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Abstract

In this paper, we describe strategies for bounding volume hierarchy

updates for ray tracing of deformable models. By using pre-built hierar-

chy structures and a lazy evaluation technique for updating the bounding

volumes, the hierarchy reconstruction can be made very efficiently. Exper-

iments show that for deforming triangle meshes the reconstruction time

of the bounding volume hierarchies per frame can be reduced by an or-

der of magnitude compared to previous approaches, which also results

in a significant speed-up in the total rendering time for many types of

dynamically changing scenes. We believe our approach is a step towards

interactive ray tracing of scenes where moving objects can be dynamically

changed in non-deterministic ways.

1 Introduction

Ray tracing is a well-known rendering method that generates high quality im-
ages of virtual scenes. Shadows as well as lighting effects arising in scenes with
reflective and refractive objects are produced with high realism [Whit80]. The
very high computational cost involved in ray tracing, however, has limited its
usefulness to offline renderings, but due to computer technology advances, to-
gether with acceleration algorithms improvements, this has started to change.

Today, interactive ray tracing systems exist, but the efficiency of the render-
ing computations relies heavily on precalculated acceleration data structures.
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Thus, the scenes are often restricted to scenes where only the camera is ani-
mated and the geometry is assumed to be static, with the possible exception of
a few moving rigid objects [Park99].

In this work, our purpose is to extend the set of scenes that can be ray traced
at interactive rates. We have focused on ray tracing highly dynamic worlds
consisting mostly of freely moving deformable models. To make interactive
ray tracing possible under such circumstances, there are two main phases that
have to be solved; these are the reconstruction phase, which make sure the
acceleration data structures are up-to-date, followed by the actual ray tracing
process. Both phases must run fast enough for interactive frame rates. In
complex dynamic scenes, however, the reconstruction phase is likely to become
the bottleneck that destroys the interactive performance. In fact, the ray tracing
phase can be made in O(log n) time per pixel in the worst case and practical
heuristic ray shooting methods have been found to have O(1) time complexity
in the average case [Szir98]. This means that the reconstruction phase will
eventually be the bottleneck as the scene complexity grows, given that it has
an asymptotically worse time complexity.

Furthermore, it has been shown that the ray tracing phase is highly suit-
able for parallelization; it is often referred to as “embarrassingly parallel”. Al-
most linear speed-ups for approximately 64 – 128 processors have been demon-
strated [Park99]. On the other hand, we have not been able to find any pub-
lished results on parallelization of the reconstruction phase, probably because
it is much harder in that case to realize a successful parallel solution. Amdahl’s
law says that performance will be limited by the part of the program that is
not parallelized [Henn99]. In our case, according to Amdahl’s law, the total
rendering time T (c) resulting from using c processors in the ray tracing phase,
trt, can be described by

T (c) = trc +
1

c
· trt. (1)

Thus, the reconstruction phase, trc, limits the performance improvements as c
grows.

To improve this situation, we present strategies for efficiently refitting or re-
constructing the bounding volume hierarchies when models are deformed during
simulation. Compared to completely rebuilding the hierarchies each frame, our
update strategy has been found to be orders of magnitudes faster in terms of
reconstruction time.

In our solution, we use pre-built hierarchies together with a hybrid bottom-
up/top-down update scheme to refit the bounding volumes in these hierarchies
during simulation. Primarily, our approach has been found successful for models
where the vertices of the models are allowed to be arbitrarily repositioned during
simulation, but the meshes are not torn apart, i.e., the connectivity is static.
In the hybrid update method, all the bounding volumes in a middle level of the
hierarchy are refitted first and then the volumes above are refitted bottom-up
incrementally from that level. In this way, the deeper levels are left as they
are, until they actually are needed in some later ray/tree traversal. Thus, our
update method is a kind of lazy evaluation technique, where the lower levels
are not updated until it is necessary. Our method has already been used with
successful results in collision detection [Lars01]. It runs in O(n) time for n
deforming primitives.
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For highly deforming polygon soups, where each polygon can be deformed
completely independently of the other polygons, a different approach is generally
required. But in our experiments, we illustrate how our method can be appli-
cable even for deforming polygon soups with independently moving primitives
under certain circumstances.

