed automata [2], counter automata, and

data-independent transition systems [18] have long been used

for specification and verification. From a language-theoretic

perspective, decision problems and connections with logics

have been studied (e.g., [10], [8], [25]).

Modeling and reasoning with automata models can be made

much more efficient if it is possible to transform models

into a canonical form. Transformation into a canonical form

is heavily used in verification, equivalence, and refinement

checking, e.g., using (bi)simulation based criteria [17], [21].

It is the central principle underlying many techniques in

automata learning (aka regular inference) that construct min-

imal finite automata from a finite sample of accepted and

rejected words [3], [12], [23]. While for finite automata, there

are standard algorithms for determinization and minimization,

based on the Myhill-Nerode theorem [14], [20], it has proven

difficult to carry over such constructions and define canonical

forms for automata models over infinite alphabets, including

timed automata [26]. Often, canonical forms are obtained at

the price of (re-)encoding extensive information about the

relation between parameter values in the state space (e.g., [19],

[4]).

In this paper, we present a novel canonical automaton

model, based on a form of register automata (RA). We define

a form of RAs that are particularly suited to faithfully model a

large class of systems that do not compute or manipulate data

but manage their adequate distribution, e.g., protocols, as well

as certain mediators and connectors. This class of systems is

the backbone to support the large-scale, seamless integration

and orchestration of, e.g., (Web) services to complex business

applications running on the (Inter)net. One concrete current

example for the application of such automata models is the

CONNECT Project [15], which aims at dynamically synthe-

sizing required connectors based on descriptions of component

behavior in the form of automata.

RAs have a finite control structure. They process words over

an infinite alphabet consisting of terms with parameters from

an infinite domain. RAs can thus can be regarded as a simple

programming language, with variables, parallel assignments,

and conditions. In contrast to other types of automata that

have been suggested for data languages [25], [7], our form of

RAs do not restrict the access to variables to a specific order

or pattern, nor do they constrain the contents of the variables

(e.g., by uniqueness). This supports a much more intuitive

modeling of data languages, while leaving the expressiveness

untouched.

We present a Nerode congruence for RAs that yields a

canonical form. Key to this generalization of Nerode’s right

congruence ([14], [20]) to RAs is the symbolic treatment of

data languages in a way that abstracts from concrete data val-

ues and rather concentrates on the relations between parameter

values. This does not only allow for the required flexibility,

but it also leads to a more elegant canonical form, which

may even be exponentially more succinct than other suggested

canonical forms. This is very important in many applications.

For instance, in automata learning, the complexity of the

learning procedure directly depends on the size of the minimal

canonical form of the automaton [3], [23].

By a non-technical analogy, we could compare the differ-

ence between the automata of [11], [4] and our canonical form

to the difference between the region graph and zone graph

Page 51 of 117

constructions for timed automata. The region graph considers

all possible combinations between constraints on clock values,

be they relevant to acceptance of the input word or not,

whereas the zone graph construction aims to consider only

relevant constraints. The analogy is not perfect, however, since

our automata are always more succinct than those of [11], [4].

In summary, the contribution of this paper is a succinct and

intuitive RA formalism that can easily be used to specify pro-

tocol or program behavior, with a canonical representation of

any (deterministic) RA-recognizable data language by means

of a Nerode congruence.

a) Related Work: Generalizations of regular languages

to infinite alphabets have been studied previously. Kaminski

and Francez [16] introduced finite memory automata (FMA)

that recognize languages with infinite input alphabets. Since

then, a number of formalisms have been suggested (pebble

automata, data automata, . . .) that accept different flavors of

data languages (see [25], [8], [7] for an overview). Most of

these formalisms recognize data languages that are invariant

under permutations on the data domain. In [9] a logical char-

acterization of data languages is given plus a transformation

from logical descriptions to automata.

While most of the above mentioned work focuses on non-

deterministic automata and are concerned with closedness

properties and expressiveness results of data languages, we

are interested in a framework for deterministic RAs that can

be used to model the behavior of protocols or (restricted)

programs. This includes in particular, the development of

canonical models on the basis of a new Myhill Nerode-like

theorem.

Only in [11], [4] a Myhill-Nerode theorem for a form

of register automata is presented. Canonicity is achieved by

restricting how state variables are stored, which leads to

complex and hardly comprehensible models, as argued in [13].

These complications are overcome in our structurally much

easier RA-based approach.

II. OUTLINE OF MAIN CONCEPTS OF THE WORK

In this section, we give an outline of the technical devel-

opment of the paper. We assume an unbounded domain D of

data values and a set I of actions. A data symbol is a term of

form α(d1, . . . , dn), consisting of an action α and data values

d1, . . . , dn. A data word is a sequence of data symbols. A

data language is a set of data words, which is closed under

permutations on D.

We present an automaton model that recognizes data lan-

guages, called Determinate Register Automata (DRAs). Here,

we illustrate it by modeling the behavior of a fragment of the

XMPP protocol (shown in Figure 1). A user can register an

account (providing a username and a password), log in using

this account, change the password, and delete the account.

We can describe this as a data language, containing sequences

of data symbols α(d1, . . . , dn) where α is an action and

d1, . . . , dn data values. For example, the user Bob could

register his account with the action register(Bob, secret)
(providing his username and password), and then log in with

the action login(Bob, secret). Once logged in, he could

change his password to boblovesalice with the action

pw(boblovesalice). In the figure, accepting locations are

denoted by two concentric circles. Note that several transitions

are omitted for brevity.

l0

l1

l2

register(p1,p2) | true

x1:=p1;x2:=p2

login(p1,p2) | x1=p1∧x2=
−

logout() | true

−

delete() | true

−

pw(p1) | true

x2:=p1

Fig. 1. Partial model for a fragment of XMPP

We omit the definitions of runs, acceptance, etc., which are

not surprising.

A given data language may be accepted by many different

DRAs. In order to obtain a succinct, canonical form of

DRAs, we first introduce a canonical form for runs of a

DRA, called constrained words, which capture the equalities

and inequalities between parameters. Intuitively, these can be

thought of as representations of runs of a register automataon.

We can then use sets of constrained words, together with a

classification of these words as “accepted” or “rejected”, as

a representation of data languages. We establish, as a central

result that any data language can be represented by a minimal

set of constrained words. This minimal set will correspond

to the set of runs of our canonical automaton, and will serve

several purposes during automata construction: (1) it will allow

us to keep only the essential relations between data values and

filter out inessential (accidental) relations between data values,

(2) from it, we can derive the parameters an automaton must

store in variables after processing a data word, and (3) we can

transform parts of it directly into transitions when constructing

the canonical DRA.

We also compare our register automata to previously pro-

posed formalisms. There are already proposals for DRAs that

accept data languages, which, however, fail to be simple and

do not exactly match the flavor of data languages we are

using [16], [4]. For instance, in these automata, variables

have to be unique, or can only be accessed in a queue-like

fashion. A Myhill-Nerode-like theorem has been proposed for

these data languages and automata [11], [4]. It is, however,

formulated on the level of concrete data words. This makes

it difficult to encode only non-accidental relations between

parameters in the corresponding canonical form.

Both the design of the DRAs and the Nerode congruence

on the level of data words thus require encoding information

about accidental relations between parameters into the set of

locations. This makes the models harder to understand and

work with. We show that in the worst case the resulting canon-

ical models can be exponentially bigger than our canonical

models.

Page 52 of 117

III. CONCLUSIONS AND FUTURE WORK

In this paper, we present a novel form of register automata,

which also has an intuitive and succinct minimal canonical

form, which can be derived from a Nerode-like right congru-

ence.

Our immediate plans are to use these results to generalize

Angluin-style active learning to data languages over infinite

alphabets, which can be used to characterize protocols, ser-

vices, and interfaces. Another obvious problem is to generalize

the canonical model to more expressive signatures with other

simple operations on data values, e.g., including comparisons

of various forms.

REFERENCES

[1] N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. XML with data
values: typechecking revisited. J. Comput. Syst. Sci., 66(4):688–727,
2003.

[2] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer

Science, 126:183–235, 1994.

[3] D. Angluin. Learning regular sets from queries and counterexamples.
Information and Computation, 75(2):87–106, 1987.

[4] M. Benedikt, C. Ley, and G. Puppis. What you must remember when
processing data words. In Proc. 4th Alberto Mendelzon Int. Workshop

on Foundations of Data Management, Buenos Aires, Argentina, volume
619 of CEUR Workshop Proceedings, 2010.

[5] T. Berg, B. Jonsson, and H. Raffelt. Regular inference for state machines
using domains with equality tests. In Proc. FASE, volume 4961 of LNCS,
pages 317–331. Springer, 2008.

[6] M. Bielecki, J. Hidders, J. Paredaens, J. Tyszkiewicz, and J. V. den
Bussche. Navigating with a browser. In Proc. ICALP ’2002, LNCS

2380, pp. 764–775. Springer, 2002.

[7] H. Björklund and T. Schwentick. On notions of regularity for data
languages. Theoretical Computer Science, 411:702–715, January 2010.

[8] M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin.
Two-variable logic on data words, 2011. ACM Transactions on Com-
putational Logic, to appear.

[9] P. Bouyer. A logical characterization of data languages. Information

Processing Letters, 84:200–2, 2001.

[10] P. Bouyer, A. Petit, and D. Thérien. An algebraic approach to data lan-
guages and timed languages. Information and Computation, 182(2):137–
162, 2003.

[11] N. Francez and M. Kaminski. An algebraic characterization of deter-
ministic regular languages over infinite alphabets. Theoretical Computer

Science, 306(1-3):155–175, 2003.

[12] E. M. Gold. Language identification in the limit. Information and

Control, 10(5):447–474, 1967.

[13] O. Grumberg, O. Kupferman, and S. Sheinvald. Variable automata over
infinite alphabets. In Proc. LATA, volume 6031 of LNCS, pages 561–
572, 2010.

[14] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages,

and Computation. Addison-Wesley, 1979.

[15] V. Issarny, B. Steffen, B. Jonsson, G. S. Blair, P. Grace, M. Z.
Kwiatkowska, R. Calinescu, P. Inverardi, M. Tivoli, A. Bertolino, and
A. Sabetta. CONNECT Challenges: Towards Emergent Connectors for
Eternal Networked Systems. In ICECCS, pages 154–161, IEEE, 2009.

[16] M. Kaminski and N. Francez. Finite-memory automata. Theoretical

Computer Science, 134(2):329–363, 1994.

[17] P. Kanellakis and S. Smolka. CCS expressions, finite state processes, and
three problems of equivalence. Information and Computation, 86(1):43–
68, May 1990.

[18] R. Lazic and D. Nowak. A unifying approach to data-independence. In
Proc. CONCUR 2000, volume 1877 of LNCS, pages 581–595, 2000.

[19] O. Maler and A. Pnueli. On recognizable timed languages. In Proc.

FOSSACS’04, volume 2987 of LNCS, pages 348–362. Springer Verlag,
2004.

[20] A. Nerode. Linear Automaton Transformations. Proceedings of the

American Mathematical Society, 9(4):541–544, 1958.

[21] R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM

Journal of Computing, 16(6):973–989, 1987.

[22] A. Petrenko, S. Boroday, and R. Groz. Confirming configurations in
EFSM testing. IEEE Trans. on Software Engineering, 30(1):29–42,
2004.

[23] R. Rivest and R. Schapire. Inference of finite automata using homing
sequences. Information and Computation, 103(2):299–347, 1993.

[24] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP):
Instant Messaging and Presence. RFC 6121 (Proposed Standard), March,
2011.

[25] L. Segoufin. Automata and logics for words and trees over an infinite
alphabet. In Proc. CSL, volume 4207 of LNCS, pages 41–57. Springer,
2006.

[26] T. Wilke. Specifying timed state sequences in powerful decidable logics
and timed automata. In Proc. FTRTFT’94, volume 863 of LNCS, pages
694–715. Springer, 1994.

Page 53 of 117

The winning ways of concurrent games

Glynn Winskel

University of Cambridge, United Kingdom

Abstract

This talk will introduce and motivate concurrent games and winning
strategies, show how winning strategies compose to yield a bicategory and
how this specializes to an order-enriched category of winning deterministic
concurrent strategies. A motivation has been to develop an intensional
domain theory, in the spirit of game semantics, that right from the start
also copes with concurrent computation. I’ll try to summarize the present
state of progress and relations with existing (generalized) domain theories.

Page 54 of 117

Stuttering in Abstract Probabilistic Automata

Benoît Delahaye,

Aalborg University, Denmark

benoit@cs.aau.dk

Kim G. Larsen,

Aalborg University, Denmark

kgl@cs.aau.dk

Axel Legay,

INRIA/IRISA, France

axel.legay@irisa.fr

Mikkel L. Pedersen,

Aalborg University, Denmark

mikkelp@cs.aau.dk

1 Context

Nowadays, systems are tremendously big and complex and mostly result from the assembling of sev-

eral components. These components are usually designed by teams working independently but with a

common agreement on what the interface of each component should be. These interfaces precise the

behaviors expected from each component as well as the environment in which they can be used, but do

not impose any constraint on how the components are implemented.

Instead of relying on Word/Excel text documents or modeling languages such as UML/XML, as is

usually done in practice, we recommend relying most possibly on mathematically sound formalisms.

Mathematical foundations that allow to reason at the abstract level of interfaces, in order to infer proper-

ties of the global implementation, and to design or to advisedly (re)use components is a very active re-

search area, known as compositional reasoning [3]. Aiming at practical applications in fine, the software

engineering point of view naturally leads to the following requirements for a good theory of interfaces.

• Satisfaction. It should be decidable whether an interface admits an implementation (a model).

One should also be capable of synthesizing an implementation for such an interface. In this paper,

implementation shall not be viewed as a programming language but rather as a mathematical object

that represents a set of programming languages sharing common properties.

• Refinement. It is important to be able to replace a component by another one without modifying

the behaviors of the whole design. At the level of interfaces, this corresponds to the concept of

Refinement. Refinement allows replacing, in any context, an interface by a more detailed version

of it. Refinement should entail substitutability of interface implementations, meaning that every

implementation satisfying a refinement also satisfies the larger interface. Refinement thus extends

the classical simulation relation between systems to specifications.

• Conjunction. Large systems are concurrently developed for their different aspects or viewpoints

by different teams using different frameworks and tools. The issue of dealing with multiple aspects

or multiple viewpoints is thus essential. This implies that several interfaces are associated with a

given component, namely (at least) one per viewpoint. These interfaces are to be interpreted in a

conjunctive way.

• Composition. The interface theory should also provide a combination operation, which reflects

the standard interaction/composition between systems.

In addition, any good interface theory should guarantee classical properties such as independent

implementability that allows to combine components in various orders.

1

Page 55 of 117

Stuttering in APAs Delahaye et. al.

i

a

b

D I

d, .4

d, .6

{rev}

r,1

{re j}

{acc}

{{acc},{re j}} {{rev}}

d,ϕd

r,ϕr

ϕr ≡ µ(I) = 1

ϕd ≡ µ(D) = 1

Figure 1: Implementation PA (left) and specification APA (right) of a reviewer

2 The Challenge

Building good interface theories has been the subject of intensive studies among which one finds classical

logical specifications, various process algebrae such as CSP, or Input/Output automata/interfaces (see

[4, 1, 6]). Recently, a new series of works has concentrated on modal specification [5], a language

theoretic account of a fragment of the modal mu-calculus logic which admits a richer composition algebra

with composition, conjunction and even residuation operators. The interest of modal automata lies in the

fact that this is the only model where both composition and conjunction can be expressed and computed

in a very simple and elegant manner [7].

As soon as systems include randomized algorithms, probabilistic protocols, or interact with physical

environment, probabilistic models are required to reason about them. This is exacerbated by require-

ments for fault tolerance, when systems need to be analyzed quantitatively for the amount of failure

they can tolerate, or for the delays that may appear. As Henzinger and Sifakis [3] point out, introducing

probabilities into design theories allows assessing dependability of IT systems in the same manner as

commonly practiced in other engineering disciplines.

Our response to this problem was to propose Constraint Markov Chains (CMC) that is a complete

specification theory for pure stochastic systems, namely Markov Chains (MC). Roughly speaking, a

CMC is a MC equipped with a constraint on the next-state probabilities from any state. An implementa-

tion for a CMC is thus a MC, whose next-state probability distribution satisfies the constraint associated

with each state. Contrary to Interval Markov Chains where sets of distributions are represented by inter-

vals, CMCs are closed under both composition and conjunction.

However CMCs do not permit to reason on non-deterministic behaviors, hence on Probabilistic Au-

tomata (PA). A solution to this problem was provided in [2], where we have presented Abstract Prob-

abilistic Automata (APA), the first complete specification theory for probabilistic automata. APAs are

specifications that represents a possibly infinite set of PAs. APAs combine Modal Automata and CMCs

– the abstractions for labelled transition systems and Markov Chains, respectively. The theory has been

implemented and tested on several case studies.

Example 1. Consider the implementation (left) and specification (right) of a reviewer given in Figure 1.

The specification specifies that there are two possible transitions from initial state I: a may transition

with action r (read) and a must transition with action d (decide). May transitions are represented with

dashed arrow, while must transitions are represented with plain arrow. The probability distributions

associated with these actions are specified by the constraints ϕr and ϕd , respectively. One can see that

the implementation gives a more precise behavior of the reviewer: action r loops back to initial state i

with probability 1, while the decision leads to state a (reject) with probability .6 and to state b (accept)

with probability .4. Satisfaction between implementation and specification lifts the classical notion of

simulation for PA to APA as follows: (1) all must transitions of the specification must be matched with

transitions in the implementations, and (2) all transitions in the implementation must be matched with

may transitions in the specification. Additionally, we have to check that the probability distributions in

2

Page 56 of 117

Stuttering in APAs Delahaye et. al.

i

x

y

i

a

b

a

b
d, .4{rev}

d, .6

τ

τ

τ

τ

d, .6

d, .4

µ∗ µ

Figure 2: Illustration of weak bisimulation between PAs

a

b

D Ii

h

s

{re j}

{acc}

{{acc},{re j}} {{rev}}

d,ϕd

r,ϕr

ϕr ≡ µ(I) = 1

ϕd ≡ µ(D) = 1

{rev} {mood}

{rev}

{rev}

r,1

m, .5

m, .5

d, .5

d, .5

d, .7

d, .3

x

µ∗

Figure 3: Illustration of stutter satisfaction for APAs

the implementation are matched with probability distributions in the specification that satisfy the given

constraints.

However, while APA is a complete specification theory in itself, it still lacks some important design

features that are needed to make this theory attractive from an engineering point of view. As an example,

in the process of incremental design, it is sometimes necessary to incrementally widen the scope of

implementations. Usually, for PA, the latter is done by permitting the addition of hidden actions also

called stutter steps. Such actions clearly complicate the definition and the computation of operations

such as bisimulation/simulation and composition. As an example, simulation between PAs has to be

lifted to weak simulation as illustrated with the following example.

Example 2. In Figure 2, we illustrate the notion of weak bisimulations between two given PAs. In the left

PA, internal action τ has to be taken into account. In this case, one has to compute the overall probability

µ∗ of reaching states a and b from state i and compare this probability to the transition probability µ in

the right PA. In essence, weak bisimulation holds if these probabilities are equal.

The objectives of this presentation are to survey the theory of APAs as well as to present a solution

to the treatment of hidden actions. Our solution takes the form of an extension of the one proposed to

handle internal actions of PAs: we say that a distribution µ∗ is reached via a stutter transition a if there

exists a scheduler for the internal transitions that can follow the action a, such that the overal distribution

reached after executing only internal actions is µ∗. The idea is illustrated with the following example.

Example 3. In our formalism, hidden actions and local states are made explicit. As illustrated in Fig-

ure 3 the state space of PAs is split into visible (circles) and local (boxes) states. Invisible states can only

perform hidden actions. Stuttering satisfaction then computes all internal overall probabilities of reach-

ing visible states, and verifies that these overall probabilities match distributions in the specification

satisfying the constraints.

During the presentation, we shall show how extending APA with internal actions impacts both the

definition and the algorithmic treatment of their operations and the properties they guarantee. Finally,

we will also present a new logical characterization of APAs that takes internal actions into account.

3

Page 57 of 117

Stuttering in APAs Delahaye et. al.

References

[1] L. de Alfaro and T. A. Henzinger. Interface automata. In Proc. 8th European Software Engineering Conference

held jointly with 9th ACM SIGSOFT International Symposium on Foundations of Software Engineering (ESEC

/ SIGSOFT FSE), Vienna, Austria, pages 109–120. ACM Press, 2001.

[2] Benoît Delahaye, Joost-Pieter Katoen, Kim G. Larsen, Axel Legay, Mikkel L. Pedersen, Falak Sher, and An-

drzej Wasowski. Abstract probabilistic automata. In Verification, Model Checking, and Abstract Interpretation

- 12th International Conference, VMCAI 2011, Austin, TX, USA, January 23-25, 2011. Proceedings, volume

6538 of Lecture Notes in Computer Science, pages 324–339. Springer, 2011.

[3] T. A. Henzinger and J. Sifakis. The embedded systems design challenge. In Proc. 14th International Sympo-

sium on Formal Methods (FM), Hamilton, Canada, volume 4085 of lncs, pages 1–15. Springer, 2006.

[4] H. Hermanns, U. Herzog, and J-P. Katoen. Process algebra for performance evaluation. Theor. Comput. Sci.,

274(1-2):43–87, 2002.

[5] K. G. Larsen. Modal specifications. In Proc. International Workshop on Automatic Verification Methods for

Finite State Systems (AVMS), Grenoble, France, volume 407 of Lecture Notes in Computer Science, pages

232–246. Springer, 1989.

[6] Nancy Lynch and Mark R. Tuttle. An introduction to Input/Output automata. CWI-quarterly, 2(3), 1989.

[7] Jean-Baptiste Raclet. Quotient de spécifications pour la réutilisation de composants. PhD thesis, Université

de Rennes I, december 2007. (In French).

4

Page 58 of 117

Towards quantitative evaluation of stochastic pharmacy

workflows

Luke Herbert

Technical University of Denmark

Lyngby, Denmark

lthhe@imm.dtu.dk

Robin Sharp

Technical University of Denmark

Lyngby, Denmark

robin@imm.dtu.dk

1 Introduction

European hospitals are being placed under growing pressure to deliver efficiency gains due to an increasing elderly

population and ever tighter financial constraints. A significant proportion of the treatment performed relies on

the adaptive application of various intravenous medicine which is mostly in liquid form and which is prepared

in central pharmacies serving a number of departments. Due to strict safety requirements within pharmacies, the

process of preparation of fluid medicine for intravenous use is; labour intensive, inefficient[3], error-prone[1, 6] and

poses health risks to medical staff. Current product preparation workflows rely on production techniques largely

abandoned by other industries; including duplicating inventory, inflexible batch processing, and over production

where doses are often prepared in anticipation of a need or demand that may end up not being realised which

contributes to waste[7].

A solution to these issues has been sought in the automation of the medication management and dispensing

processes. Deployment of systems for this purpose has delivered significant improvements in safety for both

staff and patients[2, 10], and new pharmacy capabilities such as customised medicine have become feasible[2].

However, the technology has proven disruptive to traditional pharmacy processes and many potential efficiency

gains have yet to be realised.

1.1 Contribution

In this paper, we present the first steps towards addressing these issues by developing a method to model and ana-

lyse pharmacy and automated workflows and their interaction so as to be able to accurately provision an effective

automated solution. This is achieved by extending a well developed modelling formalism (BPMN)[5], in use in

healthcare, to include timing and stochastic data (section 2). We present an algorithm for the conversion of this

formalism into a format amenable to stochastic model checking, which allows for the calculation of a wide range of

system properties (section 3). This work will serve as a basis for the development of software tools implementing

the method and further theoretical work aimed at automatic synthesis of process configurations (section 4).

2 BPMN

Business Process Model and Notation (BPMN)[5] is a graphical notation for specifying business processes. The

primary goal of BPMN is to provide a notation that is readily understandable by all business users. BPMN’s ability

to serve as a standardized bridge between business process design and implementation has lead to widespread

adoption in the healthcare industry[16, 14] where its design goals have allowed for precise description of hospital

workflows. Specific case studies[13, 15, 12] have underlined this, developing models of various complex hospital

workflows rapidly and allowing effective manual restructuring of process flows.

2.1 Business Process Diagrams (BPD)

Modelling a workflow in BPMN involves composing a number of BPMN elements into a single business process

diagram (BPD). For the purposes of this extended abstract we will consider BPDs restricted to a minimal subset of

BPMN elements with two extensions to allow for timing and stochastic branching. Although this omits traditional

data-based control flow, it is sufficient to illustrate a method to perform performance analysis of the resulting

models using techniques from stochastic model checking.

1

Page 59 of 117

lthhe@imm.dtu.dk
robin@imm.dtu.dk

Towards quantitative evaluation of stochastic pharmacy workflows L. Herbert & R. Sharp

Definition 1 (Minimal BPD). A minimal BPD is a tuple BPD = (O,F) where O is a set of nodes (corresponding

to BPMN objects) and F ⊆O×O is an edge relation (corresponding to BPMN flows). The set O can be partitioned

into 7 disjoint subsets; start events ES, end events EE, trigger events ET, catch events EC, GB a set of branch

gateways where each element g ∈GB has an associated rate distribution function Rg, GJ a set of join gateways

which merge control paths and T a set of tasks, where each element t ∈ T has an associated stochastic time delay

expressed as a normal distribution function Nt(µt ,σ
2
t).

