
Static Program Analysis for Real-Time and Embedded Systems

Björn Lisper
School of Innovation, Design, and Engineering

Mälardalen University
Västerås, Sweden

bjorn.lisper@mdh.se

Abstract

Static program analysis methods can find properties of
software without running it, by analyzing a mathemati-
cal model of the software. The analysis can be designed
to detect potential bugs, and thus provides an interesting
alternative to testing. Static analyses can also estimate
quantitative properties like execution time, and memory
consumption. Contrary to testing, static analysis provides
formal evidence whether a property holds: thus, its re-
sults can be trusted with a high degree of confidence. This
makes the technique very interesting to use in the devel-
opment of embedded systems, where the demands on func-
tionality, stability and safety are high.

The Programming Languages group at Mälardalen
University has been active in the static program analysis
area since more than ten years. The main focus has been
on Worst-Case Execution Time (WCET) analysis, which
finds safe upper bounds to the execution time of a pro-
gram, and the group is one of the world-leading groups
in this area. However, the techniques and tools developed
by the group have a number of other potential applica-
tions as well for embedded systems development. Here
we give an introduction to static analysis, we describe our
techniques and our current research, and we hint at some
possible applications.

1 Introduction

Throughout the process of software development, there
is a need to ensure that the developed system meets its re-
quirements. Traditionally, this is done through extensive
testing. However, testing is time-consuming and error-
prone: since it typically is impossible to perform exhaus-
tive testing, there is always a risk that some bug goes un-
noticed.

Testing is done by running the software. In contrast,
static program analysis[11] finds out about properties of
the program without running it, analyzing a mathemati-
cal model. This is analogous to traditional engineering
disciplines, where constructions are analyzed using some
numerical method before deployed.

Static program analysis can be performed both on
source- and machine code. Source-level analysis is usu-
ally easier, since there is more information and structure in
source code than in machine code. However, some prop-
erties are pertinent to machine code and thus cannot be
analyzed faithfully on source level: an example is execu-
tion time. Furthermore, small embedded systems are often
programmed in assembly code or a mix of high-level code
and assembly: for them, a pure source-level analysis will
not be applicable.

There is a range of static program analysis techniques.
Simple syntax checking can find certain kinds of suspi-
cious code constructs: the classical tool “lint” uses this
kind of analysis to check C programs [9]. More ad-
vanced techniques aresemantics-based: obviously, such
techniques can be much more general and powerful since
the interesting properties of software typically are more
related to its semantics than its syntax.

Semantics-based static analysis first appeared in opti-
mizing compilers. Such compilers employ variousdata
flow analysesthat help decide when certain code opti-
mizations can be performed without breaking the pro-
gram. Data flow analyses can also be used to aid program
verification: an example is to check for possible uses of
uninitialized variable values.

Another class of semantics-based static analyses is
based onabstract interpretation[4]. Abstract interpre-
tation works by connecting aconcrete domain, where the
semantics of the program is described, to a simplifiedab-
stract domainwhere the analysis is performed. An im-
portant example isvalue analysisof imperative programs,
where the possible values for different program variables
are approximated in different program points. The results
of a value analysis can be used for a variety of verification
purposes, like checking for potential out-of-bounds array
accesses, or possible divisions by zero.

For real-time systems, methods forWorst-Case Execu-
tion Time (WCET) analysishave been developed [12]. The
WCET is the longest possible execution time for a pro-
gram executing uninterrupted on a certain hardware: good
estimates are needed when analyzing hard real-time sys-
tems with respect to deadline violations. WCET analysis
attempts to find a safe (not underestimating) WCET esti-



d
is

tr
ib

u
ti
o

n
 o

f 
ti
m

e
s

WCETBCET

time0

safe
lower
bound

safe
upper
bound

minimal
measured

time

maximal
measured

time

The WCET must
be found or
upper bounded

measured execution times

possible execution times

safe approximation of timing

Figure 1. WCET, BCET (Best-Case Execu-
tion Time), safe bounds, and possible mea-
sured times.

mate from information about possible program flows and
hardware timing models: see Fig. 1. WCET analysis is
typically done on the linked binary, since this is the code
actually executing on the hardware.

Static program analyses decide whether a program has
a propertyP . They are usually designed to besound: if
they say that a program has the propertyP then this is
surely true. On the other hand, they are usually notcom-
plete: the analysis might say that the program possibly
does not have the propertyP , and then there is a pos-
sibility that it indeed fulfilsP even though the analysis
couldn’t say so. IfP is the absence of some bug, then this
situation is called afalse positive: the tool reports a poten-
tial bug that in fact is not present. Obviously, the number
of false positives must be low for the analysis to be useful.

