
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Service based communication for MPSoC platform-SegBus

Khalid Latif a,b,⇑, Tiberiu Seceleanu c, Cristina Seceleanu d, Hannu Tenhunen a,b

a Dept. of Information Technology, University of Turku, Finland
b Turku Centre for Computer Science (TUCS), Turku, Finland
c ABB Corporate Research, Västerås, Sweden
d Mälardalen University, Västerås, Sweden

a r t i c l e i n f o

Article history:
Available online 22 July 2011

Keywords:
MPSoC
SegBus
Multicast
Scheduling
Design methodology

a b s t r a c t

MPSoC platforms offer solutions to deal with communication limitations for multiple cores on single chip,
but many new issues arise within the context. The SegBus platform is one of the solutions for application
deployment on multi-core applications. There are many applications where identical data is transferred
from the same source towards different destinations. Multicast services may come as a performance
improving factor for the interconnection platform, together with interrupt service.

In this paper, the task is to analyze, how different services can be designed for the SegBus platform and
observe the improvement in system performance. The designer can select the services according to the
requirements. The running example is represented by the H.264 encoder. The SegBus platform architec-
ture, the communication mechanism, the allocation of processing elements on the platform, the commu-
nication services and their implementation are the main topics elaborated here.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Modern embedded systems consists of heterogenous compo-
nents like processing elements (PEs), ASICs, programmable micro-
processors, memory and FPGAs. Off-chip communication among
these components is very slow, requires extra design effort and it
is not efficient regarding power and area. Traditionally, it was
not possible to integrate all the components on a single chip be-
cause of technology limitations. At the present, continuous tech-
nology scaling has made it possible to integrate billions of
transistors on a single chip [8]. Thus, the entire system can be inte-
grated on a single chip, hence the paradigm of Multiprocessor Sys-
tem-on-Chip (MPSoC). After resolving the integration issue, the
next problem is to provide an efficient communication platform
for communication among the processing elements. A traditional
data bus can provide enough bandwidth for communication
among 3–10 elements, but it does not scale to higher numbers
[13]. Different on-chip communication platforms have already
been proposed like Network-on-Chip (NoC) [11] and Segmented
bus (SegBus) [24], to address this issue.

A computation mechanism comprises multiple functions and
tasks generally expressed at different levels of abstraction. Individ-

ually, such functions or tasks can be considered as a service. We
define here the two types of services for SoC: computation
and communication services as shown in Fig. 1. A computation
service means that the chip offers service(s) which will (to-
gether) complete a certain task, or execute some application.
A communication service contains functions that facilitate or
support the data transfer from source to destination, such as
monitoring, scheduling, arbitration, multicast and SPLIT trans-
fers. These communication services can be customized and in-
cluded in MPSoC communication platforms according to the
application requirements. The implementation of communica-
tion services for on-chip communications is completely different
from off-chip or computer system communications, though the
basic concept is exactly same. For on-chip communications,
challenges are deep submicron effect, cross talk, thermal noise
and many other issues, which are not the key problems for typ-
ical communication systems. Apart from that, for systems based
on MPSoC platforms, the customer considerations - power con-
sumption, area and latency, are different than for communica-
tion systems. There are few services, required for on-chip
communications but not used in telecommunication systems
like cache-coherence or interrupt communication. Similarly,
there are services for communication systems, which are not
very important for on-chip communications like security. Some
services cannot be completely defined as computational or com-
munication, for instance the thermal monitoring. Such services
are found then on the border in Fig. 1.

Two well known architectures for implementation of communi-
cation fabrics for SoCs are transaction-based – buses and packet

0141-9331/$ - see front matter � 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.micpro.2011.06.006

⇑ Corresponding author at: Dept. of Information Technology, University of Turku,
Finland. Tel.: +358 443310316; fax: +358 23336950.

E-mail addresses: khalid.latif@utu.fi (K. Latif), tiberiu.seceleanu@se.abb.com
(T. Seceleanu), cristina.seceleanu@mdh.se (C. Seceleanu), hannu.tenhunen@utu.fi
(H. Tenhunen).

Microprocessors and Microsystems 35 (2011) 643–655

Contents lists available at SciVerse ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro



Author's personal copy

based – NoCs [17]. Implementing the communication services for
transaction based data transfers is not economical because of the
service overhead for each transaction. Communication services
built on packet based transactions can show a significant improve-
ment in system performance. Communication services have al-
ready been implemented for NoC but for bus based systems, only
the obvious services like scheduling and arbitration are most com-
monly considered.

Congestion control, cache coherence and power consumption
are the key problems for on-chip distributed architectures. A
first technique to address congestion control is the avoidance
of identical data re-transmission, which leads to the idea of a
multicast approach in many streaming applications like H.264
codec, MP3 codec or video conference application. Multicast
techniques are simple and easy to implement in bus based sys-
tems as compared to the implementations of networks on chip
(NoC). Considering the later, apart from implementation, multi-
cast introduces a serious communication overhead. For seg-
mented bus approaches, multicast approaches bring only a
negligible overhead. This makes multicast power and latency
efficient for bus based systems.

We describe, in the present paper, a realization of a multicast
protocol for the segmented bus platform SegBus. We perform this
in the context of a perspective change, where activities related to
the design and execution of applications on the SegBus platform
are viewed now as services. While scheduling can be seen as a ser-
vice at design time, arbitration, and various kinds of communica-
tion features (SPLIT, interrupt, multicast, etc.) are treated as run-
time platform services. Multicast features of communication pro-
tocols are not a recent development. This comes as a performance
improvement to repetitious transactions containing the same data.
Lately, multicast procedures have been analyzed in the context of
on-chip multi processor architectures. Similarly, interrupt commu-
nications, scheduling, task allocation mechanism and other ser-
vices are discussed.

Related work. Different MPSoC design models have already been
proposed [5,6,18,20,29]. We approach the problem by considering
the communication cost and throughput, which are dependent on
each other and make the design process automated. By introducing
different communication services one-by-one or in a group, com-
munication cost can be reduced. Then, a service or the group of ser-
vices with minimum communication cost and overhead is selected
for final implementation.

A bus system and its variants do not scale well with the system
size in bandwidth and clocking frequency [15]. However a bus

platform is very efficient when considering broadcasting, since
all clients are directly connected to it. A unicast transaction is in
fact broadcasted to all clients in the bus segment, but read only
by the destination device.

