
UML Modeling in Design of Error Detection and Correction Circuits

St. Stancescu, L. Raicea, R. Marinescu, E. Enoiu
University POLITEHNICA of Bucharest

Iuliu Maniu 1-3 Blvd, Bucharest, 061071

E-mail: stst@elia.pub.ro, lavinia.raicea@gmail.com

Abstract - The Unified Modeling Language (UML) is used for

designing, testing and validating system on chip architectures,

real time systems, and embedded systems. The UML models

are easily up-gradable an reused in new designs, being a

powerful tool in extending functionality whenever necessary.

Our approach describes an UML model for error detection

and correction algorithms and also for hardware components

that will perform the functions correspondingly, based on

polynomial registers mod p(x).

I. INTRODUCTION

The aim is to enable a method to compile a UML based
specification of embedded systems into Verilog code which
can be subsequently synthesized for implementation onto
an FPGA. Ideally [1], the UML specification should
consist of a mixture of Class and State Diagrams (see
figure 1). The Class diagrams will define a configuration of
predefined modules and their connectivity. State diagrams
facilitate the specification of a state based behavior for any
component whose behavior can be thus expressed [2].

Fig. 1. Design Flow

II. UML MODELLING

We use two types of UML diagrams for modeling,
namely, class and state diagrams. Class diagrams are
predominantly used to describe the component structure of
a system while state diagrams describe the behavior of the
components.

II.A. Class Diagrams

We use the class hierarchy to describe the computational
entities via their methods and their data types. However,
class diagrams are also used in a crucial way to give an
overview of a system in terms of components and how the
components are connected to each other.

Classes can be related by the following UML relations
[1]:

• Generalization (or inheritance): when a channel

implements an interface, it inherits that interface.

Moreover, an interface, channel and module can inherit

another interface, channel and module respectively.

• Aggregation/composition: modules and channels

may be hierarchical.

• Association: classes that exchange messages

with each other are associated to one another. We model

messages by UML events with or without arguments.

Furthermore, a module may have an association

relationship with an interface when it accesses a channel

through this interface.

II.B. Object Diagrams

The UML object diagram lists the concrete objects used
to compute test cases, and defines the initial state of the
model. Each object diagram must be an instantiation of the
associated class diagram. Notice the following restriction
from [1]: objects can not be created or deleted dynamically
by the actions designed in the model. So all objects used to
describe the life cycle of the system must be defined in the
object diagram. The dynamic creation (respective deletion)
of entities in the concrete system is simulated by creation
(respective deletion) of links between objects in the UML
model.

The following UML elements can be used in object
diagrams:

• Objects, or class instances, are the concrete

objects of the system that are used in the generated tests.

Every slot – or attribute instance – of every object must

have a value.

• Links, or association instances, define the

dependencies between the objects in the initial state of the

system.

II.C. State Diagrams

State diagrams describe the behavior of a class. A state
can be a simple state or a composite state. A composite
state may be concurrent (often called an AND state). A
composite state which is not a concurrent state is called an
OR state. Being in an AND state means being in all of its
sub-states. Being in an OR state means being in exactly one
of its sub-states.

The UML state diagram formalism is a variant of State
charts invented by David Harel [1]. Harel introduced
diagrams that extend traditional state-transition diagrams
with the notions of hierarchy and concurrency. A state
diagram is a technique to describe the behavior of a system
and represents the event triggered flow of control where
objects change state by means of transitions.

III. FUNCTIONAL UNIT ALLOCATION

Functional Unit Allocation is the unit who sets and
classifies simple digital circuit units from a special made
repository. From [3] we know that hardware is latch-
capable if it intrinsically can latch outputs from a specified
task without requiring additional latches to be explicitly
placed. A FIFO and a D-Flip/Flop are examples of latch-
capable hardware.

When functional units are allocated, they become an
additional set of constraints. The functional unit allocation
runs this new set of constraints to the Verilog model.
Functional units (or IP cores) that can be used are
multipliers, adders, shifters, FIFO, etc.

Using the UML Tool’s capabilities for exporting UML
models as XMI files (XML based syntax) we can approach
the mapping of the UML meta-models to Verilog modules,
by using an intermediary step. The XMI file describes
exactly the structure of the UML model and using a simple
parser and translator can be brought to the form of Verilog
Code. An interesting idea may be using XSLT for this
transformation, which is a non-proprietary XML based
language also.