A BPD describes a number of business processes, where for each process F defines a directed graph with

nodes which are elements of O. For each node o ∈ O the input nodes of o are in(o) = {x ∈ O∣xFy} and output

nodes of o are out(o) = {y ∈ O∣xFy}. Branch gateways assign a rate to each outflow indicating how often the

flow of control takes this path and thus controlling execution. This definition of BPDs allows for graphs which

are unconnected, do not have start or end elements or various other properties which place them outside what is

permitted in BPMN models. We therefore define:

Definition 2 (Well-formed minimal BPD). A BPD is well-formed if the following conditions hold:

WF1: ∀e ∈ES ∶ in(e) = ∅∧∣out(e)∣ = 1 WF2: ∀e ∈EE ∶ out(e) = ∅∧∣in(e)∣ = 1

WF3: ∀t ∈T ∶ ∣out(t)∣ = 1∧∣in(t)∣ = 1 WF4: ∀g ∈GB ∶ ∣in(g)∣ = 1∧∣out(g)∣ > 1)
WF5: ∀g ∈GB ∶∑∀xi∈out(g)Rg(xi) = 1 WF6: ∀g ∈GJ ∶ ∣in(g)∣ > 1∧∣out(g)∣ = 1)

WF7: ∀o ∈O,∃(s,e) ∈ES×EE ∶ sF∗o∧oF∗e

where F∗ is the reflexive transitive closure of F .

The first two conditions WF1 and WF2 simply state that start and end states do not have respectively in or

out flows and are followed/preceded by a single state. WF3 ensures tasks do not branch control flow. WF4 WF6

ensure that split and join of control flows actually split/join flow. WF5 ensures that the rates of all branches are

defined and hence no branch gateway can be reached from which a further choice is not possible. Finally WF7

ensures that all objects lie on a path from a start to an end event. We will only consider well-formed minimal

BPDs. However, it should be noted that this language has features that cover the vast majority of the core BPMN

constructs with only data based control flow being absent. Many elements of data-based control flow can, however,

be simulated in well-formed minimal BPDs using message passing and dummy processes.

2.2 BPMN Semantics

BPMN is a visual notation and while the BPMN specification[5] provides extensive syntactic rules, the semantics

of BPMN is only given in narrative form using a somewhat inconsistent terminology. A number of papers have un-

dertaken the task of providing formal semantics in the form of Petri nets[4], Business Process Execution Language

(BPEL),[11] and Communicating Sequential Processes (CSP) [17].

In the work introduced in this paper we adopt the method for deriving a CSP semantics for a BPMN fragment

given in [17] to our extended subset of BPMN. The basic idea of determining the semantics of BPMN is as follows:

an abstracted BPMN syntax is expressed in the Z notation and then a semantic function converts this to a parallel

composition of CSP processes corresponding to states in the diagram. These processes are themselves built up from

smaller predefined CSP processes used as building blocks. This development is verbose but quite straightforward

and can be used in our case without dramatic modification other than accommodating timing, in the form of a

single global clock, and a slight modification of non-deterministic choice to accommodate stochastic rates.

3 Stochastic Model Checking

The main goal with this work is to be able to perform stochastic model checking of BPMN models. Specifically

we wish to derive properties of the form:

• Transient and steady-state probabilities e.g. the probability that the system operational at time instant t

or the overall probability that it is operational.

• Timing, occurrence and ordering of events e.g. the probability that a failure of component B (if it occurs)

happens before any failure of component A.

2

Page 60 of 117

Towards quantitative evaluation of stochastic pharmacy workflows L. Herbert & R. Sharp

• Reward-based properties e.g. the throughput of the system, i.e. the expected steady-state rate of job

completion.

• Best- and worst-case scenarios e.g. the best-case instantaneous availability of the system at time t, starting

from any initial configuration.

3.1 Conversion

Conversion of well-formed minimal BPDs to a specific model checking format follows broadly the process used for

a wide range of model checkers as all require a formal language input. In this case we will outline our conversion

to the PRISM language format[8].

We begin by decomposing a BPD into processes. We then traverse each process from its unique start node to

various end nodes building a graph-like data structure in a fashion similar to[11]. Branching in the simple cases

presented here maps directly to the PRISM language.

We deal with tasks t ∈ T by creating two states for a task: one before

and one after the task. The first state functions as a branching gateway

with a number of edges generated to the second sate which functions as

a join gateway. The number of edges generated can be chosen during

the conversion process by dividing the distribution into the required

number of intervals, each edge has a time delay equal to the centre of

the interval and a branch probability given as p = Pr[a < X < b] where

a and b are the bounds of the interval. (see figure 1) Figure 1: Task edge generation

It should be noted that our conversion process allows for a great deal of tuning, making it possible to produce

models of varying complexity and with a wide range of annotations.

4 Conclusions

In this brief introduction we have extended the BPMN modelling formalism, widely used in the modelling of

business operations, to allow for the recording of variable task timings and stochastically branching control flow.

We have outlined a means to determine the semantics of such models and outlined how these models can be

converted to a format suitable for verification by model checking. This abstract omits many details of the methods

being developed and seeks to demonstrate results for a very limited subset of BPMN. It should be stressed that a

fuller presentation of this work would present a complete semantics for a larger timed stochastic BPMN fragment,

which consequently also would allow for a more extensive description of the method of conversion to a model

checkable system description. This work is ongoing, and the theoretical developments described are accompanied

by the development of software tools making use of the PRISM model checker[9].

4.1 Future work

The ultimate goal of this work is to investigate the following types of synthesis problems within the context given.

• Given a timed BPMN workflow, including probabilistic branching, calculate the next sequence of actions to

be taken for all states in the systems to obtain the optimum of some parameter. (E.g. Given a medical robot

interacting with pharmacists required to perform a given list of tasks in a minimum amount of time, what

action should it take at each stage depending on the outcome of its own, unpredictable, operations.).

• Given a timed BPMN workflow, and a new process to be added to this workflow calculate the optimal

configuration of the new combined workflow, with respect to some property of system, such as time. (E.g.

How would be it best to reorganise a pharmacy workflow once a robotic system was introduced).

• Given an existing timed BPMN workflow and a multi-set of new processes that may be added, find the

optimal choice from this multi-set to achieve the smallest/largest value of a parameter of interest. (E.g.

Determine what selection of robotic sub-modules interacting with an existing workflow will achieve a re-

duction in drug production time/cost).

3

Page 61 of 117

Towards quantitative evaluation of stochastic pharmacy workflows L. Herbert & R. Sharp

References

[1] C. A. Bond, C. L. Raehl, and T. Franke. Medication errors in united states hospitals. The Journal of Human

Pharmacology and Drug Therapy, 21(9):1023–1036, September 2001.

[2] J. Carmenates and M. R. Keith. Impact of automation on pharmacist interventions and medication errors in a

correctional health care system. American Journal of Health-System Pharmacy, 59(9):779–783, May 2001.

[3] A. Colquhoun. Could automation improve efficieny and help pharmacies with cost saving? The Pharma-

ceutical Journal, 285:587–591, November 2010.

[4] R. M. Dijkman, M. Dumas, and C. Ouyang. Formal semantics and analysis of bpmn process models. 2007.

[5] O. M. Group. Business Process Model and Notation (BPMN) 2.0. Object Management Group, Needham

MA, USA, 2011.

[6] P. Y. Han, I. D. Coombes, and B. Green. Factors predictive of intravenous fluid administration errors in

australian surgical care wards. Quality and safety in health care, 14:179–184, 2004.

[7] B. L. Hintzen, S. J. Knoer, C. J. V. Dyke, and B. S. Milavitz. Effect of lean process improvement techniques on

a university hospital inpatient pharmacy. American Journal of Health-System Pharmacy, 66(22), November.

[8] M. Kwiatkowska, G. Norman, and D. Parker. Prism: probabilistic model checking for performance and

reliability analysis. SIGMETRICS Perform. Eval. Rev., 36:40–45, March 2009.

[9] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic real-time systems. In

G. Gopalakrishnan and S. Qadeer, editors, Proc. 23rd International Conference on Computer Aided Verifica-

tion (CAV’11), volume 6806 of LNCS, pages 585–591. Springer, 2011.

[10] S. Oswald and R. Caldwell. Dispensing error rate after implementation of an automated pharmacy carousel

system. American Journal of Health-System Pharmacy, 64(13):1427–1431, July 2007.

[11] C. Ouyang, M. Dumas, and A. H. M. T. Hofstede. Pattern-based translation of bpmn process models to bpel

web services. International Journal of Web Services Research (JWSR), 5(1):42–62, 2007.

[12] J. Puustjärvi and L. Puustjärvi. Automating the coordination of electronic prescription processes. In 2006

8th International Conference on e-Health Networking, Applications and Services (Healthcom 2006), pages

147–151, August 2006.

[13] J. Puustjärvi and L. Puustjärvi. Automating the dissemination of information entities to healthcare profes-

sionals. In B. Papasratorn, W. Chutimaskul, K. Porkaew, and V. Vanijja, editors, Advances in Information

Technology, volume 55 of Communications in Computer and Information Science, pages 123–132. Springer

Berlin Heidelberg, 2009.

[14] A. A. Rad, M. Benyoucef, C. E. Kuziemsky, and A. A. Rad. An evaluation framework for business process

modeling languages in healthcare. J. Theor. Appl. Electron. Commer. Res., 4:1–19, August 2009.

[15] M. G. Rojo, E. Rolon, L. Calahorra, F. O. Garcia, R. P. Sanchez, F. Ruiz, N. Ballester, M. Armenteros,

T. Rodriguez, and R. M. Espartero. Implementation of the business process modelling notation (bpmn) in the

modelling of anatomic pathology processes. In Proceedings of the 9th European Congress on Telepathology

and 3rd International Congress on Virtual Microscopy, volume 3 (Suppl 1), London, UK, July 2008. BioMed

Central Ltd.

[16] E. Rolón, F. Garcı́a, F. Ruı́z, M. Piattini, and L. Calahorra. Healthcare process development with bpmn. In

S. R. Cruz-Cunha M. M., Tavares A. J., editor, Handbook of Research on Developments in E-Health and

Telemedicine: Technological and Social Perspectives, pages 1024–1047. Facultad de Ingenierı́a, Universidad

de Talca, Talca, Chile, 2010.

[17] P. Y. Wong and J. Gibbons. A process semantics for bpmn. In Proceedings of the 10th International Confer-

ence on Formal Methods and Software Engineering, ICFEM ’08, pages 355–374, Berlin, Heidelberg, 2008.

Springer-Verlag.

4

Page 62 of 117

Correctness of Constraint-Aware Model Transformations
Xiaoliang Wang, Yngve Lamo

Bergen University College
{xwa,yla}@hib.no

Model transformations are important in Model Driven Engineering (MDE). They automate software
development steps and greatly improve productivity and reduce software errors. However, the design of
model transformation rules requires lots of manual work. To fully take advantage of MDE, correctness
of model transformation rules should be ensured. In this paper, we present an ongoing work to use model
checking techniques to validate model transformation rules. The work also studies how rule application
strategies affect correctness and efficiency of model transformations.

1 Introduction

Model driven Engineering (MDE) turns out to be a promising software development methodology. MDE
promotes the use of models as the primary artefacts in software development. Models are used to specify,
simulate, generate code and maintain the resulting applications. They are manipulated by model trans-
formations throughout the software development life cycle. In that way, consistence between models is
assured and productivity is greatly improved.

In MDE, models are described in modelling languages. The most prevailing modelling language is
the Unified Modelling Language (UML) [4] proposed by OMG [4]. The syntax of a modelling language
is usually specified by a metamodel. For example, the metamodel of a UML model is also specified by
UML. In that way, a UML model is an instance of and conforms to UML. Besides, constraints are also
required to define the properties that a valid instance of the model should possess. UML uses a text-
based language, the Object Constraint Language (OCL) [4] to define software constraints. Any valid
UML model must satisfy the given OCL constraints.

1.1 Model Transformations

A model transformation is the automatic generation of target models from source models. The relation
between source model elements and target model elements is usually specified by model transformation
rules. Given a source model, a target model is expected to be constructed by applying a sequence of rules.
To define the rules, a language that coordinates both the source metamodel and the target metamodel is
needed. OMG has invented the Query/View/Transformation (QVT) language [4] that has become the de
facto industry standard model transformation language.

Model transformations play an important role in MDE. Models are modified by model transform-
ations for different development purposes. For example, when deploying an application, a Platform
Independent Model (PIM) should be transformed into a suitable Platform Specific Model (PSM) in ac-
cordance to the hardware requirements. These models should be used for automatic code generation.

However, right now, model transformation rules are designed manually. In order to ensure reliability,
it is necessary to check the correctness of the model transformation. A match of a rule in a model means
a graph homomorphism can be found from the left hand side of the rule to the model. If a match of a
rule is found in a model, we say that the rule is applicable to the model. A correct model transformation
means that for any valid source model, a sequence of applicable rules which constructs a valid target
model can be found.

Besides, the choice of which rule to apply also influences what kind of target model is constructed
out of the source model. The rule application strategy controls which rule should be applied when several
rules are applicable at the same time. It also decides the resulting target model when several matches

1

Page 63 of 117

Correctness of Constraint-Aware Model Transformations Wang et al.

of a rule are found in the model. So the rule application strategies are also important when checking
correctness.

There are existing projects like Henshin [7] that use model checking techniques to check correct-
ness of model transformations. But so far we are not aware of any projects that uses model checking
for constraint-aware models transformations. This work presents a model checking approach to valid-
ate constraint-aware model transformations. Moreover, application strategies are also studied to analyse
their impact to the correctness of model transformations. The proposed approach is based on the Dia-
gram Predicate Framework (DPF) [5] which provides a formalization of (meta)modelling and model
transformation based on graph theory [2] and category theory [1].

2 Diagram Predicate Framework

DPF aims to build a fullydiagrammatic specification frameworkfor MDE. That is to develop and use a
diagrammatic formalismto define and reason about models andmodel transformations. In DPF, mod-
els are formalized as diagrammatic specifications which consist of an underlying graph structure to-
gether with a set of atomic constraints. A modelling language is formalized as a modelling formalism
(Σ2 ⊲ S2,S2,Σ3). The specificationS2 represents the metamodel of the language; the signatureΣ3

contains predicates which are used to add constraints to the metamodelS2; while the typed signature
Σ2 ⊲ S2 contains predicates which are used to add constraints to the specificationS1 that are specified
by the modelling formalism. DPF also takes constraints in model transformations [6] into account.
Based on this, given a modelling formalism(Σ2 ⊲ S2,S2,Σ3), constraint-aware rules are formalized as
a typed specification morphismr : L ⊲ S2 →֒ R ⊲ S2. Usually, the modelling formalism used in model
transformation is a joint one which relates source and target modelling languages together.

2.1 Correctness of Model Transformations

Software programs need validation before deployment. Testing is enough for less critical applications.
For more critical applications, reliability could be ensured by use of theorem provers or model checkers.
Testing can never completely identify all the defects, but it can help the programmer to find bugs and
refine the program. The use of theorem provers and model checkers can guarantee programs without
bugs. But the application of theorem provers needs a mathematical formalization of the program and
involves human activities whereas model checkers have the state explosion problem.

In a similar way validation of model transformations is also required. Model transformations are ex-
ecuted automatically, hence it could be possible to run automatic tests of model transformations. Hope-
fully, if the test result is true, a sequence of applicable rules will be given that constructs a desired target
model. Otherwise, it will give feedbacks assisting the designers to correct the rules. However, there is a
difference of testing programs and transformations. For any determinstic program, each input only have
one execution path. For a model transformation, there maybe several different sequences of applicable
rules. To validate correctness of a model transformation, all the possible sequences should be checked
by a model checker. By considering models as states and rules as transitions, a model transformation
can be translated into a finite state machine. In order to test the transformation rules by use of model
checking, the source model and transformation rules should be translated into a Kripke structure. Before
continuing, a short introduction about model checking is given.

2.2 Model checking

Model checking is an automatic way to verify that a model satisfies a given specification. Usually, the
model is represented by a Kripke structure, while the specification is formalized in temporal logic, e.g.
CTL or LTL [3]. Formally a Kripke structure is defined as a 4-tuple,M = (S,I,R,L), whereS is a
finite set of statess. I is a set of initial statesI ⊆ S. R is a transition relationR ⊆ S × S such thatR is

2

Page 64 of 117

Correctness of Constraint-Aware Model Transformations Wang et al.

left-total, i.e.,∀s ∈ S,∃s
′

∈ S, such that(s,s
′

) ∈ R. And L is a labelling functionL : S → 2AP , where
AP is a set ofatomic propositions[3].

Recall that the joint modelling formalism (JMF) includes the source metamodel (SMM) and the
target metamodel (TMM). We now give the translation procedure from DPF model transformations to
Kripke structures that are used in model checking. From the joint modelling formalism (JMF), the model
transformation rules (MTRs) and the source model(SM), we construct a Kripke structure in the following
way:

• We define a initial statei representing SM

• For each states ∈ S and for every MTRr : L ⊲ S2 →֒ R ⊲ S2 we checkIsMatch(Model,L ⊲

S2). If it is true, the rule is applicable

• For each states ∈ S and for every applicable MTRr : L ⊲ S2 →֒ R ⊲ S2, we define a new state
r(s) ∈ S and a transitiont : s → r(s)

Note thatIsMatch checks if a match of the left input pattern is found inModel. If so, a new state
r(s) and a new transitiont : s → r(s) are created. An important factor here is the rule application strategy.
Two situations are under consideration. Firstly, several matches may be found in a model for one rule.
Secondly, several rules may be applicable to the current model. Different strategies to control these
scenarioes results in different target models. Existing strategies are e.g. negative application conditions
(NAC) and layering of rules. Analysis of affection of those strategies can be carried out during the model
checking. Moreover, transformations are constraint-aware in DPF. That means when constructing the
state space and the transition relationship the related constraints should be considered.

Following this procedure a state space can be derived. It contains all the reachable states, that are
models derived by application of rules and valid instances of the JMF. The property to be checked is that
in the future there is a state where no more rule is applicable and from this state a valid target model can
be derived. In CTL, this property can be formalized as:

EF !AnyRuleApplicable(Model,MT Rs)&&IsInstanceof(getT argetModel(Model),T MM)

Existing model checking technologies can be used to check if the property is satisfied. Different
instances of the source metamodel can be created to test the MTRs. A valid sequence of applicable rules
are obtained if the result is true. Otherwise feedback will be given to help the designer to modify the
model transformation. As said before, testing can never guarantee transformation correctness, in the
future we will study how theorem provers can be used to ensure correctness of model transformations.

References

[1] M. Barr and C. Wells.Category Theory for Computing Science (2nd Edition). Prentice Hall, 1995.

[2] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer.Fundamentals of Algebraic Graph Transformation. Springer,
March 2006.

[3] E. C. Jr., O. Grumberg, and D. Peled.Model Checking. The MIT Press, 1999.

[4] Object Management Group.Web site. http://www.omg.org.

[5] A. Rutle. Diagram Predicate Framework: A Formal Approach to MDE. PhD thesis, Department of Informat-
ics, University of Bergen, Norway, 2010.

[6] A. Rutle, A. Rossini, Y. Lamo, and U. Wolter. A Formalisation of Constraint-Aware Model Transformations.
In D. Rosenblum and G. Taentzer, editors,FASE 2010, volume 6013 ofLNCS, pages 13–28. Springer, 2010.

[7] The EMF Henshin Transformation Tool.Project Web Site. http://www.eclipse.org/modeling/
emft/henshin/.

3

Page 65 of 117

http://www.omg.org
http://www.eclipse.org/modeling/emft/henshin/
http://www.eclipse.org/modeling/emft/henshin/

An Architecture-based Verification Technique for

AADL-specifications

Andreas Johnsen

Mälardalen University

Västerås, Sweden

andreas.johnsen@mdhlse

Paul Pettersson

Mälardalen University

Västerås, Sweden

paul.pettersson@mdh.se

Kristina Lundqvist

Mälardalen University

Västerås, Sweden

kristina.lundqvist@mdh.se

1 Background
The architecture design phase is one of the most critical phases in the development process of software-

intensive systems. The architecture specification is the initial development artefact representing the earli-

est design decisions made on the intended system’s structure, functional properties and quality attributes

(non-functional properties). Design decisions involve the allocation of functional properties – which are

closely related to a system’s behavior, capabilities and services – to certain structures to achieve cer-

tain quality attributes. Furthermore, the architecture specification is used as a mutual communication

blueprint among stakeholders and guides the implementation phase of the system. Consequently, the

developed system will heavily depend on the architecture specification, which it ideally should conform

to.

The design decisions established in the architecture design phase, or the absence of some, may im-

pose incorrect properties of the system and thereby creating challenges in quality assurance processes.

These incorrect structural, functional as well as non-functional properties may go unnoticed until later

phases of the development process where a correction is known to be significantly more costly compared

to a correction in the architecture design phase. Hence, evaluating the architecture specification is crucial

in order to detect possible faults and inconsistencies before the development process progresses, reducing

a significant amount of cost and time. Furthermore, in order to preserve the valuable effort made at the

architecture design phase, an implementation of the system must be implemented in conformance with

the architecture specification. The verification techniques used to tackle these challenges, i.e. 1) to eval-

uate the completeness and the consistency of an architecture specification and 2) to test the conformance

of an implementation with respect to its architecture specification, rely on what kind of properties and

their relations that may be described with the Architecture Description Language (ADL) used to describe

the system’s architecture.

Software-intensive systems are systems where software interacts with sensors, actuators, devices,

other systems and people. Examples of such systems are embedded systems for aerospace and auto-

motive. What these systems have in common is that they often are operating in dynamic, time- and

safety-critical environments. One ADL that has been developed for this kind of systems, is the Archi-

tecture Analysis and Design Language (AADL) [2], which is widely used both within industry and the

research community.

2 Contributions
In this paper we propose an architecture-based verification technique, for software-intensive systems

specified by AADL, addressing challenge 1) and 2) mentioned above. The technique is based on for-

mal constructs enabling automation of the verification activities where challenge 1) and 2) are tackled

by adapting model-checking and model-based testing approaches - respectively - to an architectural

perspective. The objective of the technique is to evaluate the integration of components at both the

specification-level and the implementation-level through control-flow and data-flow analysis. The anal-

ysis is performed upon the dynamic semantics of AADL to not only verify that functional properties of

control and data interactions among component interfaces are correct, but also the non-functional prop-

erties such as performance, schedulability and safety. Automated checking of AADL specifications is

1

Page 66 of 117

andreas.johnsen@mdhlse
paul.pettersson@mdh.se
kristina.lundqvist@mdh.se

An Architecture-based Verification Technique Johnsen, Pettersson, and Lundqvist

not feasible directly from the artefact since AADL lacks formal semantics and implemented semantics.

We define transformation rules (mappings) to a network model of timed automata in Uppaal [1], which

provide a formal and implemented semantics of AADL.

3 Method
This section presents an overview of the automatable verification technique for AADL specifications.

The technique comprises both evaluation of specifications and the systems’ conformity to them. It is

depicted as a flowchart in Figure 1, where initially a system’s intended architecture is specified us-

ing AADL. Such an artefact is commonly specified through a translation from something cognitive,

an idea, a need or an informal/semi-formal requirement specification, but since it is informal, it is

not possible to formally prove that the AADL specification correctly conforms to the informal one

it is derived from. Consequently, making this type of evaluation far from possible to automate and

thus is out of scope in this technique. What is possible though is to formally reason about a sys-

tem solely through the AADL specification (note that requirements or decompositions of these can

be formalized in AADL), to prove its consistency and completeness, and later use it as a test model

to perform model-based testing on. The different steps of the verification technique are as follows:

AADL-spec

Transforma

tion-rules

Verification

Criteria

Verification

Sequences

Uppaal

model

Mapping

Uppaal

model-

checking

System

Mapping

Test cases

Figure 1: Flowchart of the technique

The first step is to use the mappings/transfor-

mation rules to transform an AADL specification

to a timed automata model upon which automated

formal verification can be performed.

The second step is to apply the architecture-

based verification criteria to the AADL specifi-

cation. They define the test selection, i.e., what

samples of the specification to evaluate and how

they are extracted, and the coverage requirement,

i.e., how many samples to evaluate. The sam-

ples generated from the criteria are sequences of

component-integrations in terms of control-flows

and data-flows.

Sequences are transformed, in the third step, to the corresponding timed automata paths through a

structural mapping between them.

The outcome, a set of timed automata paths are required in the fourth step to be fully checked by

the Uppaal model-checker, by using temporal logics, in order to satisfy the criteria. The verdict from

Uppaal reveals the consistency and completeness of the AADL specification, where a correction of the

specification should be made if it is shown inconsistent or incomplete.

The paths are later used in the fifth step to generate test cases to the implementation (model-based

testing), to test the conformance of the implementation with respect to the architecture specification. Test

paths are transformed to concrete test cases through a mapping between the architecture specification and

its implementation (we assume identical name spaces between the AADL specification and the system).

3.1 Verification Criteria

Four different types of AADL connections (port-, data access-, subprogram call and parameter-connections)

represent the architectural control-flows and data-flows of an AADL specification. Architectural control-

flows are the different execution orders of architectural elements whereas architectural data-flows are the

relations between definitions of data elements in a source component and uses of the corresponding

data elements in a target component. These flows may be dependent on mode state machines (represent

different runtime configurations), refined by behavioral models (represent logical execution of threads

and callable subprograms) and constrained by associated functional as well as non-functional properties

2

Page 67 of 117

An Architecture-based Verification Technique Johnsen, Pettersson, and Lundqvist

where conflicts may occur between these constructs. The objective of the verification criteria is to ensure

consistency and completeness of and between the flows, their dependencies, their refinements and their

constraints through analysis of control-flow reachability, data-flow reachability and concurrency among

flows (note that these properties subsumes analysis of numerous other properties such as performance

and schedulability):

Control-flow reachability: Every architectural element in an execution order should be able to reach

the subsequent element to be executed in the order. The subsequent element should be reached without

conflicting properties (constraints) of the execution order.