Bus snarfing is proposed as well for performance improvement
of multiprocessor systems [9,10]. Broadcasting technique can be
used to reduce memory latency for bus-based multiprocessor sys-
tems [4]. As with other broadcast techniques for NoC, this uses the
whole interconnect platform. In the case of the SegBus platform, we
utilize only those segments which host the destination devices,
and not all the structure.

Tranberg-Hansen and Madsen [28] present a unified model for
application and platform. Authors present the service model in
an abstract model of a hardware component implementing the
behavior of the component by offering the services. For this pur-
pose, the service model has been proposed. We complement here
by introducing the services block in our design methodology in-
stead of having a service model. The authors also pointed out that
Artemis [6] and the subproject Sesame [31] present the application
and architecture model separately. We approach similarly the
problem, by separating the computation and communication
models.

Cornelius et al. [32] introduce the service oriented approach for
NoC based communications. A useful comparison of centralized
and distributed service oriented architectures is presented. In case
of centralized approach, extra communication from all the nodes
will be needed to coordinate with Central Coordination Node
(CCN). In this case, CCN will be overloaded but it simplifies the
monitoring of services. On other hand, the distributed nature of
the system control promises to circumvent the hot spot around a
single resource (like the CCN). Similar approaches can be adopted
for any MPSoC platform but here, we adopt a hybrid approach. In
the SegBus platform, a hierarchical solution is used, as a central
arbiter works only if a some service needs cross border communi-
cation. The central arbitration unit (CA) deals with multicast ser-
vice only when a multicasted packet is to be delivered across the
border.

Zhang et al. explain the use of snoopy protocol for bus-based
MPSoCs in [30]. It makes use of the broadcasting and the serializa-
tion properties of buses, resulting in a cheap solution.

Faizal et al. [21] presents the architecture of a multicast parallel
pipeline router for NoC. The routing engine computes the direction
from each header flit and writes it in the register of the routing ta-
ble. After that, according to direction register entries, payload flits
are broadcasted in multiple directions. In our case, just one or two
(for both directions) packet copies are generated. This provides for
power efficiency and simplicity of the implementation, compared
to Samman et al. [21]. Ebrahimi et al. [12] propose the dynamic
multicast routing protocol for traffic distribution in NoC. In this ap-
proach, packet prioritization service is not considered, which is a
rising requirement for most of the upcoming applications. One
may also infer also a power performance overhead at the source
node, as all the destination addresses need to be sorted. There is
no need of sorting and prioritization in our approach, where also
prioritization is considered during the placement of processing
elements.

Paper overview. The remainder of this paper is organized as fol-
lows. Section 2 presents the background of the SegBus platform,
communication mechanism and previous research for on-chip
communication services. Section 3 explains design methodology
by tool environment and placement of processing elements. Sec-
tion 4 describes the implementation details of communication ser-
vices, offered by the platform. Section 5 explains the multicast
mechanism and its hardware implementation. Finally, experimen-
tal results are presented – Section 6 and conclusions are drawn in
Section 7.

Fig. 1. Classification of on-chip services.

644 K. Latif et al. / Microprocessors and Microsystems 35 (2011) 643–655



Author's personal copy

2. Background

A segmented bus is a bus which is partitioned into two or more
segments. Each segment acts as a normal bus between modules
that are connected to it and operates in parallel with other seg-
ments. Neighboring segments can be dynamically connected to
each other in order to establish a connection between modules lo-
cated in different segments. Due to the segmentation of the bus,
parallel transactions can take place, thus increasing the perfor-
mance. A high level block diagram of the segmented bus system
which we consider in the following sections is illustrated in Fig. 2.

The SegBus platform [24] is thought as having a single CA and
several local segment arbitration units (SA), one for each segment.
The SA of each bus segment decides which device, generically re-
ferred as functional unit (FU), within the segment will get access
to the bus in the following transfer burst.

Platform communication. Within a segment, data transfers fol-
low a ‘‘traditional’’ bus-based protocol, with SA s arbitrating the ac-
cess to local resources. The inter-segment communication is a
package based, circuit switched approach, with the CA having the
central role. The interface components between adjacent seg-
ments, the border units – BUs, are basically FIFO elements with
some additional logic, controlled by the CA. A brief description of
the communication is given as follows.

Whenever one SA recognizes that a request for data transfer tar-
gets a module outside its own segment, it forwards the request to
the CA. This one identifies the target segment address and decides
which segments need to be dynamically connected in order to
establish a link between the initiating and targeted devices. When
this connection is ready, the initiating device is granted the bus ac-
cess. This one starts filling the buffer of the appropriate bridge with
the package data. The latter is taken into account by the corre-
sponding next segment SA which forwards it further, until it
reaches the destination. At this point, the SA of the targeted seg-
ment routes the package to the own segment lines, from here it
is collected by the targeted device.

A transfer from the initiating segment k to the target segment n
is represented in Fig. 3. The packet structure shown in figure con-
tains different fields. Destination ID field is the PE ID of packet des-
tination. Similarly Source ID is the PE ID of packet source. Data
payload is the actual data to be transferred. The segments from k
to n are released for possible other inter-segment operations in a
cascaded manner, from the source k to the destination, n as speci-
fied by the packet header. However, the figure stresses the rela-
tively long duration of an inter-segment transfer: whenever the
data has arrived in the BU FIFOs, such a transaction collides with
on-going local activities. A solution in this sense, that is, speeding
up the global communication, comes in the form of interrupts [22]:
when a data package arrives at one BU, the local operations of the
next segment to be traversed is interrupted, to make way for the
inter-segment package.

The arbitration at CA level, that is, for global transfers, imple-
ments the application dataflow, with respect to these transfers.
Hence, one has to implement accurate control procedures for in-
ter-segment transfers, as possible conflicting requests must be
appropriately satisfied, in order to reach performance require-
ments and to correctly implement applications.

The bus snooping mechanism is shown in Fig. 4. Wrapper (W)
provides the abstraction between processing elements (PE) and
communication platform to make the system plug-and-play. Here,
the task of the wrapper is requesting the bus, reading data from
bus and other control signals communication. In packet based
communication, packetization and depacketization are additional
tasks of the wrapper.

Tool Environment. At the time, the implementation technology
for the SegBus platform is offered by Altera [1] devices. Hence, after
application modeling and platform customization the flow is taken
into the Quartus design environment, where previously defined
functional units are mapped on actual devices. Following compila-
tion, a simulation is performed within a Modelsim [2] framework.