The soundness of static program analysis makes it dual
to testing. If testing finds a bug, then it is clearly a true bug
and not a false positive. On the other hand, testing can
never be sound (unless exhaustive): we can never prove
the absence of a bug for sure by testing alone. Thus static
analysis and testing are complementary techniques, and it
is very interesting to use them in combination.

2 Tools

For a long time, semantics-based static program anal-
ysis was considered a purely academic discipline of lit-
tle practical interest. However, during the last decade
commercial tools have appeared, and they are now be-
ing increasingly used by software developers. Coverity1

uses a variety of static analysis techniques, originating
in optimizing compilers, to perform software verification.
Polyspace2 and Astrée3 both perform value analyses based
on abstract interpretation in order to prove the absence of
run-time errors. Klocwork Insight4 uses data flow analysis
and symbolic logic. CodeSonar5 is based on a combina-
tion of data flow analysis and symbolic execution.

These tools work for languages like C, C++, C#/Java.
They can typically detect run-time errors like division by

1www.coverity.com
2www.polyspace.com
3www.absint.de/astree/
4www.klocwork.com
5www.grammatech.com

zero, null pointer dereferencing, uninitialized variables,
out-of-range indexing, and a number of other errors.

In the area of WCET analysis, commercial tools are
provided by AbsInt6, Tidorum7, and Rapita Systems8.
The two first are based on pure static analysis of linked
binaries, whereas the tool from Rapita Systems uses a hy-
brid approach combining timing measurements with static
analysis techniques.

3 Static Analysis Research at MDH

The Programming Languages group9 is part of
Mälardalen Real-Time Research Centre (MRTC)10. The
group is internationally established in the area of WCET
analysis11. A speciality of the group isprogram flow anal-
ysis, which derives constraints on possible program flows.
Such constraints can be upper bounds on the number of
loop iterations, or constraints expressing mutual exclusion
between different program parts. We have developed sev-
eral analyses for this purpose [5, 7, 10].

We use our prototype WCET analysis tool SWEET
(SWEdish Execution Time tool)12 to evaluate our meth-
ods. The tool performs program flow analysis on the in-
termediate format ALF [6], which is designed to be able to
represent both C code and object code faithfully. SWEET
can analyze other formats than ALF through frontends
mapping these formats to ALF. Currently, frontends for C
and PowerPC binaries exist. In addition to program flow
analysis, SWEET is also capable of other analyses such as
an advanced value analysis based on abstract interpreta-
tion, and program slicing. All these analyses are interest-
ing in themselves: thus, SWEET is now developing into a
tool for general static analysis of embedded code.

We are currently working on a number of research top-
ics:

• Approximate source-level WCET analysis[1]. Con-
ventional WCET analysis requires linked binaries,
and can thus be applied only late in the development
process. It is often desirable to estimate the timing
properties earlier in the process, to reduce the risk for
a costly system redesign if the timing requirements
turn out not to be fulfilled in the end. We have de-
veloped a method to derive approximate source-level
timing models which can be used to perform a rough,
static WCET analysis for source code targeting a cer-
tain hardware.

• Parametric WCET analysis[2, 10]. Conventional
WCET analysis returns a single number. However,
many time-critical tasks actually have a parametric
timing behaviour where the execution time depends

6www.absint.de
7www.tidorum.fi
8www.rapitasystems.com
9www.mrtc.mdh.se/index.php?choice=research groups&id=0009

10www.mrtc.mdh.se
11www.mrtc.mdh.se/projects/wcet/
12www.mrtc.mdh.se/projects/wcet/sweet.html

2



strongly on some input values. For such tasks, a
single number provides a very crude overapproxi-
mation. We are developing techniques to perform a
parametricWCET analysis, where the answer is a
formula in the input values rather than a single num-
ber. Our techniques use a number of advanced sym-
bolic analysis methods.

• Bit-precise value analysis[3]. For small embedded
processors (8/16 bit), the finite wordlength of the
arithmetics is of significance. Unintentional over-
flows may occur, as well as intentional use of over-
flow with value wraparounds to save instructions. As
far as we know, no current commercial tool takes
such effects into account: thus, their analyses are un-
sound for such software and their results cannot be
trusted. We have developed an advanced value anal-
ysis that takes possible overflows into account, and
implemented it in SWEET. This analysis is sound
also in the presence of wraparounds.

