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Abstract. In order for model-driven engineering to succeed, automated
code generation from models through model transformations has to guar-
antee that extra-functional properties modelled at design level are pre-
served at code level. A full round-trip engineering approach could be
needed in order to evaluate quality attributes of the embedded system
by code execution monitoring/analysis tools and then provide back-
propagation of the target code analysis results to modelling level. In
this way, properties that can only be estimated statically are evaluated
against runtime values and this consequently allows to optimize the de-
sign models for ensuring preservation of analysed extra-functional as-
pects. This paper presents an approach to support the whole round-trip
process starting from the generation of source code for a target platform,
passing through the monitoring of selected system quality attributes at
code level, and finishing with the back-propagation of measured values
to modelling level. The technique is validated against an industrial case-
study in the telecommunications applicative domain.

1 Introduction

The increasing complexity of modern software systems demands adequate devel-
opment techniques able to reduce the complexity of the problem, allow to focus
on the aspects that matter in the design of the application, and permit to reason
about the scenario in terms of domain-specific concepts. In this respect, Model-
Driven Engineering (MDE) vision relies on facilitating the system development
by creating, maintaining and manipulating models that provide abstractions of a
real phenomena with an intended purpose [1]. Rules and constraints for building
a model have to be properly stated through a corresponding language definition.
In this respect, a meta-model describes the set of available concepts and well-
formedness rules a correct model must conform to [2]. A system is developed by
refining models through model transformations starting from higher and moving
to lower levels of abstraction until code is generated. A model transformation



converts a source model to a target model preserving their conformance to the
respective meta-models [3].

One of the major ambitions of MDE is to provide automated code genera-
tion to be executed on specific target platforms; however, such a goal is too often
seen as the final and non-coming back step of an MDE approach [4]. Therefore,
quality in terms of extra-functional properties of the system modelled at ab-
stract levels may not be preserved at code level since many of such aspects can
not be predicted without code execution [5]; that is the reason for which such
properties need to be computed at code level through monitoring activities [6].
Then, in order to be able to perform an evaluation of expected against computed
extra-functional properties, the model-code abstraction gap must be settled; this
can be performed by propagating the extra-functional computed values back to
the source models. Hence, we hereby claim that the generation of code and its
execution on target platforms should be rather seen as a transitional step in the
development; the results coming from the execution would be utilized as an en-
richment of the design models for further extra-functional evaluation. Eventual
optimization of such models can then be performed in order to generate code
with preservation of the desired extra-functional properties.

This article discusses motivations and challenges in providing an automated
round-trip engineering support for MDE of embedded systems with focus on
ensuring extra-functional properties preservation throughout the entire process,
that is to say from modelling to code level. In fact, embedded systems’ resources
limitation stresses the criticality of extra-functional properties measurement at
code level. Moreover, this work proposes a solution to the implementation of such
automated round-trip engineering mechanism: generation of source code entails
the creation of trace links between models and code, code execution is monitored,
and detected values are appropriately back-propagated to modelling level. In this
way, a complete extra-functional evaluation of the source model can be enabled,
and the automation in the preservation process relieves the developers’ effort
in shouldering the heavy burden (e.g. additional testing activities on models,
involvement of domain experts) of manual activities in that direction.

Despite other solutions for the generation of full1 implementation code exist,
its combination together with the provided cross-cutting back-propagation capa-
bilities make the contribution of this paper unique. In fact, a process combining
the features provided by the solution we propose has not been fully exploited
yet in the current state-of-the-art.

In order to inspect significant characteristics of the approach, such as scalabil-
ity and reusability, the proposal has been validated against a running case-study
on top of the CHESS framework [7]; the target system is a partial version of
the Asynchronous Transfer Mode (ATM) [8] Adaption Layer 2 (AAL2) indus-
trial subsystem which was originally intended to adapt voice for transmission

1 In our proposal and in the remainder of the paper, code that can be directly ex-
ecutable right after its automatic generation without any further modification is
addressed as full or 100%



over ATM and is currently used in telecommunications as part of connectivity
platform systems.

The rest of the paper is structured as follows. Section 2 identifies the moti-
vation that led us to the definition of the proposed approach and which aspects
have already been partially explored in the current state-of-the-art. In section 3
the proposed approach is described and fully unwound in its details together
with challenges and solutions for each step of the process. The running case-
study, introduced in section 4, is used to validate the approach in sections 5
and 6 where the actual implementation of the proposed solution is reported too.
In section 7 a final discussion is presented while conclusions and planned future
enhancements are proposed in section 8 and 9.

2 Background

The integration of model-driven and component-based (MDCB) processes is
meant to help in handling the ever-increasing complexity of embedded software
systems design. In particular, such integration discloses opportunities to reduce
costs and risks by: (i) enabling effective modelling of extra-functional proper-
ties such as safety, reliability, availability and dependability, to mention a few,
and (ii) providing automation where applicable in the development process [9].
In the last years, MDCB has been recognized as extremely promising and the
large number of works recently published on this subject gives proof of this re-
search trend [10]; tools and frameworks have been developed for supporting such
development process [11–13].

Our approach is placed within a MDCB process and focuses on providing
round-trip support for aiding in ensuring a required level of quality preserva-
tion in terms of extra-functional properties from the modelling artefacts to the
generated code. Preservation of those properties throughout the development
process by means of appropriate description and verification is of paramount
importance since it allows to reduce final product verification and validation ef-
fort and costs by providing correctness-by-construction. In fact, managing extra-
functional properties by means of design and evaluation at early development
phases allows the developing team to have control over the preservation of such
properties at product level [14, 15].