3. Design methodology

The design methodology for SegBus platform has already been
proposed by [23]. In this methodology, optimization of communi-
cation cost is considered according to the application and platform
model. Communication cost can be further optimized by introduc-
ing different communication services like multicast, cache coher-
ence or proper scheduling approach according to the application
requirements. Fig. 5 shows the updated design methodology. We
approach the problem by introducing the services block in the
existing methodology. Services block offers different kind of ser-
vices with a variety of architectures. The services are introduced
one by one and performance improvement regarding communica-
tion cost is observed by simulation. The group of services, which
provides the best performance can be selected for final implemen-
tation. The criteria to select some service for final implementation
is discussed individually for each service in Section 4.Fig. 2. Segmented bus structure.

Fig. 3. The data packet structure and the flow of an inter-segment package transfer.

K. Latif et al. / Microprocessors and Microsystems 35 (2011) 643–655 645



Author's personal copy

Application development. We start by analyzing the targeted
application by splitting it in processes. The interaction between
these is observed in terms of input–output data-flows. In subse-

quent steps the top-level process is decomposed hierarchically into
less complex processes and the corresponding data-flows between
these processes.

The decomposition process is based on designer’s experience
and ends when the granularity level of the identified processes
maps to existent library elements or devices that can be developed
by the design team. The communication between processes is or-
ganized as a Packet SDF diagram [23]. The PSDF representation will
be used to extract the programs controlling the activity (grant dis-
tribution schedule) of the SA s and of the CA [26].

The Packet SDF. A PSDF comprises mainly two elements: pro-
cesses and data flows; data is, however, organized in packets. Pro-
cesses transform input data packets into output ones, whereas
packet flows carry data from one process to another. A transaction
represents the sending of one data packet by one source process to
another, target process, or towards the system output. In [23], a
packet flow is a tuple of two values, P and T. P represents the

W

PEK1 SAK CA

B
U

K

B
U

K
-1

W

PEKn

W

PEK

Fig. 4. Abstraction between computation and communication.

Application Model
(AM)

Initial Platform Model 
(IPM)

Segmented Application 
Model
(SAM)

Communication
matrix

Configuration
details

PlaceTool

Allocation
Table Complete Platform 

Model 
(CPM)

Se
gB

us
 

C
om

po
ne

nt
 

lib
ra

ry

Synthesizable  
Platform Model 

(SPM)

Detailed
Component
Specifictaion

Transformation

Control Code 
generation

Application
Transfer Tables

Structural Code 
generation

Structural
VHDL Code

Transformation

Partitioned 
Application Model

(PAM)

Transformation

Component
type

communication 
cost == OK

partitioning
suggestions

Synthesis

Structural
VHDL Code

Structural
VHDL Code

Services
Mandtory: Scheduling
Optional: Error monitrong, 
SPLIT transaction, 
Intruppt Handling, 
Multicast,

Services

service
suggestions

Fig. 5. SegBus design methodology.

646 K. Latif et al. / Microprocessors and Microsystems 35 (2011) 643–655



Author's personal copy

number of successive, same size transactions emitted by the same
source, towards the same destination; T is a relative ordering num-
ber among the (package) flows in one given system. Thus, a flow is
understood as the number of packets issued by the same process,
targeting the same destination, and having the same ordering
number.

A third element of the PSDF tuple characterizes the kind of the
packet. The kind – a natural number – identifies if a packet is to
be routed to multiple destinations, thus establishing the modeling
basis for multicasted or broadcasted transmissions. Packet flows
having same I value carry the same content of data, from the same
source towards multiple destinations.

The PSDF of a certain system becomes hence a sequence of
packet flows, h(P1,T1, I1),. . ., (Pn,Tn, In)i, where T1 6 T2 6 . . . 6 Tn.
Flows sourcing in the same node and with identical Is, will also
have identical Ts, identifying a multicast packet.

The non-strictness of the relation between T values of the above
definition models the possibility of several flows to coexist at mo-
ments in the execution of the system. In the case of the SegBus plat-
form, this most often will describe local flows, that is flows where
the source and the destination are situated in the same segment.
However, considering a segment number larger than 3, global
flows, where the source and the destination are in different seg-
ments, are also possible to be characterized by the same ordering
number. In this case, it means that the CA, if possible, allows a
simultaneous execution of transactions from all the ‘‘same T’’ glo-
bal flows.

The H.264 encoder application is shown in Fig. 6. The values on
the edges in Fig. 6 represent the number of transaction packets for
processing of one video frame. The corresponding PSDF diagram is
shown in Fig. 7. For the moment, the reader should ignore the par-
tition in segments, which is based on developments in the next

Fig. 6. The H.264 Video Encoder application.

Segment 2

Segment 1Segment 0

200,2,3

560,1,2

P2 P3

P1

P0

140,2,6

280,1,1
P5420,4,7 P6

P7
280,1,1

280,1,1 210,5,8 P8

P9

24,7,10

P10
24,8,11

420,4,7

P12 P11221,9,12 228,10,13

228,1,5

P4 66,6,9

3,3,4

66,6,9

3,3,4

840,0,0

60,7,14

Fig. 7. PSDF application specification.

From / To P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

P0 0 35840 17920 17920 17920 0 0 0 0 0 0 0 0
P1 0 0 0 0 8960 0 0 0 0 0 0 0 0
P2 0 0 0 12780 0 0 0 0 0 0 0 0 0
P3 0 0 0 0 176 0 0 176 0 0 0 0 0
P4 0 0 0 0 0 26880 0 0 0 0 26880 0 0
P5 0 0 0 0 0 0 13440 0 0 0 0 0 0
P6 0 0 0 0 0 0 0 4200 4200 0 0 0 0
P7 0 0 0 0 0 0 0 0 0 0 0 0 0
P8 0 0 0 0 0 0 0 0 0 1536 0 0 0
P9 0 0 0 0 0 0 0 0 0 0 1536 0 0

P10 0 0 0 0 0 0 0 0 0 0 0 0 14136
P11 0 0 0 0 14539 0 0 0 0 0 0 0 0
P12 0 0 0 0 0 0 0 0 0 0 0 14539 0

Fig. 8. The communication matrix for the example.

K. Latif et al. / Microprocessors and Microsystems 35 (2011) 643–655 647



Author's personal copy

sections. The processing elements (P0, P1, . . ., P12) correspond
respectively to YUV generator, Chroma resampler, Motion vector
estimator units, etc. Fig. 8 shows the number of bytes to be trans-
ferred between to PEs for the processing of one video frame.

4. Development of communication services

In this section, we present the current available services offered
by the SegBus platform. The features, initially not perceived as ser-
vices, provide the background for further developments.