IV. VERILOG MODELING

Verilog provides the capability to design a digital system
in a modular fashion. Entire systems can be viewed as
being composed of numerous individual modules. A
Verilog module is a system block with well defined:1.
input signals, say x1,x2,...,xn; 2. output signals, say
y1,y2,...,ym and 3. internal structure and connections or
behavior.[4]

Combinational circuits (CCs) produce output signals
based on the value of their current input signals. A CC can
have any number of input variables (input signals). We
consider a CC as a graph of logic gates interconnected
according to the logic function they compute. CCs route
and transform the input values to the desired output values.

IV. A. Structural Hardware Modeling

In this style we model circuits by specifying the internal
structure of the block. It is common to directly use the most
primitive building-blocks available, such as, logic gates, or
larger blocks which have already been defined elsewhere.
Verilog provides NOT, OR, XOR, NAND, XNOR, NOR
gates, among others. Verilog allows each logic gate to have
any valid number of inputs.

From [4] we know that Verilog HDL allows circuits to
be described in two ways, structural (how they are built), or
in terms of behavior, (what they do). It is important to
remember that when you describe your circuits’ behavior
rather than its structure then the synthesis tool has to
translate the description into logic. The synthesis tool
although very good at its job may not always translate the
description into the logic you intended, and also may not
produce the most efficient circuit possible. For these
reasons it is useful to have an idea of how your description
will be translated into logic.

The two types of coding styles in Verilog:

Structural or Continuous - used for primitive
descriptions or data flow without storage

and(q, a, b); //structural assignment using Verilog
primitive gate

assign q = a & b | c; //continuous assignment

Behavioural or Procedural - can be used to describe
circuits with storage, and / or combinational logic:

always@(posedge clock)

begin

count <= count + 1;

if(a)

z <= b;

end

Gate level of abstraction describes the circuit purely in
terms of gates. This approach works well for simple
circuits where the number of gates is small, because the
designers can instantiate and connect each gate
individually. Also this level is very intuitive to the designer
because of the direct correspondence between the circuit
diagram and the Verilog description.

If the design is very large then a higher level of
abstraction should be used above gate level. Data Flow
allows the designer to design a circuit in terms of the data
flow between registers and how a design processes data
rather than the implementation of individual gates. The
design tools would then convert the description to a gate
level circuit.[5]

This level of abstraction allows designers to describe the
circuit's functionality in an algorithmic way. That is the
designer describes the behavior of the circuit without any
consideration to how the circuit transfers to hardware.

IV.B. Verilog Basic Unit Mapping

We will present an example of an UML model for a
universal CRC serial register (modulo P(x) register): UML
Class Diagram and Simplified UML State Machine
Diagram.

Fig 2. UML Class Diagram of a modulo P(x) register

The structure is centered on the “Register” class from
which the other two classes are derived: “SHIFT_Register”
as the register that performs the CRC calculations and the
“P_X_Register” that memorizes the current P(x)

coefficients. The class “XOR_Gate” is necessary to
personalize the CRC register shifting according to the P(x)
polynomial coefficients.

The behavior of the modulo P(x) register for a particular
0x1021 16-bit polynomial can be represented with a
simplified UML State Diagram as in Figure 3.

Fig. 3. Simplified UML Diagram for the modulo P(x) register

IV.C. Error Decoding

Decoding ECC [6] involves the extraction of two
information entities from the received word. These are the
set of Partial Syndromes, and the Error Locator
Polynomial. From these two parameters, Error Locations
and Error magnitudes are extracted, and are directly
applied upon the rec We will present an example of an
UML simplified model for a universal Reed-Solomon
Decoder.

Figure 4. UML Class Diagram of a simplified Reed-
Solomon Decoder

In the “Syndrome Calculator”class errors are detected by
calculating the syndrome polynomial which is used by the
“Key Equation Solver” Class to solve the key equation.
The structure is centered on the “Key Equation Solver”
class from which other two classes are derived:
“Berlekamp-Massey” and the “Euclidian”. The Berlekamp-
Massey algorithm is a shift-register synthesis algorithm [7]
that has a complex structure but use fewer gates to be
implemented than the Euclidian algorithm.

 Based on the “Error Position Finder” class locations of
the errors are determined. The magnitude of the errors are
determined based on the error evaluator polynomial in the
“Error Value Evaluator” Class.

IV.D. Verilog Basic Unit Mapping

Based on the UML Class Diagram and the UML State
Diagram, we can obtain the XMI file generated by an UML
Design Tool. This format is the OMG (Object Management
Group) format for describing UML specifications and has
been adopted by most UML Tools.