Like others have done recently, we only consider models defined by triangle
primitives [Wal01a]. Supporting other types of geometry can be done through
tessellation [Snyd97] or, when possible, by adapting the algorithm to ensure
proper updates of the data structures when the models deform.

In the following section, related work is presented briefly. Then we explain
our approaches for efficient reconstruction of the acceleration data structures.
We present performance measurements from different scenes and discuss our
methods’ applicability under different circumstances. Finally, we present our
conclusions and directions for future work.

2 Previous work

Due to the very high computational cost involved, ray tracing research has
mainly been focused on accelerating the creation of single images [Glas89].
Some approaches have also been proposed to accelerate the creation of ani-
mated sequences. For example, Glassner transforms the problem of rendering
moving three-dimensional objects into rendering static four-dimensional objects
in space-time [Glas88]. This method cannot be used in non-deterministic envi-
ronments since the objects’ space-time bounds must be known in advance.

Recently, however, it has been shown that interactive ray tracing is possible.
Promising performance has been achieved mainly by utilizing multiple CPUs
and/or SIMD instructions sets on today’s computers [Ward99, Park99, Wal01a,
Wal01b]. These solutions are rather limited to walk-through applications, i.e.,
applications where only the camera is animated, but not the objects in the
scene. In some cases, a few dynamic rigid objects can be handled separately,
as a special case [Park99]. An acceleration data structure allowing scenes of
dynamically moving models with rigid parts, like for example walking robots,
has also been proposed [Lex01b]. In this work, pre-constructed hierarchies of
oriented bounding boxes were used, where the boxes themselves contained uni-
form grids. During animation, only the transforms associated with the grids
contained in boxes need to be updated and then the rays need to be trans-
formed into the local coordinate systems of these data structures. A similar
approach has also been chosen by Wald et al. [Wald02].

Ray tracing of dynamic scenes which allow deformations has also become
an active research area. For example, objects undergoing unstructured motion
have been handled by rebuilding the acceleration data structures each frame.
This approach, however, immediately destroyed the interactive frame rates for
a single complex model in a benchmark scene [Wald02]. Reinhard et al. use
a logically replicated grid over space for ray tracing dynamic scenes. Moving
objects can be inserted and deleted in O(1) time [Rein00]. However, it might
become necessary to rebuild the acceleration data structure during simulation
once in a while, depending on how the objects move.

A hardware architecture for real-time ray tracing has also been presented
by Scmittler et al. [Schm02]. Impressive performance was achieved for camera
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animated scenes with otherwise static geometry, but no support for dynamically
changing scenes was described. Purcell et al. implement ray tracing using
commodity graphics hardware with programmable shaders [Purc02], but none
of the studied architectures was found to be suitable for accelerating ray tracing
of dynamic scenes.

None of the earlier mentioned approaches seems to be suitable for truly
interactive scenes inhabited by complex deformable models. In the following
sections, we describe our approach for highly dynamic scenes, where all the
vertices of the models are allowed to be arbitrarily re-positioned each frame of
the animation. Our approach builds upon our earlier work on efficient collision
detection of deforming models [Lars01].

3 Adaptive hierarchies

When ray tracing highly dynamic scenes, the possibilities to pre-compute effi-
cient data structures are decreased dramatically. For many types of deforming
models, however, it still makes sense to pre-build bounding volume hierarchies
that can be updated during simulation. In particular, this is the case for models
that are not torn apart and never fold into themselves during simulation time.

Efficient approaches for updating the hierarchies have been developed as
part of collision detection algorithms for such deforming bodies. When all the
vertices are repositioned in a model, it has been suggested that hierarchies of
axis-aligned bounding boxes (AABBs) can be completely refitted bottom-up
from the leaf nodes [Berg97]. A more efficient hybrid update approach was later
developed [Lars01]. AABBs were chosen as bounding volumes for three major
reasons. First, finding the optimal AABB of a point set or a polygon set is a
very fast operation. Second, it is very efficient to merge k child AABBs into
one parent AABB with an optimal fit. Finally, the needed intersection tests
between these boxes are very efficient operations.