4.1. Scheduling

Scheduling is the basic and mandatory service to use the inter-
connection platform. Scheduling can be divided into two steps:
task allocation and arbitration as shown in Fig. 9.

Communication features of the running application are needed
for the proper placement of IPs. Here, we are interested in the
transaction frequency between processing units, their relative
sequencing and scheduling. System performance will depend on
the utilization of throughput and the balanced traffic load. With
all these considerations, the PlaceTool [25] has been developed, to
deliver the allocation cost for various scenarios.

For SegBus, the PlaceTool works as the task allocator. The com-
munication matrix Fig. 8 is extracted from PSDF diagram and fed

to the PlaceTool to approximate the effect of segmentation on the
performance of the application (tasks)/platform mapping. After
having the placement of tasks and processes, next step is the
scheduling on bus, which is controlled by arbitration. For SegBus
platform, arbitration mechanism can be further divided into three
steps as depicted in Fig. 9 and explained in Section 4.1.2.

For an example, consider the arbitrary task graph shown in
Fig. 10. tA represents the processing time for task A and similarly,
the processing time for other tasks is mentioned. PlaceTool allo-
cates the tasks A, F, G, H, I on segment ‘0’ and the tasks B, C, D, E
on segment ‘1’. The scheduling on a single bus and also for the seg-
mented bus with two segments is presented in Figs. 11 and 12
respectively. The context switching time in scheduling is consid-
ered zero. The total execution time is reduced by 21% but this value
is application dependent. The detailed description of PlaceTool and
arbitration mechanism is presented in detail in Sections 4.1.1 and
4.1.2 respectively and H.264 video encoder is used as a running
example (see Fig. 6).

4.1.1. Placement of processing elements
The communication frequency for the H.264 video encoder, as

captured by the communication matrix shown in Fig. 8, is obtained
from running a Simulink Model of the application. The matrix is
further fed into the PlaceTool. Results of this exercise for communi-
cation cost are presented in Section 6. The resulting segmented
application model for H.264 video encoder application is shown
in Fig. 7.

4.1.2. Arbitration
The SA s and the CA are VHDL defined modules, with a similar

structure. The code runs with multiple parameters as required by
the platform specification. We see the application as a set of corre-
lated transactions that must be ordered in their execution by the
arbiters. The specification of the schedule – as supplied by the PSDF
representation, is provided by a snippet introduced in the SA or the
CA codes, representing the projection of the application flow at the
respective level and location [26].

The structure of the arbiters is depicted in Fig. 9. The ‘‘Module
SetUP’’ and the ‘‘Arbitration & Supervision’’ blocks are concerned
with application-independent procedures, such as reading the in-
put signals, selecting the granted master, and counting the number
of transactions performed in a granted activity. The middle block,
‘‘Arbitration specification’’, brings in the application specific
requirements for scheduling grant decisions.

Module Setup

Application Specification (snippet)

Arbitration and Supervision

Sequential Execution

IP Placement (Place tool)

Arbitration

Scheduler

Arbiter code structure

Fig. 9. SegBus scheduler structure.

A
tA=10

B
tB=5

D
tD=10

C
tC=20

E
tE=10

20

20 20

20

F
tF=5

H
tH=20

G
tG=20

I
tI=5

20

20 20

2020

Fig. 10. Task graph.

A→B

A

A→F B→C F→G C→E B→D F→H E→D

B F C G DE H I

0      10            30            50            70            90           110           130          150          170         190

Execution Time=195G→I

Fig. 11. Single bus scheduling.

648 K. Latif et al. / Microprocessors and Microsystems 35 (2011) 643–655



Author's personal copy

The application snippet is part of the actual arbiter VHDL code,
and, as such, will be executed. The addressed variables will be read
or written by the other arbitration code blocks.

SA level arbitration. The segment level arbitration is similar to
any single segment bus situation. Activities in the segment are
sequential, the SA deciding which device can access the bus lines.
Any attached BU behaves like a local master, but the respective re-
quests will have the highest priority. A master willing to transfer
data on the bus raises the request line, while it also specifies the
segment to which it wants to communicate. The SA identifies the
target and, if it is outside the own segment, it forwards the request
to the CA. If the request target is within the own segment, it pro-
ceeds to granting it.

These activities are collected in the application control code
(ACC) which will drive the SegBus communication strategy at
runtime [26]. The ACC is basically a binary matrix where each
line controls the granting algorithm such that the ‘‘right’’ master ob-
tains the access to the bus. The code is parsed at every arbitration
execution, and it contains nrLines lines of code – a parameter of
the arbiter module. One line of code, assimilated to a program line
(an array) has the following field structure (see also Fig. 13), Where
the destination (dest) field has more than one values for multicast
purpose.

� PC. This is the Programme Counter, providing reference to the
lines of instructions possible to be accessed from other instruc-
tions. It ranges from 0 to nrLines � 1.
� source. Identifies the requesting master’s ID.

� dest. Identifies the target slaves. The number of maximum tar-
gets for one transmission is a parameter of the arbiter module
(max_dest). If one of the dest sub-fields equals the ID of the
source, the content is ignored.
� dest_seg. Identifies the target slave’s segments. The number of

maximum targets for one transmission is a parameter of the
arbiter module (max_segs). This in compliance with the alloca-
tion results and the dest field content. The sub-fields ignored
for the dest specification will also be ignored here.
� count. Identifies the number of packets the master has to send

to the specified targets. It corresponds to the first number in
the PSDF description.
� guard. When guard = 0, the respective line is enabled, that is, the

arbiter may consider it for selection. When guard > 0, the line is
disabled, that is, it cannot be considered in the arbitration. The
arbiter marks a line as executed whenever the respective count
value reaches 0, by establishing guard = nrLines.
� enables. Whenever a line is marked executed, the SA will enable

the line specified by this field, by subtracting 1 from it’s current
guard value. In order to become enabled, a line with an initial
guard > 1 will require that several previous operations (execu-
tion lines) to have finished. If, for a given line, enables = nrLines,
then the arbiter does not try to enable any other line, when the
current one is marked executed. One line may enable multiple
downstream lines. The number of maximum enable targets
for one line is a parameter of the arbiter module (max_enable).
If one of the sub-fields equals the current line number, the
information is ignored by the arbiter.

A→B

A

A→F F→G F→H G→I

F G H I

0      10            30            50                75            95           115           135

Execution Time=155

A→B B→C B→D

B C E

0      10            30                55            75            95           115           135         155

Segment_0

Segment_1
C→E E→D

D

writing to
border unit

reading from
border unit

Fig. 12. Two segment SegBus scheduling.

