
Pragmatic Reuse in Web Application Development

Josip Maras
University of Split

Faculty of Electrical Engineering,
Mechanical Engineering and Naval Architecture

R. Boskovica 32, 21000 Split, Croatia
josip.maras@fesb.hr

ABSTRACT
Highly interactive web applications that offer user experi-
ence and responsiveness of desktop applications are becom-
ing increasingly popular. They are often composed out of
visually distinctive user-interface (UI) elements that encap-
sulate a certain behavior – the so called UI controls. Similar
controls are often used in a large number of web pages, and
facilitating their reuse would offer considerable benefits. Un-
fortunately, because of a very short time-to-market, and a
fast pace of technology development, preparing controls for
reuse is usually not a primary concern. The focus of my re-
search will be to circumvent this limitation by developing a
method, and the accompanying tool for supporting web UI
control reuse.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software

General Terms
Design, Theory, Algorithms, Experimentation

Keywords
Web application, UI controls, code analysis, reuse

1. INTRODUCTION
In the last two decades, web applications have made a

tremendous leap forward: from simple static web pages de-
veloped only in HTML to complex dynamic web applica-
tions developed using server-side technologies, e.g. PHP,
ASP.NET, Java that extensively use web services, databases
and client-side technologies. Web developers now routinely
use sophisticated scripting languages and other active client-
side technologies to provide users with rich experiences that
approximate the performance of desktop applications [20].

Web application user-interface (UI) is often composed of
visually distinctive UI elements, the so called UI controls.
Similar controls are often used in different web applications
and facilitating their reuse could lead to faster development.
Unfortunately, the web application development domain is
exposed to a very fast pace of technology development and
short time-to-market. This means that preparing code for

Copyright is held by the author/owner(s).
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
ACM 978-1-4503-0445-0/11/05.

reuse is often not a primary concern. So, when develop-
ers encounter problems that have already been solved in
the past, rather then re-inventing the wheel, or spending
time componentizing the already available solution (which
is sometimes not preferable [7]) they perform reuse tasks [2].
Reusing source code that was not designed in a reusable fash-
ion is known by different synonyms: copy-and-paste reuse [9],
code scavenging [8] and, more recently, pragmatic-reuse [4].

Pragmatic reuse treats the system in a white-box fashion
and involves extracting functionality from an existing sys-
tem and reusing it within another system. White-box reuse
tasks are complex and error-prone, partly because the goal
is to extract the minimum amount of code necessary for the
desired functionality [4]. This is particularly true in web de-
velopment since there is no trivial mapping between source
code and the page displayed in the browser; code responsi-
ble for the desired functionality is usually scattered between
several files, it is often intermixed with code irrelevant for
the reuse task and it is written in different languages (PHP,
SQL, JavaScript, CSS, HTML) that use different develop-
ment paradigms.

The overall goal of my PhD research is to increase the effi-
ciency of web UI control reuse by developing a reuse method
and the accompanying tool. This is a difficult task because
UI controls do not exist as distinct entities in web applica-
tion code, and because web applications are usually based
on dynamic, weakly typed script languages (e.g. JavaScript
and PHP) where it is difficult to analyze code dependencies.

2. RESEARCH PROBLEM
My main research problem is: How to support pragmatic

reuse of web UI controls. This problem can be divided into
three research questions:

• How prevalent are UI controls in modern web develop-
ment?

• How can we locate a subset of the whole web applica-
tion code and resources that defines the UI control?

• How to enable inclusion of a reused UI control in an
already existing web application?

The first question addresses the usefulness problem – how
much could be gained by supporting web UI control reuse.
Even though it is considered that visually and behaviorally
self-contained parts of the UI exist, there is no empirical
data on how prevalent their use is. This is why it is hard to
assess how much effort could be saved if there would exist
an automatic method for control reuse.



The second question targets the extraction problem – from
the complete code and resources of the web application, how
can we extract only the necessary code and resources. In or-
der to achive this objective, we have to locate code and re-
sources defining the UI control. This is a complex problem
because there is no trivial mapping between web applica-
tion source code and the control shown in the browser. The
code responsible for the control is often scattered between
several files and is intermixed with code irrelevant for the
control; each control can be developed with a number of dif-
ferent languages: HTML, CSS, JavaScript, and PHP. It is
important to note that both JavaScript and PHP are weakly
typed, dynamic script languages which are hard to analyze
and where analysis methods are not that well developed.