Fig. 4. Structural XML-based representation of Serial CRC

CCITT

We present an example, how the markup technology
XML generation can be applied to structurally represent
this ECC model. As an example, we take the interface
description of the Serial CRC CCITT model in Verilog
language (module) (see Figure 4). The description has two
hierarchical levels of structure: entity at the higher level
and its I/O ports at the lower level.

Furthermore, each port has the following attributes: port
name, type (input, output, etc.) and optional the dim for the
dimension of the port.

When introducing the markup information into the
model, each level of abstraction is replaced with the
corresponding tag, which may be defined freely by the
designer.

For example, the domain language level can be marked
by <verilog> tag, the component interface level-by
<module> tag, and port level-by <port> tag. Furthermore,
the attributes of the abstraction are replaced by the property
of the tag and its value. The property of tag can be defined
freely, whereas the value of the property must be the same
as the attribute of the abstraction. For example, module
CRC can be marked as <module name= ”CRC”/>.

Using the XSLT transformation language we will
transform the XMI file and generate a Verilog
implementation.

module serial_crc_ccitt (clk, reset, enable,

init, data_in, crc_out);

input clk;

input reset;

input enable;

input init;

input data_in;

output [15:0] crc_out;

reg [15:0] lfsr;

assign crc_out = lfsr;

always @ (posedge clk)

if (reset) begin lfsr <= 16'hFFFF; end

else if (enable) begin

 if (init) begin lfsr <= 16'hFFFF; end

 else begin

 lfsr[0] <= data_in ^ lfsr[15];

 lfsr[1] <= lfsr[0];

 lfsr[2] <= lfsr[1];

 lfsr[3] <= lfsr[2];

 lfsr[4] <= lfsr[3];

 lfsr[5] <= lfsr[4] ^ data_in ^ lfsr[15];

 lfsr[6] <= lfsr[5];

 lfsr[7] <= lfsr[6];

 lfsr[8] <= lfsr[7];

 lfsr[9] <= lfsr[8];

 lfsr[10] <= lfsr[9];

 lfsr[11] <= lfsr[10];

 lfsr[12] <= lfsr[11] ^ data_in ^ lfsr[15];

 lfsr[13] <= lfsr[12];

 lfsr[14] <= lfsr[13];

 end

end

endmodule

Figure 5. A Verilog Module for a particular 0x1021 16-bit

polynomial.

The design started with the creation of UML Diagrams
that describe the essential elements of modulo P(x) data
manipulation: shift register, XOR Matrix, register for
memorizing the particular implemented P(x). This was
done both structural and behavioral by the appropriate
UML diagrams (Figure 2 and Figure 3). The process
continued with the XMI generation and was finalized in a
Verilog implementation as exemplified in Figure 5.

V. CONCLUSION

We have presented a methodology for designing ECC
circuits using the UML meta-model to obtain the Verilog
implementation for that specific circuit. The methodology
includes the UML Class Diagram and State Machine
Diagram conception, the XMI generation and XMI-XSLT
translation to Verilog. This methodology can be applied for
implementing various circuits with a diverse range of P(x)
polynomial, code length, detecting and correcting
capabilities, specified in the appropriate and detailed UML
Class Diagrams.

REFERENCES

 [1]J. Rumbaugh, I. Jacobson, and G. Booch, The Unified

Modeling Language Reference Manual. Addison-Wesley,

1998

 [2]M. Lajolo, IP-Based SOC Design in a C-based design

methodology," in Proc. Of IP Based SoC Design 2003, pp.

203-208, Oct. 2003.

 [3]A. Minosi, S. Mankan, A. Martinola, F. Balzarini, A.

Kostadinov, and M. Prevostini, “UML-based

Specifications of an Embedded Systems Oriented to

HW/SW Partitioning: a Case Study" in FDL'03

Proceedings, pp. 226-237, Sep. 2003.

 [4]Thomas, Donald, Moorby, Phillip "The Verilog

Hardware Description Language", Springer, 5th edition

(June 30, 2002).

 [5]Janick Bergerdon, "Writing Testbenches: Functional

Verification of HDL Models", 2000, (The HDL Testbench

Bible).

 [6]Kenny Chung Chung Wai, Dr. Shanchieh Jay Yang,

“Field Programmable Gate Array Implementation of Reed-

Solomon Code, RS(255,239)”, Integrated System Design

Magazine, 2005.

 [7]S. B. Wicker, Error control Systems for Digital

Communication and Storage, Prentice Hall, 1995