Guard Source Destination Dest_Seg toGrant count enables

1 0 2 1 280
Example:

PC

1 3 4 0 3 4 5

1 4 4 4205 10 5 X 1 7 11 X

--- --- --- --- ------ --- ---

--- --- --- --- ------ --- ---

0 0 1 0 5600 X X 0 2 X X

Fig. 13. Program line example, with parameters: max_dest = 3, max_segs = 3, max_enable = 4.

K. Latif et al. / Microprocessors and Microsystems 35 (2011) 643–655 649



Author's personal copy

The VHDL code corresponding to the table in Fig. 13 is:

The application execution ends when all the lines are marked
executed. That is, we have PC = nrLines � 1 and, for all lines,
guard = nrLines. This triggers the arbiter to restore the initial values
of the ACC content.

A similar approach is taken at the level of the CA for request–
grant activities (containing only info about segment requests).

4.2. SPLIT transactions

Either the transfer is local or across the border, it is possible that
the slave is not able to receive the data or can not respond the mas-
ter with required data immediately. In this situation, master will
hold the bus and other masters can not utilize the bus, even when
it is free. This reduces the degree of bus utilization. A SPLIT transfer
improves the overall bus utilization by splitting the operation of
the master providing the address to a slave from the operation of
the slave responding with the appropriate data [3]. Thus by using
the SPLIT transfers idle bus cycles can be used for other
transactions.

The basic criteria to have SPLIT transaction service depends on
bandwidth requirements of application and the packet size. If
packet size is very small, SPLIT transaction overhead to arrange
the SPLIT mechanism will not be economical and even might re-
duce the utilization. According to the design methodology dis-
cussed in Section 3, SPLIT mechanism can be introduced and
improvement in communication cost can decide to either use or
do not use the SPLIT service.

The SegBus communication operation situations can be divided
mainly into two categories: Local situation and Cross border situa-
tion. Cross border situation can be further divided into three situ-
ations [24]: Local–External, External–External and External–Local.
In the following sections, we detail the SPLIT transaction approach
for mentioned communication situations.

4.2.1. Local SPLIT transactions
In this situation, both the communicating modules are placed in

same bus segment. The initialing master requests the bus owner-
ship by raising the req signal to the corresponding local SA. There
are two reasons, when bus ownership cannot be granted to the
requesting master for local transaction. First, if another transaction
is under completion on the bus. Second, the target slave is busy and
cannot respond the request. If the bus is busy, SA assigns the bus
ownership to the requesting master later at some time. If the target
slave is not able to serve the request, SA assigns the bus ownership
to another master until the slave is not ready to serve, which is ex-
actly the same mechanism as employed in AMBA busses [3].

4.2.2. Cross border SPLIT transactions
SPLIT transaction for cross border communication is the

enhancement of existing SPLIT mechanism. Consider the situation

that a master module from segment0 requests to send the data
packet to a slave located in segment2. In this transaction, segment1
will be used as well because it is on the way of transaction. It will
not be an economical option to allocate all the bus segments for
this transaction for the time span of generating the packet at
source and delivering it to the destination. To enhance the bus uti-
lization in this scenario, we split the transaction into the number of
steps equal to the number of segments including the source and
destination segment on its way. Neighboring BU s are considered
as local modules for the corresponding SA. Thus the SPLIT mecha-
nism discussed in Section 4.2.1 will be followed for each segment
traversal.

The bus request come along with target slave address. SA
checks, if the request can be served in current segment or not. If
the request cannot be served in current segment (inter-segment
request), request is forwarded to the CA with target address. In
the meanwhile, no other external request is served by the SA, until
the pending operation is completed. Here, the bus can stay idle for
a number of cycles. To deal with this situation, interrupt commu-
nication service was introduced as discussed in Section 4.3. In this
section, we address another issue of bus utilization.

Whenever the CA is able to serve the request, it informs the SA
s, from initiator to target of the imminent transfer (signal SOP –
operate). As soon as the current operation finishes in the initiator
segment, that SA grants the requesting master to access either
the left, or the right BU. In a circular set-up, the CA selects the
shortest possible distance from the initiator segment to the final
one.

Upon filling up the FIFO, the BU informs further the next seg-
ment that data is waiting to be transferred. The corresponding
SA allows for the current operation to end, after which it will grant
the transfer from one segment border to the other (by setting the
granting lines (GFL or GFR, respectively). Hence, the package waits
in the FIFO the period of time required to end the current local
transfer in the next segment. When this operation completed, the
CA receives the OPF (operation finished) signal from the corre-
sponding SA, and answers by lowering the respective SOP line.
When OPF is also reset, the segment is ready for a new inter-seg-
ment transfer. The whole mechanism is shown in Fig. 14. In a cas-
caded manner, the above scenario repeats all the way to the target
segment (as also illustrated in Fig. 3).

4.3. Interrupt communication

As mentioned in Section 4.2.2, a packet may have to wait in BU
for number of clock cycles during the cross border transactions. By
using an interrupt service, the delay in BU can be significantly re-
duced [22]: an inter-segment transfer, when reaching one of the
BU s on the road from source to destination, will preempt the local
activities of the next segment to be crossed.

The local SA is the controller that supervises any activity within
the segment. The moment of interruption, with respect to the com-
pletion of the running local transfer, while the data package is
waiting in the intermediate BU FIFO, is of prime importance with
highest criticality value. Hence, the decision to interrupt, or con-
tinue the current local activity will fall into the attributions of
the SA. The interrupt transaction will be non-preemptive from
start to the completion of execution.

In every clock cycle during the execution of a local activity, the
corresponding SA monitors if an external request for inter-segment
data transfer is raised. When such request is detected, the local
grant is put down in the subsequent clock cycles. The whole pro-
cess from detection of interrupt to the resetting of local grant takes
four clock cycles. The ID of the master that has just been inter-
rupted is saved by the SA and it will be granted again access,
immediately when the inter-segment transaction completes. The

650 K. Latif et al. / Microprocessors and Microsystems 35 (2011) 643–655



Author's personal copy

respective master then continues to send the information remain-
ing from the interrupted operation.