In the embedded domain resources limitation sharpens the criticality of hav-
ing extra-functional properties evaluation at code level: for instance, when deal-
ing with resources consumption or execution time, it is generally only possible
to provide estimates of values boundaries and derive statistical behaviours of
their variations. As a consequence, it is not possible to have precise values until
the design is run in terms of code on a specific platform thereby some of the
information and values used for validating the design can only be gathered at
code level. Despite early simulation activities can help in evaluating a certain
set of properties [16] as well as solving specific issues such as bottlenecks and
deadlocks, there still exist extra-functional properties that can not be precisely
evaluated at modelling time. Therefore, this work aims at providing support for
such properties and leaves apart simulation and analysis activities performable



at modelling level. Precise values are obtained only when the design is run in
terms of implementation code on a specific platform. Then, a proper round-trip
support for enabling back-propagation of such values to the source model is of
critical relevance in order to aid the MDBC process in achieving automated gen-
eration of code with preservation of extra-functional properties across all the
abstraction layers.

Generally, management of extra-functional properties is considered a core
development task; in the embedded domain such activity has still to be im-
proved [17]. Efforts in dealing with extra-functional properties of composition
can be found in the Web Service domain [18, 19]; domain-specific languages and
UML profiles have been defined to model extra-functional properties [20, 21].
Results in the direction of ensuring real-time properties by the definition of
a MDCB approach can be found in the results of the ASSERT project [22];
nevertheless, effective solutions for composability with guarantees in embedded
real-time domain are still missing. Other attempts propose to solve the problem
by back-propagation, i.e. by reporting the measured values back to the models
in order to possibly fix and/or refine estimated numbers. Navabi et al. in [23]
in the early 90’s, and some years later Mahadevan and Armstrong in [24], came
up with different approaches for back-annotating behavioural descriptions with
timing information; however, both operate horizontally2 in terms of abstrac-
tion levels and no automation is provided. It is worth noting that being able
to automatically annotate the source model with monitored values is of critical
importance in order to avoid the developer to inspect the generated code for
understanding the relationships between measures and model entities at design
level.

In the literature, Varró et al. propose in [25] back-propagation for enabling
execution traces retrieved by model checkers or simulation tools to be integrated
and replayed in modelling frameworks; even though some similarities to our ap-
proach might be found when dealing with traceability issues, the two approaches
aim at solving two different problems. The most similar approach to ours is de-
scribed by Guerra et al. in [26] where back-propagation of analysis results to the
original model by means of triple graphical patterns is described. Nevertheless,
the approach is meant to horizontally operate at modelling level with propa-
gation of data among models. While, dealing with embedded real-time systems,
our approach focuses on vertically propagating analysis results computed at code
level back to design models for better understanding of those extra-functional
properties that can not be directly measured at higher levels of abstraction.

The concept of traceability in software development is generally referred to
as a mean to store relationships between interconnected artefacts [27]; with re-
spect to MDE, since model transformations are the mean to operate on models,
trace links are often used to keep track of model transformation results, that
is to relate source elements with corresponding target entities together with

2 In the paper, horizontal and vertical are used for specifying the direction of data
transitions among artefacts either at the same (e.g. horizontal) or at different (e.g.
vertical) level of abstraction



the rules involved in their creation. Typically, trace links are exploited for syn-
chronization purposes or to evaluate the impact of source modifications to the
existing generated targets [28]. This paper extends such concept to keep track of
implementation code portions corresponding to design model elements in order
be able to update their quality attribute values coming from system execution
monitoring.

System monitoring is a widespread activity to survey applications’ behaviour,
especially in those cases where systems’ failures can have serious impacts or even
catastrophic consequences [6]. In general monitoring tasks are devoted to check
systems attributes to understand their quality [29], or to detect behavioural
patterns requiring runtime adaptations [30]. In this respect, this work exploits
monitoring results to refine design models with sharpen quality attributes val-
ues detected during the execution of the system. Such precision is required for
embedded systems, since resources utilization is of critical importance for a suc-
cessful design of the application.

3 A Generic Round-trip Support for Preservation of
Extra-Functional Properties

This work illustrates a general technique whose goal is to provide support in
terms of traceability and back-propagation features for MDCB processes to
achieve preservation of those extra-functional properties which can not be accu-
rately predicted statically at modelling level, but rather measured at code level.
By adhering to the MDE vision, implementation code for the platform taken into
account is generated from the source models; then, by monitoring the execution
on the target platform, computed values are automatically propagated back to
the modelling level. The aims are multiple: at an initial development stage, es-
timated values can be iteratively refined through executions of the generated
system and corresponding monitoring/back-propagation activities; in turn, de-
sign models can be evaluated and possibly refined to achieve extra-functional
properties preservation and hence correctness-by-construction [5] for the gen-
erated implementation; in the same way, resource optimization can be enabled
through a better resource utilization based on actual values.

In order to achieve extra-functional properties preservation and hence correct-
ness-by-construction, the generated code is not meant to be edited by hand.
Possible optimizations are indeed not performed directly through code editing,
but rather by re-iterating the code generation process once the design models
have been refined according to the evaluation of their extra-functional properties
made possible by the back-propagation.

In the following, the proposed approach is decomposed in three fundamental
issues, namely how to generate and store trace links between source models
and generated code, how to retrieve useful information from monitored code
execution results, and how to propagate the computed values back to the source
models; for each of them, challenges and proposed solutions, together with their
application to a running case-study, are discussed.