In this work, we have examined the usefulness of our hybrid update approach
for speeding up interactive ray tracing of deforming models. As mentioned
earlier, our work focuses on making the reconstruction phase as fast as possible,
which is expected to become a serious bottleneck in complex deforming scenes.
Our results show that our reconstruction method is very efficient for ray tracing
scenes with deforming meshes defined by hundreds of thousands of geometric
primitives. In the following sections we discuss the hierarchy preprocessing and
the adaptiveness of the hierarchies due to model deformation during interactive
simulation.

3.1 Initial hierarchy construction

In the hierarchy construction preprocess all the triangles are assigned to different
hierarchy nodes. This can simply be done by using the model’s initial shape, or
alternatively, some average shape of the deforming model, if such information is
available. The hierarchy construction can be done by using a top-down [Klos98],
bottom-up [Caza95, Bare96], or an incremental insertion heuristic [Gold87].
Very little is known about how to best pre-build the hierarchies for models that
are deformed later on. We have chosen a simple recursive top-down tree building
approach [Lars01].

4



Our nodes use a branching factor of k = 8, which we empirically have
found to give slightly better performance in our test scenes than hierarchies
with branching factors 2 and 4. If a geometry split yields empty child volumes,
they are removed and the parent node becomes a k-ary node with k < 8. Leaf
nodes are formed whenever only one triangle is assigned to a node. A simple
hierarchy with binary tree nodes for a two-dimensional model is illustrated in
Figure 1a.

If a geometry split fails to create at least two non-empty child nodes special
handling is required to prevent infinite recursion. This happens rarely, but when
it does, we suggest the following split rule. First, sort the primitives’ center
points in three lists along the principal coordinate axes. Then let the median
value in these three lists define the split planes for the geometry partitioning.

Note that the initial primitive partitioning in the hierarchy nodes is not
supposed to be changed during simulation. This limits the task of the recon-
struction phase to refitting the bounding volumes in the nodes according to the
current shapes of the models.

A reasonable variation of our tree building approach would be to always
build as balanced trees as possible to minimize the tree height. Perfectly bal-
anced trees, however, do not guarantee better performance than our slightly
less balanced trees. Furthermore, it would increase the hierarchy construction
time. Nevertheless, when pre-building the hierarchies, without considering any
possible future shapes of the models, it can make sense to minimize the tree
height.

3.2 Efficient hierarchy refitting

The hierarchy reconstruction can be done by completely rebuilding the hier-
archies of the deforming models in every time step. However, building a hier-
archy from scratch in a top-down manner or by incremental insertion require
O(n log n) time for n triangles. Clearly, this would be infeasible for complex
deforming models. Instead, by pre-building the hierarchy structures, we are
able to update them during simulation in O(n) time for n deforming geometric
primitives.

Our hybrid update method works in the following way. For a hierarchy with
height h, we choose to first update boxes at depth d = bh/2c. These boxes are
updated directly from the point sets or sub-meshes inside them. Then the boxes
in the levels above are updated bottom-up by merging child boxes to get parent
boxes, starting at level d and proceeding upwards, level by level, towards the
root. This part of the update operation is illustrated in Figure 1b. Another
value of d could have been chosen, but the value we chose was empirically found
to yield good results for the models and hierarchies we have made experiments
with. Note that the levels below level d are left as they are until it becomes
absolutely necessary to update them during the ray tracing phase. In this way,
we avoid updating sub-trees in the lower levels that are not needed due to, e.g.,
occlusion.