Data-flow reachability: Every data element should be able to reach its target component, where the data

is used, from its source component, where the data is defined. The target component should be reached

without conflicting properties of the data flow.

Concurrency among flows: Analysis of single interactions of data or control is not enough since there

are implicit relations between them that may cause deadlocks in the system. The relations between the

flows should not prevent control-flow reachability or data-flow reachability, and where the system should

be free from deadlocks.

Analysis of these properties is generated from the five different types of AADL-relations we formally

have specified. They define the possible atomic bindings of control and data in AADL, and are used to

generate the control- and data-flow graphs. Based on these relations, three types of AADL-sequences are

specified. They define the possible paths in the control- and data-flow graphs, and are used to generate

the verification sequences. Finally, specification of three types of coverage criteria define the coverage

required to verdict completeness, consistency and conformance.

3.2 Transformation to Uppaal

The dynamic semantics of AADL constructs are to a large extent dependent on the AADL execution

model which defines the dynamic semantics. It consists of several different aspects of a run-time en-

vironment, such as synchronous interactions, asynchronous interactions, nominal execution, recovery

execution, etc. The AADL standard specifies a default runt-time environment with synchronous inter-

actions and preemptive scheduling. Hence, the default model (that is, the default values of property

annotations) consists of periodic threads communicating through their data ports. As an initial effort

to specify dynamic semantics of AADL constructs, we restrict the definition of transformation rules

and solely consider synchronous interactions with preemptive scheduling (non-preemptive scheduling is

subsumed).

4 Results and Conclusions
The AADL language is a formalism for development of safety-critical software-intensive systems. The

technique evaluates the consistency and completeness of an AADL specification and tests a systems’ con-

formity to it. The entire development process is covered by adapting a combination of model-checking

and model-based testing approaches to an architectural perspective. The adaption is performed through

the definition of AADL-specific verification criteria. We are currently validating the technique against a

system developed by a major vehicle manufacturer.

References

[1] Gerd Behrmann, Re David, and Kim G. Larsen. A tutorial on Uppaal. pages 200–236. Springer, 2004.

[2] As-2 Embedded Computing Systems Committee SAE. Architecture Analysis & Design Language (AADL).

SAE Standards no AS5506, November 2004.

3

Page 68 of 117

The Guided System Development Framework
Jose Quaresma Christian W. Probst Flemming Nielson

Technical University of Denmark
{jncq,probst,nielson}@imm.dtu.dk

1 Introduction

The Service-Oriented Computing paradigm has had significant influence on the Internet, where an in-
creasing number of companies are making their services available. It is now very common to develop
systems by specifying the interaction between programs that provide a specific functionality in form of a
service, which can be seen as a function that other programs can remotely execute. With the emergence
of this paradigm, it is important to provide tools that help system designers to specify the system under
development, to enable its easy integration with standard security suites used by industry, to generate
code that implements the system’s functionality, and to verify the security properties of those systems.

In fact, formal methods provide powerful tools that can be used to verify the security of these sys-
tems. However, these tools are not always integrated with the used development environment. That
shortcoming is aggravated by the lack of expertise usually necessary to use formal methods and interpret
their results. This obstacle can be overcome by a framework that aids and guides the developer on the
specification of the system being developed, on choosing the appropriate standard protocols suites that
achieve the required security properties, on providing an implementation of the specified system, and
also on allowing the verification of its security properties.

In this article, we present the Guided System Development (GSD) framework that provides those
functionalities and seamlessly integrates them. The initial idea behind this framework is strongly in-
spired by CaPiTo [3] and its main contribution: the successful connection of the abstract specification of
Service-Oriented Systems with the usage of industry standard suites with the verification of the proto-
col and generation of code. CaPiTo uses the LySatool [1] to perform the verification of the system and
generates system implementations in the programming language C.

2 The Framework

As mentioned above, one of the main ideas behind this framework is to apply CaPiTo’s separation of
concerns regarding the modelling of communication protocols — especially the separation between the
message exchange view and the usage of standard communication suites used in industry — in a simple
and intuitive way. This separation of concerns is an essential part of the GSD framework, which enables
the specification, implementation and verification of Service-Oriented Systems by having different levels
of abstraction and using a functional language similar to the Alice and Bob Notation [5].

As illustrated in Figure 1, the framework can be divided in two phases, the Specification Phase and
the Realisation Phase. The former is composed by the Abstract Level and the Standards Level, while the
latter is related to the different outputs and translations from the Standards Level.

2.1 The Specification Phase

As mentioned above, the Specification Phase is composed by the two top levels, the Abstract Level and
the Standards Level.

In the Abstract Level, the system is described in a language similar to the Alice and Bob notation,
with some extensions, such as Receiver Side Actions and Security Modules. Receiver Side Action allow

1

Page 69 of 117

{jncq,probst,nielson}@imm.dtu.dk

The Guided System Development Framework Quaresma et al.

Abstract Level

Standards Level

Specification
Phase

Java F* CPN

Concrete Level

LySatool OFMC

Formal Description

Realisation Phase

C

Implementation Analysis

Feedback

Figure 1: Overview of the Guided System Development framework including some examples of targeted
languages and tools

the developer to specify additional actions that will be performed by the receiver of the message, for
example, comparison and assignment of values. We believe this is an important extension of standard
approaches, because it allows a more complete description of the system. The other main extension is the
use of Security Modules, which specify the security requirements of the transmission of some elements
of the message exchange. Such requirements are, for example, confidentiality, authenticity, and security.
Using these, the developer is able to specify the goals of the system in an early stage of development.
These goals, comparable to the ones is BAN logic [2], enable the reasoning about security properties of
the described system.

The Abstract Level description of a system is translated into the Standards Level. This translation
is performed by identifying Standard Suites that achieve the requirements expressed by the Security
Modules. This can be realised by giving suggestions to the developer, depending on the Security Module
used in the system description.

2.2 The Realisation Phase

The main goal of the Realisation Phase of the GSD framework is twofold; on one hand, it enables the
translation of the system specification into different platforms such as Java, C, or CP-nets. On the other
hand, it connects to verification tools, in order to reason about the security properties of the system.

By providing a translation from the system specification into executable code, the developer can
easily obtain an implementation of the system, similar to earlier work [7].

Targeting Coloured Petri Nets [4] would add an alternative way of describing the system. CP-nets
is a graphical oriented modelling language for the design, specification, simulation and verification of
systems. It extends the original Petri nets with the capabilities of the high-level language, allowing the
definition of data types — that can be seen as coloured tokens — and the manipulation of data values.

As for the reasoning about the security properties of the system, it can be achieved by translating the
system to the Concrete Level — which represents the full message exchange — and verifying its security
properties with tools such as LySatool [1] and OFMC [6]. The analyses results allow us to provide some

2

Page 70 of 117

The Guided System Development Framework Quaresma et al.

instant feedback to the system developer regarding the security of the system under development.
Another possibility that we are currently investigating is the translation into F* [8], a dependently

typed language for secure distributed programming. This approach would allow to combine executable
code with verification of security properties.

2.3 Example

In Figure 2, we show a simple message exchange between Alice and Bob to illustrate the functioning of
the framework. We show it for the two levels that constitute the core of the framework and also for the
Concrete Level.

While several Standard Suites could be used to implement the goal required in the Abstract Level, we
are using TLS, an extremely wide-spread suite, to achieve confidentiality of the message. Confidentiality
here means that the receiver (B) is authenticated and that the message can only be seen by the sender
(A) and the receiver (B) in the modelled message exchange. The Concrete Level represents the full
message exchange. We assume that Alice knows the public key of the certificate authority (CA) prior
to the message exchange. Furthermore, both Alice and Bob calculate the resulting symmetric keysskAB

andskBA (one for each direction of the communication) based on the values ofn, m, N. Also, Finished
is generated based on these values together with the messages previously exchanged by Alice and Bob.
For simplicity reasons, we are not showing the receiver side action and derivation of extra elements.

A → B : con f idential(M)

Abstract Level

A → B : TLS(M)

Standards Level

A → B : f resh(n)

B → A : f resh(m),{B, pk+B } : pk−CA

A → B : { f resh(N)} : pk+B , {Finished} : skAB

B → A : {Finished} : skBA

A → B : {M} : skAB

Concrete Level

Figure 2: Example of a system with a unique message that sends message M in a confidential way

3 Conclusion

With this framework, we provide the developer with an environment that allows a high-level specification
of a system (and its goals), the use of Standard Suites to achieve those goals, and the interconnection
to different runtime environments and formal approaches. The latter support verification of security
properties, the result of which can be used to improve the system specification.

The next step in our research will be to define and implement the core of the framework and then
investigate which of the alternatives are more suitable regarding the Concrete Level of the framework.
We are currently defining the semantics of the language in the Abstract Level and the translation from
that level to the Standards Level.

3

Page 71 of 117

The Guided System Development Framework Quaresma et al.

References

[1] Mikael Buchholtz.User’s Guide for the LySatool version 2.01. DTU, April 2005.

[2] Michael Burrows, Martin Abadi, and Roger Needham. A logic of authentication.ACM Trans. Comput. Syst.,
8:18–36, February 1990.

[3] H. Gao, F. Nielson, and H.R. Nielson. Protocol Stacks for Services. InFoundations of computer security,
2009.

[4] Kurt Jensen, Lars Michael Kristensen, and Lisa Wells. Coloured petri nets and cpn tools for modelling and val-
idation of concurrent systems.International Journal on Software Tools for Technology Transfer, 9(3-4):213–
254, 2007.

[5] S. Modersheim. Algebraic Properties in Alice and Bob Notation. InAvailability, Reliability and Security,
2009. ARES ’09. International Conference on, pages 433 –440, 2009.

[6] Sebastian Mödersheim and Luca Viganò. The open-source fixed-point model checker for symbolic analysis
of security protocols. InFoundations of Security Analysis and Design V, volume 5705 ofLecture Notes in
Computer Science, pages 166–194. Springer Berlin / Heidelberg, 2009.

[7] Jose Quaresma and Christian W. Probst. Protocol implementation generator.Nordic Conference in Secure IT
Systems (NordSec 2010), 2010.

[8] Nikhil Swamy, Juan Chen, Cedric Fournet, Pierre-Yves Strub, Karthikeyan Bharagavan, and Jean Yang. Se-
cure distributed programming with value-dependent types.The 16th ACM SIGPLAN International Conference
on Functional Programming (ICFP 2011), to appear, September 2011.

4

Page 72 of 117

Formalising Metamodel Evolution based on Category Theory
Florian Mantz∗, Yngve Lamo
Bergen University College

{fma,yla}@hib.no

Alessandro Rossini, Uwe Wolter
University of Bergen

{rossini,wolter}@ii.uib.no

Gabriele Taentzer
Philipps-Universität Marburg

taentzer@informatik.uni-marburg.de

Model-driven engineering (MDE) is a branch of software engineering which aims at improving pro-
ductivity, quality, and cost-effectiveness of software development by shifting the paradigm from code-
centric to model-centric activities. MDE promotes models and modelling languages as the main artefacts
of the development process and model transformation as the primary technique to generate (parts of)
software systems out of models. Models enable developers to reason at a higher level of abstraction,
while model transformation restrains developers from repetitive and error-prone tasks such as coding.
Although techniques and tools for MDE have advanced considerably during the last decade, several
concepts and standards in MDE are still defined semi-formally, which may not guarantee the degree of
precision required by MDE.

Models can be specified using general-purpose languages like the Unified Modeling Language
(UML) [8], but to fully unfold the potential of MDE, models are often specified using domain-specific
languages (DSLs) which are tailored to a specific domain of concern. One way to define DSLs in MDE is
by specifying metamodels, which are models that describe the concepts and define the syntax of a DSL.
A model is said toconform toa metamodel if each element in the model is typed by an element in the
metamodel and, in addition, satisfies all constraints of the metamodel.

Models and metamodels undergo complex evolutions during their life cycles. As a consequence,
when a metamodel is modified, models conforming to this metamodel need to be migrated in such a way
that they conform to the modified version (see Fig.1). In the literature, this problem is referred to as
metamodel evolution [7] or model co-evolution [4].

�

�

�

�Metamodel
evolution �

�

�

�Metamodel′

�

�

�

�Model

conforms to

migration �

�

�

�Model′

conforms to

Figure 1: Model co-evolution: Metamodel evolution and modelmigration

To address this problem, a few prototype tools have been developed that support metamodel evolu-
tion in different scenarios, e.g., [7, 9]. However, a uniform formalisation of metamodel evolution is still
lacking. The relation between metamodel- and model changes should be formalised in order to allow
reasoning about the correctness of migration definitions. In addition, constraints in models and metamod-
els should also be handled during migration. This work proposes a formal approach to metamodel
evolution which addresses some of these challenges. The approach is based on the Diagram Predicate
Framework (DPF) [2], a formal diagrammatic specification framework founded on category theory [1]
and graph transformation [5]. DPF provides the means to specify models with diagrammaticconstraints
and defines a conformance relation between models and metamodels which takes into account these
constraints [10].

∗This work was partially funded by NFR project 194521 (FORMGRID)

1

Page 73 of 117

Formalising Metamodel Evolution based on Category Theory Mantz et al.

In DPF, a model is represented by aspecificationS. A specificationS = (S,CS : Σ) consists of
anunderlying graphS together with a set ofatomic constraintsCS which are specified by means of a
signatureΣ. A signatureΣ = (ΠΣ ,αΣ) consists of a set ofpredicatesπ ∈ ΠΣ , each having an arity (or
shape graph)αΣ(π), a semantic interpretation, and a proposed visualisation. An atomic constraint(π,δ)
consists of a predicateπ ∈ ΠΣ together with a graph homomorphismδ : αΣ(π)→ S from the arity of
the predicate to the underlying graph of the specification.

The semantics of nodes and arrows of a specification has to be chosen in a way which is appropriate
for the corresponding modelling environment [11]. In object-oriented structural modelling, it is appropri-

ate to interpret nodes as sets and arrowsX f
−→ Y as multi-valued functionsf : X→ ℘(Y). The semantics

of a specification is defined in the fibred way [12]; i.e., the semantics of a specificationS = (S,CS :Σ)
is given by the set of its instances(I, ι). An instance(I, ι) of a specificationS consists of a graphI
together with a graph homomorphismι : I→ S which satisfies the set of atomic constraintsCS .

Metamodel- and model changes can be formalised in DPF as specification transformation rules,
which can be regarded as an extension of graph transformation rules [5]. In this work, possible metamodel
changes are restricted to a specific set of metamodel evolution/migration rules. The migration rules are
derived from metamodel evolution rules by retyping them on the model level; i.e., an isomorphic migra-
tion rule is derived from a metamodel evolution rule by replacing each metamodel element by its instance
element. This rule is matched as often as possible on a model. This approach can be considered as a
special kind of amalgamated graph transformation rule [3] with an empty kernel rule.

PO2 PO3

M1′

RM1

M1I

IM1

M1

LM1

PO1 PO4
M2′

RM2

M2I

IM2

M2

LM2

M3

Figure 2: Relations of metamodel- and model changes

Figure2 shows the graph homomorphisms between a metamodel evolutionrule and a model migra-
tion rule. These rules are formulated using the cospan double pushout (Cospan DPO) approach [6], which
first extends a graph and then reduces it. Equivalence to the original DPO approach is shown by Ehrig
et al. in [6]. This approach has been chosen since it allows the models to be adapted in-place. Firstly, a
metamodel is extended by the pushout over the spanM2←LM2→ IM2 (PO1). Afterwards, a conform-
ing model is extended by PO2 over the spanM1← LM1→ IM1 and then reduced by PO3 over the span
IM1←RM1→M1′. Finally, the metamodel is reduced by PO4 over the spanIM2←RM2→M2′. The
application sequence of these pushouts allow that models stay type conform during the entire migration
process.

Figure3 shows the graph homomorphisms between a metamodel evolutionrule and a model migra-
tion rule in more detail. The metamodel evolution rule is represented by the cospanLM2→IM2←RM2,
whereas copies of the derived isomorphic migration rule are represented by the family of cospans
Li → Ii ← Ri with 1 ≤ i ≤ n. The applicable model migration rule is represented by the cospan
LM1 → IM1 ← RM1, which is constructed by the disjoint union. The disjoint union can be charac-

2

Page 74 of 117

Formalising Metamodel Evolution based on Category Theory Mantz et al.

RM1

R1

IM1

I1

LM1

L1

Rn

RM2

In

IM2

Ln

LM2

Figure 3: Amalgamated migration rule

terised as coproduct in a corresponding rule category. That fact that the disjoint union is also typed over
the metamodel evolution rule can be shown by the universal property of coproducts.

This migration rule deduction strategy is only useful for a subset of metamodel evolution rules.
Therefore, the metamodel evolution rules are extended by DPF’s atomic constraints. These atomic con-
straints restrict the possible application of metamodel evolution rules to those cases where the deduction
strategy is sufficient. For example, a multiplicity constraint[1..*] added to an arrow of the LHS graph of
the metamodel evolution rule prevents this arrow from matching with a metamodel arrow having mul-

tiplicity constraint[0..*]. Currently, each arrowX f
−→ Y in the metamodel evolution rule is required to

be total and surjective, i.e.,|f(x)| ≥ 1 and∀y ∈ Y , ∃x ∈ X : y ∈ f(x). Furthermore, LHS and RHS
graphs of metamodel evolution rules with loops and nodes being targets of more than one arrow are not
considered for the automatic deduction of migration rules yet.

References

[1] M. Barr and C. Wells.Category Theory for Computing Science (2nd Edition). Prentice Hall, 1995.

[2] Bergen University College and University of Bergen.Diagram Predicate Framework Web Site. http://
dpf.hib.no/.

[3] E. Biermann, C. Ermel, and G. Taentzer. Formal foundation of consistent EMF model transformations by
algebraic graph transformation.SoSyM (Online First), pages 1–24, 2011.

[4] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio. Automating Co-evolution in Model-Driven En-
gineering. InEDOC 2008, pages 222–231. IEEE Computer Society, 2008.

[5] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer.Fundamentals of Algebraic Graph Transformation. Springer,
March 2006.

[6] H. Ehrig, F. Hermann, and U. Prange. Cospan DPO Approach: An Alternative for DPO Graph Transforma-
tion. EATCS Bulletin, 98:139–149, 2009.

[7] M. Herrmannsdoerfer, S. Benz, and E. Jürgens. COPE - Automating Coupled Evolution of Metamodels and
Models. InECOOP 2009, volume 5653 ofLNCS, pages 52–76. Springer, 2009.

[8] Object Management Group.Unified Modeling Language Specification, May 2010. http://www.omg.
org/spec/UML/2.3/.

[9] L. Rose, D. Kolovos, R. F. Paige, and F. A. C. Polack. Model Migration with Epsilon Flock. InICMT 2010,
volume 6142 ofLNCS, pages 184–198. Springer, 2010.

[10] A. Rutle. Diagram Predicate Framework: A Formal Approach to MDE. PhD thesis, Department of Inform-
atics, University of Bergen, Norway, 2010.

[11] A. Rutle, A. Rossini, Y. Lamo, and U. Wolter. A Diagrammatic Formalisation of MOF-Based Modelling
Languages. InTOOLS 2009, volume 33 ofLNBIP, pages 37–56. Springer, 2009.

[12] U. Wolter and Z. Diskin. From Indexed to Fibred Semantics – The Generalized Sketch File. Technical Report
361, Department of Informatics, University of Bergen, Norway, October 2007.

3

Page 75 of 117

http://dpf.hib.no/
http://dpf.hib.no/
http://www.omg.org/spec/UML/2.3/
http://www.omg.org/spec/UML/2.3/

Parametric WCET Analysis

Björn Lisper

Mälardalen University, Sweden

Abstract

The purpose of Worst-Case Execution Time (WCET) analysis is to
compute a safe upper bound to the execution time of a sequential pro-
gram executing uninterrupted on some given hardware. Such bounds are
important when verifying the timing requirements on hard real-time sys-
tems. WCET analysis has been an active research topic for the last 20
years, and today there exists a large body of theory, methods, and algo-
rithms. Both academic and commercial tools have emerged during the last
decade, and the technique is becoming established in industrial use. Tra-
ditional WCET analysis computes a single number. For programs whose
execution time varies strongly with the inputs, a single upper bound may
provide very large overestimations in most situations since it has to take
the program executions for all possible input values into account. It may
then be advantageous to have a parametric WCET analysis, which com-
putes the WCET bound as a symbolic formula in the unknown inputs
rather than as a single number. When the formula is instantiated for the
specific inputs at hand, the resulting number is likely to provide a much
tighter bound for the actual WCET. Thus, it is highly interesting to de-
velop good methods and tools for parametric WCET analysis. In this
talk we will first give a short primer to WCET analysis. We then give an
account for the past, present, and planned future research at Mlardalen
University regarding parametric WCET analysis.

Page 76 of 117

Estimating Resource Bounds

for Software Transactions

Thi Mai Thuong Tran⋆, Martin Steffen, and Hoang Truong

Dept. of Computer Science, University of Oslo, Norway and University of Engineering
and Technology, Vietnam National University of Hanoi

1 Motivation

Software Transactional Memory (STM) has recently been introduced to concur-
rent programming languages as an alternative for locked-based synchronization.
STM enables an optimistic form of synchronization for shared memory. Each
transaction is free to read and write to shared variables and a log is used to
record these operations for validation or potentially rollbacks at commit time.
Maintaining the logs is a critical factor of memory resource consumption of STM.

One of the advanced transactional calculi recently introduced is Transac-
tional Featherweight Java (TFJ) [2], a transactional object calculus which sup-
ports nested and multi-threaded transactions. Multi-threaded transactions mean
that inside one transaction there can be more than one thread running in par-
allel. Nested means that inside one transaction, there can be another transac-
tion nested. Furthermore, nested transactions must commit before their parent
transaction, and if a parent transaction commits, all threads spawned inside a
transaction must join via a commit.

In this setting, a program execution may exceed the upper bound on the
number of transactions the system can afford. Transactions contribute to the
resource consumption which may lead to a memory overrun in the following
way:

– duplicating parent transactions for the conflict checking. Each time a new
thread is spawned, the log of its parent transaction is copied into the spawned
thread’s log. In other words, a spawned thread will “inherit” its parent trans-
actions. So the resources for the new thread need to be calculated to store
information in the parent transaction’s log apart from its own log.

– a certain amount of transactions run in parallel at the same time which will
increase the overall number of transactions in the system.

In this work, we will statically predict resource consumption in connection with
transactions by identifying the maximum number of logs produced at any given
point in time during the parallel execution of transactions. From that maximum,
we can infer information about resource consumption such as memory usage.

⋆ E-mail: tmtran@ifi.uio.no

Page 77 of 117

2

P ::= 0 | P ‖ P | p〈e〉 processes/threads
L ::= class C{f :T ; K; M} class definitions
K ::= C(f : T){this.f := f} contructors
M ::= m(x:T){e} : T methods
e ::= v | v.f | v.f := v |if v then e else e |let x:T = e in e | v.m(v) expressions

| new C(v) |spawn e |onacid|commit
v ::= r | x | null values

Table 1. Abstract syntax

2 A type and effect system for a transactional calculus

Syntax

The language used in this paper is, with some adaptations, taken from [2] and
a variant of Featherweight Java (FJ) [1] extended with transactions and a con-
struct for thread creation. The syntax of our calculus is given in Table 1. The
main adaptations are: we added standard constructs such as sequential compo-
sition (in the form of the let-construct) and conditionals.

The language is multi-threaded: spawn e starts a new thread of activity which
evaluates e in parallel with the spawning thread. Specific for TFJ are the two
constructs onacid and commit, two dual operations dealing with transactions.
The expression onacid starts a new transaction and executing commit success-
fully terminates a transaction.

Typing judgment

In order to estimate the maximal resource consumption used by an expression
in the program, we introduce the judgments of the expressions as follows:

n1 ⊢ e :: n2, h, l, t, S (1)

The elements n1, n2, h, and l are natural numbers with the following interpre-
tation. n1 and n2 are the pre- and post-condition for the expression e, capturing
the nesting depth: starting at a nesting depth of n1, the depths is n2 after
termination of e. We call the numbers n1 resp. n2 also the current balance of
the thread. Starting from the pre-condition n1, the numbers h and l represent
the maximum resp., the minimum value of the balance during the execution of
e (the “highest” and the “lowest” balance during execution). The numbers so
far describe the balances of the thread executing e. During the execution of e,
however, new child threads may be created via the spawn-expression and the
remaining elements t and S take (also) their contribution into account. The
number t represents the maximal, overall (“total”) resource consumption dur-
ing the execution of e, including the contribution of all spawned threads. The
last component S is a multiset of pairs of natural numbers, i.e., it is of the form

Page 78 of 117

3

{(p1, c1), (p2, c2), . . .}. For all spawned threads, S keeps its maximal contribution
to the resource consumption at the point after e, i.e., (pi, ci) represents that the
thread i can have maximally a resource need of pi + ci, where pi represents the
contribution of the spawning thread (“parent”), i.e., the current nesting depth at
the point when the thread is being spawned, and ci the additional contribution
of the child threads itself.

3 Main results

– We present a concurrent object-oriented calculus supporting nested and
multi-threaded transactions. The language features non-lexical starting and
ending of multi-threaded and nested transactions.

– We propose a type and effect system to guarantee safe commits and estimate
the upper bound of resource consumption during its execution. This helps
to predict the usage of resources in concurrent transaction systems.

– We show the soundness of the static analysis.

References

1. A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: A minimal core
calculus for Java and GJ. In Object Oriented Programming: Systems, Languages,
and Applications (OOPSLA) ’99, pages 132–146. ACM, 1999. In SIGPLAN Notices.