Fig. 1. Round-trip Support

The general goal of this work is to propose a round-trip support which aims
at solving the challenge of generating implementation code ensuring that extra-
functional concerns modelled at design level are preserved at code level (Fig. 1).
Once design modelling tasks have been successfully completed, the objective
is to enable automatic generation of implementation code from source models.
Taking design models as source artefacts3, we generate target code through
appropriate model transformations (Fig. 1a). Information regarding tracing of
source (e.g. model elements) and target (e.g. code segment(s)) artefacts has to be
defined and maintained for further back-propagation activities. Therefore, code
generating transformations have to be properly defined by encoding apposite
rules for the generation of traceability links (explicit traceability [31]) between
models and code (Fig. 1b); such rules populate the back-propagation model with
traceability information according to the meta-model depicted in Fig. 2. Once
the code has been generated as well as the traceability links, quality attributes of
the system can be evaluated by selected code execution monitoring/analysis tools
(Fig. 1c). Depending on the capabilities of such tools and their output format,

3 In the remainder of the paper source and design models refer to the artefacts at the
highest level of abstraction as shown in Fig. 1



different actions, varying from text-to-model to model-to-model transformations
(Fig. 1d), are required to extract and formalize execution results in order to
have a completely traced information chain from models to monitoring results.
The last step of the round-trip approach aims at finally annotating the source
models with the code execution results (Fig. 1e) through dedicated model-to-
model transformations.

As depicted in Fig. 1, by containing information concerning both traceability
and monitoring results, the back-propagation model can be considered the core
artefact in the process. That is to say that, as long as the modelling language
does not change, the transformations performing the back-propagation will not
need to be modified, even if different tools are used for monitoring activities. An
alternative solution could indeed be to back-propagate the monitoring results di-
rectly to the model with the support of a simpler traceability model; in this case
for each monitoring tool a different back-propagating transformation should be
provided. Using an intermediate back-propagation model reduces the approach
adaptation overhead caused by the adoption of different monitoring tools, since
only ad-hoc transformations from monitoring results to the back-propagation
model, which are generally much less intricate than transformations from moni-
toring results to source models due to modelling languages’ complexity, have to
provided.

3.1 Code Generation and Traceability

In the proposed approach, the task of automating the generation of implemen-
tation code does not only concern the actual transformation from design models
to code since tracing information between model elements and generated code
segments has also to be defined for enabling back-propagation activities. Trace-
ability can be any relationship existing between artefacts within a software en-
gineering life cycle. These relationships include: (i) explicit links derived from
for/back-ward transformations, (ii) links derived from code analysis, (iii) inferred
links computed on the basis of change management of system’s items [27].

Our approach relies on models and transformations as main artefacts; models
represent the system at different levels of abstraction and transits back and forth
among these levels are usually achieved through transformation of such models.
Therefore definition and maintenance of traceability links to cope with consis-
tency among models, code and transformations are crucial. That is the reason
for which model transformations in charge of code generation must be prop-
erly defined by encoding apposite rules for the generation of explicit traceabil-
ity links between source and target. In this way, information exchanged among
models through transformations are formally stored and maintained in struc-
tures that are easily and univocally navigable and information pieces reachable
following precise patterns. The most natural structure for such purpose in our
case is a model, here called back-propagation model, which conforms to the back-
propagation meta-model depicted in Fig. 2; a slightly similar structure for storing
tracing information can be found in [32]. The back-propagation meta-model has
been defined for enabling the creation of back-propagation models which are able



Fig. 2. Back-propagation Meta-Model

to store the information gathered during code generation and monitoring tasks
in a structured manner.

Conceptually, two classes of information are stored in the back-propagation
model: (i) traceability information and (ii) monitoring results. Traceability in-
formation is composed by trace links identified during the code generation task
and stored in terms of trace elements between model elements and code. The
core concept in the back-propagation meta-model is indeed the trace element,
which allows the navigation through all the stored information needed for back-
propagating the source model with monitoring results. A trace element TE
(TraceElement in Fig. 2) can store two different granularities of traceability:

– Model element level: in this case it is represented as a triple <ME, EU,
MEP> where ME is a model element (ModelElement in Fig. 2) contained in
a source model SM (SourceModel in Fig. 2), EU is an executable unit (Exe-
cutableUnit in Fig. 2) contained in an executable entity EE (ExecutableEn-
tity in Fig. 2), and MEP (ModelElementProperty in Fig. 2) is an extra-
functional property defined for ME and calculated by monitoring the execu-
tion of EU. A typical case for such granularity is the component level in a
component-based architecture;



– Model element’s functional unit level: in this case it is represented as
a quadruple <ME, FU, EU, FUP> where ME and EU represent the same
information as for the model element level. The further level of granularity is
maintained by FU which represents an operation/method (FunctionalUnit
in Fig. 2) defined in the model element specification ME and FUP (Func-
tionalUnitProperty in Fig. 2) which represents an extra-functional property
defined for FU and meant to be calculated by monitoring the execution of
EU. A typical case for such granularity is the operations level in the compo-
nent definition in a component-based architecture.

More generally, the back-propagation model (conforming to the back-propagation
meta-model) BM (BackpropagationModel in Fig. 2) is a triple <TE*, SM,
EE*>, where TE* is a non-empty set of trace elements, SM is a source model
(i.e. a composition of model elements ME and functional units FU), and EE* is
a non-empty set of executable entities which are in turn composed by executable
units EU. Depending from the code generation and the monitoring activities, an
executable unit could even be more specifically defined as a code block with start
and end point within the code file (i.e. the executable entity).