The third question addresses the reuse problem. Because
of the underlying languages, it is hard to reuse the extracted
control in an existing web application without introducing
bugs due to conflicts (name clashes, function overriding,
invalid application of CSS styles, etc.). For this reason a
method for detecting and resolving conflicts will have to be
developed.

The whole process has to be as automatic as possible,
relieving the cognitive load of reuse from the developer.

3. PROPOSED SOLUTION
JavaScript and PHP both include highly dynamic con-

structs (eval, reflection, functions as variables, etc.) so, in-
formation about control-flow, called functions, types of vari-
ables, etc. can only be known at runtime. These techniques,
while enabling some useful and flexible coding methods, im-
pede static analysis. This is why, inspired by research on
typing for dynamic scripting languages [3], I have chosen to
base the control extraction and conflict detection on execu-
tion trace analysis.

Figure 1: Extracting and reusing UI controls in Web
applications

The process is shown in Figure 1 and is divided in three
separate steps: 1. web application profiling; 2. control ex-
traction and 3. reuse. The goal of the first step – web ap-
plication profiling – is to derive a set of execution traces

that represent the complete behavior of a selected UI con-
trol. The best option would be that these traces are derived
from UI control tests with high code coverage but, since not
all controls have associated tests, we offer the possibility
that the developer records a set of interactions which rep-
resent the behavior of the UI control. These interactions
will then be the basis for generating execution traces. This
offers no guarantee that the developer has specified all use
cases of the UI control, but at least it is a way to circum-
vent the lack of proper tests, a situation which is not that
rare in web application development. In either case, code
responsible for generating execution traces has to be instru-
mented in order to detect statements that directly modify
the user-interface of the control and statement that commu-
nicate with the server“from”the control – UI control “signif-
icant” statements. This can be achieved by communicating
with the browser’s debugger to locate these statements on
the client-side, and with the server’s PHP debugger to locate
the statements on the server-side.

In the second phase of control extraction the goal is to
locate all code and resources necessary for the stand-alone
functioning of the UI control. This is done by performing
a backward data-flow analysis on the UI control significant
statements, aided by the recorded execution-traces. This
means that JavaScript and PHP specific data-flow analysis
will have to be developed. This is a technically and scien-
tifically challenging phase because a novel dynamic slicing
method will have to be developed.

In the third phase – reuse – resources extracted in the
second phase are embedded into a new, target web applica-
tion. Naturally, this can lead to various conflicts that have
to be detected and handled. Conflicts can occur on differ-
ent levels: code (JavaScript, PHP, CSS), markup (HTML),
and resources (file name clashes) that are all mutually inter-
twined. While in some cases conflicts can be statically deter-
mined (CSS and resources), for the most part (JavaScript,
PHP) this problem will also have to be tackled with dynamic
analysis. In this case a set of execution traces of the web
application that the user control will be a part of will also
be required. By providing a dynamic code analysis method
that will automatically analyze combinations of execution
traces, we can be sure that, by reusing the UI control into a
new web application, we haven’t introduced any side-effects
that will impact the functionality of the rest of the applica-
tion.

3.1 Contributions
The main contribution of my research will be a method

and the accompanying tool for extracting and reusing web
UI controls. More specifically, the contributions will include:

• Empirical results on the usage of web UI controls (are
there common types of controls, what technologies are
used for their realization, how dynamic are they, etc.)

• A code slicing method based on execution traces that
will extract code relevant from the selected control per-
spective

• A code analysis method to detect conflicts between the
control and web application in which it will be included

• A tool that performs the extraction, conflict resolution,
and control reuse



• Empirical data showing the effectiveness of automatic
web UI control reuse

Since JavaScript and PHP are languages based on differ-
ent paradigms and are responsible for different aspects in
web development, code slicing and conflict detection meth-
ods will have to be developed and adjusted for each lan-
guage. They will probably have many similarities, and a
more general, dynamic-languages slicing method will possi-
bly be developed.

3.2 Methodology
My research will be based around the following tasks:

• Empirical research in order to determine the current
state of web UI controls in web development

• Development of a new approach for UI controls reuse

• Development of a tool for UI controls reuse to validate
the usability of the developed technique

• Empirical research on the usefulness of the tool for
extracting web UI controls from a random set of Web
applications

• A case study to evaluate the usefulness of the technique
in real web development projects

3.3 Current state
My first work, dealing with web engineering, was related

to modeling of dynamic web applications [13], where I no-
ticed a large number of similar UI controls used in web ap-
plications. I followed this with developing a prototype tool,
Firecrow [11], for extracting client-side UI controls based on
code executed while recording interactions with the UI con-
trol (shown in Figure 2). Firecrow is a plugin for the Firefox
browser and is available for free [12].