To illustrate the interrupt mechanism, consider the task graph
shown in Fig. 10. Suppose that it is the graph of a streaming applica-
tion like audio/video codec and all these tasks execute repeatedly. As
shown in Fig. 15, after completing the local transaction G ? I on seg-
ment 0, next transaction will be again cross the border (A ? B). After
filling the BU, an interrupt will be generated by border control unit
to the SA of segment 1, which will preempt the current transaction
and will read the buffered data from BU for transaction A ? B. The
context switching time is supposed to be zero for to make the expla-
nation simple. After reading the complete data packet from BU, the
interrupted transaction (E ? D) will be resumed. Now consider the
situation that there is no interrupt service available. In that situa-
tion, not only the transaction A ? B will be delayed but the rest of
the processing and transactions on segment 1 will be delayed as well
and this delay value will go on increasing because of previous delay.
Thus after few application cycles, segment 1 will be lagging too
much behind segment 0. In this way, interrupt communication en-
ables the pipelining of tasks on SegBus.

The selection criteria of interrupt service to use for final imple-
mentation is data dependency and urgency. It depends on the
application the how urgent, the data packet stored in BU is needed
by the destination node. Another issue is data dependency: how
many nodes will have to wait directly or indirectly due to the delay
of the packet in BU. In Fig. 15, the data packet for transaction A ? B
will not delay only the processing on node B but all of the process-
ing elements on segment1. Thus, improvement in communication

cost will be the parameter to favor interrupt service to be used for
final implementation.

5. Multicast transactions

We introduce here an additional communication feature,
namely multicast transactions, meant to further improve perfor-
mance aspects of the platform, in the situations when a single de-
vice must send the same data packet to multiple destinations. Such
a situation can be observed for the application at hand, in Fig. 7: P0
has to send the same packet no less than three times, to P2, P3 and
P4, respectively.

Without the multicast feature, P0 has to execute three requests
and send, in some sequence, the data to the necessary destinations.
It is natural that a single transaction, if possible, would dramati-
cally reduce thus the communication load, at least in this con-
text.The multicast service will show improvement in
communication cost, only if, there is a big fraction of identical data
in the application.

In the following sections we illustrate the impact of providing
such multicast feature on the activities performed by the local
and central arbiters.

5.1. Implementation

For multicast transactions, the source device request to the
corresponding SA is accompanied by the destination IDs without

Fig. 15. Interrupt scheduling.

Master_req_Local

OP

SA_grant

GFR / GFL

OPF

SA_req_to_CA

Pending request Operation completedOperation

Fig. 14. Inter segment transfer control.

K. Latif et al. / Microprocessors and Microsystems 35 (2011) 643–655 651



Author's personal copy

having any information of their relative placement. It is the task of
the SA to identify the respective destination segment. A local table
is available to all SAs, indicating the placement of resources as
from the PlaceTool selection. SA will read the requested slave IDs
from the program line to compute the direction and destination
segment or segments (for both directions). The table is modeled
by the assignment:

In case of a broadcast transaction, the requested slave ID (the
destination) is a universal code ‘‘11. . .1’’ (which must not be as-
signed to any processing element). The width of this requesting
code will be equal to the data bus width. Broadcast is a special case
of multicast transaction. Multicast is used more often in todays on-
chip applications. So, for implementation details, we focus on mul-
ticast transactions.

Multicast transaction. Fig. 7 shows that the third value of the tu-
ple is the same for communication links from source P0 to destina-
tions P2, P3 and P4. The payload of these packets is the same. In
this case, a single packet can be transmitted instead of sending
three different copies of identical packets. So, P0 will request the
processing element with ID ‘‘1111’’, the broadcast code. SA will
read dest from the respective programme line after receiving the
request from P0. dest will provide the destination slave IDs 2, 3
and 4. SA then obtains the corresponding destination segment
IDs from Segmentation (0, 0 and 1 respectively).

Using the requested segment IDs, only one or two segments will
be selected for transmitting packets either in left, right or in both
directions. The selection of segments and direction for current
transaction is made as illustrated in Fig. 16.

This example code corresponds to the multicast transaction ini-
tiated in segment ’0’. After computing the destination segment IDs,
the SA will decide if the transaction is local or across the border. If
the transaction is local, SA will check the status of segment and
make proper signaling to initiate the transaction. If the transaction
is across the border, SA will forward the request to CA with desti-

nation segment IDs. After receiving the signal InS from CA, SA will
allow the requester to start the transaction.

Then packets are transmitted according the new packet format,
shown in Fig. 17. The packet header contains the operational code
with destination address because some processing elements may
offer more than one operations. Source opCode is the operation
done by source element for current packet generation.

Once the communication link is established and the packet is
injected into the platform, the slave will read the packet according
to the mechanism shown in Fig. 18. When the packet header ar-
rives and granted is inserted by SA, all slaves start snooping the
data bus. If destination ID is matched in packet header to the cur-
rent slave, Slave_Acq is raised high. Slaves snoops the bus, even
after this event because more than one operational code may be
assigned to one slave for a single packet. Slave_Acq enables Slave_-
Data_Read at the end of packet header.

In NoC, packet prioritization requires extra processing for
broadcast or multicast communication. For the SegBus platform,
no prioritization is required because processing elements are
placed with the consideration of communication requirements
and packets are transmitted towards the extreme destination seg-
ments. By inspecting the bus lines, each destination will receive
the requested traffic. In the same way, a very economic cache
coherence snoopy protocol can be implemented.

6. Experimental results

The output results of the PlaceTool for H.264 encoder applica-
tion (Section 4.1.1) are shown in Fig. 19, where k represent the seg-

ment borders. It can be observed that performance may go down
by increasing the number of segments due to increase in commu-
nication overhead. In this case, a two segment platform delivers
the best performance; however, we decide to select a three seg-
ment platform, in order to analyze a more complex structure as ex-
plained in [14].

The suggested multicast service was applied to the H.264 video
encoder application, with different number of segments. Results of
around 24% reduction in traffic load show a significant reduction in
latency and communication overhead. This comes in comparison

Fig. 16. Packet read mechanism.

652 K. Latif et al. / Microprocessors and Microsystems 35 (2011) 643–655



Author's personal copy

to the original, ‘‘not multicast enabled’’ SegBus platform. These
results are application dependent because multicast service will

show significant improvement when a big fraction of identical traf-
fic is injected to the platform. The best performance is achieved
when all multicast destinations are placed in one direction with
reference to source processing element. However, this is a difficult
arrangement to reach.

The interrupt approach brings further improvements to the
platform performance. The communication load with and without
multicast service for each platform component is shown in Fig. 20.
It can be observed that the individual segment load values (S0,S1)
show significant reduction in the presence of the multicast service.
But there is no significant improvement on border unit loads
(BU0,BU1), due to an efficient placement by the tool – as indicated,
the PlaceTool already tries to minimize the cross border
transactions.