Apart from the traceability links, the back-propagation model has to be able
to host the information extrapolated from the monitoring activities and that
would complete the information chain model-code-results needed for propagat-
ing the monitored properties computed values back to the source model. In
the back-propagation model, each defined property P has one property value
V (PropertyValue in Fig. 2), which is calculated during monitoring activities
and represents the value to be propagated back to the related extra-functional
annotation’s placeholder in the source model.

3.2 Extra-Functional Properties Evaluation

Once the target code has been automatically generated as well as the trace-
ability links, quality attributes of the system can be evaluated by executing the
code on a specific platform according to appropriate monitoring routines. At
this point, independently from the analysis or monitoring tool/technique used
for the measuring activities, the extra-functional properties can be evaluated
comparing their expected and measured values; for this reason the latter are to
be propagated back to design models. In order to perform such back-propagation
we need to be able to navigate through the development artefacts from design
models down to monitoring results passing through the code. Therefore defining
and maintaining explicit traceability between models and generated code is only
the first ring of the traceability chain needed in our round-trip approach. In fact,
traceability between code segments and monitoring results has to be defined and
maintained too. Therefore, additional actions to manipulate monitoring tools’
output results and to properly structure them for easing back-propagation ac-
tivities are needed.

Back-propagation of monitoring results to modelling level represents the last
step of the approach, crucial for evaluating and consequently optimizing the de-
sign models for ensuring preservation of analysed extra-functional properties.



For the provision of such capability, the approach fights against well-known re-
verse engineering challenges in mapping data models derived from data analysis
to more abstract conceptual design levels by supporting iteration of the process
and bidirectional mapping from models to analysis data models and vice versa
[33]. Back-propagation is performed through appropriate model-to-model trans-
formations which enrich the source models with the values of extra-functional
attributes gathered at code level by monitoring activities.

This process can be decomposed as follows:

– Monitoring results representation: results coming from the monitored ex-
ecution of the generated code are part of the source artefacts for back-
propagation to the design models; the representation format of this informa-
tion is pivotal. Monitoring results should be maintained into formal struc-
tures in order to be fed to the back-propagating transformations. The pro-
posed solution provides storing structures as part of the back-propagation
meta-model;

– Tracing information management : giving monitoring results as source for
the back-propagating transformations is not enough. In fact, the traceabil-
ity chain defined and maintained along the path from designed models to
monitoring results is also part of the source artefacts to be fed to the trans-
formations in order to correctly propagate results back to the corresponding
model elements. Depending on the decisions taken when defining traceability,
actions to manipulate it and feed it to the transformations will be needed.
As well as for the monitoring results, tracing information is maintained using
the structures provided as part of the back-propagation meta-model;

– Annotation of design models: the very final step of our approach is the ac-
tual enrichment of source models with information concerning computation
of extra-functional properties derived from code execution monitoring activ-
ities. The enrichment should be performed by injecting the computed prop-
erty values into the related model elements’ placeholders at modelling level
for completing the design models. The effort to be put in such injection de-
pends on the modelling language’s capabilities in modelling extra-functional
properties.

Once completed, the back-propagation activity produces an extra-functionally
enriched version of the design models. At this point it is possible for the devel-
opers to evaluate such enriched models and finally perform further optimization
activities on them if needed. The process might require multiple iterations in
order to reach the desired quality level, in terms of extra-functional properties,
required by the system specification.

4 A Case-study: the AAL2 subsystem

The round-trip support had been preliminarily validated on the Advanced Cruise
Control subsystem on top of the PrIDE platform using the ProCom component
model [34] considering code generation and traceability links creation as black-
box activities. In order to perform a further validation of the approach and



evaluate crucial characteristics such as scalability and reusability, we tested it
on a notably more complete case-study on top of a different platform and we
defined apposite transformations for generating 100% of the implementation code
as well as the traceability information. The target system is a simplified version
of the AAL2 subsytem which is well-known in the telecommunication domain as
part of connectivity platform systems.

4.1 The CHESS Framework

The cross-domain Composition with Guarantees for High-integrity Embedded
Software Components Assembly (CHESS) modelling language and framework [7]
are used for the specification of the AAL2 subsystem. CHESS allows the spec-
ification of a system together with relevant extra-functional properties such as
predictability, dependability and security. Moreover, it supports a development
methodology expressly based on separation of concerns; distinct design views ad-
dress distinct concerns. In addition, CHESS actively supports component-based
development. The CHESS component model is conceived in a manner that per-
mits to domain-specific needs to be addressed by adding specialization features
to a domain-neutral core. In this manner CHESS intends to support a variety of
application domains, the common character of which is to embrace model-driven
engineering solutions for the development of dependable and predictable real-
time embedded systems. According to the CHESS methodology, functional and
extra-functional characteristics of the system are defined in specific separated
views as follows:

– Functional: the development style follows component-based design, by which
each component is equipped with provided and required interfaces realized
via ports and with state-machines and other standard UML diagrams to ex-
press functional behaviour. Moreover, the Action Language for Foundational-
UML (ALF)[35] is used to enrich the behavioural description; in this way,
we reach the necessary expressive power to be able to generate 100% of the
implementation code directly from the functional models with no need for
manual modification of the code after its generation;

– Extra-functional: in compliance with principle of separation of concerns
adopted in CHESS, the functional models are decorated with extra-functio-
nal information thereby ensuring that the definition of the functional entities
is not altered.