• WCET Analysis of parallel software[8]. With the
rapid introduction of multicore processors, analysis
of parallel software is becoming a very pressing is-
sue. We are investigating methods to perform WCET
analysis for parallel software. This is a very hard
problem, and the analysis of hard real-time systems
on multicore processors probably requires a very
stringent system design to be feasible.

4 Potential Topics for Collaboration

We are very interested to get in touch with companies
that have an interest in static analysis techniques, to dis-
cuss possible future collaboration. We believe that we
have a clear edge as regards precise and sound methods for
static analysis of small embedded systems. We are also in-
terested to further our techniques how to build models for
performance prediction. Here is a non-exhaustive list of
potential topics of collaboration:

• Sound and precise static analysis of embedded soft-
ware

• WCET analysis of real-time systems

• Systematic methods to build models for performance
prediction

• Combining static analysis and testing

• Static analysis for multicore

5 Conclusions

Semantics-based static program analysis is becoming
an important tool for software developers. The trustwor-
thiness of the analysis makes it very interesting for verifi-
cation of embedded software, where demands on correct
functionality and stability are high. The Programming

Languages group at Mälardalen University performs re-
search in the area, and is interested in future research col-
laborations with companies that have an interest in these
techniques.

References

[1] P. Altenbernd, A. Ermedahl, B. Lisper, and J. Gustafsson.
Automatic generation of timing models for timing analysis
of high-level code. In S. Faucou, editor,Proc. 19th Inter-
national Conference on Real-Time and Network Systems
(RTNS2011), Nantes, France, Sept. 2011.

[2] S. Bygde, A. Ermedahl, and B. Lisper. An efficient algo-
rithm for parametric WCET calculation.Journal of Sys-
tems Architecture, 57:614–624, 2011.

[3] S. Bygde, B. Lisper, and N. Holsti. Fully bounded poly-
hedral analysis of integers with wrapping. InProc. Int.
Workshop on Numerical and Symbolic Abstract Domains
(NSAD 2011), Venice, Italy, Sept. 2011.

[4] P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construc-
tion or approximation of fixpoints. InProc. 4th ACM Sym-
posium on Principles of Programming Languages, pages
238–252, Los Angeles, Jan. 1977.

[5] A. Ermedahl, C. Sandberg, J. Gustafsson, S. Bygde, and
B. Lisper. Loop bound analysis based on a combina-
tion of program slicing, abstract interpretation, and invari-
ant analysis. In C. Rochange, editor,Proc. 7th Interna-
tional Workshop on Worst-Case Execution Time Analysis
(WCET’2007), Pisa, Italy, July 2007.

[6] J. Gustafsson, A. Ermedahl, B. Lisper, C. Sandberg, and
L. Källberg. ALF – a language for WCET flow analysis.
In N. Holsti, editor,Proc. 9th International Workshop on
Worst-Case Execution Time Analysis (WCET’2009), pages
1–11, Dublin, Ireland, June 2009. OCG.

[7] J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper.
Automatic derivation of loop bounds and infeasible paths
for WCET analysis using abstract execution. InProc. 27th

IEEE Real-Time Systems Symposium (RTSS’06), Dec.
2006.

[8] A. Gustavsson, A. Ermedahl, B. Lisper, and P. Petters-
son. Towards WCET analysis of multicore architectures
using UPPAAL. In B. Lisper, editor,Proc. 10th Inter-
national Workshop on Worst-Case Execution Time Analy-
sis (WCET’2010), pages 103–113, Brussels, Belgium, July
2010. OCG.

[9] S. Johnson. Lint, a C program checker. Computer Science
Technical Report 65, Bell Laboratories, Dec. 1977.

[10] B. Lisper. Fully automatic, parametric worst-case execu-
tion time analysis. In J. Gustafsson, editor,Proc. 3rd Inter-
national Workshop on Worst-Case Execution Time Analy-
sis (WCET’2003), pages 77–80, Porto, July 2003.

[11] F. Nielson, H. R. Nielson, and C. Hankin.Principles of
Program Analysis, 2nd edition. Springer, 2005. ISBN 3-
540-65410-0.

[12] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand, R. Heck-
mann, T. Mitra, F. Mueller, I. Puaut, P. Puschner,
J. Staschulat, and P. Stenström. The worst-case execu-
tion time problem — overview of methods and survey of
tools. ACM Transactions on Embedded Computing Sys-
tems (TECS), 7(3):1–53, 2008.

3