Although still a linear operation in the number of triangles, just like a com-
plete bottom-up update, the hybrid update is significantly faster. By exploiting
the vertex sharing among triangles in meshes residing in the same bounding box,
the updating of the middle level at depth d in the tree requires approximately
n/2 vertices to be processed for n triangles, given that the average vertex va-
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a) b)initial model

initial hierarchy

deformed model

hybrid update

Figure 1: a) A pre-built bounding volume hierarchy built from a deforming
models initial shape. b) Example of a hierarchy update after the model has
been deformed during simulation. The hybrid update method first updates the
boxes in the middle level of the hierarchy. Then the levels above are updated
incrementally from the middle level boxes. Parts of the lower levels are updated
later, as needed, during the ray tracing phase. Note that the resulting boxes
have the same optimal fit regardless of they have been directly calculated from
their underlying geometry or from child boxes
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lence is close to six in the triangle meshes. This is always the case for non-trivial
closed meshes without holes since the Euler formula states that

v + f − e = 2 (2)

where v, f , and e are the number of vertices, faces, and edges respectively. For
meshes built of only triangles this means that

v =
1

2
f + 2 (3)

since each triangle has three edges and each edge is shared by two triangles
[Hain01]. Generally, however, the sub-meshes residing in the middle level boxes
are not completely closed, but still the average vertex sharing is almost as good
in many cases. A complete bottom-up update, on the other hand, starts by
updating the lowest level in the hierarchy. Since we have one triangle per leaf
node, this would require processing 3n vertices. Thus, following our reasoning
above, this would be approximately six times slower.

Also, the number of boxes to merge to update the boxes above the first
updated middle level is only a small fraction of the number of boxes that have
to be merged for a complete bottom-up update. For example, a complete k-ary
tree with height h has n = kh leaves and totally there are

mtotal = n +
n− 1

k − 1
=

kh+1 − 1

k − 1
(4)

nodes in the tree. Assuming h is an even number, we know that the number of
nodes at depth h/2 is only

√
n, since

√
n =
√

kh = k
h

2 . Also, the total number
of nodes in the upper half levels in the same tree is only

mupper =
√

n +

√
n− 1

k − 1
=

k
h

2
+1 − 1

k − 1
. (5)

This means that the number of boxes updated in the hybrid method will only
be

r =
mupper

mtotal

=

√
khk − 1

khk − 1
<

√
kh

kh
=

1√
kh

=
1√
n

, k ≥ 2, h ≥ 2 (6)

times the number of boxes updated by a complete bottom-up update method.
Furthermore, if we sum the number of vertices and boxes that are processed
during the hierarchy update, a predicted speed-up in the reconstruction phase
for the hybrid method, compared to a complete bottom-up update, can be
described by the following formula:

s =
3n + n + n−1

k−1

1

2
n +
√

n +
√

n−1

k−1

, n ≥ 4, k ≥ 2. (7)

Thus, s will be in the following intervals for commonly chosen values of k:

8 < s < 10, k = 2, h ≥ 8 (8)

8 < s < 8
2

3
, k = 4, h ≥ 5 (9)

8 < s < 8
2

7
, k = 8, h ≥ 4 (10)
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where the tree height, h, defines lower limits for the number of leaf nodes, n,
for the different values of k. This implies that the updating of the d top levels
might execute more than eight times faster than a complete hierarchy bottom-
up update for models with triangle counts of more than a few thousands. In
our practical experiments with triangle meshes, this reconstruction method has
been found to even execute more than an order of magnitude faster than the
full bottom-up update method. Note, however, that we will loose some of the
gained execution time during the ray tracing phase, because unlike the complete
bottom-up hierarchy update, the hybrid update method postpones updates in
the lower levels of the hierarchies until it is known by ray/hierarchy traversals
that they are necessary. These late updates are discussed further in the next
section.

As stated previously, all of the models’ vertices are deformed in every time
step of the simulations. In situations where the deformations only occur in a
few local areas of a model, there is a better alternative to update the hierarchy.
For example, if only m neighboring or close triangles are deformed, where m is
relatively small compared to the model’s n triangles, the update can be done
bottom-up in the hierarchy, but only along the paths from the leaves containing
the m triangles up to the root. The running time of the hierarchy update
will then be proportional to O(m + log n). If the m deforming triangles are
spatially spread over the leaves in the hierarchy the update time will instead
be O(m log n). Properly implemented, however, it will be no worse than the
O(n) running time for the full bottom-up hierarchy update. This approach
have been used in a collision detection method developed for surgical training
operations [Brow01].