Currently, I am developing a JavaScript slicing method
based on the execution traces analysis. I have also done a
preliminary empirical study on the usage of UI controls in
the client-side web application development domain, by ana-
lyzing thirty-five web pages: twenty have been selected from
the top 200 most visited web pages in the world [1] (includ-
ing Google, Facebook, Twitter, and Apple), ten have been
randomly selected, and five have been selected from projects
in which I have been involved earlier. Although this was by
no means a strict empirical experiment, it still offered in-
sight on how common the UI controls are in web application
development. On thirty-five web application home pages,
144 web UI controls have been identified - which shows that
there is significant potential for reuse. From 144 identified
UI controls 133 controls were successfully extracted by Fire-
crow, while 11 failed [10]. This shows that, even though
the advanced JavaScript code analysis is not yet developed,
and code that is dead from the UI control perspective is
sometimes extracted, the approach has potential to facili-
tate reuse of a large number of UI controls.

4. EVALUATION
The evaluation of the method and the supporting tool will

be based on two approaches. The first is based on extracting
UI controls from freely available web applications; the main
purpose being to stress test the tool by exposing it to a num-
ber of different coding styles and development approaches.

Figure 2: Firecrow user interface – (1) web page
chosen for reuse, (2) selecting the user control, (3)
Firecrow configuration window.

For this evaluation a categorization of web UI controls and
a detailed account on the effectiveness of the approach will
have to be made. This should include a percentage of UI
controls that were extracted while retaining their behavior
and user-experience; and a detailed data on the extracted
code (e.g. how much code from the whole application was
kept) and resources.

The second approach will be based on a case study ap-
plication. The main purpose is to evaluate the effectiveness
of the approach as a web development method in a real-
world web development project. In the near future - I will
be a part of a team that will build a commercial web ap-
plication which will be built from a subset of an already
existing web application - iForestFire[15] which was not de-
signed with reuse in mind. During the development, the tool
will be used to extract standalone UI controls from the al-
ready existing application and integrate them into the newly
developed application.

5. RELATED WORK
There exist a number of approaches, environments and

tools designed to support reuse. In the web application
domain these include HunterGatherer [14], Internet Scrap-
book [16], HTMLviewPad [17], and ReWeb [18]; while in
the more general domain of reusing Java code there is G&P
(Gilligan and Procrustes) [6].

HunterGatherer [14] and Internet Scrapbook [16] allow
users to collect components from within Web pages, and to
collect components from different Web pages into a newly
created page. But since these approaches were developed in
1990’s and early 2000, with the term “component” they refer
to information components – most usually text paragraphs.
These approaches are mostly used to create scrapbooks of
data gathered from different web pages, and not to reuse
web page controls.

Tanaka et al. [17] describe an interesting approach to clip-
ping and reusing fragments of Web pages in order to com-
pose new applications. They only target HTML elements
(specifically HTML forms) and describe how to reroute data
entered in a form to original servers that process the request.
The applications created in this way are not deployable as
standard web applications, but are only executable within
their tool – HTMLviewPad. This is the biggest difference



between our approaches: while I aim to facilitate the devel-
opment of standard web applications by providing a way to
reuse already existing code, their approach is more focused
on “end-user” programming where users compose new web
applications from fragments of old ones, but in a way where
newly created applications are only deployable as special ap-
plications running inside their tool – HTMLviewPad.

My work is also related to program slicing [19], where by
starting from a subset of a program’s behavior, the program
is reduced to a minimal form which still produces that be-
havior. My approach can be viewed as web application slic-
ing with the goal of reducing the whole application (along
with its code and resources) to a form in which only the
visuals, the behavior, and the necessary resources of the se-
lected control are maintained. In the web engineering do-
main Tonella and Ricca [18] define web application slicing as
a process which results in a portion of the web application
which exhibits the same behavior as the initial web applica-
tion in terms of information of interest displayed to the user.
In the same work they present a technique for web applica-
tion slicing in the presence of dynamic code generation where
they show how to build a system dependency graph for web
applications. This work is dealing mostly with slicing PHP
web applications, and was done when web applications were
a lot less dynamic on the client side, and when OO design
and AJAX applications were not yet widely spread. While
still being relevant, a lot has changed in the web develop-
ment practices and this algorithm needs improvements.