4.2 Modelling the AAL2 Subsystem

The structure of the system (Fig. 3) is composed by three main components: (i)
NCC, (ii) AAL2RIClient, (iii) NCIClient. Each of these components has a com-
plex internal structure in terms of composition of other components; in this case
study we consider the NCC internal structure while we consider AAL2RIClient
and NCIClient as stubbed. NCC is a connections handler providing connectiv-
ity services for establishment/release of communication paths between pairs of



Fig. 3. AAL2 subsystem structural design in CHESS

connection endpoints handled by AAL2RIClient. NCIClient represents an ap-
plication asking for services provided by NCC and its underlying layers; the
components communicate through functional interfaces (function calls) exposed
by their provided ports.

The NCC component has a complex internal structure (Fig. 4), and in this
study we focus on:

– NodeConnHandler: which dispatches the incoming connection requests to
available NetConn instances;

– NetConn: that controls establishment and release of network connections
between nodes (NodeConneElem instances);

– NodeConnElem: that handles management of network connections within
the single node;

– PortHandler: which manages connection resources.

Each of these subcomponents has in turn a complex internal structure in term
of components composition; in this case-study we consider only the first two
levels of decomposition (down to the NCC ’s internal structure) since we expe-
rienced that the number of levels does not critically undermine the approach’s



Fig. 4. NCC composite structure in CHESS

scalability. CHESS allows the definition of extra-functional properties by means
of decoration of the design models with proper stereotyped annotations. Since
in this case-study the properties taken into consideration for monitoring and
back-propagation are execution time and allocated memory, some of the compo-
nent instances’ ports are annotated with the CHRtSpecification stereotype, an
extension of the MARTE’s RtSpecification stereotype [21], specifically defined in
CHESS for the specification of real-time specific properties. In our case the place-
holders used for back-propagation of monitoring results are respT (for execution
time representation) and memorySizeFootprint (for allocated memory represen-
tation). The CHRtSpecification annotation contains also information regarding
the component instance (partWithPort) and the specific operation (context) in
the annotated port to which the real-time specification applies.

In Fig. 3, 4 the decorations on the AAL2 model are depicted and, since the
back-propagation has not been performed yet, there is no value specified for the



properties respT and memorySizeFootprint yet. For readability issues and since
a larger number of decorations would not have undermined the validation of the
approach, we decided to put one decoration for each component, but there is no
actual limitation in such sense. The behavioural definition of the system (Node-
ConnHandler state-machine in Fig. 5) is given by means of state-machines en-
riched with action code definitions for the involved operations specified by means
of the aforementioned ALF. Components are connected by means of ports and
links between them. The communication is thereby performed by calling oper-
ations on the component’s required ports that propagate the invocation to the
component owning the provided ports connected to them (note that connected
provided and required ports share the same Interface).

A typical connection scenario in the AAL2 subsystem is the establishment
of a connection between two end-points residing on the same node; this is a
constrained case of a more general network-wide connection where the two end-
points reside on different nodes and the communication transits through a num-
ber of other intermediate nodes in the network.

When NCIClient wants to connect two end-points, a connection setup request
is sent to NCC through the PI NCI 2 NCC interface; such request contains in-
formation about the end-points. NCC asks for the establishment of a connec-
tion segment between the end-points to an external component (not modelled
in this case-study) and then sends a request through the RI NCC 2 AAL2RI
interface for each end-point to their respective AAL2RIClient in order to acti-
vate the access to the transport layer for the end-point. Once both end-points
have positively responded through their respective RI AAL2RI 2 NCC interface,
NCC confirms the establishment of the connection to NCIClient through the
RI NCC 2 NCI interface. In Fig. 5, the state-machine describing the behaviour
of NodeConnHandler component is shown; ALF code specifying the behaviour
of the component’s operation sendResponse (matching the homonymous state-
machine’s transition) is also shown in the figure. Communication between com-
ponents in terms of operations (node2clientResponseOk(), node2clientResponse-
Fail()) called on required ports (RI NetDisp 2 NCC) is depicted in the action
code fragment.

5 Code Generation Process from Source Models

In this section we demonstrate how the full proposed approach has been vali-
dated against the AAL2 subsystem in terms of generation of executable C++
code and explicit traceability links for back-propagation. In order to be able to
perform back-propagation operations, complete traces from source model to re-
lated generated execution entity/ies (i.e. code) and monitoring results have to be
maintained. Explicit trace links between model elements and code are created by
defining a set of ad-hoc transformation rules within the model transformations
process responsible for the code generation. Such rules create a mapping between
model elements to their respective generated execution units or code blocks by
creating and populating a back-propagation model according to the constraints
defined in the back-propagation meta-model. Hence, the code generation process



Fig. 5. NodeConnHandler state-machine in CHESS

gives two artefacts as output: (i) generated target code and (ii) back-propagation
model containing trace links between source model and produced code.

5.1 Executable Code Generation

The code generation process is composed by a set of model transformations (e.g.
model-to-model, model-to-text) that, through iterative and progressive trans-
formation of the input into intermediate representations, generates C++ imple-
mentation code from the CHESS models. Given the source models, our solution
aims at providing a full code generation that entails both static and behavioural
description of the system. In this work we provide a high level view of the trans-
formation process (Fig. 6) from design models to the corresponding C++ code
specifically enhanced for enabling back-propagation activities and facilitating
controlled code injections for analysis purposes; a detailed description of such
process will be part of a separate upcoming publication. The code generation
process relies on models and transformations as main artefacts for the generation
of target code and is composed by the following tasks:

1. A set of model-to-model transformations, defined using the Operational QVT
(QVTo)4 transformation language, act on the CHESS model to generate two
different intermediate artefacts:

4 The QVT language, abbreviation of Query/View/Transformation, is defined [36] by
the OMG, Object Management Group. The name of the language recalls its three-
parts language that allows the description of queries to get a selection of model
elements, the definition of restricted views of a model for cutting away aspects of
the model not relevant to a user or domain, and transformations between models,
respectively



Fig. 6. Code Generation Process

– Instance model: that represents unwound components and ports instances
according to their multiplicities for enabling a correct generation of the
communication links between components instances at code level;

– Intermediate model: that represents the main intermediate artefact in
the process and contains all the needed information, both structural and
behavioural, derived from the source model to generate full implemen-
tation code (Fig. 6a).