2. S. Jagannathan, J. Vitek, A. Welc, and A. Hosking. A transactional object calculus.
Science of Computer Programming, 57(2):164–186, Aug. 2005.

Page 79 of 117

Value sensitivity in information flow analysis

Bart van Delft, Chalmers University of Technology, vandeba@chalmers.se

Abstract for NWPT 2011

1 Introduction

Much research in the area of computer security has been focused on regulating access to information (e.g.

file permissions, encryption standards etc.), however in this abstract we look at how this information,

once obtained, is propagated through a program. In information flow analysis it is aimed to detect if

sensitive information handled in a program can leak to observers with no access to that information.

In line with other publications on information flow security we use a simple lattice to illustrate the

theory, consisting of a HIGH and a LOW security level. We assume that h-program variables contain, at

the start of the program execution, information of a HIGH security level, whereas l-program variables

contain information of a LOW security level (which can be observed by an outside user/attacker of the

program). During the analysis of a program p we want to detect the undesired information flow from h

to l. A program in which such a flow does not occur is said to satisfy the non-interference property.

Example 1. We label a program secure or insecure depending on the satisfaction of the non-interference

property:

(i) l = h is insecure because it leaks information directly from h to l.

(ii) if (h > 0) {l = 10} else {l = 20} is insecure because partial information on the value of

h can be deduced from the value of l.

(iii) if (h > 0) {l = 10} else {l = 20}; l = 0 is secure because the final value of l does not

depend on h.

(iv) if (h > 0) {l = 2} else {l = 2} is secure because the final value of l is the same whether

the first or second branch has been taken.

(v) h = 0; l = h is secure because the value of l is always 0.

(vi) l = h; l = l - h is secure because the value of l is always 0.

(vii) if (h > 0) {h = l; l = h} is secure because the value of l is not changed.

(viii) if (h - h + l > 0) {l = 0} else {l = 2} is secure because the value of h has no influ-

ence on the condition, and thus the final value of l is only affected by the value of l before execution

of the program.

A common approach is to use a type system that adds an additional type to program variables in-

dicating its security level. Via type interference or type checking non-interference is ensured. These

systems are always sound, i.e. they never classify an insecure program as secure. However to preserve a

reasonable degree of automation, compromises need be made with respect to the completeness of these

systems, i.e. they may classify secure programs as insecure, or ‘unknown’.

Analyses that have trouble correctly labeling secure programs of the kind such as (iii) and (iv) in

Example 1, lack control-flow sensitivity. Programs of the kind as (v),(vi),(vii) and (viii) require an

analysis to have value sensitivity in order to correctly label them as secure. In (Bubel et al., 2009)

1

Page 80 of 117

vandeba@chalmers.se

Value sensitivity in information flow analysis Bart van Delft

a different approach is taken by the use of dependencies, giving them a benefit over type systems in

proving programs such as (iii) and (iv) secure. Some of the programs requiring a value-sensitive analysis

are however still labeled as insecure.

Here we show the dependency-based approach and identify how it can be altered such that we achieve

a more value sensitive analysis.

2 Sequent calculus

We incorporate the sequent calculus (Gentzen, 1934) as used by KeY (Beckert et al., 2007) to perform

information flow analysis. A sequent is of the form ϕ1, . . . ,ϕn =⇒ ϕm, . . .ϕk where ϕi is a first-order

dynamic logic formula. A sequent can be abbreviated to Γ =⇒ ∆ or to Γ,ϕi =⇒ ϕ j,∆ to single out certain

formulas. A sequent can be considered as a meta-formula with implication as its main connective, that

is, Eval(Γ =⇒ ∆) = Eval(
∧

Γ −>
∨

∆). The calculus defines rules that can be used to construct a proof

tree. The sequent to prove forms the root of the tree and calculus rules can be applied until all the leaves

of the tree are obviously valid. Some example calculus rules are:

CLOSETRUE
closed

Γ =⇒ true,∆
ANDRIGHT

Γ =⇒ φ ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ&ψ,∆

Since the formulas in the sequents are dynamic logic formulas, they may contain the modality [p]ϕ
denoting that if program p terminates, ϕ holds (we do not concern ourselves with non-termination). The

term symbolic execution is used for calculus rules that move program statements from the box modality

to an update that describes the state change. For example:

ASSIGNMENT
Γ =⇒{U}{x := t}[. . .]ϕ,∆

Γ =⇒{U}[x = t; . . .]ϕ,∆

The update {U} is an abbreviation of the preceding updates. An update in front of a formula means

that program variables in that formula should be evaluated to the value described by the update. We

prefer updates over programs since they have a deterministic behaviour1.

3 Tracking dependencies

In the programs from Example 1 we see that interference from h to l indicates that the value of l after

execution of the program depends on the value of h at the start of the program. We therefore call the set

of variables that influence the final value of l the dependencies of l. Using the strict definition of non-

interference, a program can be labeled secure if the dependencies of l form a subset of all the variables

with security level LOW (in our example setting), i.e. =⇒ [p](deps(l)⊆ LOW).
Bubel et al. incorporate the sequent calculus to track dependencies as follows. For each program vari-

able x an additional variable xdep is created that tracks the set of dependencies for x. The ASSIGNMENT

rule from above is for example translated to:

ASSIGNMENT
dep Γ =⇒{U}{x := t ‖xdep := deps(t)}[. . .]ϕ,∆

Γ =⇒{U}[x = t; . . .]ϕ,∆

Where deps is a function that returns a join of the dependencies of all variables syntactically occuring

in t. The assignment x = y + w would, in a state where y and w only depend on themselves, for

example result in the update xdep := deps(y)∪ deps(w) = {y}∪{w} = {y,w}. The supported language

1A last-one-wins (or: right-most-one wins) semantics is incorporated to ensure this in the presence of conflicting updates.

2

Page 81 of 117

Value sensitivity in information flow analysis Bart van Delft

also incorporates conditional statements and while loops, and the analysis correctly labels the programs

from Example 1, except for (vi) and (viii). The reason for labeling (vi) as insecure can easily be seen

when the program is simplified to l = h - h. This results in the update ldep := {h} since the analysis

only considers the syntactic term to which l is updated.

4 Value sensitivity by equivalence classes

The value sensitivity of the analysis by dependencies as described above can be improved as follows.

Instead of making xdep directly track the dependencies of x, it tracks a Herbrand universe-like version

of the term t to which x is updated (which we call a term expression). E.g. the program y = x - x

would by symbolic execution result in the update ydep := xc −c xc. To check the dependencies of y after

symbolic execution of the program, we use a function unwrap that takes a Herbrand copy (xc −c xc) and

returns the regular term (x−x). If we take from this term the variables it syntactically contains ({x}) we

have the same analytical power as before.

The value-sensitivity that we gain by tracking the term copy works as follows. We define the equiv-

alence class of term expressions (the copied terms) to be the same for all term expressions that, when

unwrapped, evaluate to the same value independent of the state of the program. That means that for

example xc−c xc and 0c belong to the same equivalence class. We denote the equivalence class of a term

expression by placing brackets around them, i.e. [xc −c xc] = [0c]. Furthermore, we define the evaluation

of term expressions as their equivalence class, thus we have that Eval(xc −c xc) = Eval(0c).
With these definitions in place, we can now allow rewrite rules between term expressions of the same

class, since they evaluate the same. Some example rewrite rules include (where tExp is an arbirtray term

expression):

tExp−c tExp 0c

1c ∗c tExp tExp

0c ∗c tExp 0c

tExp ∗c (vExp /c wExp) (tExp ∗c vExp)/c wExp

These rewrite rules could also be allowed in the opposite direction, but this would for most rules not

be beneficial for a value sensitive analysis. We can now rewrite the tracked ydep := xc −c xc 0c and

conclude that the set of variables in the unwrapped term expression is {}, thus that y does not depend on

any variable.

Incorporating a similar mechanism for conditional statements and updating the calculus rules accord-

ingly we can now show that our analysis correctly classifies all the programs from Example 1. In future

research we plan to demonstrate an implemented version of this analysis in the KeY System.

References

Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors. Verification of Object-Oriented Soft-

ware: The KeY Approach. LNCS 4334. Springer-Verlag, 2007.

Richard Bubel, Reiner Hähnle, and Benjamin Weiß. Abstract Interpretation of Symbolic Execution with

Explicit State Updates. In Revised Lectures, 7th International Symposium on Formal Methods for

Components and Objects (FMCO 2008), volume 5751 of LNCS, pages 247–277. Springer, 2009.

Gerhard Gentzen. Untersuchungen über das logische Schließen I. Mathematische Zeitschrift, (39):176–

210, 1934.

3

Page 82 of 117

Static Analysis of Bounded Polyhedra

Stefan Bygde

Mälardalen University

Västerås, Sweden

stefan.bygde@mdh.se

Björn Lisper

Mälardalen University

Västerås, Sweden

bjorn.lisper@mdh.se

Niklas Holsti

Tidorum Ltd

Hesinki, Finland

niklas.holsti@tidorum.fi

Abstract

We present a method for polyhedral abstract interpretation which derives fully bounded polyhedra

for every step in the analysis. Contrary to classical polyhedral analysis, this method is sound for

integer-valued variables stored as fixed-size binary strings; wrap-arounds are correctly modelled.

Our work is based on earlier work by Axel Simon and Andy King but aims to significantly reduce

the precision loss introduced in their method.

1 Introduction

A commonly used application of program analysis is to derive which numerical values the program

variables can take at each point in the program. This is typically done using abstract interpretation [2] and

some numerical abstract domain to get an approximation of the possible values. Abstract interpretation

derives a superset of the possible values that each variable can take at each point in the program. Since

exact information about the semantics of a program is uncomputable, abstract interpretation introduces

a sound approximation of the possible values. The nature of the abstraction is implemented via abstract

domains which determine which properties of the values should be abstracted. An abstract domain

consists of an abstract representation of a set of program states (called abstract environments) and defines

transfer functions for each construct in the programming language. The transfer functions describe how

a construct changes the abstract environments. Abstract interpretation is then done by iterating and

propagating the abstract environments through the program via the transfer functions until no changes

occur (fixed-point iteration).

Most numerical domains suggested in the literature are based on the unsound assumption that vari-

ables can take arbitrary integer values. In real applications, a value is usually stored as a fixed-sized bi-

nary string. Analyses based on an abstract domain that assumes unbounded integers fail to model effects

such as wrap-arounds. One of the most common abstract domains is the domain of convex polyhedra [3],

which is a powerful domain that captures linear relationships between the values of the variables. The

set of possible environments 1 at a program point is modelled as the set of solutions to a system of linear

inequalities in R
n space. Each dimension corresponds to one integer-valued variable. Each (integer)

solution corresponds to a possible environment at one point in a program. The set of solutions forms a

convex polyhedron in R
n space, hence the name. Since a linear inequality may contain several variables,

this domain is able to capture linear relations between variables, which is important to achieve precision.

The polyhedral domain is also based on the assumption that variables can take arbitrary integer val-

ues, so it is unsound for programs containing wrap-arounds. Simon and King [5] suggest a modification

to the domain which makes it sound for wrapping integers, but this modification introduces a lot of

imprecision.

2 Contributions

Our work aims to provide a sound and precise polyhedral analysis for integers with possible wrap-

arounds. Our method builds on earlier work by Simon and King [5], but we attempt to minimise the

1In this context, an environment is an assignment of an integer value to each integer-valued variable.

1

Page 83 of 117

stefan.bygde@mdh.se
bjorn.lisper@mdh.se
niklas.holsti@tidorum.fi

Static Analyis of Bounded Polyhedra Bygde, Lisper, and Holsti

Figure 1: The picture on the left (a), shows a polyhedron before wrapping. The base window is shown

outlined by a dot-dashed square. The grid of variously hatched triangles shows the condition x0 ≤ x1

taken as a signed comparison of the 8-bit unsigned residue of x0 with the 8-bit signed residue of x1.

The polyhedron intersects three components of this condition. To the right (b), the intersections of the

condition with the unwrapped polyhedron are shown, shifted to the base window, and their convex hull,

which is the resulting wrapped polyhedron.

introduced imprecision of their method. In classical polyhedral analysis, and indeed in Simon and King’s

approach, it is possible to derive polyhedra which are unbounded in some dimension. Unbounded poly-

hedra unfortunately introduce a lot of imprecision in Simon and King’s approach. Thus, we devise a

method which makes sure that every analysis step derives a fully bounded polyhedron. This makes

our method potentially more precise than [5] and allows analysis with the polyhedral domain without

compromising soundness or causing too much imprecision. The details of our method are available in

[1].

3 Wrapping Polyhedra

The method in [5] interprets the solutions to the system of linear inequalities (i.e., the points inside

a polyhedron) modulo 2N , where N is the number of bits in a variable, with proper adjustment for

signed variables. Performing abstract interpretation while using this interpretation works well since

linear assignments commute with modular residue. However, linear inequalities do not commute, and

therefore an explicit wrapping of the polyhedron is required whenever a linear comparison is made.

The first step of wrapping is to partition R
N into “windows” as in Figure 1. The linear inequality is

repeated in each window to capture the comparison between an integer which might have been wrapped

(i.e., lies outside the “base window”). The wrapping is then done by intersecting the partitioned polyhe-

dron parts with the repeated inequalities, shifting the results to the base window, and finally computing

the smallest polyhedron that covers all the shifted parts of the polyhedron (see the right part of Figure 1).

Unbounded polyhedra are problematic for this wrapping strategy, as they would require intersecting an

infinite number of polyhedra. Thus, for any unbounded variable, any relational information is discarded

and the variable is simply bounded by the base window size in its dimension. Unfortunately, unbounded

polyhedra commonly occur during polyhedral analysis of typical programs.

4 Bounded Polyhedra

Our approach is to use the wrapping strategy to make sound analyses, while preventing unnecessary

precision loss due to unbounded polyhedra. Most of the precision loss comes from unbounded polyhedra,

2

Page 84 of 117

Static Analyis of Bounded Polyhedra Bygde, Lisper, and Holsti

so our approach is to make the polyhedra in the analysis fully bounded. There are three phases of classic

polyhedral analysis which can make a polyhedron unbounded: at the initial analysis state, at any non-

linear assignment of a variable and at widenings. Widening is an acceleration technique required for

most abstract domains in order to terminate the analysis quickly [2].

In classical polyhedral analysis, nothing is assumed to be known about the initial state of the program

variables. This is symbolised by an infinite unbounded polyhedron (or equivalently, the system of linear

inequalities is empty). To make this state bounded we impose type-bounds on the initial state. Type-

bounds are simply the min and max values for any signed or unsigned integer-variable represented by N

bits. For example, the type-bounds for an unsigned 8-bit variable x would be: 0 ≤ x ≤ 255. Thus, the

initial state can safely be bounded.

The polyhedral domain, by nature, has problems with non-linearity. A non-linear assignment of a

variable causes the analysis to drop all assumptions about it (i.e., losing all relational information about

it). This results in a polyhedron which is unbounded in the dimension the assigned variable represents.

However, since relations to other variables in this case are unknown, it is still safe to impose type-bounds

for this variable, as we did in the initial state, thus making the polyhedron bounded.

Finally, we have the widening. Widening for polyhedra consists of removing those inequalities, at

the widening point, that do not hold in two consecutive iterations of the analysis. Removing inequalities

often results in an unbounded polyhedron. Since the polyhedron may still contain relational information,

it is not safe to impose type bounds after widening.

Our approach is to do widening in conjunction with wrapping to make sure that the polyhedron

remains within all type-bounds. To avoid unnecessary wrapping that could cause imprecision we apply

widening only at the points where wrapping must be done - at conditional branches that depend on

linear comparisons. This makes it safe to impose the type-bounds on the polyhedron after the widening

(this is equivalent to making a limited widening [4] over the type-bounds), thus making the polyhedron

fully bounded after widening. This, together with imposing type-bounds for variables with no relational

information, results in fully bounded polyhedra in every step of the analysis.

5 Conclusion

We have developed a polyhedral analysis which is safe for wrapping integers while not losing too much

precision. The core of the method is to make sure that the analysis derives fully bounded polyhedra in

order to avoid unnecessary precision loss when wrapping. An implementation of the method is ongoing

and a thorough comparison to Simon and King’s original method is planned. Due to the more precise

widening, our analysis may take a little longer to stabilise, but potentially with more precision.

References

[1] Stefan Bygde, Björn Lisper, and Niklas Holsti. Fully bounded polyhedral analysis of integers with wrapping.

In International Workshop on Numerical and Symbolic Abstract Domains (NSAD), September 2011.

[2] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static analysis of

programs by construction or approximation of fixpoints. In POPL, pages 238–252, 1977.

[3] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints among variables of a program.

In POPL, pages 84–96, 1978.

[4] Nicolas Halbwachs. Delay analysis in synchronous programs. In Costas Courcoubetis, editor, CAV, volume

697 of Lecture Notes in Computer Science, pages 333–346. Springer, 1993.

[5] Axel Simon and Andy King. Taming the wrapping of integer arithmetic. In Static Analysis, volume 4634 of

Lecture Notes in Computer Science, pages 121–136. Springer Berlin / Heidelberg, 2007.

3

Page 85 of 117

Towards a Real-Time, WCET Analysable JVM Running in 256

kB of Flash Memory

Stephan Korsholm

VIA University College

8700 Horsens, Denmark

sek@viauc.dk

Kasper Søe Luckow

Aalborg University

9220 Aalborg, Denmark

luckow@cs.aau.dk

Bent Thomsen

Aalborg University

9220 Aalborg, Denmark

bt@cs.aau.dk

1 Introduction

The Java programming language has recently received much attention in the real-time systems commu-

nity as evidenced by the wide variety of initiatives, including the Real-Time Specification for Java[8],

and related real-time profiles such as Safety-Critical Java[6], and Predictable Java[3]. All of these focus

on establishing a programming model appropriate for real-time systems development. The motivation

for the profiles has been to further tightening the semantics, for accommodating static analyses, such as

Worst Case Execution Time (WCET) analysis that serves an integral role in proving temporal correctness.

Evidently, the presence of the Java Virtual Machine (JVM) adds to the complexity of performing

WCET analysis. To reduce the complexity, a direction of research has focused on implementing the

JVM directly in hardware[9]. To further extend the applicability of real-time Java, we want to allow

software implementations of the JVM executed on common embedded hardware, such as ARM and

AVR, while still allowing the system to be amenable to static analyses. This necessarily demands that

the JVM is amenable to static analyses as well, which is difficult, since the JVM specification is rather

loosely defined. Specifically, the JVM specification emphasises on what a JVM implementation must do

whenever executing a Java Bytecode, but leaves how unspecified. This makes JVM vendors capable of

tailoring their implementation to their application domain.

In our recent research, we have developed a WCET analysis tool called Tool for Execution Time

Analysis of Java bytecode (TetaJ)[5], which allows for taking into account a software implemented JVM

and the hardware. The development of TetaJ has made us explicitly reason about JVM design accom-

modating WCET analysis. The contribution of this paper is to present our preliminary research efforts

in making Java tractable for real-time embedded systems on more common execution environments by

elaborating on how a real-time JVM must handle certain issues. Constraining the degree of freedom of

the real-time JVM vendors is a necessity to ensure, that the application running on the JVM is temporally

correct, since the WCET is often obtained using static analyses relying on predictable behaviour.

2 TetaJ

TetaJ employs a static analysis approach where the program analysis problem of determining the WCET

of a program is viewed as a model checking problem. This is done by reconstructing the control flow of

the program and the JVM implementation, and generate a Network of Timed Automata (NTA) amenable

to model checking using the state-of-the-art UPPAAL model checker[1]. The NTA is structured such that

the model checking process effectively simulates an abstract execution of the Java Bytecode program on

the particular JVM and hardware.

TetaJ has proven suitable for iterative development since it analyses on method level, and because

analysis time and memory consumption are reasonably low. In a case study[5, 2], an application con-

sisting of 429 lines of Java code was analysed in approximately 10 minutes with a maximum memory

consumption of 271 MB. The case study is based on the Atmel AVR ATmega2560 processor and the

1

Page 86 of 117

sek@viauc.dk
luckow@cs.aau.dk
bt@cs.aau.dk

Preliminary Design Criteria for a Real-Time, WCET Analysable JVM Korsholm, Luckow, Thomsen

Hardware near Virtual Machine (HVM)1 which is a representative example of a JVM targeted at embed-

ded systems.

Currently, TetaJ provides facilities for automatically generating an NTA representing the JVM by

the provision of the HVM executable. The METAMOC[4] hardware models are reused in TetaJ thereby

having the desirable effect that TetaJ can benefit from the continuous development of METAMOC.

We have strong indications that TetaJ produces safe WCET estimates, that is, estimates that are at

least as high as the actual WCET and TetaJ may therefore be appropriate for analysing hard real-time

Java programs. As to the precision, we have results showing that TetaJ produces WCET estimates with

as low as 0.6% of pessimism[5].

3 Hardware near Virtual Machine

The HVM is a simplistic and portable JVM implementation targeted at embedded systems with as low as

256 kB of flash memory and 8 kB of RAM and is capable of running bare-bone without operating system

support. To support embedded systems development, the HVM implements the concept of hardware

objects[7], that essentially prescribe an object-oriented abstraction of low-level hardware devices, and

allow for first-level interrupt handling in Java space.

The HVM employs iterative interpretation for translating the Java Bytecodes to native machine in-

structions. The interpreter itself is compact, and continuously fetches the next Java Bytecode, analyses

it, and finally executes it. The analyse and execute stages are implemented by means of a large switch-

statement with cases corresponding to the supported Java Bytecodes.

A special characteristic of the HVM is that the executable is adapted to the particular Java Bytecode

program. Specifically, the Java Bytecode of the compiled program is encapsulated in arrays within the

HVM itself. This, however, does not affect the behaviour of the interpreter, and is merely a way of

bundling the Java Bytecode with the HVM into a single executable.

4 Preliminary Design Criteria for a Predictable HVM

During the development of TetaJ, the implementation of the HVM has been inspected and modified

according to the needs of WCET analysis. Some modifications simply comprise bounding the number

of loop iterations while others require more elaborate solutions to be developed. In the following, we

present our experiences with modifying the HVM towards predictable and WCET analysable behaviour.

4.1 Eliminating Recursive Solutions

Some Java Bytecode implementations are intuitively based on recursive solutions. Specifically, the Java

Bytecodes responsible for method invocations such as invokevirtual employ a recursive approach.

The heart of the HVM is the methodInterpreter which implements the interpretation facilities. When-

ever e.g. invokevirtual is executed, the methodInterpreter is recursively called to process the code of the

invoked method. This, however, is undesirable seen from a static WCET analysis perspective, since it is

difficult to statically determine the depth of the recursive call. The problem is circumvented by introduc-

ing an iterative approach and introduce the notion of a call stack and stack frames. Using this solution,

a stack frame containing the current call context, that is, stack pointer, program counter etc. are pushed

onto the stack, and the methodInterpreter simply continues iteratively fetching Java Bytecodes from the

called method. When the particular method returns, the stack is popped and the context restored to the

point prior to the method invocation.

1http://www.icelab.dk

2

Page 87 of 117

Preliminary Design Criteria for a Real-Time, WCET Analysable JVM Korsholm, Luckow, Thomsen

4.2 Reducing Pessimism of the Class Hierarchy

Since Java is strongly typed, type casts produce the checkcast Java Bytecode which is responsible for

iteratively checking the class hierarchy to determine whether the type cast is type compatible. Another

example is the instanceof operator which similarly consults the class hierarchy iteratively. Establishing

a tight bound that applies for every part of the class hierarchy cannot be done statically. Instead it is only

possible to establish a global bound corresponding to the maximum depth of the class hierarchy. This

gives rise to pessimism that affects the resulting WCET extensively.

This problem has been resolved by harnessing that the HVM is adapted to the particular application.

Because this process is performed prior to runtime, it is possible to exercise how the class hierarchy is

built and construct a matrix specifying how classes are interrelated. The matrix will be incorporated in

the final executable, and can be used for determining type compatibility among classes in constant time,

by simply looking up the matrix.

4.3 Constant Time Analyse Stage

Different compilers and different optimisation levels may or may not implement a sufficiently large

switch-statement as a look-up table. Because of this uncertainty, we have replaced the analyse stage in

the methodInterpreter to ensure that this stage is performed in constant time regardless of compiler and

optimisation levels. The replacement consists of extracting the individual Java Bytecode implementa-

tions from the switch-statement into respective functions. This also has the desirable side-effect that they

are easily located in the disassembled HVM executable. An array of function-pointers to each of these

functions substitutes the original switch-statement, thereby allowing for constant access time to each of

the Java Bytecode implementations using the opcodes as look-up keys.

References

[1] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi. UPPAAL - A Tool Suite for Automatic Verifi-

cation of Real-time Systems. Hybrid Systems III, pages 232–243, 1996.

[2] Thomas Bøgholm, Christian Frost, Rene Rydhof Hansen, Casper Svenning Jensen, Kasper Søe Luckow, An-

ders P. Ravn, Hans Søndergaard, and Bent Thomsen. Harnessing theories for tool support. Submitted for

publication: Innovations in Systems and Software Engineering, 2011.

[3] Thomas Bøgholm, René R. Hansen, Anders P. Ravn, Bent Thomsen, and Hans Søndergaard. A predictable

java profile: Rationale and implementations. In JTRES ’09: Proceedings of the 7th International Workshop on

Java Technologies for Real-Time and Embedded Systems, pages 150–159, New York, NY, USA, 2009. ACM.

[4] Andreas E. Dalsgaard, Mads Chr. Olesen, Martin Toft, René Rydhof Hansen, and Kim Guldstrand Larsen.

METAMOC: Modular Execution Time Analysis using Model Checking. In Björn Lisper, editor, 10th Interna-

tional Workshop on Worst-Case Execution Time Analysis (WCET 2010), volume 15 of OpenAccess Series in

Informatics (OASIcs), pages 113–123. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2010.