Reduction in the total system power is proportional to the
reduction in traffic load. However during broadcast, all destination
elements read the bus, thus increasing the capacitive load on the
bus. Still, the reduction in power due to the reduction in traffic load
dominates the power consumption overhead due to capacitive
load. Power consumption results for SegBus platform with and

4 143100 9 || 8 || 4 5 6 7 10 11 12 || 0 1 2 3 -39%

2 132000 4 5 6 7 8 9 10 11 12 || 0 1 2 3 -43%
3 137400  0 1 2 3 || 4 5 6 7 8 10 11 12 ||9 -41%

Nr. Segs Cost Allocation Improvement
1 233000 0 1 2 3 4 5 6 7 8 9 10 11 12 100%

Fig. 19. The allocation and associated cost results.

granted

D_in

Source
dest_0
dest_1

dest_n

Data 
Load

Current
destination

Packet Header Packet Data

Slave_Acq

Slave_Data
_Read

...

Fig. 18. Packet read mechanism.

D
estination n

......

D
estination 1

D
estination 0

Source ID

Data Payload

Packet Header Packet Data

Total Packet Length

D
at

a 
W

id
th

opC
ode n

......

opC
ode 1

opC
ode 0

Source 
opC

ode

Fig. 17. Packet format.

Segbus Element S0 S1 S2 BU0 BU1 
Transactions without 

multicast 
1746 2333 48 426 48 

Transactions with 
multicast 

1183 1844 48 423 48 

reduction in number 
of transactions 

32% 21% 0% 0.7% 0% 

Fig. 20. Communication cost with and without multicast service for H.264 application with three segments.

SegBus Platform 
without Multicast 

service 
with Multicast service Improvement 

Static Power 
Consumption 

755.64 mW 755.72 mW -0.01% 

Dynamic Power 
Consumption 

137.15 mW 134.20 mW 2.15% 

Fig. 21. Platform power consumption with and without Multicast service.

K. Latif et al. / Microprocessors and Microsystems 35 (2011) 643–655 653



Author's personal copy

without multicast service are presented in Fig. 21. The results have
been extracted by Altera PowerPlay tool [1].

7. Conclusions

We have illustrated here a new perspective on the SegBus plat-
form, based on services. Each service is considered individually, but
relations between them can be also noted (however, at this mo-
ment, not quantifiable). We have also introduced a solution that
provides multicast services on the SegBus platform, and shown
the impact on arbitration and scheduling, down to the VHDL code.
Our intuition about the performance enhancement was proved
correct by the implementation results as exercised on the H.264
encoder application, where a further improvement in performance
has been observed. The broadcasting feature is implemented with
a minimal overhead in terms of arbitration computation, and in
terms of data packet size. While the former impact is overcome
by the parallel activities of the arbiter and of the functional mod-
ules, the latter can be seen as a small price for a possibly very large
improvement in performance, when multiple destinations are
required.

Future work. A very necessary step is to introduce new services
apart from the already supported ones. The most critical issue is sys-
tem monitoring for complex applications running on MPSOC plat-
forms. In the current research, the focus was to introduce services
at interconnection level. Another aspect is to introduce services at
core level for monitoring purposes. Core temperature, for instance,
can be monitored by SA s, that may power-down or up the respective
cores, as required in order to perform the assigned tasks. Temporary
out-of-use situations would be notified to the CA, for further consid-
erations. Thus thermal, leakage or other monitoring service can also
be integrated in the existing arbitration architecture.

In the larger context of employing the SegBus platform as an
infrastructure for embedded systems, we also plan to integrate
the current design methodology and features into a higher level
design framework. This will be provided by the REMES framework
[27], offering the possibility to access its the real-time, component-
based and formal verification capabilities.

References

[1] Stratix III Device Handbook 2007, Altera, 2007.
[2] Modelsim. <http://www.model.com>.
[3] ARM AMBA Specification and Multilayer AHB Specification (rev 2.0).

<www.arm.com>.
[4] C. Anderson, J.-L. Baer. Two techniques for improving performance on bus-based

multiprocessors., in: HPCA ’95: Proceedings of the 1st IEEE Symposium on High-
Performance Computer Architecture, 1995, pp. 256–275.

[5] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, A. Sangiovanni-
Vincentelli, Metropolis: an integrated electronic system design environment,
Computer 36 (4) (2003). pp. 45-52+4.

[6] A. Bakshi, V.K. Prasanna, A. Ledeczi, MILAN: a model based integrated
simulation framework for design of embedded systems, SIGPLAN Not. 36 (8)
(2001) 82–93.

[8] S. Borkar, Designing reliable systems from unreliable components: the
challenges of transistor variability and degradation, IEEE Micro 25 (6) (2005)
10–16.

[9] S. Cho, G. Lee, Reducing coherence overhead in shared-bus multiprocessors,
Euro-Par II (1996) 492–497.

[10] F. Dahlgren. Boosting the performance of hybrid snooping cache protocols, in:
22nd Annual International Symposium on Computer Architecture (ISCA),
1995, pp. 60–69.

[11] W. Dally, Route packets not wires: on-chip interconnection networks, DAC –
Des. Autom. Conf. (2001) 684–689.

[12] M. Ebrahimi, M. Daneshtalab, M.H. Neishaburi, S. Mohammadi, A. Afzali-
Kusha, J. Plosila, H. Tenhunen, An Efficent Dynamic Multicast Routing Protocol
for Distributing Traffic in NOCs, Des., Autom. Test Eur. (2009) 1064–1069.

[13] A. Jantsch, H. Tenhunen (Eds.), Networks on Chip, Kluwer Academic
Publishers, Boston, 2003. ISBN 1-4020-7392-5.

[14] K. Latif, M. Niazi, T. Seceleanu, H. Tenhunen, S. Sezer. Application development
flow for on-chip distributed architectures, in: Proceedings of the 21st IEEE
International SoC Conference (SOCC), September 2008, pp. 163-168.

[15] Z. Lu. Design and Analysis of On-Chip Communication for Network-on-Chip
Platforms. Ph.D. thesis. Royal Institute of Technology, March 2007.

[17] C. Nicopoulus, V. Narayanan, C.R. Das, Network-on-Chip Architectures: A
Holisitic Design Exploration, Springer, 2009. ISBN 978-90-481-3030-6.