Each of these models conform to its corresponding meta-model that we ex-
pressly defined for the code generation process. Moreover, during this task,
explicit traceability links are created (Fig.6d); the description of such step
is given in the next section ( 5.2);

2. The intermediate model is enriched with other information deriving from
both the instance model and the CHESS model by means of in-place [3]
model-to-model transformations (Fig. 6b);

3. Finally the C++ implementation code is generated through model-to-text
transformations, defined using the statically-typed template Xpand language
[37], taking as input the sole intermediate model (Fig. 6c).

5.2 Traceability Links and Back-propagation Model

The result of code generation activities is a set of C++ code files and the portion
of the back-propagation model containing traceability information between mod-



elling elements (i.e. components, ports, operations and extra-functional proper-
ties ) and code execution units in terms of the code artefacts implementing the
system functionalities. The back-propagation model is created during the code
generation process through model-to-model transformations defined by means
of the QVTo transformation language, more specifically using the Eclipse imple-
mentation [38].

As aforementioned, the first step of the code generation process consists
of a model-to-model transformation acting on the CHESS model to generate
the instance model, that represents unwound components and ports instances
according to their multiplicities. During this task the back-propagation model
is generated too. The transformation code portion depicted in Fig. 7 represents
the creation of the trace elements related to each of the instantiated component
instances. Navigating the CHESS model from the root component through all its
composition levels, for each component instance present in the model a number
of trace elements are created to trace the properties monitored at operation level
following this steps:

1. Lines 66-87: for each subcomponent directly contained by the current com-
ponent, a ModelElementInstance in the back-propagation model is created.
Particularly important in this process is that the containing component is
set as parent of the ModelElementInstance in order to maintain the contain-
ing hierarchy crucial for back-propagation activities. In fact, it may happen
that different instances of the same component type are defined in different
parts of the model with ambiguous identity; by maintaining the containment
relationships from the root component we are able to univocally identify the
different instances of a same component type and correctly perform back-
propagation. Moreover, since at code level the different component instances
are identified by a progressive unique numerical identifier assigned during
the code generation, the model element instance will also need to inherit
such information in order to allow correct injection of the monitoring results
to the right placeholder in the back-propagation model

2. Lines 92-105: for each operation defined in the subcomponent, a correspond-
ing FunctionalUnit is created in the back-propagation model together with
the FunctionalUnitProperty elements the properties that are meant to be
monitored: respT and memorySizeFootprint, respectively representing ex-
ecution time and memory allocation in the CHRtSpecification stereotyped
annotation. Due to its relatively lower complexity, component level granu-
larity properties have been left aside in this case-study but still present in
the actual implementation. In fact, the generation of such properties is per-
formed in the same way as the ones shown, but ModelElementProperty ele-
ments would be created instead of FunctionalUnitProperty and they would
be associated to ModelElementInstance elements instead of FunctionalUnit

3. Lines 106-110: for each operation, a corresponding C++ code function will
be created and its execution will be used for monitoring and compute values
for the defined properties. An ExecutableUnit element has to be created for
this purpose, and the previously defined FunctionalUnitProperty elements



Fig. 7. Creation of Trace Elements



Fig. 8. Trace Element details in the AAL2’s Back-propagation Model

are linked to it in order to complete the traceability chain (model-code-
properties)

4. Lines 111-122: finally a TraceElement is created for each of the proper-
ties to be monitored according to the definition given in section 3.1. In
Fig. 8 the details of one of the trace elements created during the code gen-
eration process for the AAL2 subsystem is depicted. The meaning of such
trace can be summarized as follows: the trace element client2NodeConnect-
2 NCC ci client2NodeConnect respT represents the trace link between the

client2nodeConnect operation, and the monitored property respT, defined
for the component instance NNC ci and the code function NCC ci client2no-
deConnect.

In Fig. 9 the portion of the back-propagation model that we consider for the
next back-propagation steps is depicted.

6 Code Execution and Back-propagation to Source
Models

In this section our running case-study is used to show the conclusive phases of the
approach in terms of: (i) code execution monitoring activities, (ii) management



Fig. 9. Portion of the generated Back-propagation Model related to the AAL2
Subsystem



of monitoring results and (iii) propagation of such results back to the source
model in CHESS.

6.1 Monitoring Results Management

In the same way as the model transformation responsible for the code gener-
ation creates the trace links between source model and code in terms of trace
elements in the back-propagation model, the information about extra-functional
properties values calculated during monitoring activities has to be injected in the
back-propagation model in order to have the complete chain model-code-values
needed for propagating those values back to the source model. The way to per-
form such injection depends on both code generation and monitoring output for-
mat; it could in fact vary from model-to-model to text-to-model transformation
from monitoring results to the back-propagation model. This can be considered
a variable point of the round-trip support approach in the sense that it is hard
to generalize for a multitude of different tools, but rather adapted to the output
of each of them if such output can not be adapted to the expected input (text
file with a specific format) of the proposed injecting transformation.