In the more general domain of Java applications, G&P [6]
is a reuse environment composed of two tools: Gilligan and
Procrustes, that facilitates pragmatic reuse tasks. Gilligan
allows the developer to investigate dependencies from a de-
sired functionality and to construct a plan about their reuse,
while Procrustes automatically extracts the relevant code
from the originating system, transforms it to minimize the
compilation errors and inserts it into the developer’s system.
This work was further expanded [5] with the possibility to
automatically recommend elements to be reused based on
their structural relevance and cost-of-reuse.

6. ACKNOWLEDGMENTS
This PhD research is partially supported by the Swedish

Foundation for Strategic Research via the strategic research
center PROGRESS, and the Unity Through Knowledge Fund
supported by the Croatian Government and the World Bank
via the DICES project. I would also like to thank my advi-
sors: Maja Štula, Jan Carlson and Ivica Crnković for steer-
ing my PhD topic and for many helpful comments on this
paper.

7. REFERENCES
[1] Alexa. Alexa top sites, October 2010.

”http://www.alexa.com/topsites/”.

[2] J. Brandt, P. J. Guo, J. Lewenstein, and S. R.
Klemmer. Opportunistic programming: How rapid
ideation and prototyping occur in practice. In WEUSE
’08: Workshop on End-user software engineering,
pages 1–5. ACM, 2008.

[3] M. Furr, J.-h. An, J. Foster, and M. Hicks.
Profle-Guided Static Typing for Dynamic Scripting
Languages. In 24th Annual Conference on
Object-Oriented Programming Systems, Languages,
and Applications, 2009.

[4] R. Holmes. Pragmatic Software Reuse. PhD thesis,
University of Calgary, Canada, 2008.

[5] R. Holmes, T. Ratchford, M. Robillard, and R. J.
Walker. Automatically Recommending Triage
Decisions for Pragmatic Reuse Tasks. In ASE ’09:
Proceedings of the 2009 24th IEEE/ACM
International Conference on Automated Software
Engineering. IEEE Computer Society, 2009.

[6] R. Holmes and R. J. Walker. Semi-Automating
Pragmatic Reuse Tasks. In ASE ’08: Proceedings of
the 2008 23rd IEEE/ACM International Conference
on Automated Software Engineering, pages 481–482.
IEEE Computer Society, 2008.

[7] C. Kapser and M. W. Godfrey. “Cloning Considered
Harmful” Considered Harmful. In WCRE ’06:
Proceedings of the 13th Working Conference on
Reverse Engineering, pages 19–28. IEEE Computer
Society, 2006.

[8] C. W. Krueger. Software reuse. ACM Comput. Surv.,
24(2):131–183, 1992.

[9] B. M. Lange and T. G. Moher. Some strategies of
reuse in an object-oriented programming environment.
SIGCHI Bull., 20(SI):69–73.

[10] J. Maras. Firecrow evaluation, December 2010.
”http://www.fesb.hr/˜jomaras/?id=apps-examples”.

[11] J. Maras. Home page of the Firecrow tool, December
2010.
”http://www.fesb.hr/˜jomaras/?id=app-Firecrow”.

[12] J. Maras, M. Štula, and J. Carlson. Extracting
Client-side Web User Interface Controls. In ICWE
2010, International Conference on Web Engineering,
pages 502–505, 2010.

[13] J. Maras, M. Štula, and I. Crnković. phpmodeler - a
Web Model Extractor. In ASE ’09: Proceedings of the
2009 24th IEEE/ACM International Conference on
Automated Software Engineering, pages 660–661, 2009.

[14] M. Schraefel, Y. Zhu, D. Modjeska, D. Wigdor, and
S. Zhao. Hunter Gatherer: Interaction Support for the
Creation and Management of Within-Web-Page
Collections. In 11th international conference on World
Wide Web, pages 172–181, 2002.

[15] D. Stipanicev and M. Stula. iForestFire, December
2010. ”http://ipnas.fesb.hr/index.php?lang=en”.

[16] A. Sugiura and Y. Koseki. Internet scrapbook:
creating personalized world wide web pages. In CHI
’97: Extended abstracts on Human factors in
computing systems, pages 343–344. ACM, 1997.

[17] Y. Tanaka, K. Ito, and J. Fujima. Meme Media for
Clipping and Combining Web Resources. World Wide
Web, 9:117–142, 2006.

[18] P. Tonella and F. Ricca. Web Application Slicing in
Presence of Dynamic Code Generation. Automated
Software Engg., 12(2):259–288, 2005.

[19] M. Weiser. Program slicing. In ICSE ’81: 5th
International Conference on Software engineering,
pages 439–449. IEEE Press, 1981.

[20] A. Wright. Ready for a Web OS? Commun. ACM,
52(12):16–17, 2009.