[5] C. Frost, C. S. Jensen, K. S. Luckow, and B. Thomsen. WCET Analysis of Java Bytecode Featuring Common

Execution Environments. Accepted for publication: The 9th International Workshop on Java Technologies for

Real-time and Embedded Systems - JTRES 2011, 2011.

[6] JSR302. The java community process, 2010. http://www.jcp.org/en/jsr/detail?id=302.

[7] Stephan Korsholm, Anders P. Ravn, Christian Thalinger, and Martin Schoeberl. Hardware objects for java.

In In Proceedings of the 11th IEEE International Symposium on Object/component/serviceoriented Real-time

distributed Computing (ISORC 2008. IEEE Computer Society, 2008.

[8] Oracle. RTSJ 1.1 Alpha 6, release notes, 2009. http://www.jcp.org/en/jsr/detail?id=282.

[9] Martin Schoeberl. JOP: A Java optimized processor. In On the Move to Meaningful Internet Systems 2003:

Workshop on Java Technologies for Real-Time and Embedded Systems (JTRES 2003), volume 2889 of LNCS,

pages 346–359, Catania, Italy, November 2003. Springer.

3

Page 88 of 117

http://www.jcp.org/en/jsr/detail?id=302
http://www.jcp.org/en/jsr/detail?id=282

An Optimal Resource Sharing Protocol

for Generalized Multiframe Tasks
— Extended abstract —

Pontus Ekberg, Nan Guan, Martin Stigge, Wang Yi

Uppsala University, Sweden

Email: {pontus.ekberg | nan.guan | martin.stigge | yi}@it.uu.se

Abstract—We consider sharing of non-preemptable resources
in real-time task models with flexible job release patterns.
Resource sharing is an inherent property of many real-time
systems. At the same time, flexible task models are needed to
precisely express their workloads. Exact analysis and optimal
scheduling of systems with shared resources have been available
only for relatively simple task models, such as the sporadic task
model.

We propose a new algorithm for scheduling systems with
shared resources. The key idea behind the algorithm is to take the
tasks’ structures into account when predicting possible resource
contention. We show that the algorithm is optimal for scheduling
generalized multiframe task sets with shared resources. We also
present an efficient feasibility test for such systems, and show
that the test is both sufficient and necessary.

I. INTRODUCTION

Processes in real-time systems often compete for shared

resources, such as peripheral devices or global data structures

that must be accessed in a mutually exclusive manner. To avoid

deadlocks and low processor utilization, we need scheduling

algorithms that handle the resource sharing.

Well-established solutions to the resource sharing problem

exist in the context of sporadic task sets. The popular instantia-

tion of the stack resource policy [1], often called EDF+SRP [2],

is even optimal for such workloads. Unfortunately, EDF+SRP

is not optimal for more flexible task models, such as the

generalized multiframe (GMF) task model [3].

The flexible structure of GMF tasks, in combination with

shared resources, is the main source of difficulty in finding

an optimal scheduling strategy. To make optimal scheduling

decisions at run-time, we must be aware of the tasks’ structures

and predict which behaviors each task may display in the near

future.

The goal of this work is to show how to analyze and

schedule GMF task sets with shared resources. We introduce

an efficient technique, which takes the tasks’ structures into

account, to predict possible resource contention at run-time

and thereby determine the urgency of unlocking currently

used resources. Based on this technique we propose a new

scheduling algorithm and show that it is well suited for

scheduling such workloads. The main contributions include:

• We propose the virtual deadline protocol (VDP) for

handling shared resources, and combine it with earliest

deadline first (EDF) to form the EDF+VDP scheduling

algorithm. We prove that EDF+VDP has the following

properties:

– It is optimal for scheduling GMF task sets with shared

resources, in the sense that it successfully schedules

all feasible task sets.

– It is deadlock-free, and it enables efficient implemen-

tations because there is at most one preemption per

job release and all jobs in the system can share a

common run-time stack.

• We derive a sufficient and necessary feasibility test

for GMF task sets with shared resources. This test is

in the same complexity class as the known feasibility

tests for sporadic tasks [4] and GMF task sets with-

out resources [3], i.e., pseudo-polynomial for bounded-

utilization task sets.

II. PRELIMINARIES

A. The Generalized Multiframe Task Model

The GMF task model [3] is a generalization of the well-

known sporadic [4] task model. Like a sporadic task, a GMF

task releases a sequence of jobs. However, the jobs released

by a GMF task do not all need to have the same parameters

(e.g., execution time and deadline). Instead, a GMF task cycles

through a sequence of job types, which specify the parameters

of the jobs that are released.

A natural way of representing a GMF task is to use a directed

cycle graph, where the vertices represent the job types, and the

arcs specify the order in which jobs are released (as well as the

minimum delay between consecutive job releases). Formally,

a GMF task set τ is defined as follows:

• Each task T ∈ τ is a directed cycle graph, with vertices

V (T) and arcs A(T).
• Each vertex v ∈ V (T) is called a job type and is labeled

with a pair 〈E(v), D(v)〉. For each job that is of type v,

E(v) ∈ N>0 is an upper bound on its required execution

time, and D(v) ∈ N>0 is its relative deadline.

• Each arc (u, v) ∈ A(T) is labeled with a minimum inter-

release separation time P (u, v) ∈ N>0.

• One vertex v0 ∈ V (T), denoted S(T), is called the start

vertex of T .

Page 89 of 117

When the system is running, each task T releases a possibly

infinite sequence of jobs [J0, J1, J2, . . .], where each job

corresponds to one of T ’s job types. Intuitively, a job sequence

is generated by “walking” through the graph of T , starting

at vertex S(T). Every time a vertex is visited, a job of the

corresponding job type is released. Before the next vertex can

be visited, the task must wait for at least the minimum inter-

release separation time labeled on the arc leading there.

Formally, each job Ji in a job sequence is specified by

a triple (r(Ji), e(Ji), d(Ji)) ∈ R
3, where r(Ji) is the job’s

absolute release time, d(Ji) its absolute deadline and e(Ji)
its execution time requirement. A job sequence is said to be

generated by T if and only if there is a path [v0, v1, v2, . . .]
through T such that the following hold for all i > 0:

1) v0 = S(T),
2) r(Ji+1) > r(Ji) + P (vi, vi+1),
3) e(Ji) 6 E(vi),
4) d(Ji) = r(Ji) +D(vi).

A job sequence is generated by a task set τ if and only if it is

an interleaving of job sequences generated by the tasks T ∈ τ .

We assume that the tasks satisfy the l-MAD property [3]:

D(u) 6 P (u, v) + D(v). This property guarantees that all

jobs released by the same task have their (absolute) deadlines

ordered in the same order as their release times.

B. Modeling Shared Resources

In the plain GMF model described above, all jobs are

completely independent; there is no way to model contention

between jobs for shared resources. We extend the GMF model

to include non-preemptable shared resources, which allows us

to express which resources may be used by jobs of each job

type, and for how long. We refer to the extended model as the

GMF-R task model.

When a job is granted access to a resource, we say that

it locks the resource, and then holds it for some time before

finally unlocking it. If a resource is already held by some job,

it cannot be locked again until it has been unlocked by the job

holding it. Note that a job may be preempted while holding

a resource, but no other job may use that resource until it is

unlocked.

Each job type has a worst-case access duration to each

resource. After a resource is locked, the job will execute for

at most this duration before unlocking it again. We do not

assume any a priori knowledge about exactly when a job locks

a resource.

Formally, a GMF-R task set is a triple (τ, ρ, α), such that

• τ is a GMF task set,

• ρ is a set of resources,

• α : V (τ) × ρ → N>0 ∪ {⊥} is a function mapping job

types and resources to their worst-case access durations,

where V (τ) =
⋃

T∈τ
V (T) is the set of all job types in τ .

The worst-case access duration of jobs of type v to resource

R ∈ ρ is given by α(v,R). If α(v,R) = ⊥, then jobs of

v0

α(v0, R1) = 1

〈2, 9〉

v1〈1, 5〉

v2

〈5, 30〉

α(v2, R2) = 4

v3

〈2, 10〉

v4 〈3, 8〉

35

5

60

5

12

T1

u0

α(u0, R1) = 1

α(u0, R2) = 3

〈3, 15〉

uu0

u1

〈2, 8〉

u2

〈8, 35〉

α(u2, R1) = 5

12

20

40

T2

Fig. 1. A GMF-R task set with two tasks and shared resources R1 and R2.

type v do not use resource R.1 Otherwise, α(v,R) 6 E(v)
is assumed. We let αmax(T,R) denote the maximum access

duration to resource R by any job type in task T . Fig. 1 shows

an example GMF-R task set with two GMF tasks and two shared

resources (only α(v,R) 6=⊥ are shown).

A single job may use several different resources, possibly at

the same time, but resource accesses must be properly nested.

That is, if a job locks resource R1 and afterwards locks R2

before unlocking R1, it must unlock R2 before unlocking R1.

A job may also lock the same resource several times during

its execution (each time holding it for at most the worst-case

access duration). A job must unlock all resources that it holds

before finishing execution.

C. Scheduling Algorithms and Feasibility

For a job sequence to be successfully scheduled, all jobs

must finish their execution before their deadlines. That is,

each job J in the sequence must be exclusively executed for

e(J) time units (not necessarily continuously) between r(J)
and d(J). A job is said to be active during the time interval

between its release time and the time point where it finishes

execution.

A scheduling algorithm decides at each time point which

active, non-blocked job (if any) to execute. A scheduling

algorithm can know the current system state and how jobs

have been released in the past. It does not know what will

happen in the future, other than what is specified by the task

model.

Definition II.1 (Feasibility and Optimality). A GMF-R task set

(τ, ρ, α) is feasible if and only if there exists some scheduling

algorithm that can successfully schedule all job sequences

generated by τ , for all legal access patterns to the resources

in ρ by jobs in the sequence.

A scheduling algorithm is optimal if and only if it can

successfully schedule all feasible task sets.

1Note that α(v,R) = 0 is useful to express that jobs of type v can be
forbidden to execute while some other job holds R, but do not hold R

themselves. This can be used to model non-preemptable sections in jobs.

Page 90 of 117

III. THE VIRTUAL DEADLINE PROTOCOL

The virtual deadline protocol (VDP) is a resource sharing

protocol, designed to extend the earliest deadline first (EDF)

scheduling algorithm to handle shared resources. We call the

resulting scheduling algorithm EDF+VDP. We will show that

EDF+VDP is an optimal scheduling algorithm for GMF-R task

sets.

EDF+VDP uses what we call virtual deadlines to schedule

jobs. It schedules jobs in a similar way to EDF, but uses

virtual deadlines instead of absolute deadlines for scheduling

decisions. That is, at each time point, EDF+VDP chooses to

run the job with the earliest virtual deadline. It is then up

to the VDP part of EDF+VDP to assign virtual deadlines to

jobs in a way that guarantees the desired properties. It does

this by potentially lowering the virtual deadlines (and thereby

increasing the priorities) of jobs that are currently holding

resources. The virtual deadline of a job therefore represents

not only the urgency of the job itself, but also the urgency of

releasing the resources that the job is currently holding. To

assign virtual deadlines in an optimal way, we must be able

to determine how urgent it is that a certain resource becomes

unlocked. We capture this urgency by introducing the concept

of a resource deadline, which is described in the following

section.

A. Resource Deadlines

VDP relies on the idea that we can predict, at any time, ex-

actly the earliest future time point where some not-yet-released

job can have a deadline. In particular, we are interested in the

deadlines of future jobs that may need some resource R. The

earliest possible such deadline we call the resource deadline

of R.

Definition III.1 (Resource deadline). The resource deadline

∆(R, t) of resource R at time point t is exactly the earliest

time point when some job that is not yet released at t and that

may need R can potentially have a deadline, without violating

the semantics of the task model.

In other words, if a task set (τ, ρ, α) has released a sequence

of jobs [J, J ′, . . . , J ′′] up to time point t, then ∆(R, t) is the

smallest value such that the following is satisfied, for some

potential future job J ′′′:

1) J ′′′ may use R,

2) ∆(R, t) = d(J ′′′),
3) r(J ′′′) > t,

4) some [J, J ′, . . . , J ′′, . . . , J ′′′] is generated by τ .

Note that no future job that uses R actually has to get a

deadline at ∆(R, t), as long as it is possible, given the task

model and the system state at time t. We will show how

resource deadlines can be efficiently computed at run-time.

Example III.2. Consider the task system in Fig. 1 and the

following run-time scenario, illustrated in Fig. 2. At time 15,

we want to know the resource deadline ∆(R1, 15). The latest

job released by task T1 was of type v3 at time 11, and the

latest job released by task T2 was of type u1 at time 2.

We can see that the next job of T1 that may need R1 is

of type v0. The earliest possible deadline of the next job of

type v0 is at 11 + 5 + 12 + 9 = 37. Similarly, the next job of

T2 that may need R1 is of type u2, and can have a deadline

earliest at time 2 + 20 + 35 = 57. The earliest possible time

when some future job that needs R1 may have a deadline is

therefore at time 37, and ∆(R1, 15) = 37.

15

v3 v3v4 v4 v0 v0

37

tT1 :
0 10 20 30 40 50 60

u1 u1 u2 u2

57

tT2 :
0 10 20 30 40 50 60

Fig. 2. At time 15 we want to know the resource deadline for R1. The solid
arrows indicate release times and deadlines of the latest jobs from T1 and
T2 (of types v3 and u1, respectively). The dotted arrows indicate the earliest
possible release times and deadlines of future jobs.

B. The EDF+VDP Scheduling Algorithm

In EDF+VDP we use virtual deadlines to represent the

urgency of executing jobs. The urgency of executing a job

depends not only on the job itself (i.e., its absolute deadline),

but also on whether the resources that it holds might be needed

by some other job. We introduced resource deadlines to capture

this latter aspect of the urgency.

By combining these aspects of urgency, we can now present

the complete EDF+VDP scheduling algorithm, which is defined

by the following four rules:

1) When a job J is released, it gets a virtual deadline v(J)
equal to its absolute deadline:

v(J)← d(J).

2) When a job J locks a resource R at time t, v(J) is

updated based on the resource deadline ∆(R, t):

v(J)← min(v(J),∆(R, t)).

3) When a job unlocks a resource, it regains the virtual

deadline that it had immediately before locking that

resource.

4) At each time point, EDF+VDP executes the active job J

with the earliest virtual deadline v(J). If several jobs

share this earliest virtual deadline, then those jobs are

executed in first-come, first-served order.

REFERENCES

[1] T. Baker, “A stack-based resource allocation policy for realtime pro-
cesses,” in RTSS, 1990, pp. 191–200.

[2] S. Baruah, “Resource sharing in EDF-scheduled systems: A closer look,”
in RTSS, 2006, pp. 379–387.

[3] S. Baruah, D. Chen, S. Gorinsky, and A. Mok, “Generalized multiframe
tasks,” Real-Time Systems, vol. 17, pp. 5–22, 1999.

[4] A. Mok, “Fundamental design problems of distributed systems for the
hard real-time environment,” Cambridge, MA, USA, Tech. Rep., 1983.

Page 91 of 117

Adaptive Task Automata:

A Framework for Verifying Adaptive Embedded Systems

Leo Hatvani, Paul Pettersson, Cristina Seceleanu

Mälardalen University, 721 23, Västerås, Sweden

{leo.hatvani, paul.pettersson, cristina.seceleanu}@mdh.se

1 Introduction

Adaptive embedded systems are systems that must be capable to dynamically reconfigure in order to

adapt to e.g., changes in available resources, user- or application driven mode changes, or modified

quality of service requirements. The possibility to adapt provides flexibility that extends the area of

operation of embedded systems and potentially reduces resource consumption, but also poses challenges

in many aspects of systems development, including system modeling, scheduling, and analysis.

In embedded systems, tasks are usually assumed to execute periodically according to classical real-

time scheduling policies such as rate monotonic scheduling, other fixed priorities, earliest deadline first,

or first-in first out [3]. For systems with non-periodic tasks or non-deterministic task behaviors fewer

general results exists. Automata models have been proposed to relax some of the assumptions on the

arrival patterns of tasks. In the model of task automata (or timed automata with tasks) [7, 5], the release

patterns of tasks are modeled using timed automata [1], such that a set of tasks with known parameters

is released at the time point an automata location is reached. It has been shown that the corresponding

schedulability problem for this bigger class of possible release patterns is decidable, i.e., the problem of

checking if for all possible traces of a task automata, the released tasks are schedulable (or not), assuming

a given scheduling policy. The theory is implemented in the TIMES tool [2].

In this work, we propose a framework for modeling and analysis of adaptive real-time embedded

systems based on the model of task automata (see Section 2). Our extension allows for modeling of,

e.g., adaptive embedded systems in which decisions to admit further tasks is based on available CPU

resources, or systems in which tasks with high quality of service can occasionally be replaced with

alternative lower quality tasks when the CPU load is too high. We use a smartphone system example to

illustrate our approach (sections 3 and 4).

2 Adaptive Task Automata

Adaptive task automata are an expansion on the framework of finite state automata. First, finite state

automata are extended with real-valued clocks to become timed automata [1]. Next, in the work by

Fersman et al. [7] the notion of timed automata has been augmented by associating states of the automata

with releases of tasks (executable programs) resulting in task automata.

In the same work, Fersman et al. have proved that it is possible to check the schedulability of a

model created using task automata, under the assumption that the computation times, hard deadlines and

priorities of the tasks are known.

Choice of the next state in a task automata is regulated by the guards on the edges between states.

These guards are conjunctions of formulas of type xi ∼C or xi −x j ∼ D where xi,x j ∈ C are real-valued

clocks, ∼∈ {≤,<,≥,>} and C, D are natural numbers.

While a task automata can be checked for schedulability, the information about schedulability is not

accessible within the task release automata in the previous work. In this work, we are presenting an

encoding of the schedulability problem that enables the use of predicates for checking schedulability in

edge guards.

1

Page 92 of 117

Adaptive Task Automata Hatvani, Pettersson and Seceleanu

P T D C Description
tcl 3 10 10 4 Call
tvc 2 10 10 3 Video Chat
tmm 1 10 10 7 Multimedia: max quality
t′
mm

1 10 4 Multimedia: medium quality
t′′
mm

1 10 3 Multimedia: low quality

Start

Wait

x ≤ Tx = 0

x ≥ T

Return to Start

releasetmm
!

rtmm
+Ctmm

≤ Dtmm

Maximum quality

releaset′
mm

!

rt′
mm

+Ct′
mm

≤ Dt′
mm

Medium quality

releaset′′
mm

!

rt′′
mm

+ Ct′′
mm

≤ Dt′′
mm

Low quality

x ≤ 0

releasetmm
!

releaset′
mm

!

releaset′′
mm

!

Channel priorities

Highest priority

Least priority

(a) (b)

(c)

Figure 1: An Adaptive Smartphone System: (a) The task set; (b) Channel priorities that encode prefer-

ence between the variants of the multimedia tasks; (c) A simplified task release automata for the multi-

media task

Once the schedulability predicate has been added to a guard on the edge, the choice of the next

state in automata can be determined by potential schedulability a system related to releases of different

tasks. This novel encoding enabled us to model and verify systems that can conditionally release tasks

according to the potential schedulability of those tasks.

3 An Example: An Adaptive Smartphone System

To demonstrate the idea behind our adaptive task release system, let us look at an example that would

benefit from such a feature. Modern smartphone devices support multitasking and yet have quite limited

resources available for realizing their functionality. We propose a solution that enables an idealized

phone to adapt to the current situation on-the-fly by a dynamic restriction of a quality of service provided

to the user.

The basic assumption is that the software in the smart phone is being executed in cycles. During

each cycle, a series of short tasks that handle different applications are being executed. These tasks are

presented in the Figure 1a. The applications that we have chosen for this example are: phone call, video

call and multimedia. The user has the ability to turn on and off these applications at arbitrary moments

in time. The status switch of the respective application will not be immediately reflected in the currently

active task set, instead, the task set will change during the next cycle.

Tasks are described by four parameters: P - task priority, T - task period, D - relative deadline, C -

required execution time. The multimedia application has three variants of the task corresponding to the

three quality settings. Only the highest quality multimedia task has a period (tmm), while the other two

act as replacement in case the highest quality task cannot be executed.

The release model needs to choose a proper quality setting needs based on the amount of CPU time

available while maintaining as high quality setting of the multimedia application as possible.

2

Page 93 of 117

Adaptive Task Automata Hatvani, Pettersson and Seceleanu

4 Graceful quality reduction

In order to meet all of the deadlines given in the Figure 1a, it is necessary to devise a method for graceful

degradation of the quality of the multimedia application. Assuming a fixed priority scheduler, we model

the scheduler and task queue as a timed automata inspired by the previous work [7]. In this model, we

can observe the interference of higher priority tasks on any task.

To model the real-time task behavior, we need to keep track of the cumulative interference on some

task ti (by assigning it an integer variable ri, and after releasing the task itself add its computation time

to the value). This in turn lets us record the amount of computation time that has been dedicated to

processing that interference and the task itself (a clock variable ci), as well as how much time has elapsed

from the release of task ti, which is measured by the clock di. Clock di can be compared to the relative

task deadline to get available time before the deadline. This approach has been previously investigated

in a different context [6].

These variables are being updated throughout the simulation of the system, regardless of whether the

respective task is actually released or not (except the case where the task would have the highest priority

in the system, therefore entailing no interference). Assuming task ti running, the question is, whether

releasing task t j of higher priority than ti, would cause ti to miss its deadline. The answer is given by

evaluating the predicate ri − ci +C j ≤ Di −di.

In the above predicate, ri − ci represents the total required computation time to complete execution

of the task ti assuming all interferences that have been previously released. The right-hand side of

the inequality, Di − di, represents the leftover time to execute ti before its deadline. Comparing these

expressions gives us the amount of interference that can be added to ti, without compromising its timely

completion.

To address the problem described above, we have implemented a simplified version of this predicate

on the lowest priority multimedia task. It chooses the maximum quality variant of the multimedia task

that will still have time to execute as seen in Figure 1c. To ensure that we always choose the highest

possible quality, we have established priorities between the synchronization channels Figure 1b that are

used to release the tasks. Channel priorities are described in detail in [4].

References

[1] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–235,

1994.

[2] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang Yi. Times: a tool for schedu-

lability analysis and code generation of real-time systems. In Proc. of International Workshop on Formal

Modeling and Analysis of Timed Systems, Lecture Notes in Computer Science. Springer-Verlag, 2003.

[3] G. C. Buttazzo. Hard Real-Time Computing Systems. Predictable Scheduling Algorithms and Applications.

Kulwer Academic Publishers, 1997.

[4] Alexandre David, John Håkansson, Kim Larsen, and Paul Pettersson. Model checking timed automata with

priorities using dbm subtraction. In Eugene Asarin and Patricia Bouyer, editors, Formal Modeling and Analysis

of Timed Systems, volume 4202 of Lecture Notes in Computer Science, pages 128–142. Springer Berlin /

Heidelberg, 2006.

[5] Elena Fersman, Pavel Krcal, Paul Pettersson, and Wang Yi. Task automata: Schedulability, decidability and

undecidability. Information and Computation, 205(8):1149 – 1172, 2007.

[6] Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang Yi. Schedulability analysis of fixed-priority

systems using timed automata. theor. Comput. Sci, 354:301–317, 2006.

[7] Elena Fersman, Paul Pettersson, and Wang Yi. Timed automata with asynchronous processes: Schedulability

and decidability. In In Proceedings of TACAS 2002, pages 67–82. Springer-Verlag, 2002.

3

Page 94 of 117

Towards Integrated Modeling: Analytic Real-time Interfaces for

Timed Automata based Component Models

Kai Lampka Lothar Thiele

Computer Engineering and Networks Lab, ETH Zurich, 8092 Zurich, Switzerland

{lampka,thiele}@tik.ee.ethz.ch

Abstract

For limiting component’s mutual interference one may abstractly model interaction of components as

streams of uniform, discrete activity-triggers, rather than using concrete data messages. Such event

streams can abstractly be characterized by so called event arrival curves [10]. Moreover, the event

arrival curves can be exploited for defining what kinds of traffic patterns a component is willing

to accept and, on the level of outputs, defines what kind of stream the component guarantees to

emit [11, 5]. The usage of such analytic, assume/guarantee (A/G), real-time interfaces features an

integrated modelling environment as the formalisms describing the component models can be chosen

freely, provided that a mapping from component models to the A/G interface is available. Moreover,

this maintains compositionality as key properties of the overall system can be derived from the A/G

interfaces rather than coping with the composed overall system at once. This extended abstract

presents the machinery for deriving analytic A/G real-time interfaces based on arrival curves from

Timed Automata (TA) [2] based component implementations.

1 Introduction

Motivation and Contribution. Today’s real-time systems are embedded deeply into the physical envi-

ronment and are highly integrated, thereby constituting complex systems. These systems have often to

deliver safety-critical services, such that correctness of system-level designs is of uttermost importance.

For coping with the complexity inherent to modern real-time systems, incremental, i.e., component-

wise evolution of system designs, as well as integrated analysis frameworks appear to be an adequate

mean. This extended abstract presents the machinery for deriving analytic real-time interfaces based on

arrival curves of Real-Time Calculus (RTC) [10] from Timed Automata (TA) [2] based component im-

plementations. This features (a) the component-wise evolution of systems and (b) provides an integrated

framework for the analysis of heterogeneous system models. The reasons for this are as follows: as

long as component models and interfaces are conformant, the interface derived properties of the overall

systems are invariant w. r. t. refinement/substitution of components. In turn, the integrated modelling is

realized by deriving analytic real-time interfaces based on arrival curves of RTC from TA-based compo-

nent models. This allows us to handle analytic models, i. e.,models of the RTC, and operational models

such as TA in a single framework, e. g. the Matlab-based MPA toolbox [1].