3.3 Hierarchy traversals

Our bounding volume hierarchies are stored in simple arrays. In this way, we
increase the data locality during program execution. It is important to keep
each tree node stored in the array as small as possible for faster ray traver-
sals. We have found the representation suggested by Smits to be an efficient
choice [Smit98].

As mentioned earlier, when using the hybrid update method, the ray trac-
ing phase is responsible for updating the sub-trees in the lower levels that are
reached during ray/hierarchy traversals. Pseudo code for the traversal of a de-
forming model’s hierarchy is given in Figure 2. As can be seen, recursion has
been eliminated by storing each hierarchy in an array with skip indices in the
nodes. Each node also has to store an extra integer holding the frame when it
was last updated and an additional if-statement (line 4) is executed per reached
node during the traversal to trigger necessary node updates. The call on line
5 updates an outdated node’s bounding volume the first time it is reached in
a traversal during the current frame, which is done directly from the geome-
try it contains. Thus, we update the lower levels’ nodes in a top-down fashion
sparsely as they are needed. All that is needed to change the chosen heuris-
tic for updating the lower level sub-hierarchies is to change the function call
on line 5 to another node update operation. For example, when an outdated
node is reached, one can choose to immediately update the whole subtree be-
low it bottom-up. Another alternative would be to update the next q levels
bottom-up. The top-down approach we chose, however, was empirically found

8



ClosestHitTraversal(r, H, b, hit)
input: r is the query ray, H the array storing the hierarchy for body b
output: hit stores the intersection result

begin

1. stopInd← H[0].skipInd
2. nodeInd← 0

3. while(nodeInd < stopInd)

4. if (H[nodeInd].lastUpdated 6= currentFrame)
5. SetBoxOfNodePointSet(b, nodeInd)
6. H[nodeInd].lastUpdated← currentFrame

7. if (OverlapBox(r, H[nodeInd].aabb, hit.t)
8. if (H[nodeInd].triInd ≥ 0)
9. IsectTri(r, b, H[nodeInd].tri, hit)
10. nodeInd← nodeInd + 1
11. else

12. nodeInd← H[nodeInd].skipInd
end

Figure 2: Pseudo code for the closest hit ray/hierarchy traversal including node
updates the first time outdated nodes are reached

to be a bit more efficient than the other alternatives for the models used in our
experiments.

Note that additional information, needed for the refit operations, both during
the reconstruction phase and the ray tracing phase, are stored in other separate
arrays which have references into the main hierarchy arrays that we use during
the ray/hierarchy traversals. In this way, we keep the arrays accessed the most
during the ray tracing phase smaller.

When the number of deforming models in a simulation is more than just a
few, our ray tracing approach needs to be extended to handle multiple deform-
ing models efficiently. One approach is to insert the updated model hierarchies
on-the-fly in a top scene hierarchy in which the ray traversals can start [Wald02].
Other data structures that might be suitable for this case have also been de-
scribed [Rein00], [Ulri00]. Another simple alternative, which was used in our
implementation, is to sort the updated root boxes along the three principal co-
ordinate axes once per frame. Then, based on a ray’s dominant direction with
respect to these axes, a reasonably good front-to-back body traversal order is
easily found from these sorted lists. Note that, regardless of the number of
dynamic models, these lists can be kept sorted in expected linear time, given a
high temporal coherence for the moving bodies in the scene.

4 Experiments

To evaluate our update strategies, we have conducted experiments based on a
number of test scenes. Here, we report results from two different test scenes,
which reveal both the strengths and weaknesses of our approach. Our system
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was implemented in C++ and the experiments were run using a standard PC,
with a single 1.5 GHz Pentium IV CPU and 512 Mb of memory.