[18] M.F.S. Oliveira, a. Eduardo W. Bri F.A. Nascimento, F.R. Wagner, Model driven
engineering for MPSoC design space exploration, in: Proceedings of the 20th
Annual Conference on Integrated Circuits and Systems Design. ACM, New York,
NY, USA, 2007, pp. 81–86.

[20] A. Pimentel, L. Hertzbetger, P. Lieverse, P. van der Wolf, E. Deprettere,
Exploring embedded-systems architectures with Artemis, Computer 34 (11)
(2001) 57–63.

[21] F.A. Samman, T. Hollstein, M. Glesner, Multicast parallel pipeline router
architecture for network-on-chip, Des., Autom. Test Eur. (2008) 1396–1401.

[22] A.D. Swaminathan, T. Seceleanu, Interrupt Communication on the SegBus
platform, in: Proceedings of the IEEE International System on-chip Conference,
Austin, TX, USA, September 2006, pp. 229–232.

[23] D. Truscan, T.Seceleanu, H. Tenhunen, J. Lilius. A Model-Based Design Process
for the SegBus Distributed Architecture. 15th Annual IEEE International
Conference and Workshop on the Engineering of Computer Based Systems
(ECBS), 2008. pp. 307–316.

[24] T. Seceleanu, The SegBus platform – architecture and communication
mechanisms, Journal of Systems Architecture 53 (4) (2007) 151–169. http://
dx.doi.org/10.1016/j.sysarc.2006.07.002.

[25] T. Seceleanu, V. Leppänen, O. Nevalainen, Improving the performance of bus
platforms by means of segmentation and optimized resource allocation,
EURASIP J. Embed. Syst. 2009 (2009) 14, doi:10.1155/2009/867362. Article ID
867362.

[26] T. Seceleanu, I. Crncovik, C. Seceleanu. Transaction level control for application
execution on the SegBus Platform, in: Proceedings of the 33rd Annual IEEE
International Computer Software and Applications Conference (COMPSAC)
2009, doi:doi:10.1109/COMPSAC.2009.78.

[27] C. Seceleanu, A. Vulgarakis, P. Pettersson, REMES: A Resource Model for
Embedded Systems, in: Proceedings of the 14th IEEE International Conference
on Engineering of Complex Computer Systems (ICECCS 2009), IEEE Computer
Society, June, 2009.

[28] A.S. Tranberg-Hansen, J. Madsen. A Service Based Component Model for
Composing and Exploring MPSoC Platforms, in: The Proceedings of IEEE
International Symposium on Applied Sciences in Bio-Medical and
Communication Technologies (ISABEL), 2008, pp. 1–5.

[29] A.L. Varbanescu, H. Sips, A. Van Gemund PAM-SoC: A Toolchain for Predicting
MPSoC Performance, Lecture Notes in Computer Science, vol. 4128, LNCS,
2006, pp. 111–113.

[30] Y. Zhang, Z. Lu, A. Jantsch, L. Li, M. Gao. Towards hierarchical cluster based
cache coherence for large-scale network-on-chip, in: Proceedings of the 4th
IEEE International Conference on Design and Technology of Integrated Systems
in Nanoscale Era, 2009.

[31] A. Pimentel, C. Erbas, S. Polstra, A systematic approach to exploring embedded
system architectures at multiple abstraction levels, IEEE Trans. Comput. 55 (2)
(2006) 99–112.

[32] Claas Cornelius, Hendrik Bohn, Dirk Timmermann Service-oriented Approaches
for the Operation of large on-chip Networks, in: 24th NORCHIP Conference,
ISBN: 1-4244-0772-9, Linköping, Schweden, 2006, pp. 183-186.

Khalid Latif is currently working towards his Ph.D.
degree at the University of Turku, Finland. He has a
M.Sc. degree in Electrical Engineering with major in
System-on-Chip design from Royal Institute of Tech-
nology (KTH), Sweden and B.Sc. degree in Electrical
Engineering with major in Electronics and Communi-
cation from the University of Engineering and Tech-
nology (UET), Lahore, Pakistan. His research interests
include On-Chip Interconnection platforms, Computer
Architecture and FPGA based design.

Tiberiu Seceleanu received the MSc (1994) and Lic.Sc
(1995) degrees from the Polytechnic University in
Bucharest, Romania. He got his Dr.Tech degree from Åbo
Akademi in Turku, Finland (2001). He has around 60
international conference, journal and book contribu-
tions in the areas of digital system design, platform
based design, synchronous/asynchronous (formal)
modeling and implementation. With ABB Corporate
Research Centre in Västerås, Sweden since 2008, he is
now a principal scientist on embedded systems archi-
tectures and methodologies. Main activity topics relate
to the development of hardware-software co-design

methodologies for industrial control applications, targeting multicore and FPGA
technologies. He is member in the program committee of several first-class con-
ferences and reviewer for numerous other conferences and a board member and
reviewer for journals on system-on chip and embedded systems.

654 K. Latif et al. / Microprocessors and Microsystems 35 (2011) 643–655



Author's personal copy

Cristina Seceleanu is a senior lecturer at Mälardalen
University, Västerås, Sweden, Embedded Systems Divi-
sion. She received a MSc. in Electronics from Polytechnic
University of Bucharest, Romania, in 1993, and a Ph.D.
in Computer Science from Åbo Akademi and Turku
Centre for Computer Science, Turku, Finland, in 2005.
Her research focuses on developing formal models and
verification techniques for constructing predictable
real-time embedded systems. She currently is and has
been involved as organizer, co-organizer and chair for
relevant conferences and workshops in computer engi-
neering. She is part of the Editorial Board of the Inter-

national Journal of Electrical and Computer Engineering Systems, and the
International Journal of Embedded and Real-Time Communication Systems.

Hannu Tenhunen is professor of nanoelectronics at
University of Turku. He has an extensive background on
submicron and nanoscale CMOS system and circuit
implementation issues. He was one of the originators
and founders for interconnect centric design paradigm,
globally asynchronous locally synchronous systems,
and network-on-chip paradigm. Currently Prof. Tenh-
unen is active in Artemis Technology Platform frame to
bring multicore processing and NoC to EU research
agenda as a central technology for future embedded
systems. His current research is focused on trade-offs
between 2-D and 3-D integration, especially for mixed

signal systems and NoCs. For mitigating process and architectural variability he is
also actively developing agent oriented system design approach including fault
tolerance and robustness enhancements.

K. Latif et al. / Microprocessors and Microsystems 35 (2011) 643–655 655