Finally it is also interesting to note that the usage of interfaces limits the complexity inherent to TA-based

system analysis as state space explosion is limited to the level of component models, only experienced

when deriving the analytic interfaces from the components.

Related Work. The authors of [6] established the foundation of interface theory, but explicitly excluded

timed behavior from their elaboration. The theory on timed (state-based) interfaces was provided in [7].

The work presented in this paper elaborates on analytic, i. e.,state-less A/G real-time interfaces as es-

tablished on the foundations of Real-time Calculus (RTC) [10] and presented in [11, 5]. The authors of

[11] solely considered state-less RTC-based component models, adequate for a non-heterogeneous RTC-

based system analysis. We also exploit the pattern presented in [8, 9] for coupling TA and RTC-based

model descriptions.

1

Page 95 of 117

Analytic Real-time Interfaces for Timed Automata based Component Models K. Lampka et. al

2 Background Theory

Timed automata (TA). The level of component models is concerned with TA [2], where we employ

the concepts as implemented in the timed model checker Uppaal, i. e.,Timed Safety Automata extended

with variables [3, 4]. In the following we will also use the notation M |= { which states that property

{ is true for TA M . In the scope of this paper, it is sufficient to assume that { refers to some time-

bounded reachability property, e. g. a bound on the size of a variable or a bound on a clock measuring the

consumption and emission of a pair of events, signals respectively. Such safety properties, e. g. stated in

Timed CTL (TCTL) are sufficient for verifying key performance such as buffer sizes, buffer underflows,

and event-processing delays.

Streams and their abstract representation. A stream is a set of (potentially infinitely many) traces. It

can be abstractly characterized by a tuple ̃ := (̃low,̃up) which is a pair of an upper and a lower arrival
curve [10]. An arrival curve ̃ bounds the number of events seen for any trace on the respective stream,
i. e.,̃ low(t− s)≤ R(t)−R(s)≤ ̃up(t− s) for all 0≤ s≤ t and where R is the cumulative event counting

function of the respective trace.

In the following we restrict the setting to arrival curves which can be composed from minimum and

maximum operations on staircase curves: ̃up(U) := min
i∈I

(Ni+
⌊

U
‘i

⌋

) and ̃ low(U) :=max
j∈J

(0,N j +
⌊

U
‘ j

⌋

)

where we assume that ̃up has increasing step widths, and ̃low possess decreasing staircase widths. This
models what we call a pseudo-concave/convex curve. How to implement an arrival curve of the above

kind by a set of cooperating TA is discussed in [8, 9]. Such a sets of TA is denoted in the following as

input generator G . It is capable of emitting all traces of a dedicated event type e and w. r. t. bounding curve

̃ . We use the notation G (̃) or if necessary G (̃up,̃ low) for emphasizing this. As each event e emitted
by G may trigger subsequent behaviour in a down-streamed, user-defined TA-based component model

M we also speak of stimulated component models. For the composite consisting of the input generator

G and the user-defined component modelM to be stimulated we employ the notation G ‖M . Executing

a stimulated component model G ‖M together with a set of observer TAO in a binary search allows one

to obtain a set of parameters. These parameters can be used for constructing a pseudo-concave/convex

curve bounding the (output) stream emitted by G ‖M .

3 Analytic real-time interfaces for TA-based component models

(A) Definitions. A (single port) component C is a triple (In,M ,Out), where In is the input port for con-
suming event-triggers of a dedicated type,M is a component model which consumes and emits events of

a dedicated type, and Out is the dedicated output port for emitting event-triggers of a dedicated type. An

analytic (single port) A/G Interfaces I is a triple ({,̃I
in ,̃I

out), where { is a set of dedicated (safety)

properties invariantly fulfilled by any component implementing the interface. ̃I
in is the input bound

which is a RTC curve bounding the cumulative counting function of any stream of event-triggers fed

into component M . ̃I
out is the output bound which is a RTC curve bounding the cumulative counting

function of any stream of event-triggers emitted by component M .

Formally, we relate interface definitions and components models now as follows: Let G be an input

generator for restricting the input (streaming) behaviour of the environment. A TA-based component M

implements an interface I := ({,̃I
in ,̃I

out) if the following conditions apply:

(a) M and I are event-compatible.

(b) All traces tr produced by composite G (̃I
in)‖M and filtered w. r. t. an dedicated output event,

e. g. of type o, are bounded by arrival curve ̃I
out .

(c) For each reachable system states s of composite G (̃I
in)‖M it holds: s |= {.

2

Page 96 of 117

Analytic Real-time Interfaces for Timed Automata based Component Models K. Lampka et. al

IfM implements I we speak of conformance of componentM and interface I . Verifying ifM! I

applies is straight-forward: one encodes the input/output curves of the interface and executes the ap-

proach of [8, 9] which allows one to decide if G ‖ M ‖ O |= { holds or not.

Alternatively, one may execute a binary search for either computing the bound on a component’s input

stream or on its output stream. This features the definition of an analytic A/G interface for TA-based

component models and will be introduced now; an illustration of the scheme is provided by Fig.1.

(B) Scheme for deriving the input interface. The basic scheme for computing a conservative and

pseudo-concave/convex bound for a component’s input streams, i. e.,the detection of and ̃I
in can be

organized as binary search. In this search one changes the parameters of the staircase curves approx-

imating the upper arrival curve ̃I
in and queries a timed model checker, e. g. Uppaal, if G (̃I

in)‖ M ‖
O(̃I

out) |= { holds. One may recall that each of the staircase curves is defined by its (burst-)capacity Ni
and step-width ‘i. The procedure in finding these parameters can be partitioned in two steps.

Bounding the long-term behaviour of inputs. By employing a timed model checker, e. g. Uppaal, in a

binary search one may compute the smallest step-width ‘ s. t.G (̃upin)‖ M ‖ O(̃I
out) |= { holds.

At termination the search has found the “steepest” long term rate dLT acceptable to the component

model. As input the algorithm requires some safe bounds (‘up,‘low), which are the smallest and
largest values assigned to search parameter ‘crr. With ‘ fixed to dLT one is now enabled to ex-
ecute a binary search for binding parameter N. Such a search yield the largest value BLT s. t. for

̃up
in (U) := BLT + % U

dLT
& G (̃in)‖ M ‖ O(̃I

out) |= { holds. In the same way one proceeds for find-

ing a lower curve ̃lowin . At termination this scheme yields an approximation for an input curve

̃in := (̃up
in ,̃ low

in). This input curve can now be refined, particularly with respect to the short-term
streaming behaviour. For conciseness we focus on the tightening of an upper input bound ̃upin ,
where we model ̃up

in as minimum of two staircase curves.

Bounding the short-term behaviour of inputs. When dealing with more than one staircase curves one

faces a degree of freedom w. r. t. the choice of the free parameters to be queried in the binary search,

here (burst-)parameters N1, N2 and step-width ‘1, parameter ‘2 is bound as it is the long term
rate dLT . When choosing appropriate values for the free parameters the following relation holds

BLT ≤ N1 ≤ N2 and 0 < ‘1 ≤ dLT ; this is because we model ̃
up
in as minimum of two staircase

curves. According to this a possible initialization could than be N1 := BLT , N2 := k ·BLT and carry
out a binary search for determining ‘1. Inadequate choices are detectable, as the search terminates
and ‘1 = dLT holds. In such cases the search has to be restarted, but at least with a smaller value

for N2.

One may note that the constructed curve ĩn is a conservative bound as ĩn(s− t) ≤ ̃ pot(s− t) for
all 0≤ s< t holds, where with ̃pot as the maximal input curve which is unknown.

Fig. 1 illustrates the procedure for approx. an unknown input bound ̃pot with two staircase segments;
for illustration purpose Fig. 1 abstracts away that we are actually dealing with staircase functions. At

first one searches for the steepest long term rate which is depicted in Fig.1(a), where ‘crr is the current
slope to be tested in the binary search. At termination the scheme delivers a value dLT . With ‘crr fixed we
search now for the largest value for N, which gives us the input (burst-)parameter BLT (Fig. 1(b)). With

the long-term slope dLT and the input (burst-)parameter BLT one proceeds with the routine for finding a

tighter bound on the short term streaming behaviour (Fig.1(c) and 1(d)). As shown in Fig. 1(c) the initial

choice for N2 was to large, hence the search for finding an adequate ‘1 stops unsuccessfully, namely once
‘1 = dLT . In a second run which uses a smaller value for parameter N2 the finding of ‘1 terminates once
G ‖ M ‖ O |= { holds.

3

Page 97 of 117

Analytic Real-time Interfaces for Timed Automata based Component Models K. Lampka et. al

}

#events

U

̃ pot

dLT

BLT

‘low

‘up

‘crr

(a) Initialization
}

}

#events

U

̃ pot

dLT

‘crr = dLT

̃LT

BLT

(b) Long term rate detected

#events

U

̃ pot

‘low

‘1‘up

N1

N2

(c) Search for short term rate

#events

U

̃1

̃2
N2

N1

̃up
in := min

i∈{1,2}
(̃i)

(d) Conservative approx.

Figure 1: Finding an input bound for a TA-based component model

(C) Scheme for deriving the output interface. The input bound is fixed ̃I
in , allowing one to execute

a set of observer TA O(̃) together with composite G (̃I
in)‖M and property { in a binary search. The

obtained parameters allow one to construct a pseudo-concave/convex output bound [8, 9].

References

[1] Modular Performance Analysis Framework and Matlab Toolbox. www.mpa.ethz.ch.

[2] R. Alur and D. L. Dill. Automata For Modeling Real-Time Systems. In M. Paterson, editor, Proc. of ICALP

1990, volume 443 of LNCS, pages 322–335. Springer, 1990.

[3] G. Behrmann, A. David, and K. G. Larsen. A tutorial on UPPAAL. In M. Bernardo and F. Corradini, editors,

Formal Methods for the Design of Real-Time Systems, number 3185 in LNCS, pages 200–236. Springer–

Verlag, September 2004.

[4] J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and tools. In Lectures on Concurrency and

Petri Nets, volume 3098 of LNCS, pages 87–124. Springer, 2004.

[5] S. Chakraborty, Y. Liu, N. Stoimenov, L. Thiele, and E. Wandeler. Interface-based rate analysis of embedded

systems. In RTSS 2006, pages 25–34, 2006.

[6] L. de Alfaro and T. A. Henzinger. Interface theories for component-based design. In T. A. Henzinger and

C. M. Kirsch, editors, EMSOFT 2001, volume 2211 of LNCS, pages 148–165. Springer, 2001.

[7] L. de Alfaro, T. A. Henzinger, and M. I. A. Stoelinga. Timed interfaces. In A. Sangiovanni-Vincentelli and

J. Sifakis, editors, EMSOFT 2002, LNCS, pages 108–122. Springer, 2002.

[8] K. Lampka, S. Perathoner, and L. Thiele. Analytic real-time analysis and timed automata: A hybrid method

for analyzing embedded real-time systems. In EMSOFT 2009, pages 107–116. ACM/IEEE, 2009.

[9] K. Lampka, S. Perathoner, and L. Thiele. Analytic real-time analysis and timed automata: A hybrid method-

ology for the performance analysis of embedded real-time systems. Design Automation for Embedded Sys-

tems, 14(3):193–227, 2010.

[10] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling hard real-time systems. In

Proc. Int. Symposium on Circuits and Systems, volume 4, pages 101–104, 2000.

[11] E. Wandeler and L. Thiele. Real-time interfaces for interface-based design of real-time systems with fixed

priority scheduling. In EMSOFT 2005, pages 80–89. ACM/IEEE, 2005.

4

Page 98 of 117

A Mode Switch Logic for component-based multi-mode systems

Yin Hang

Mälardalen Real-Time Research Centre

Mälardalen University

Västerås, Sweden

young.hang.yin@mdh.se

Hans Hansson

Mälardalen Real-Time Research Centre

Mälardalen University

Västerås, Sweden

hans.hansson@mdh.se

Abstract

Component-Based Development (CBD) reduces development time and effort by allowing sys-

tems to be built from pre-developed reusable components. A classical approach to reduce embed-

ded systems design and run-time complexity is to partition the behavior into a set of major system

modes. In supporting system modes in CBD, a key issue is seamless composition of multi-mode

components into systems. In addressing this issue, we have developed a Mode Switch Logic (MSL)

for component-based multi-mode systems, implementing seamless coordination and synchronization

of mode switch in systems composed of independently developed components.

1 Introduction

Traditionally, partitioning system behaviors into different operational modes has been used to reduce

complexity and improve resource efficiency. Each mode corresponds to a specific system behavior. The

system can start by running in a default mode and switches to another appropriate mode when some

condition changes. In this way, the complexity of both system design and verification can be reduced

while system execution efficiency is improved. A typical multi-mode system is the control software of an

airplane, which e.g. could run in taxi mode (the initial mode), taking off mode, flight mode and landing

mode.

There are a variety of alternatives to design and develop a multi-mode system. We set our focus on

Component-Based Development (CBD), a promising solution for the development of embedded systems.

The most adorable feature of CBD for us is its component reuse idea, which allows us to build a system

by reusable components, i.e. a system does not have to be developed from scratch, instead, some of its

components or subsystems may be directly obtained from a repository of pre-developed components.

Our target is component-based multi-mode systems (CBMMSs), i.e. multi-mode systems built by a

set of hierarchically organized components. Figure 1 illustrates a simple CBMMS. From the top level,

the system consists of Component a (which is further decomposed into Component c, d and e) and b

(which is further decomposed into Component f and g). The system and its components all support

two modes: M1 and M2. In mode M1, Component g is deactivated (invisible) and Component f has one

mode-specific behavior (indicated by black color). In mode M2, Component g becomes activated while

Component d is deactivated. Besides, Component f has another mode-specific behavior (indicated by

grey color). Component connection is presented in Figure 1(b). Due to the availability/unavailability of

components d and g, component connections are different in these two modes.

For a CBMMS, the system behavior is highly dependent on its components. This dependency also

holds during a mode switch. When a system switches from one mode to another mode, its mode switch

is essentially achieved by the mode switches of certain components. The central issue is that the mode

switches of different components must be coordinated and synchronized to achieve a successful and

efficient global mode switch. Notwithstanding that there is plenty of research work dealing with mode

switch, little attention has been paid to this composable mode switch problem. To this end, we have

developed a Mode Switch Logic (MSL) for CBMMSs [1].

1

Page 99 of 117

young.hang.yin@mdh.se
hans.hansson@mdh.se

A Mode Switch Logic for component-based multi-mode systems Hang and Hansson

Figure 1: A component-based multi-mode system

2 The Mode Switch Logic (MSL)

Our MSL includes three major facets: (1) component redefinition and configuration, (2) MSR (Mode

Switch Request) propagation mechanism, and (3) mode switch dependency rules. Using our MSL, mode

switch support is added to each component. Based on traditional components, which do not support

multiple modes, we introduce specific ports dedicated to mode switch, define component configuration

for each mode and integrate the MSL into each component. The mode switch related communication be-

tween different components is realized by communication over those dedicated ports. Some components

may reconfigure themselves during mode switch and this is controlled by the MSL of each component.

Component configuration varies between primitive and composite components. For primitive compo-

nents, component configuration is defined by the component running status (activated/deactivated) and

the mode-specific behavior. For composite components, the component configuration is defined by the

component running status, the activated subcomponents and the active inner component connections.

In each mode, only activated components are running, while deactivated components are temporarily

unavailable. Likewise, in each mode, only active component connections are considered. A connection

becomes inactive when it is disconnected due to a mode switch. When a component starts its mode

switch, it will reconfigure itself by changing the aforementioned elements.

The MSR propagation mechanism ensures that when a component triggers a mode switch, all the

related components can be notified as soon as possible. MSR is a signal telling each component to switch

mode. It is originally triggered by a particular component and then propagated to all related components.

Our MSR propagation mechanism guarantees that all the components are notified by the same MSR, and

that it avoids any potential redundant MSR transmission.

The mode switch dependency rule specifies which component(s) should complete mode switch be-

fore which other component(s), based on the component hierarchy and component connections. Usually

different dependency rules are suitable for different types of component connections. Due to the depen-

dency rule, a component may not proceed with its mode switch until particular conditions are satisfied.

In [1], we present a forward dependency rule for ”pipe-and-filter” systems and implement both the MSR

propagation mechanism and the forward dependency rule as algorithms for primitive and composite

components.

For a multi-mode real-time system, it’s important to analyze its mode switch time. In [2], we provide

the mode switch timing analysis based on our MSL. Different from most existing works which target

tasks, our target is component. We divide the global mode switch of a system into three phases: MSR

propagation phase, component reconfiguration phase, and mode switch completion phase. The total

mode switch time is equivalent to the sum of the duration in these three phases.

The correctness of our MSL has been verified by model-checking using UPPAAL [3], with regard to

both functional and timing aspects.

2

Page 100 of 117

A Mode Switch Logic for component-based multi-mode systems Hang and Hansson

3 Current work and future work

Our original MSL used to be constrained by an unrealistic assumption that all the components support

the same modes. In our current work, we propose a mode mapping mechanism which can be directly

implemented during MSR propagation so that our MSR propagation mechanism still works when dif-

ferent components support different modes. Another issue that we will consider is atomic component

executions. Our current assumption is that the execution of any component can be immediately inter-

rupted by a MSR, however, in a real system it could be possible that the execution of one component

or even a group of components has to reach a specific “stable” state before it can be interrupted. Such

atomic component execution can increase the global mode switch latency, thus it plays an important role

in mode switch timing analysis. Furthermore, when our MSL is mature enough, it is our ambition to

implement it in the ProCom framework [4] that embodies the feature of component reuse very well.

4 Acknowledgments

This work is supported by the Swedish Research Council.

References

[1] Y. Hang, E. Borde, and H. Hansson. Composable mode switch for component-based systems. In APRES ’11:

Third International Workshop on Adaptive and Reconfigurable Embedded Systems, pages 19–22, 2011.

[2] Y. Hang and H. Hansson. Timing analysis for a composable mode switch. In The Work-in-Progress session of

the 23rd Euromicro Conference on Real-Time Systems, pages 15–18, 2011.

[3] Kim Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. STTT-International Journal on Software

Tools for Technology Transfer, 1(1-2):134–152, 1997.

[4] A. Vulgarakis, J. Suryadevara, J. Carlson, C. Seceleanu, and P. Pettersson. Formal semantics of the ProCom

real-time component model. In 35th Euromicro Conference on Software Engineering and Advanced Applica-

tions, pages 478–485, 2009.

3

Page 101 of 117

A Categorical View of Bisimulation for

Higher Dimensional Automata∗

Elena Oshevskaya1, Irina Virbitskaite1,2, Eike Best3

1 A.P. Ershov Institute of Informatics Systems, SB RAS
2 Novosibirsk State University

3 Carl von Ossietzky University of Oldenburg

1 Introduction

In order to unify and clarify apparent differ-
ences between the extensive amount of research
within the field of behavioral equivalences, sev-
eral category-theoretic approaches to the matter
have appeared. Two of them were initiated by
Joyal, Nielsen, and Winskel in [2] where they
have proposed abstract ways of capturing the
notion of behavioral equivalence through open
maps based bisimilarity and its logical counter-
part — path bisimilarity. Another way to pro-
vide categorical characterizations is to adopt the
coalgebraic approach. One of the basic strands
of the research is concerned with a coalgebraic
rendering of various behavioral equivalences in
the linear time – branching time spectrum.

The most popular geometric model for con-
currency is higher dimensional automata (HDA)
which have been proposed by V. Pratt [4]. As
shown in the paper [1], higher dimensional au-
tomata are more expressive than most of the
truly concurrent models taking branching time
fully into account (e.g., Petri nets, event struc-
tures). The contribution of the paper is to
show how several categorical (open maps, path-
bisimilarity and coalgebraic) approaches to an
abstract characterization of bisimulation relate
to each other and to hereditary history preserv-
ing bisimulation, in the setting of HDA.

2 Higher Dimensional Au-

tomata

The following is the well known definition of
HDA.

∗This work is supported in part by the DFG-RFBR
(grant No 436 RUS 113/1002/01, 09-01-91334). The first
author is partly supported by the RFBR (grant 09-01-
00598-a) and by the President Program ”Leading Scien-
tific Schools” (grant NSh-7256.2010.1).

A precubical set M is a collection of sets
(Mn)n∈N, such that Mn ∩Mk = ∅ for all n 6= k,

together with boundary functionsMn

d0i
⇉
d1j

Mn−1 for

all n ∈ N and i, j = 1 . . . n, such that dki ◦ d
m
j =

dmj−1 ◦ d
k
i (i < j, k,m = 0, 1).

A (labelled) HDA (over a set L of actions) is a
triple M = (M, iM0 , lML), where M is a precubical
set, iM0 ∈ M0 is a distinguished basepoint of M ,
called the initial point, lML : M1 → L is a labelling
function from the 1-cubes of M to a set L of
actions such that lML (d0i (x)) = lML (d1i (x)) for all
i = 1, 2 and x ∈M2.

Let M = (M, iM0 , lM
LM) and N = (N, iN0 , l

N
LN) be

HDA. A mapping f = 〈f, α〉 (where f = ∪fn, fn :
Mn → Nn and α : LM → LN) is called a mor-
phism from M to N iff it holds: (1) f0(i

M
0) = iN0 ,

(2) lN
LN ◦ f = α ◦ lM

LM , (3) fn ◦ d
m
i = dmi ◦ fn+1.

HDA with morphisms between them form a cate-
gory HDA in which the composition of two mor-
phisms f = 〈f, α〉 : M → M′ and g = 〈g, β〉 :
M′ → M′′ is g ◦ f = 〈g ◦ f , β ◦ α〉 : M→ M′′, and
the identity morphism is a pair of the identity
functions.

3 Hereditary history preserv-

ing bisimulation

In order to reason about the behaviour of HDA,
we introduce the following notions and nota-
tions. A cubical path in an HDA M over L is

a sequence P = p0
d
m1

j1−→ . . .
d
mk
jk−→ pk

1 of cubes and
boundary functions, such that dms

js
(ps) = ps−1,

if ms = 0, and dms

js
(ps−1) = ps, if ms = 1,

for all 1 ≤ s ≤ k, and, moreover, p0 = iM0 .

For cubical paths P = p0

d
m

p
1

j
p
1−→ . . .

d
m

p
k

j
p
k−→ pk and

1We write P = p0p1 . . . pk if no confusion arises.

Page 102 of 117

Q = q0

d
m

q
1

j
q
1−→ . . .

d
m

q
n

j
q
n−→ qn, we say that Q is an

extension of P (denoted P → Q) if n ≥ k and
ps = qs, m

p
s = m

q
s, j

p
s = j

q
s for all 0 ≤ s ≤ k.

In particular, we write P
dmj
−−→ Q if n = k + 1,

m
q
k+1 = m and j

q
k+1 = j.

A homotopy (denote∼) is the least equivalence
on cubical paths in M such that if P and P ′

are s-adjacent (denote P
s
↔ P ′), i.e. P ′ can be

obtained from P by replacing (for i < j and m =

0, 1) either a segment
d0i−→ ps

dmj
−→ by a segment

dmj−1

−→ p′s
d0i−→, or vice versa; or a segment

dmj
−→ ps

d1i−→ by a segment
d1i−→ p′s

dmj−1

−→, or vice versa, then
P and P ′ are equivalent. Moreover, P and P ′

are (s, u, v)-adjacent (denote P
(s,u,v)
←→ P ′), if P ′

can be obtained from P = p̂0 . . . p̂s . . . p̂k by

an s-adjacency replacement of the segment
dnu−→

p̂s
dlv−→.

Define a behavioural equivalence on HDA,
called hereditary history preserving bisimulation
(hhp-bisimulation).

Definition 1. Let M and N be HDA over L.
Cubical paths P = p0 . . . pk in M and Q =

q0 . . . qk in N are called l-related iff lM(ps) =
lN(qs) for all 0 ≤ s ≤ k.

A binary relation R on cubical paths in M
and N is called a hereditary history preserving
bisimulation (hhp-bisimulation) between M and
N if for any (P,Q) ∈ R, P and Q are l-related
and the following conditions are satisfied:

1. if P
dmi−−→ P ′ then Q

dmi−−→ Q′ and (P ′, Q′) ∈ R
for some Q′ in N, and vice versa,

2. if P ′ → P then Q′ → Q and (P ′, Q′) ∈ R
for some Q′ in N, and vice versa,

3. if P
(s,u,v)
←→ P ′ then Q

(s,u,v)
←→ Q′ and (P ′, Q′) ∈

R for some Q′ in N, and vice versa.

HDA M and N are hhp-bisimilar if there exists
an hhp-bisimulation between them which relates
their initial points (regarded as cubical paths).

4 Open Maps Bisimulation

In this section, we establish the coincidence be-
tween hhp-bisimulation and open maps based
bisimulation in the context of HDA.