The goal resolution we used for our images in these experiments was 640x480
pixels. However, to achieve interactive frame rates on a single CPU computer,
we used image sub-sampling techniques. In this way the ray tracing phase
can be executed 10 – 100 times faster and the reconstruction phase is likely
to become a bottleneck. We used a regular sub-sampling pattern with bilinear
interpolation to scale the image to the goal resolution. First, we render a lower
resolution image into an internal bitmap. Then, to scale the image we let each
neighboring group of 2x2 pixels define the colors in the corners of a quad, which
then can be rendered by using OpenGL. In this way, the color interpolation was
done in hardware. We found, however, that a somewhat better image quality
was achieved when each quad was tessellated into four triangles meeting at the
quad’s midpoint, before the primitives were sent to OpenGL. A sophisticated
filtering algorithm would of course produce better scaled images, but it would
also be much slower.

Another alternative we have tried to speed up the ray tracing phase was to
use frameless rendering [Bish94]. By only rendering a fraction of all the pixels at
a time, chosen according to a pseudo random pattern, a significant performance
gain can be expected. The image quality, however, was far from acceptable in
our test scenes, since both the viewer as well as most of the geometry in the
scene are changing at nearly all times. There is, however, some ongoing research
aiming at improving the applicability of frameless rendering [Daya02].

In our first experiment, we used a scene with 9 deforming bodies, where
each one of them had 81,920 triangles. Thus, in total, the scene was modelled
by 737,280 deforming triangles. There were two light sources in the scene and
all 9 bodies were reflective. Apart from primary rays, shadow rays as well
as the first order reflection rays were cast. The simulation was run for 280
frames. We defined the camera movements so that the number of visible bodies
varied throughout the simulation, but during the majority of the frames more
than half or all of the bodies contributed to the ray traced image. No a priori
knowledge about the forthcoming deformations was utilized. The simulation
can thus be regarded as completely dynamic and interactive. Some images from
the experiment are shown in Figure 3.

We report the performance of this simulation for three different cases. First,
we traced one ray per pixel. Then we used image sub-sampling for the other
two cases, so that one traced ray was mapped to a pixel area of 5x5 and 10x10
respectively. We report the average update time as well as the ray tracing time
over all frames. Furthermore, we give the best and the worst frame times in
the whole simulation. These results and the achieved speed-ups are given in
Table 1.

As we can see, in the two cases where sub-sampling were used, the hybrid
update method was superior, yielding a total average speed-up of 1.5 and 2.6
respectively. In the best case, which occurred at frame 200, the speed-up was
approximately 8 and 12, respectively. Note that the update phase took the
same time every frame and it was not affected by the ray tracing time. The
update phase runs in O(n) time for n faces for both methods. Nevertheless, in
this experiment the hybrid update method was approximately 17 times faster in
every frame of the simulation. Part of this performance advantage was, however,
lost during the ray tracing phase, when parts of the lower subtrees had to be
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Figure 3: Images of frames 50, 65, 185, and 250 in the first experiment

updated as they were needed during the ray/hierarchy traversals.
In another experiment, we used the Museum scene defined in BART Bench-

mark scenes [Lex01a]. This scene includes a deforming piece of art, which
essentially is a triangle soup with drastic changes over time. There are two light
sources in the scene. We traced primary rays, shadow rays as well as the first
order reflection rays. The deforming model exists in different levels of details,
but note that we only consider the most detailed version of it which is modelled
by 65,536 triangles. We generated 300 frames for the whole animation. Images
from four of the frames are shown in Figure 4.

This scene is an example of a scene that clearly is unsuitable for our pre-
constructed hierarchies. The deforming art piece is in fact defined by five differ-
ent triangle soup constellations, each one having 65,536 triangles, defined at the
following key frame times: 0.0, 1.0, 2.0 3.0, and 4.0 seconds. During simulation,
the triangles are deformed by linear interpolation between the key frame triangle
soups. We ray traced the scene by pre-constructing five different bounding vol-
ume hierarchies, one for each key frame triangle soup. Then, during the course
of simulation, we switched the active hierarchy. In this way, we always had an
active pre-constructed hierarchy for the triangle soup and we were able to use
the bottom-up update method as well as our hybrid update method. Note that
we used a priori information for the deforming model in this experiment.