In this work we implement such injection by means of text-to-model transfor-
mation since the monitoring activities give a textual description of the compu-
tations as output. More specifically, the monitoring produces a text file which is
a set of four-token lines formatted as follows: ExecutableUnit ModelElementIn-
stance.id Property Value. The transformation itself is implemented in Java and,
taking as input the back-propagation model BM and a monitoring output file
MF, acts as follows:

for each line l in MF do
for each token t in l do

if n == 1 then
execUnit = t;

else
if n == 2 then
id = t;

end if
else
if n == 3 then
property = t;

end if
else
if n == 4 then
value = t;

end if
end if

end for
BMtrace = BM.search(execUnit, id, property);
if BMtrace! = NULL then
BMtrace.property.value = value;



end if
end for

MF is navigated line by line, and each of which is tokenized according to the
defined format; the tokens ExecutableUnit, ModelElementInstance.id and Prop-
erty represent the information for which a match has to be sought in BM. The
identifier (ModelElementInstance.id) related to the ModelElementInstance is
crucial for identifying from which component instance in the code the property
value is derived and thereby to which trace element has to be injected in the
back-propagation model. Once a match is found, which means that there is a
trace element BMtrace linking Property with ExecutableUnit and ModelEle-
mentInstance in the back-propagation model, then the token Value is injected
into the correct placeholder pointed by Property in the trace element BMtrace
to add the calculated value to the related property.

6.2 Performing the Back-propagation

Once the back-propagation model has been completed with property values de-
rived from the monitoring activities, the final step of the process, that is to say
propagating such values back to the source model by injection, can be performed.
This task is crucial for enabling models optimization and produce correct-by-
construction system implementation.

Fig. 10. Back-propagation Transformation

Since the information to be back-propagated to the source model is in turn
stored in a model (i.e. the back-propagation model), the injection is performed



through a QVTo model-to-model transformation that, taking as input the source
model and the back-propagation model, operates a set of in-place transforma-
tions on the source model by enriching it with the property values stored in the
back-propagation model (Fig. 10).

A back-propagation model is composed by a non-empty set of trace elements
TE defined as quadruples <ME, FU, EU, FUP> where ME is a model element
contained in a source model SM, FU represents an operation/method defined in
ME and FUP represents an extra-functional property defined for FU and meant
to be calculated by monitoring the execution of the executable unit EU.

The transformation (Fig. 11) takes as input the back-propagation model BM
and source model SM, as well as the meta-models to which they conform to,
and gives as output an enriched version of SM achieved by means of in-place
transformation (i.e. SM is both input and output of the transformation) acting
as described in the following pseudo-code:

for each trace element TE = (ME,FUP ) in BM do
SMproperty = SM.search(ME,FUP );
if SMpropertyexists then
SMproperty.value = P.value;

end if
end for

BM is navigated and for each trace element TE a match is sought in SM ; if model
element ME and property FUP traced by TE match with a corresponding pair
in SM then the value associated to FUP in TE is injected into the matching
property in SM.

The code produced is C++ and the Linux API getrusage [39] is used for
getting monitoring information from its execution. The execution of the gener-
ated C++ code produces a result text file according to the format described in
section 6.1. In our example information regarding monitored properties for the
AAL2 subsystem’s components are stored in the monitoring results file, after
code execution, as follows:

NCIClient ci node2clientResponseFail 13 respT 1201
NCIClient ci node2clientResponseFail 13 memorySizeFootprint 8716
NCC ci nodeConnResp 2 respT 3402
NCC ci nodeConnResp 2 memorySizeFootprint 12327
NodeConnHandler ci client2nodeConnect 12 respT 6004
NodeConnHandler ci client2nodeConnect 12 memorySizeFootprint 4550
NetConn ci netConnRequest 3 respT 1457
NetConn ci netConnRequest 3 memorySizeFootprint 6093
PortHandler ci nodeClientRequest 7 respT 3990
PortHandler ci nodeClientRequest 7 memorySizeFootprint 8770
AAL2RIClient ci connNodeReq 14 respT 1805
AAL2RIClient ci connNodeReq 14 memorySizeFootprint 9982



Fig. 11. Model-to-Model QVTo Transformation for Back-propagation



Fig. 12. Injection of the Monitoring results to the Back-propagation Model

Once the execution is completed, the results in terms of monitored properties
values are injected into the back-propagation model through the Java transfor-
mation described in section 6.1 as shown in Fig. 12; note that, since during
monitoring activities no values were gathered for the properties defined for the
NodeElem i component instance, no value is injected into the back-propagation
model. At this point all the information to be propagated back to the AAL2 sub-
system model is stored in the back-propagation model. In order to finally com-
plete the round-trip path, this information is to be put in the apposite AAL2
subsystem model elements’ placeholders through the QVTo back-propagation
transformation, described in section 6.2, fed with the AAL2 model defined in
CHESS and the complete back-propagation model as input artefacts. The trans-
formation operates a set of in-place transformations on the AAL2 model giv-
ing as output an enriched version of the same model; the properties monitored
during the code execution are now equipped with the related monitored val-
ues. In Fig. 13, 14 the AAL2 subsystem and its NCC composite component
with back-propagated values for execution time (respT) and allocated memory
(memorySizeFootprint) are shown. The round-trip process has produced an
extra-functionally enriched version of the source model and it is now possible
for the developing team to validate the system and finally perform further op-



Fig. 13. Back-propagation to AAL2 subsystem in CHESS

timization activities directly at modelling level rather than at code level with a
consequent conservation in terms of consistency among the artefacts and their
properties at each considered abstraction level.