We consider HDA as a category of models.
For our purpose, we need to endow HDA with
a fibred structure. Let HDAL denote the sub-
category of HDA whose objects are HDA la-
belled over L and morphisms have the identity

action component. In the category HDA, we
have to choose a full subcategory of path ob-
jects. For a natural number N , define the N -
cube⊞N as {0}, ifN = 0, and {(t1, . . . , tN) | tj ∈
{0, 12 , 1}}, otherwise. Clearly, the N -cube ⊞N

can be split into the sets (⊞N)n = {(t1, . . . , tN) ∈
⊞N | |{tj = 1

2 | 1 ≤ j ≤ N}| = n}, where
0 ≤ n ≤ N . For (t1, . . . , tN) ∈ ⊞N

n , let the
indexes j1 < . . . < jn be such that tji = 1

2
for all 1 ≤ i ≤ n. Determine the boundary
functions d̃mi : (⊞N)n → (⊞N)n−1 as follows:

d̃mi (t1, . . . , tN) = (t1, . . . , tji−1,m, tji+1 . . . , tN),
for all m = 0, 1, 1 ≤ i ≤ n, and 0 < n ≤ N .
Obviously, ⊞N is a precubical set. Construct an
HDA ⊞N over L as follows: ⊞N = (⊞0, 0, ∅), if
N = 0, and ⊞N = (⊞N , (0, . . . , 0︸ ︷︷ ︸

N

), l), otherwise

(here, l is a labelling function from (⊞N)1 to a set
L of actions, satisfying l(d̃0i (x)) = l(d̃1i (x)) for all
i = 1, 2 and x ∈ (⊞N)2). A path object is an HDA
having the form of a cubical path P̃ ∈ CPp(⊞

N)

such that d̃11◦· · ·◦d̃
1
dim p(p) = (1, . . . , 1︸ ︷︷ ︸

N

), if N > 0.

We use cP to denote the full subcategory of the
category HDA, whose objects are path objects.
Clearly, the category cPL is small, for a given
set L of actions.

Theorem 1. Two objects in HDAL are cPL-
bisimular iff they are hhp-bisimular.

5 Path Bisimulation

To obtain a logic characteristic of bisimula-
tion induced by open maps, Joyal, Nielsen, and
Winskel [2] have proposed a second category-
theoretic characterization of bisimulation —
path bisimulation which is a relation based gen-
eralization of open maps bisimulation.

Definition 2. Let M be a category of models,
let P be a small category of path objects, where P
is a subcategory in M, let I be a common initial
object2 in P and M. Then,

• Two objectsX1 andX2 inM are called path-
P-bisimilar iff there is a set B of pairs of
paths (p1, p2) with common domain P , so
p1 : P → X1 is a path in X1 and p2 : P →
X2 is a path in X2, such that

(o) (i1, i2) ∈ B, where i1 : I → X1 and
i2 : I → X2 are the unique paths start-
ing in the initial object, and for all

2In the case when P is cPL andM isHDAL, the initial
object is the HDA ⊞

0.

Page 103 of 117

(p1, p2) ∈ B and for all m : P → Q

in P, it holds:

(i) if there exists q1 : Q → X1 with q1 ◦
m = p1 then there exists q2 : Q → X2

with q2 ◦m = p2 and (q1, q2) ∈ B and

(ii) if there exists q2 : Q → X2 with q2 ◦
m = p2 then there exists q1 : Q → X1

with q1 ◦m = p1 and (q1, q2) ∈ B.

• Two objects X1 and X2 in M are strong
path-P-bisimilar iff they are path-P-bisimilar
and the set B further satisfies:

(iii) If (q1, q2) ∈ B, with q1 : Q → X1 and
q2 : Q→ X2 and m : P → Q in P, then
(q1 ◦m, q2 ◦m) ∈ B.

Theorem 2. Two objects in HDAL are strong
path-cPL-bisimular iff they are hhp-bisimular.

6 Coalgebraic Bisimulation

Another alternative abstract characterization of
bisimulation is based on a category of coalgebras
induced by an endofunctor on an arbitrary cat-
egory.

We start with defining the terminology from
[3]. Let M be a locally small category with a
small path subcategory P. We will define an em-
bedding of M into a category of coalgebras for
some endofunctor on the category Set|P| of |P|-
sorted sets (|P|-indexed sets), where |P| is the set
of objects in P. The endofunctor FP : Set|P| −→
Set|P| is defined as follows:

{XP }P∈|P| 7−→ {
∏

Q∈|P|

(P(XQ))
HomP(P,Q)}P∈|P|,

where P(·) denotes the powerset, XP specifies a
component of a |P|-sorted set X for P ∈ |P|, and
HomP(P,Q) stands for the set of all morphisms
from P to Q in P. On morphisms in the category
Set|P|, FP acts by the following rule:

FP : ({γP }P∈|P| : X → Y) 7−→ {
∏

Q∈|P|

hPQ}P∈|P|,

where hPQ : P(XQ)
HomP(P,Q) →

P(YQ)
HomP(P,Q) : g 7−→ f , f(m) = {γQ(x) | x ∈

g(m)} for all m ∈ HomP(P,Q).
A coalgebra for FP or FP-coalgebra is a pair

(S, tr) with S an object in Set|P| and tr : S →
FP(S) a morphism in Set|P|, which consists of a
family of functions:

{trP : SP →
∏

Q∈|P|

(P(SQ))
HomP(P,Q)}P∈|P|.

The set S is called the carrier and the func-
tion tr is called the coalgebra structure of the
FP-coalgebra. A morphism γ : S1 → S2 in
the category Set|P| is called a cohomomorphism
between FP-coalgebras (S1, tr1) and (S2, tr2) iff
FP(γ)◦ tr1 = tr2 ◦γ. FP-coalgebras and cohomo-
morphisms between them constitute a category,
denoted by CAP.

An FP-bisimulation between two coalgebras
(S1, tr1) and (S2, tr2) is a |P|-sorted relation
R = {RP }P∈|P| ⊆ (S1 × S2) such that, whenever
(m1,m2) ∈ RP and m : P → Q in P, then (i) if
m1

m
→ m′

1, then m2
m
→ m′

2 and (m′
1,m

′
2) ∈ RQ

for some m′
2 ∈ S2, and (ii) vice versa. Here,

for an FP-coalgebra (S, tr), m1
m
→ m2 denotes a

triple 〈m1,m,m2〉 satisfying m2 ∈ trP (m1)(m).
Next, following [3], we relax the requirement

on coalgebra morphism. A morphism γ : S → S′

in Set|P| is called a lax cohomomorphism be-
tween FP-coalgebras (S, tr) and (S′, tr′) if for
each s ∈ SP and m ∈ HomP(P,Q), {γQ(r) |
r ∈ trP (s)(m)} ⊆ tr′P (γP (s))(m). FP-coalgebras
and lax cohomomorphisms constitute a cate-
gory, denoted by CAlax

P
. For M with P, re-

call the functor BehM
P

: M → CAlax
P

from
[3]. BehM

P
acts on objects X in M as fol-

lows: {HomM(P,X)}P∈|P| is the carrier and
{trP : m1 7−→

∏
m∈⊎Q∈|P|HomP(P,Q){m2 | m1 =

m2 ◦m})}P∈|P| is the coalgebra structure of the

corresponding FP-coalgebra. Beh
M

P
acts on mor-

phisms f : X → Y in M as follows: BehM
P
(f)P :

HomM(P,X)→ HomM(P, Y) : α 7−→ (f ◦ α).

Proposition 1. For any two objects M and M′

in HDAL, cPL-bisimulation implies path-cPL-
bisimulation coinciding with FcPL

-bisimulation

between BehHDAL

cPL
(M) and BehHDAL

cPL
(M′), con-

taining the pair (iM, iM′), where iM : ⊞0 → M
and iM′ : ⊞0 → M′ are paths, with the initial
object ⊞0.

References

[1] van Glabbeek, R.J.: On the Expressiveness
of higher dimensional automata. Theor.
Comput. Sci. 356 (3), 265–290 (2006)

[2] Joyal, A., Nielsen, M., Winskel, G.: Bisim-
ulation from open maps. Inform. Comput.
127(2), 164–185 (1996).

[3] Lasota, S.: Coalgebra morphisms subsume
open maps. Theoretical Computer Science,
vol. 280, 2002, 123–135.

[4] Pratt, V.R.: Modeling concurrency with ge-
ometry. In: 18th Ann. ACM Symp. POPL,
pp. 311–322. ACM Press, New York (1991).

Page 104 of 117

A Semantic Hierarchy for Erasure Policies

Filippo Del Tedesco

Chalmers

Sebastian Hunt

City University London

David Sands

Chalmers

1 Introduction

Physical erasure is required when sensitive data must be permanently removed from a memory support.

Recent work on erasure for SSD-drives [7] suggests the problem is more subtle than it seems, since

low-level routines for erasure often ignore data flows from the drive to the RAM.

Other scenarios require a different notion of erasure. For example, when buying tickets online one

expects payment details to be erased from the runtime system at the end of the session. Such logic

erasure is even more difficult to handle than the physical one. On one hand, it requires more complex

policies, that deal with several aspects of the problem, in a spirit similar to the various “dimensions”

of declassification, [5]. On the other hand, a proper characterization of logic erasure must involve a

detailed description of the attacker observational power. In fact, consider a system which receives some

data subject to an erasure policy and then XOR them with a one-time pad random key, which is then

overwritten. If an attacker can inspect the final state of the system, erasure turns out to be performed

only if he is not able to see the key before it is overwritten, otherwise the secret can be recovered.

The contribution of our work is to formalise (Section 3) a hierarchy of increasingly expressive poli-

cies for logic erasure. The hierarchy accounts both different amounts of erasure and different varieties of

conditional erasure. The hierarchy is built on an innovative possibilistic information-flow model (Sec-

tion 2). Our framework is a novelty with respect to other information-flow approaches to erasure (see,

e.g. [1]) because it is parameterised by (i) the subject of the information flow policy (e.g. the data to be

erased), (ii) the attacker’s observational power. In particular, attacker observations and deductions are

taken into account by considering the facts that an attacker might be interested to learn, and the queries

which he can or will be able to answer about the subject.

An extended version of this work has been accepted for publication at ICISS2011 [6].

2 An Abstract Model of Information Flow

Systems Representation The behavioural “atoms” in our system representation are events (inputs and

outputs, for example), arranged in traces. The universe of all possible traces is the set T . A system is

represented by the set S ⊆ T of its maximal traces.

The portion of a trace which is relevant for erasure, called the subject of our policies, is extracted by

a projection Φ : T → D for some set D. Given a system S, we denote by Φ(S) the subset of D involved in

S, Φ(S) = {Φ(t)|t ∈ S}. We call this the subject domain of S. Let Sys(V) be the set of all systems with

subject domain V . Our flow policies will be specific to systems with a given subject domain.

Visibility Policies The essential component of a flow policy is a visibility policy, which specifies how

much an attacker should be allowed to learn about the subject of a system by observing its behaviour.

Visibility policies are given as equivalence relations, as in many other approaches [2, 4]. The intention

is that attackers should not be able to distinguish between subjects which are equivalent according to R.

Some notational conventions will be used in what follows. The set of equivalence relation over V

is ER(V), and together with set inclusion it forms a lattice 〈ER(V),⊆〉. The set of equivalence classes

of R ∈ ER(V) is denoted as [R]. Since equivalence classes of R partition V in a unique way, R can be

expressed as P, a partition of V , such that P = [R]. The set of partitions over V is denoted as PT (V) and

the lattice 〈PT (V),�〉 can be derived from 〈ER(V),⊆〉 via isomorphism.

1

Page 105 of 117

Erasure Policies Del Tedesco, Hunt and Sands

On the Attacker Model Our notion of (passive) attacker is modeled as an equivalence relation on

traces, A ∈ ER(T). Each equivalence class of A represents system behaviors that look the same from the

attacker point of view.

The amount of information about the erasure subject the attacker can deduce from one observation

O ∈ [A] is defined as the knowledge set KS(O) = {Φ(t)|t ∈ O ∩ S} ⊆ V . The union of all possible

knowledge sets is called K-space of A for S, and it is defined as KS(A) = {KS(O)|O ∈ [A],O∩S 6= /0}.

Comparing K-spaces and Erasure Policies In general, an erasure policy is satisfied when knowledge

sets in the attacker K-space are coarser than the visibility part of the policy. When the K-space is a

partition this idea can be easily formalized in terms of refinement: S ⊢A R iff [R] � KS(A), namely S

satisfies R for attacker A when ∀D ∈ [R].v1,v2 ∈ D →∃K ∈ KS(A).v1,v2 ∈ KS(A).
However, when system’s behaviour depends on events which are neither part of the policy subject nor

visible to the attacker, the K-space might not be a partition. In this case, a variety of orders are possible,

induced by different ways of interpreting the attacker learning strategy.

Facts A fact F is a set of values. A knowledge set X confirms F when X ⊆ F . Dually, X has

uncertainty F when F ⊆ X . From this we say a K-space K can confirm F if there exists some X ∈ K such

that X confirms F , and can have uncertainty F if there exists some X ∈ K such that X has uncertainty F .

Queries A query Q is also a set of values. We say that a given knowledge set X answers Q just when

either X ⊆ Q or X ⊆V \Q. For a given K-space K we then say that K will answer Q if for all X ∈ K, X

answers Q, and K can answer Q if there exists some X ∈ K such that X answers Q.

Using the ability of a K-space to confirm facts and answer queries, we can define the following

pre-order relations, where a “smaller” K-space allows more deductions.

Order name Id Definition

Upper U K1 �U K2 iff ∀F.K2 can confirm F ⇒ K1 can confirm F

Lower L K1 �L K2 iff ∀F.K1 can have uncertainty F ⇒ K2 can have uncertainty F

Convex (Egli-Milner) EM K1 �EM K2 iff K1 �U K2 ∧K1 �L K2

Can-Answer CA K1 �CA K2 iff ∀Q.K2 can answer Q ⇒ K1 can answer Q

Will-Answer WA K1 �WA K2 iff ∀Q.K2 will answer Q ⇒ K1 will answer Q

Upper and lower orders correspond to the equally named orders in the powerdomain orderings [3].

Orderings have different discrimination power. When a visibility policy is compared with a K-space,

it holds that �EM (�L (�WA and �EM (�U (�CA and P �CA K ⇒ P �WA K.

3 The policy hierarchy

We now specify our three-levels hierarchy of erasure policy types. A key design principle is that, when-

ever a policy permits part of the erasure subject to be retained, this should be explicit, by which we mean

that it should be captured by the conjunction of the component equivalence relations.

Assume a fixed policy subject function Φ : T → D. Given a subset V ⊆ D, let TV = {t ∈ T |Φ(t)∈V}.

Note that if S belongs to Sys(V), then S ⊆ TV .

Type 0 policies Type 0 policies allow us to specify unconditional erasure, therefore they are just vis-

ibility policies. We write Type-0(V) for the set of all Type 0 policies for systems in Sys(V) (thus

Type-0(V) = ER(V)). The definition of satisfaction for a given attacker model A and system S uses

a K-space ordering (specified by parameter o) to generalise the satisfaction relation defined in Section 2:

S ⊢o
A R iff [R] �o KS(A).

Type 1 policies Type 1 policies allow us to specify “low dependent” erasure, where different amounts

may be erased on different runs, but the erasure condition is independent of the erasure subject itself.

For systems in Sys(V) the erasure condition is specified as a partition P ∈ PT(TV). This is paired

with a function f : P → Type-0(V), which associates a Type 0 policy with each element of the partition.

2

Page 106 of 117

Erasure Policies Del Tedesco, Hunt and Sands

Since the domain of f is determined by the choice of P, we use a dependent type notation to specify the

set of all Type 1 policies: Type-1(V) = 〈P : PT(TV),P → ER(V)〉.
Because we want to allow only low dependency - the erasure condition must be independent of the

erasure subject - we require that P is total for V , which means ∀X ∈ P.Φ(X) = V . This implies knowing

the value of the condition will not in itself rule out any possible subject values.

To define policy satisfaction we use the components X ∈ P to partition a system S into disjoint

sub-systems S ∩X and check both that each sub-system is defined over the whole subject domain V

(again, to ensure low dependency) and that it satisfies the Type 0 policy for sub-domain X . So, for a

Type 1 policy 〈P, f 〉 ∈ Type-1(V), an attacker model A, and system S ∈ Sys(V), satisfaction is defined as

S ⊢o
A 〈P, f 〉 iff ∀X ∈ P.SX ∈ Sys(V)∧SX ⊢o

A f X where SX = S∩X .

The following theorem shows our “explicitness” design principle is realised by Type 1 policies:

Theorem 1 Let 〈P, f 〉 ∈ Type-1(V) and S ∈ Sys(V) and A ∈ ER(T). Let o ∈ {U,L,EM,CA,WA}. If

S ⊢o
A 〈P, f 〉 then: [

∧
X∈P(f X)] �o KS(A), where

∧
is the meet operator in 〈ER(V),⊆〉.

Type 2 policies Type 2 policies are defined as Type-2(V) = 〈Q : PT(V),W : Q → Type-1(W)〉. They

allow dependency on both the erasure subject (first component) and other properties of a run (second

component).

To define satisfaction for Type 2 policies, we use the components W ∈ Q to partition a system S into

sub-systems (unlike the analogous situation with Type 1 policies, we cannot intersect S directly with W ;

instead, we intersect with TW). To ensure that the only dependency on the erasure subject is that described

by Q, we require that each sub-system S∩TW is defined over the whole of the subject sub-domain W .

So, for a Type 2 policy 〈Q,g〉 ∈ Type-2(V), an attacker model A, and system S ∈ Sys(V), satisfaction is

defined thus S ⊢o
A 〈Q,g〉 iff ∀W ∈ Q.SW ∈ Sys(W)∧SW ⊢o

A g W where SW = S∩TW .

To state the appropriate analogue of Theorem 1 we need to form a conjunction of all the component

parts of a Type 2 policy. In the worst case, the attacker will be able to observe which of the erasure cases

specified by Q contains the subject. Hence, we should conjoin the corresponding equivalence relation

E (Q). Moreover, each Type 1 sub-policy determines a worst case equivalence relation, as defined in

Theorem 1. To conjoin these relations, we must first extend each one from its sub-domain to the whole

domain by appending a single additional equivalence class comprising all the “missing” elements: given

W ⊆V and R ∈ ER(W), define R† ∈ ER(V) by R† = R∪W̄ ×W̄ , where W̄ = V \W .

Theorem 2 Let 〈Q,g〉 ∈ Type-2(V) and S ∈ Sys(V) and A ∈ ER(T). For any Type 1 policy 〈P, f 〉, let

R〈P, f 〉 =
∧

X∈P(f X). Let o ∈ {U,L,EM,CA,WA}. If S ⊢o
A 〈Q,g〉 then [E (Q) ∧

∧
W∈Q R

†
(g W)] �o KS(A).

References

[1] S. Chong and A.C. Myers. Language-based information erasure. Computer Security Foundations, 2005.

CSFW-18 2005. 18th IEEE Workshop, pages 241–254, June 2005.

[2] J. Landauer and T. Redmond. A lattice of information. In Proc. IEEE Computer Security Foundations Work-

shop, pages 65–70, June 1993.

[3] Gordon D. Plotkin. A powerdomain construction. SIAM J. Comput., pages 452–487, 1976.

[4] A. Sabelfeld and D. Sands. A per model of secure information flow in sequential programs. Higher-Order

and Symbolic Computation, 14(1):59–91, March 2001.

[5] A. Sabelfeld and David Sands. Declassification: Dimensions and principles. Journal of Computer Security,

15(5):517–548, 2009.

[6] F. Del Tedesco, S. Hunt, and D. Sands. A semantic hierarchy for erasure policies. http://arxiv.org/abs/

1109.6914. The 7th International Conference on Information System Security, Dec 2011.

[7] Michael Yung Chung Wei, Laura M. Grupp, Frederick E. Spada, and Steven Swanson. Reliably erasing data

from flash-based solid state drives. In 9th USENIX Conference on File and Storage Technologies, San Jose,

CA, USA, February 15-17, 2011, pages 105–117. USENIX, 2011.

3

Page 107 of 117

http://arxiv.org/abs/1109.6914
http://arxiv.org/abs/1109.6914

Unifying Synchronous Data and Control Flow
in the Lazyλ -Calculus

Joaquı́n Aguado and Michael Mendler
University of Bamberg, Germany

{joaquin.aguado,michael.mendler}@uni-bamberg.de

Marc Pouzet
ENS Paris, France

Marc.Pouzet@ens.fr

A Kahn Process Network(KPN) [9] consists of a set of sequential processes that are connected to one
another through uni-directional, buffered data lines for inter-process communications. Each process
follows a sequential algorithm. At any given time, it is either computing or waiting for information on
one of its input lines (blocking-read). When it receives the required data it may continue to block for more
input or compute output. Such output is passed to other processes (in the data-flow path) by placing the
results in some of its buffered output lines (non-blocking-write). The individual process nodes of a KPN
can be executed concurrently without losing determinism. Kahn’s theory [9] provides a compositional
model of distributed processes that reconciles the denotational and operational viewpoint. On the other
hand, KPN in general depend on global scheduling regimes for proper initialisation and synchronisation
to avoid deadlock and buffer overflow.

Thesynchronous programming(SP) technology is one such specialisation of KPN to deal with the
scheduling problems. Computations in SP are coordinated under one or more global system clocks
(which may be physical or logical) governed by thesynchrony hypothesis(see e.g., [2]) scheduling
scheme. This conveniently abstracts internal, possibly distributed computations into atomic reactions
and separates the aspect of determining responsiveness (e.g., clock rate) from the task of verifying func-
tional correctness (state transition function). The hallmark of SP is its ability to control the deterministic
execution of interactive processes under static schedules and buffering with well-defined and rigorous
Kahn-style semantics. This has resulted in a programming model that is supported by efficient verifica-
tion, testing and compilation techniques (see, e.g. [4] for a survey on SP) which has led to its success in
the design of embedded, reactive and safety-critical systems.

Splitting the declarative and operational viewpoints of Kahn networks, SP technology has produced
data-flow(DF) languages such as LUSTRE, LUCID SYNCHRONE, SIGNAL or imperativecontrol-flow
(CF) languages such as STATECHARTS, ESTEREL and QUARTZ. DF takes each communication line as
astream of datachanging over time and studies the functional and causal relationships between streams.
CF packs up all information in the buffers at each point in time and studies the transformations of this
globalstateas time progresses. Traditionally, the DF and CF strands of SP have been developed largely
independently. Only few attempts have been made to combine the two orthogonal semantics within one
language. E.g., [7] adds constructs for hierarchical automata to LUSTRE and defines their semantics
by mapping them to data flow clocks, while [6] embeds data flow within parametrised state machines.
Those semantics are specialised to particular application contexts and still biased so that control-flow
and data-flow are not yet treated in a fully dual and interchangeable fashion as suggested by the KPN
model.

In this paper we report on recent work that follows on from [10, 7, 6] tightly to integrate both views
in a compositional SP model. We show how the core operators of DF and CF synchronous languages can
be combined generically by giving uniform semantics in the lazyλ -calculus. It may thus be implemented
as an embedded domain-specific library in any functional programming language, e.g., in Haskell. This
yields an abstract view of synchronous KPN that maintains high flexibility for exploiting the trade-
offs between DF and CF and which blends naturally with the features of the host language such as
higher-order functions, polymorphism, user-defined data types, etc. We will show how this extends
previous monadic approaches for imperative streams such as [11], comonadic approaches for data-flow
such as [5, 12] or arrows [8]. Our recent work further indicates that synchronous KPN may be an effective

1

Page 108 of 117

The 23rd Nordic Workshop on Programming Theory Aguado, Mendler and Pouzet

programming pattern to exploit Haskell’s light-weight semi-explicit parallelism to speed up functional
computations on multi-core machines [1, 3].

Let us briefly sketch the combined DF–CF constructs of our SP model (simplified). The abstract
syntax is given by the following BNF with operational semantics as seen in Figure 1 of the appendix:

DF ::= rv | rec rv.DF | opDF . . . DF | mergeDFDF DF | DFwhenDF | DFfbyDF | srunCF

CF ::= s | loops.CF | sv?x; CF | sv!DF ; CF | pause ; CF | ifDFthenCFelseCF | sv:=DF |

dos=CFuntilsvthenCF | CF|>|CF | localsvinCF

Each DF represents a stream of values, so the semantics of DF is given most conveniently in terms of
a reaction relation DF

v
−→ DF′ stating that DF generates a valuev and continues as DF′. Streams are

recursive and the DF constructrec rv.DF creates afeed-backfrom the output of DF back to the input
flow variable rv. The construct binds the variablerv in DF. For simplicity we assume that all DF are
closed. The staticlifting of value operatorsopDF1 . . . DFn embeds a standard functionop canonically,
i.e., by element-wise repetition, into streams. A special case are 0-ary operators or constantsk which lift
to the corresponding infinite stream of constant values. Theup-samplingmergeDFb DFt DF f combines
DFt and DF f depending on the Boolean stream DFb. Specifically, if the current value at DFb is true
(T) the value sampled is that at DFt , otherwise if the value at DFb is false (F) the value output is that
currently at DF f . This construct allows slow processes to communicate with faster ones by merging sub-
streams into larger DF. Thedown-samplingDFwhenDFb extracts sub-streams from DF according to the
conditions imposed by Boolean stream DFb. Concretely, if the value at DFb is T the current value at DF is
delivered as output, otherwise, the computation consumes inputs from both DF and DFb. This allows fast
processes to communicate with slower ones. Theunit delayor unit bufferDF1fbyDF2 (read “followed
by”) computes a DF in which the first value is the same as that of DF1 and the rest is exactly DF2. Finally,
the operatorsrunCF turns a CF into a DF by recursively closing all instantaneous communications on
the signal interface of CF.

Each CF is described by an interface reactionR⊢ CF
R′

−→ CF′ that takes an environment stimulusR
on its signal interface and produces an instantaneous responseR′ together with a successor state for the
next synchronous instant. A signal environment is a finite mappingR= [v1/sv1,v2/sv2 . . . ,vn/svk] that
associates with everysignal variable svi of the interface a corresponding data valuevi . Write R[svi] for
the valuevi in R andR[v/sv] for the updating ofsvi with v.