Despite this solution, the scene is still a really bad case for our method for
two major reasons. There are no connected triangles in the triangle soup, which
means that updating the middle level of the hierarchy requires processing 3n
vertices for n triangles. Furthermore, almost all parts of the scene contribute to
the final image, with the exception of the very last part of the whole animation.
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case sampl bottom-up method (s) hybrid method (s) speedup
up rt tot up rt tot

ave 1x1 0.449 8.249 8.698 0.026 8.705 8.730 0.996
5x5 0.449 0.375 0.825 0.026 0.527 0.553 1.492

10x10 0.449 0.100 0.550 0.026 0.183 0.209 2.633
worst 1x1 0.450 15.940 16.390 0.026 16.516 16.542 0.991

5x5 0.451 0.711 1.161 0.026 0.912 0.938 1.237
10x10 0.450 0.188 0.638 0.025 0.308 0.333 1.916

best 1x1 0.450 0.581 1.031 0.026 0.604 0.630 1.636
5x5 0.450 0.035 0.484 0.026 0.037 0.063 7.738

10x10 0.448 0.010 0.458 0.026 0.012 0.038 12.042

Table 1: Performance measurements from the first experiment. Timings are
given for the reconstruction phase (up), the ray tracing phase (rt), and the sum
of them (tot)

case sampl bottom-up method (s) hybrid method (s) speedup
up rt tot up rt tot

ave 1x1 0.063 32.1 32.163 0.016 31.9 31.916 1.008
5x5 0.063 1.32 1.383 0.016 1.40 1.416 0.977

10x10 0.063 0.335 0.398 0.016 0.395 0.411 0.968

Table 2: Performance measurements from the BART Museum scene, complexity
level 8, in the second experiment

This is because the scene only consists of a single room and the deforming
polygon soup is positioned in the center area of the room and it reflects much
of the environment around it.

We report the results from rendering the Museum scene in Table 2. As can
be seen, the update times are very fast for both update methods, 16 ms for the
hybrid update and 63 ms for the bottom-up update. This can be compared to
the on-the-fly hierarchy construction time reported by Wald et al. [Wald02]. For
exactly the same scene their reconstruction phase took more than 1 second.1

Thus, their reconstruction method prohibits interactive simulation of complex
deforming scenes.

Note, however, that since almost all parts of the scene contributes to the
rendered frames at almost all times, the hybrid update method gives no advan-
tage over the bottom-up update method in the average frame time. What was
won in the reconstruction phase was later lost during the necessary remaining
updates in the ray tracing phase. The overall performance was almost the same
for both methods in this case.

5 Discussion

Drawing from the experiments we have carried out, we believe the hybrid update
method is applicable and preferable in several different situations. For example,
in scenes with much occluded geometry, many of the models in the scene do
not contribute to a particular ray traced view at all and other models are only

1They used a cluster of dual AMD AthlonMP 1800+ machines with a dual AMD AthlonMP
1700+ server in their experiments.
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Figure 4: Images of frames 20, 120, 190, and 230 from the second experiment.
The test scene used was the BART Museum with complexity level 8

visible in parts. Hence, completely updating the acceleration data structures
for such models might become a serious bottleneck. The hybrid update method,
however, updates these structures very efficiently and sparsely. Note also that
the benchmarks that we used here do not contain much occluded or otherwise
invisible deformable geometry, and therefore, we expect that our algorithm will
work even better for such scenes.

Although we have not tried, we expect our method to work well in multi-
processor ray tracing [Park99, Wal01a]. For example, when scene replication
is used among the different nodes, the master machine would first execute the
efficient hybrid update method and then the clients can get an early start tracing
rays. This also decreases network bandwidth because nodes only need to request
the upper part of the hierarchies first, as they are needed, and only when it is
absolutely necessary the bottom sub-trees would be updated and sent to clients.