7 Discussion

Due to the multi-step nature of the proposed approach, questions may arise
regarding consistency issues among the involved artefacts, both vertically and
horizontally, from source models to generated code and vice versa. In fact, allow-
ing human interference at any of the described steps may undermine the validity
of the entire process at two levels:

– Code generation: breaking the consistency among artefacts during the code
generation voids the final aim of generating correct-by-construction system
implementation from design models. That is the reason for which the code
generation, including all the intermediate steps (i.e. trace links creation),
is an atomic process kept transparent to the developer who is not able to
modify any of the intermediate artefacts;



Fig. 14. Back-propagation to the NCC composite component in CHESS

– Back-propagation: the user has control only over source models and gener-
ated code. Modifying such artefacts, the developer may cause inconsistencies
during the back-propagation phase and hence jeopardize the reliability of the
back-propagated values in relation to the system models to which they are
back-propagated and the code they generated from. That is the reason for
which, in order for the proposed approach to guarantee that gathered infor-
mation is correctly and consistently back-propagated to the source models,
generated code is not meant to be manually edited.

Validating the approach against a complete and extensive case-study and on
top of a different framework gave us the possibility to make comparisons with the
preliminary validation described in [34] and evaluate important characteristics
such as scalability and reusability of the proposed solution.

Concerning scalability, we analysed the behaviour of the approach from the
perspective of the entire process as well as stepwise. Moreover, within the same



case-study we tested several source model sizes in order to thoroughly evalu-
ate possible consequences in terms of scalability. From a process-wise perspec-
tive, the proposed solution resulted very scalable up to 104 component instances
hence degrading going toward 105; in any case the process always accomplished
its goals. Analysing this result from a step-wise perspective, we noticed that the
least scalable tasks were those responsible for the code generation; the reason is
quite straightforward and relies on the computation’s complexity of the involved
transformations. On the other hand, the better scalability of back-propagation
tasks (e.g. monitoring results management and actual back-propagation to source
model) resulted to be less dependent of the source model’s size; the scalability
of these tasks may in any case vary if the approach were applied to other mod-
elling languages. Intermediate artefacts’ size may grow proportionally to source
model’s; the fact that they are meant to be transparent and handled only by the
process itself relieves the developer of the burden of understanding and manag-
ing them and lowers possible overheads deriving from their textual and graphical
rendering.

Applying the approach to a different case-study modelled with a different
modelling language and on top of a different framework, the reusability capa-
bilities of the approach have been challenged and evaluated. Code generators
have been specifically implemented for the CHESS framework, while the other
steps of the process adapted to correctly deal with the CHESS environment
and modelling language. The overhead of such adaptations can vary depend-
ing of the chosen modelling language, target implementation code, and so on.
Anyhow, if considering the core generic artefact of the process, namely the back-
propagation meta-model, and the tasks performed on it, the adaptation over-
head has been much lower than expected. Moreover, driven by the possibilities
given by the CHESS framework in defining extra-functional properties, we en-
hanced the back-propagation meta-model in order to enable traceability as well
as back-propagation of properties defined at different levels of granularity; such
enhancement makes traceability and back-propagation capabilities more power-
ful and easily adaptable to a wider set of different modelling frameworks and
needs.

8 Conclusion

In this work we lay foundations and motivations for a round-trip engineering
approach which aims at supporting a model-driven and component-based devel-
opment process cycle in ensuring extra-functional properties preservation from
models to generated implementation code. Such capability, achieved through
generation of 100% of the implementation code and corresponding traceability
together with back-propagation from code to model level makes the contribution
of this paper unique.

The approach is meant to assert the ability of the development process in
providing composition with guarantees in terms of preserved extra-functional
requirements at generated code level and thus testify its goodness and its capa-
bilities in driving and helping the user in the development of extra-functionally



correct-by-construction real-time embedded systems. Challenges and issues re-
lated to each single step of the approach have been highlighted and related
solutions have been proposed and tested on a selected case-study.

After a preliminary validation against a system designed on top of the Pro-
Com platform, the round-trip support has been enriched with its own C++ code
and trace links generators and validated at a larger scale against a more com-
plete and extensive case-study on top of a different framework, CHESS. From the
design models, created using the CHESS modelling language and following the
CHESS methodology, C++ code and trace links in terms of a back-propagation
model are automatically generated. The execution of the implementation code
is then monitored and selected extra-functional properties (e.g. execution time
and allocated memory) measured at operation level; apposite transformations
are defined to perform injection of such values into the back-propagation model.
Such model is then taken as input by an apposite model-to-model transforma-
tion for propagating the computed property values back into the related model
elements’ placeholders at modelling level. Once an iteration of the process is
completed, the developers have at their proposal a set of enriched source models
from which it is possible to extract precious information about the modelled
system in terms of monitored quality attributes. Finally the models can be opti-
mized and the process re-iterated until generated implementation code achieves
desired preservation of selected extra-functional properties.

9 Future Work

Future research directions will encompass the extension of the proposed approach
by taking into account management and evaluation of properties like safety and
security, which usually differ from properties measurable by means of computed
values.

Given the ability of the approach of supporting different levels of granularity
both for traceability and back-propagation, a possible enhancement would be
the possibility for the developer to select the wished level of granularity at mod-
elling level at the beginning of a process iteration; this would make the process
able to calculate only the desired traceability information reducing the needed
computation efforts, for instance, when generating the back-propagation model.
Moreover, a further enhancement would be the ability for the code and trace
generation process to create the trace links taking into consideration the sole
extra-functionally decorated model elements; again in this case the computa-
tion efforts needed for back-propagation activities and management of related
artefacts (e.g. back-propagation model) could be firmly reduced.
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