We can create astate iterationthrough the loop statementloops.CF. It reacts as CF but with the
state variable sinstantiated byloops.CF itself so that whens is called in the execution of CF the
whole process is restarted. To capture explicit memory, CF expressions and state variabless may be
parametrised (see e.g. [6]) leading to a general loop constructloop s(x).CF where CF depends on a
memory parameterx of some type. Here, we only treat the non-parametrised loop and also assume that
all state variables appearing in a CF are bound by iteration or weak preemption (see below). This keep
the evaluation contexts as simple as possible. Thesignal input prefix sv?x; CF indicates “read the current
valuev of the signalsv from the environment and then continue as CF{v/x} wherevalue variable xis
instantiated with valuev in CF. Again, for convenience we assume that all value variables in a CF are
closed by input prefixes in this way. Thesignal emission prefix sv!DF ; CF codifies “emit the current
value of DF to signalsv in the environment and continue with CF. Thepauseoperationpause ; CF syn-
chronises the CF with the system global clock, waiting for a clock tick before starting CF. It implements
the the empty (i.e., identity) reaction in the current instant. ThebranchingifDFthenCFelseCF op-
erates much in the same fashion as the classical “if-then-else”, where depending on the status true (T)
or false (F) derived from DF in the current instant one of the two alternatives CF1 or CF2 is taken. The
binding sv:=DF feeds the values produced by DF to state signalsv instant by instant. Theweak pre-
emptiondos=CF1untilsvthenCF2 (written dos=CF1usvtCF2 for short) reacts as CF1 and the next

2

Page 109 of 117

The 23rd Nordic Workshop on Programming Theory Aguado, Mendler and Pouzet

state depends on a Boolean signalsv. If in the current instant the value atsv is T then theuntil condi-
tion is fulfilled and the next state must be the initial state of CF2 where variables stores the state CF′1
derived from the reaction of CF1. Otherwise, theuntil condition is not fulfilled and the computation
continues in the same way following the states from CF1. This construct binds the state variables and
permits us to build hierarchical state machines with history transitions.Parallel compositionof states
CF1|>|CF2 describes parallelism of expressions in a sequential CF fashion to model instantaneous
communication. Concretely, CF1|>|CF2 first reacts as CF1 from R producing a responseR′

1 and then
CF′2 reacts fromR′

1 producingR′
2. The full reaction is the superposition ofR′

2 in R′
1, denotedR′

1+R′
2,

that is the update ofR′
1 with all the bindings that occur inR′

2 (i.e., the last value dominates). The reaction
continues from the parallel composition of the next states of CF1 and CF2. The local signal declaration
localsvinCF declares a lexically scoped signalsvto be used for both input and output within CF. This
is a recursive binder for signal variables which connects in CF the producers of output values onsvwith
all consumers accessingsvas input.

Note that although the rules given in Fig 1 are relational, they have the KPN properties in the sense
that they define a deterministic response function for both DF and CF that can be executed in a sequential
fashion and thus coded in the (lazy)λ -calculus. We will give more details in the full paper including
examples to illustrate the combination of CF and DF within one and the same KPN.

References

[1] J. Aguado and M. Mendler. Computing with streams. InProceedings of the sixth workshop on Declarative
aspects of multicore programming (DAMP’11), pages 35–44. ACM, 2011.

[2] J. Aguado and M. Mendler. Constructive Semantics for Instantaneous Reactions. InTheoretical Computer
Science, volume 412, pages 931–961, March 2011.

[3] J. Aguado and M. Mendler. An integrated data and control flow programming model. InProceedings of
INForum, Track Compilers, Programming Languages, Related Technologies and Applications (CoRTA’11),
pages 234–245, 2011.

[4] A. Benveniste, P. Caspi, S.A. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone. The Synchronous
Languages Twelve Years Later. InProceedings of the IEEE, Special Issue on Embedded Systems, volume 91,
pages 64–83. IEEE Press, January 2003.

[5] P. Caspi and M. Pouzet. A co-iterative characterization of synchronous stream functions. Technical Report
Research Report 97-7, VERIMAG, Grenoble, October 1997.

[6] J.-L. Colaço, G. Hamon, and M. Pouzet. Mixing signals and modes in synchronous data-flow systems. In
ACM Int’l Conf. Embedded Software EMSOFT’06, 2006.

[7] J.-L. Colaço, B. Pagano, and M. Pouzet. A conservative extension of synchronous data-flow with state
machines. InACM Int’l Conf. Embedded Software EMSOFT’05, 2005.

[8] J. Hughes. Programming with arrows. In V. Vene and T. Uustalu, editors,Advanced Functional Programming
(AFP’04), volume LNCS 3622, pages 73–129, 2005.

[9] G. Kahn. The semantics of a simple language for parallel programming. InInformation Processing: Pro-
ceedings of the IFIP Congress ’74, pages 471–475. North-Holland, August 1974.

[10] M. Pouzet. Lucid synchrone, un langage synchrone d’ordre supérieur. Mémoire d’habilitation, Université
Paris 6, November 2002.

[11] E. Scholz. Imperative streams - a monadic combinator library for synchronous programming. InICFP’98,
pages 261–272, Baltimore, USA, 1998.

[12] T. Uustalu and V. Vene. The essence of dataflow programming. InCEFP 2005, pages 135–167. Springer
LNCS 4164, 2006.

3

Page 110 of 117

The 23rd Nordic Workshop on Programming Theory Aguado, Mendler and Pouzet

Appendix I

R[v/sv] ⊢ CF
R′[v/sv]
−→ CF′

⊢ srunCF
v

−→ srunCF′

DF1
v1−→ DF′1 . . .DFn

vn−→ DF′n

opDF1 . . . DFn
op’v1...vn
−→ opDF′1 . . . DF′n k

k
−→ k

DFb
T

−→ DF′b DFt
vt−→ DF′t

mergeDFb DFt DF f
vt−→ mergeDF′b DF′t DF f

DFb
F

−→ DF′b DF f
vf
−→ DF′f

mergeDFb DFt DF f
vf
−→ mergeDF′b DFt DF′f

DFb
T

−→ DF′b DF
v

−→ DF′

DFwhenDFb
v

−→ DF′bwhenDF′
DFb

F
−→ DF′b DF

u
−→ DF′ DF′ whenDF′b

v
−→ DF′′

DFwhenDFb
v

−→ DF′′

DF1
v

−→ DF′1
DF1fbyDF2

v
−→ DF2

DF{rec rv.DF/rv}
v

−→ DF′

rec rv.DF
v

−→ DF′

R[sv] = v R⊢ CF{v/x}
R′

−→ CF′

R⊢ sv?x; CF
R′

−→ CF′

DF
v

−→ DF′ R[v/sv] ⊢ CF
R′

−→ CF′

R⊢ sv!DF ; CF
R′

−→ CF′

R⊢ pause ; CF
R

−→ CF

DF
v

−→ DF′

R⊢ sv:=DF
R[v/sv]
−→ sv:=DF′

R⊢ CF{(loops.CF)/s}
R′

−→ CF′

R⊢ loops.CF
R′

−→ CF′

DFb
T

−→ DF′b R⊢ CF1
R′

−→ CF′1

R⊢ ifDFbthenCF1elseCF2
R′

−→ CF′1

DFb
F

−→ DF′b R⊢ CF2
R′

−→ CF′2

R⊢ ifDFbthenCF1elseCF2
R′

−→ CF′2

R[sv] = T R⊢ CF1
R′

−→ CF′1

R⊢ dos=CF1usvtCF2
R′

−→ CF2{CF′1/s}

R[sv] = F R⊢ CF1
R′

−→ CF′1

R⊢ dos=CF1usvtCF2
R′

−→ dos=CF′1usvtCF2

R⊢ CF1
R′

1−→ CF′1 R′
1 ⊢ CF2

R′
2−→ CF′2

R⊢ CF1|>|CF2
R′

1+R′
2−→ CF′1|>|CF′2

R[v/sv] ⊢ CF
R′[v/sv]
−→ CF′

R⊢ localsvinCF
R′

−→ localsvinCF′

Figure 1: Operational Semantics of Simple CF-DF language

4

Page 111 of 117

Inheritance and Observability

Erika Ábrahám, Thi Mai Thuong Tran, and Martin Steffen

RWTH Aachen, Germany and University of Oslo, Norway

An open system is a part of a larger system, which interacts with its environ-
ment, and best considered as a black box where the internals are hidden. Such a
separation of internal behavior from externally relevant interface behavior is cru-
cial for compositionality. The most popular programming paradigm nowadays
is object orientation, which in particular supports interfaces and encapsulation
of objects. Another crucial feature in mainstream object orientation is inheri-

tance, which allows code reuse and is intended to support incremental program
development by gradually extending and specializing an existing class hierarchy.

Openness of a system in the presence of inheritance and late binding is prob-
lematic. One symptom of that is known in software engineering as the fragile base
class problem. A base class in an inheritance hierarchy is a (common) super-class,
and fragile means that replacing one base class by another, seemingly satisfying
the same interface description, may break the code of the client of the base class,
i.e., change the behavior of the “environment” of the base class.

A rigorous method to keep track of interactional behaviours of an open pro-
gram is the key to formal verification of open programs as well as a formal
foundation for black-box testing. If done properly, it ultimately allows composi-
tional reasoning, i.e., to infer properties of a composed system from the interface
properties of its sub-constituents without referring to further internal represen-
tation details. A representation-independent, abstract account of the behavior is
also necessary for compositional optimization of components: only when showing
the same external behavior one program can replace another without changing
the interaction with any client code.

An object-oriented, concurrent calculus The calculus presented in this
work is a concurrent variant of an imperative, object-calculus. Its concurrency
model is based on the notion of “active objects” and asynchronous method calls.
Its syntax is sketched in Table 1 focusing on important features, such as: classes
with fields and methods, objects as instances of classes, and concurrency based
on the active objects model of concurrency. Expressions e basically consists of a
sequential composition (here represented by the let-construct) of basic expres-
sions, including conditionals, object creation, read and write of object fields, and
method calls.

Being standard, the syntax should be largely clear, a few points are worth
highlighting though: the concurrency model of the calculus based on active ob-

jects, communicating via asynchronous method calls (written o@l(v)) and the
result is given back by the caller querying a future reference. Objects act as
monitors with binary locks. The notion of single inheritance based on classes,
however, is orthogonal to the choice of the concurrency model.

Page 112 of 117

2

C ::= 0 | C ‖ C | ν(n:T).C | n[(O)] | n[O, L] | n〈t〉 component

O ::= n, M, F object
M ::= l = m, . . . , l = m method suite
F ::= l = f, . . . , l = f fields
m ::= ς(n:T).λ(x:T, . . . , x:T).t method
f ::= v | ⊥

n
′ field

t ::= v | stop | let x:T = e in t thread
e ::= t | if v = v then e else e | if undef (v.l()) then e else e expr.

| n@l(v) | v.l() | v.l() := v

| new n | claim@(n, n) | get@n | suspend(n) | grab(n) | release(n)

v ::= x | n | () values
L ::= ⊥ | ⊤ lock status

Table 1. Syntax of an oo core calculus

Typed operational semantics for interface behavior In this setting, the
component behavior consists of message traces, i.e., sequences of component-

environment interactions. Writing C
t

=⇒ Ć, the t denotes the trace of interface
actions by which C evolves into Ć, potentially executing internal steps, as well,
not recorded in t. An open program C, however, does not act in isolation, but
interacts with some environment. I.e., we are interested in traces t where there

exists an environment E such that C ‖ E
t

=⇒
t̄

Ć ‖ É by which we mean: com-

ponent C produces the trace t and E produces the dual trace t̄, both together
“canceling out” to internal steps. In other words, our goal is to formulate the
external or open semantics with the environment existentially abstracted away.

With infinitely many possible environments E, the challenge is to capture what
is common to all those environments. This will be done in form of assumptions

about the environment. This means, the operational semantics specifies the be-
havior of C under certain assumptions ΞE about the environment. Following
standard notation from logics, we do not write ΞE ‖ C, but rather ΞE ⊢ C, such
that the reductions will look like

ΞE ⊢ C
t

=⇒ Ξ́E ⊢ Ć . (1)

Such a characterization of the abstract interface behavior is relevant for the
following reasons. Firstly: the set of traces according to equation (1) is more re-
stricted than the one obtained when ignoring the environments altogether. This
means, when reasoning about the behavior of C based on the traces, e.g., for
the purpose of verification, the more precise knowledge of the possible traces
allows to carry out stronger arguments about C. Secondly, an application for
a trace description is black-box testing, in that one describes the behavior of a
component in terms of the interface traces and then synthesize appropriate test
drivers from it. Obviously it makes no sense to specify interface behavior which

Page 113 of 117

3

is not possible, at all, since in this case one could not generate a correspond-
ing tester. Finally, and not as the least gain, the formulation gives insight into
the inherent semantical nature of the language, as the assumptions Ξ and the
semantics captures the existentially abstracted environment behavior.

Main results

– A formal, open semantics for a statically typed, concurrent object-oriented
calculus with dynamic object creation, mutable heap, and single inheritance.

– The main insight of our work is that the cross-border inheritance compli-
cates the observable behavior considerably. Namely, in an open setting, en-
vironment and component classes can inherit from each other. Therefore an
object may contain fields defined by the components and by the environ-
ment. Due to privacy restrictions, these fields can only be manipulated by
the corresponding methods of environment resp. component parts. To de-
scribe the possible interface behavior, where all possible environments are
existentially abstracted away and represented by an assumption context, the
potential connectivity of the enviroment part of the heap is important. In
order to capture that, our open semantics must be able to tell when a com-
munication between two objects is possible, i.e, when they are potentially in
connnection.

– The interface behavior is characterized in the form of a typed operational
semantics of an open system, consisting of a set of classes.

– The semantics is formalized in the form of commitments of the component
and in particular assumptions about the environment. The fact that the
components are open wrt. inheritance, i.e., a component can inherit from
the environment and vice versa, has as a consequence that the assumptions
and commitments need contain an abstraction of the heap topology, keeping
track of which object may be in connection with other objects.

– Finally, we show the soundness of the abstractions based on trace semantics.

More details can be found in [1]

References

1. E. Ábrahám, T. Mai Thuong Tran, and M. Steffen. Observable interface behavior
and inheritance. Technical Report 409, University of Oslo, Dept. of Informatics,
Apr. 2011. www.ifi.uio.no/~msteffen/publications.html#techreports.

Page 114 of 117

www.ifi.uio.no/~msteffen/publications.html#techreports

Compositional Transfinite Semantics of While

Härmel Nestra∗

Institute of Computer Science, University of Tartu

harmel.nestra@ut.ee

In transfinite semantics, program executions are conceived as continuing after infinite loops from

some limit states. Transfinite semantics provides a way to overcome so-called semantic anomaly in

program transformation such as slicing.

Roughly, program slicing [13, 2, 12] means leaving out parts of the program that do not influence

values of some variables at some fixed program points. The result must be an executable program which,

when run with the same initial state as the original program, brings forth the same sequence of values of

the interesting variables at the interesting program points. For instance, if we are interested in only the

value of variable sum at the end of the execution of the following folklore program, the two lines that

assign something to prod can be left out:

n := input() ;

i := 0 ;

sum := 0 ;

prod := 1 ;

while i < n do

(
i := i + 1 ;

sum := sum + i ;

prod := prod * i

)

In particular, dead code can always be sliced away. The classic slicing algorithms use control and

data flow analysis for determining parts that cannot influence the computation of the interesting values.

This analysis marks loops, influence of which to the interesting variables via control and data flow is

not recognized, as entirely irrelevant. However, if such a loop does not terminate then the execution of

the resulting program where this loop has been removed can reach farther in the code than the original

program and assign values to interesting variables that are never assigned during the run of the original

program. This phenomenon is called semantic anomaly [6].

Semantic anomaly is closely connected to the feature of standard semantics that executions can make

at most ω (the least infinite ordinal number) steps. Transfinite semantics where any infinite execution

continues after the body of a loop has been executed ω times is able to overcome this discrepancy. This

approach has been proposed by [3, 4] and investigated further by Giacobazzi and Mastroeni [6] and by

us [7, 9, 8, 10] (some other approaches are described in [5, 1]). In order to match the flow analysis based

algorithms, the limit state from which the computation goes on after an infinite loop must satisfy the

following property: if the value of any variable observed at the top point of the loop is permanently v

starting from some stage of the execution then this variable has value v also in the limit state [7].

Transfinite semantics have been criticized because in the forms they have been proposed, they have

often had rather artificial construction and lacked of desired properties such as compositionality and

substitutivity. (The transfinite semantics of [6] is sequential rather than compositional.) Barraclough et

al. [1] recently proposed another approach where traces are replaced with sequences of traces. In the nth

component of a trace sequence, the number of iterations of each loop body during one execution of the

∗This work is partially supported by Estonian Science Foundation under grants no. 7543 and 8421

1

Page 115 of 117

harmel.nestra@ut.ee

Compositional Transfinite Semantics of While Härmel Nestra

loop is bounded by n (after that, the execution is continued from the program point following the loop

with the state reached). Note that all traces in this semantics are finite (even in the case of infinite loops).

This semantics, called trajectory semantics, is proven to be substitutive by [1].

A disadvantage of the semantics of [1] is that deciphering the standard semantics from it is not

straightforward. This can be done via “diagonalization” (the nth state in the standard semantics trace is

the nth state on the nth trace in the trajectory semantics) but this characterization is probably hard to use

in practice. On the other hand, obtaining standard semantics from transfinite semantics could be done

by just truncating the transfinite parts of all infinite traces (standard semantics is always included in the

transfinite semantics).

In our work in progress, we construct a compositional (thus also substitutive) transfinite semantics

for While suitable for use in program slicing theory. We show that standard trace semantics is its straight-

forward abstraction in the sense just described. We also establish its connections to transfinite semantics

given in the greatest fixpoint form that matches another standard way of representing semantics.

As shown earlier [10], the usual trace semantics where intermediate states are indexed by ordinal

numbers is not suitable for expressing transfinite semantics in the form of greatest fixpoint. For this

purpose, fractional semantics or tree semantics must be used. In tree semantics, traces of executions are

replaced with trees that reverberate the structure of deduction of the assertion that the execution is valid

in the semantics. This is close to natural semantics [11] but can have some peculiarities (like trees with

one or more infinite branches). In fractional semantics [8, 10], trace components are indexed by rational

numbers between 0 and 1. This way, it is possible to capture both the concept of linearly progressing trace

and the deduction tree structure. To each statement of the program, fixed intervals of rational numbers

are associated according to the structure of the program.

For example, the fractional execution traces of programs (z := x ; x := y) ; y := z and

z := x ; (x := y ; y := z) in the initial state

x 7→1

y 7→2

z 7→0

are

(

0 7→

x 7→1

y 7→2

z 7→0

,

1

4
7→

x 7→1

y 7→2

z 7→1

,

1

2
7→

x 7→2

y 7→2

z 7→1

,1 7→

x 7→2

y 7→1

z 7→1

)

,

(

0 7→

x 7→1

y 7→2

z 7→0

,

1

2
7→

x 7→1

y 7→2

z 7→1

,

3

4
7→

x 7→2

y 7→2

z 7→1

,1 7→

x 7→2

y 7→1

z 7→1

)

,

respectively. Note that, in each case, composition divides the index space into two equal halves.

In this work, we use fractional semantics since the linear shape of traces tends to simplify proofs.

Another issue is raised by the restriction imposed on the limit states observed above. In order to

implement the restriction into the semantics, the states observed at the top point of a loop must be

somehow distinguished. This was discussed in [10] already though the semantics studied there did not

take the restriction into account (and thus included too many traces). That discussion suggested explicit

tracing of program points in semantics. It turns out that one can do it simpler. In the compositional

construction of semantics, one can just take the initial state of each iteration of the loop body, and in

the greatest fixpoint form, the fractional shape of traces enables deciphering the program points from the

indices.

So we have two classifications of semantics involved: standard vs transfinite semantics, and ordinal

vs fractional semantics. This is 4 semantics altogether, that we define uniformly using a parametric

framework like in [10]. In the detailed study, we concentrate on 3 semantics since using fractional shape

of traces is not reasonable in the case of standard semantics. Unlike in [10], all semantics are explicitly

compositional. To summarize the concrete results:

2

Page 116 of 117

Compositional Transfinite Semantics of While Härmel Nestra

• The semantics involving the largest amount of information, i.e. the transfinite fractional semantics,

is expressible in the form of greatest fixpoint.

• The classic slicing algorithms work correctly w.r.t. the transfinite fractional semantics.

• The first abstraction: the transfinite ordinal semantics can be obtained from the fractional one by

renumbering the states by ordinals while keeping the order.

• The second abstraction: the standard ordinal semantics can be obtained from the previous one by

cutting off all parts of traces that go beyond the first ω steps.

The proof of the first abstraction step is more or less straightforward but that of the second one (abandon-

ing transfiniteness) is surprisingly hard although the abstraction function (truncating the transfinite parts

of traces) is simple and intuitive. The difficulties arise in the case of iteration: executing the body of a

loop may itself be either finite or infinite, therefore the stage that introduces the first infinity may vary.

As a general consequence, the work confirms that using transfinite semantics to formalize program

slicing is still motivated. Another conclusion to be made is that fractional semantics is useful for more

reasons than it has been previously stated. Besides defining transfinite semantics for recursive programs

[8] and expressing transfinite semantics in the form of greatest fixpoint [10], it may let one avoid explicit

program points in semantics descriptions while keeping the necessary information provided by program

points available otherwise. This applies also to defining the correspondence of program points of the slice

and of the original program. If the redundant statements are replaced with skip rather than removed (an

equivalent alternative for defining program slicing) then it can be obtained by just comparing the state

indices in fractional semantics (the states observed at corresponding program points have equal indices).

References

[1] Barraclough, R. W., Binkley, D., Danicic, S., Harman, M., Hierons, R. M., Kiss, Á., Laurence, M., Ouarbya,

L.: A trajectory-based strict semantics for program slicing. Theoretical Computer Science 410 (2010) 1372–

1386

[2] Binkley, D. W., Gallagher, K. B.: Program slicing. Advances in Computers 43 (1996) 1–50

[3] Cousot, P.: Constructive design of a hierarchy of semantics of a transition system by abstract interpretation.

Electronic Notes in Theoretical Computer Science 6 (1997) 25 pp.

[4] Cousot, P.: Constructive design of a hierarchy of semantics of a transition system by abstract interpretation.

Theoretical Computer Science 277 (2002) 47–103

[5] Danicic, S., Harman, M., Howroyd, J., Ouarbya, L.: A non-standard semantics for program slicing and

dependence analysis. Journal of Logic and Algebraic Programming 72 (2007) 191–206

[6] Giacobazzi, R., Mastroeni, I.: Non-standard semantics for program slicing. Higher-Order Symbolic Compu-

tation 16 (2003) 297–339

[7] Nestra, H.: Transfinite semantics in program slicing. Proceedings of the Estonian Academy of Sciences:

Engineering 11(4) (2005) 313–328

[8] Nestra, H.: Fractional semantics. In Johnson, M., Vene, V. (eds.): Proceedings of AMAST 2006. Lecture

Notes in Computer Science 4019 (2006) 278–292

[9] Nestra, H.: Iteratively Defined Transfinite Trace Semantics and Program Slicing with respect to Them. PhD

thesis, University of Tartu (2006) 119 pp.

[10] Nestra, H.: Transfinite semantics in the form of greatest fixpoint. Journal of Logic and Algebraic Program-

ming 78 (2009) 573–592

[11] Nielson, F, Nielson, H. R.: Semantics with Applications: An Appetizer. Springer (2007)

[12] Tip, F.: A survey of program slicing techniques. Journal of Programming Languages 3(3) (1995) 121–181

[13] Weiser, M.: Programmers use slices when debugging. Communications of the ACM 25(7) (1982) 446–452

3

Page 117 of 117

	Parallelization of Cooper's algorithm
	Parallelization of the Omega Test
	Experimental results
	Conclusions
	Introduction
	Generalized Polygonal Hybrid Systems
	The GSPeeDI tool
	Case study: The van der Pol equation
	Overview
	Main Definitions and Results
	Introduction
	Introduction
	Patterns and Verfication
	Conclusion and Future Work
	Introduction
	Event-B
	Modelling Inter-Peer Relations
	Conclusions
	Introduction
	The Report Language
	Introduction
	Combined-case k-Induction by Example
	Introduction
	Open Mixed Trees and Refinement
	Introduction
	Data Types à la Carte
	Monadic Algebras and Thunks
	Conclusions
	Introduction
	Deployment Components for Timed ABS
	Example: A Distributed Shopping Service
	Conclusions
	Context
	The Challenge
	Introduction
	Contribution

	BPMN
	Business Process Diagrams (BPD)
	BPMN Semantics

	Stochastic Model Checking
	Conversion

	Conclusions
	Future work

	Introduction
	Model Transformations

	Diagram Predicate Framework
	Correctness of Model Transformations
	Model checking

	Background
	Contributions
	Method
	Verification Criteria
	Transformation to Uppaal

	Results and Conclusions
	Introduction
	The Framework
	The Specification Phase
	The Realisation Phase
	Example

	Conclusion
	Estimating Resource Bounds for Software Transactions
	Introduction
	Sequent calculus
	Tracking dependencies
	Value sensitivity by equivalence classes
	Introduction
	Contributions
	Wrapping Polyhedra
	Bounded Polyhedra
	Conclusion
	Introduction
	TetaJ
	Hardware near Virtual Machine
	Preliminary Design Criteria for a Predictable HVM
	Eliminating Recursive Solutions
	Reducing Pessimism of the Class Hierarchy
	Constant Time Analyse Stage

	Introduction
	Adaptive Task Automata
	An Example: An Adaptive Smartphone System
	Graceful quality reduction
	Introduction
	The Mode Switch Logic (MSL)
	Current work and future work
	Acknowledgments
	Introduction
	An Abstract Model of Information Flow
	The policy hierarchy
	Inheritance and Observability