Special purpose ray tracing hardware has also been designed, increasing the
performance of the ray tracing phase by orders of magnitudes [Schm02]. If the
reconstruction phase is done on the CPU for the deformable models, it is very
likely to become the bottleneck. Also in this situation, we expect the hybrid
update method to be an attractive choice.

For time-critical ray tracing, we believe our method can be very attractive.
To achieve a constant frame rate, the ray tracer is aborted according to a time
budget of say 50 ms per frame. In this case, the rays are traced in a breadth-first
manner to ensure that at all the primary rays are cast before any shadows, re-
flection, or refraction rays. If complete bottom-up refit operations are executed
before the first ray is cast, there would be no time left to cast a single ray in
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many scenes. Among our test scenes, only the hybrid method would allow the
tracing of rays to start.

Furthermore, we have found that the hybrid update method is completely
superior when relatively few rays are cast in a scene with many complex de-
forming meshes. This means, for example, that we can expect our method to be
highly suitable for applications that need picking or other algorithms depending
on a moderate number of line/scene intersection tests.

When the scene includes triangle soups undergoing unstructured motion,
a more general approach is needed. Pre-built bounding volume hierarchies,
updated as we have described, tend to become more and more unsuitable as the
simulation proceeds, given that drastic changes occur in the geometric primitives
relative location to one another. In this case, a data structure that allows
primitive insertion in O(1) time would be beneficial, so that all the primitives
in a triangle soup can be inserted in the acceleration data structure in linear
time during interactive simulation.

A simple solution in this case can be based on uniform grids [Fuji86, Snyd97].
First the AABB of the deforming model is calculated and the resolution of
the uniform grid within this box is determined, for example, one can use the
3
√

n-criterion, or some more efficient variation of it [Caza95, Klim97]. Then
all the primitives can be assigned to all cells they intersect in expected linear
time. For deforming polygon soups, where the primitives stay rather uniformly
distributed, this might be a very efficient approach. Some other data structures,
that might be suitable for this situation, have also been suggested [Rein00,
Ulri00].

6 Conclusions and future work

Interactive ray tracing needs multi-processor environments or specialized hard-
ware to be a feasible alternative for interactive graphics applications. Still,
by using a single standard PC together with image sub-sampling and adap-
tive acceleration hierarchies, we were able to achieve interactive frame rates for
dynamic scenes with hundreds of thousands of deforming polygons.

The reconstruction phase executes more than an order of magnitude faster
when using the hybrid update method compared to the complete bottom-up
update for connected triangle meshes. This allows the ray tracing phase to get
an early start, because not so much time is wasted on updating parts of the
hierarchies that are not needed in the ray/hierarchy traversals.

Our update approach, however, requires additional bounding volume up-
dates in the lower levels of the hierarchies during the ray tracing phase. When
a lot of volumes have to be updated in this way, the time won during the recon-
struction phase might be lost in the ray tracing phase. Nevertheless, we have
found that in scenes where some deforming models only partly contribute to the
final image, they might be out of sight or occluded by other models, a significant
speed-up can be achieved also in the total rendering time. For example, in the
first experiment the average speed-ups were 1.5 and 2.6.

In our future work, there are many possible optimizations that would allow
us to improve the frame rate and image quality. For example, in our current im-
plementation we have not taken advantage of the frequently occurring coherence
for neighboring rays [Wal01a]. Neither have we used any SIMD instructions, e.g.,
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to optimize intersection or shading calculations.
Future improvements also include supporting different types of deforming

geometric primitives as well as porting our implementation to a multi-processor
environment. Apart from only parallelizing the ray tracing phase, it would
also be interesting to examine possible ways of parallelizing the reconstruction
phase. Another possibility would be to create hierarchies that are aware of
how the models can deform and take advantage of that information for faster
reconstruction. Such an approach has been developed for collision detection
between morphing models [Lars02]. The same approach would also be possible
in ray tracing of morphing models. Finally, it would also be interesting to
investigate the possibilities for a hardware implementation of our approach.
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