
UML Modeling in Design of Error Detection and Correction Circuits 
 

St. Stancescu, L. Raicea, R. Marinescu, E. Enoiu 
University POLITEHNICA of Bucharest 

Iuliu Maniu 1-3 Blvd, Bucharest, 061071 

E-mail: stst@elia.pub.ro, lavinia.raicea@gmail.com 

 

 

Abstract - The Unified Modeling Language (UML) is used for 

designing, testing and validating system on chip architectures, 

real time systems, and embedded systems. The UML models 

are easily up-gradable an reused in new designs, being a 

powerful tool in extending functionality whenever necessary.  

Our approach describes an UML model for error detection 

and correction algorithms and also for hardware components 

that will perform the functions correspondingly, based on 

polynomial registers mod p(x). 

 

 

I. INTRODUCTION 
 

The aim is to enable a method to compile a UML based 
specification of embedded systems into Verilog code which 
can be subsequently synthesized for implementation onto 
an FPGA. Ideally [1], the UML specification should 
consist of a mixture of Class and State Diagrams (see 
figure 1). The Class diagrams will define a configuration of 
predefined modules and their connectivity. State diagrams 
facilitate the specification of a state based behavior for any 
component whose behavior can be thus expressed [2]. 

 

 

 
Fig. 1. Design Flow 

 

 

II. UML MODELLING 
 

We use two types of UML diagrams for modeling, 
namely, class and state diagrams. Class diagrams are 
predominantly used to describe the component structure of 
a system while state diagrams describe the behavior of the 
components. 

 

II.A. Class Diagrams 
 

We use the class hierarchy to describe the computational 
entities via their methods and their data types. However, 
class diagrams are also used in a crucial way to give an 
overview of a system in terms of components and how the 
components are connected to each other. 

Classes can be related by the following UML relations 
[1]: 

• Generalization (or inheritance): when a channel 

implements an interface, it inherits that interface. 

Moreover, an interface, channel and module can inherit 

another interface, channel and module respectively. 

• Aggregation/composition: modules and channels 

may be hierarchical. 

• Association: classes that exchange messages 

with each other are associated to one another. We model 

messages by UML events with or without arguments. 

Furthermore, a module may have an association 

relationship with an interface when it accesses a channel 

through this interface. 
 

II.B. Object Diagrams 
 

The UML object diagram lists the concrete objects used 
to compute test cases, and defines the initial state of the 
model. Each object diagram must be an instantiation of the 
associated class diagram. Notice the following restriction 
from [1]: objects can not be created or deleted dynamically 
by the actions designed in the model. So all objects used to 
describe the life cycle of the system must be defined in the 
object diagram. The dynamic creation (respective deletion) 
of entities in the concrete system is simulated by creation 
(respective deletion) of links between objects in the UML 
model. 

The following UML elements can be used in object 
diagrams: 

• Objects, or class instances, are the concrete 

objects of the system that are used in the generated tests. 

Every slot – or attribute instance – of every object must 

have a value. 

• Links, or association instances, define the 

dependencies between the objects in the initial state of the 

system. 
 

II.C. State Diagrams 
 

State diagrams describe the behavior of a class. A state 
can be a simple state or a composite state. A composite 
state may be concurrent (often called an AND state). A 
composite state which is not a concurrent state is called an 
OR state. Being in an AND state means being in all of its 
sub-states. Being in an OR state means being in exactly one 
of its sub-states. 

The UML state diagram formalism is a variant of State 
charts invented by David Harel [1]. Harel introduced 
diagrams that extend traditional state-transition diagrams 
with the notions of hierarchy and concurrency. A state 
diagram is a technique to describe the behavior of a system 
and represents the event triggered flow of control where 
objects change state by means of transitions. 

 



 

III. FUNCTIONAL UNIT ALLOCATION 

 

Functional Unit Allocation is the unit who sets and 
classifies simple digital circuit units from a special made 
repository. From [3] we know that hardware is latch-
capable if it intrinsically can latch outputs from a specified 
task without requiring additional latches to be explicitly 
placed. A FIFO and a D-Flip/Flop are examples of latch-
capable hardware.  

When functional units are allocated, they become an 
additional set of constraints. The functional unit allocation 
runs this new set of constraints to the Verilog model. 
Functional units (or IP cores) that can be used are 
multipliers, adders, shifters, FIFO, etc. 

Using the UML Tool’s capabilities for exporting UML 
models as XMI files (XML based syntax) we can approach 
the mapping of the UML meta-models to Verilog modules, 
by using an intermediary step. The XMI file describes 
exactly the structure of the UML model and using a simple 
parser and translator can be brought to the form of Verilog 
Code. An interesting idea may be using XSLT for this 
transformation, which is a non-proprietary XML based 
language also. 

 

 

IV. VERILOG MODELING 
 

Verilog provides the capability to design a digital system 
in a modular fashion. Entire systems can be viewed as 
being composed of numerous individual modules. A 
Verilog module is a system block with well defined:1. 
input signals, say x1,x2,...,xn; 2. output signals, say 
y1,y2,...,ym and 3. internal structure and connections or 
behavior.[4] 

Combinational circuits (CCs) produce output signals 
based on the value of their current input signals. A CC can 
have any number of input variables (input signals). We 
consider a CC as a graph of logic gates interconnected 
according to the logic function they compute. CCs route 
and transform the input values to the desired output values. 

 

IV. A.  Structural Hardware Modeling 
 

In this style we model circuits by specifying the internal 
structure of the block. It is common to directly use the most 
primitive building-blocks available, such as, logic gates, or 
larger blocks which have already been defined elsewhere. 
Verilog provides NOT, OR, XOR, NAND, XNOR, NOR 
gates, among others. Verilog allows each logic gate to have 
any valid number of inputs. 

From [4] we know that Verilog HDL allows circuits to 
be described in two ways, structural (how they are built), or 
in terms of behavior, (what they do). It is important to 
remember that when you describe your circuits’ behavior 
rather than its structure then the synthesis tool has to 
translate the description into logic. The synthesis tool 
although very good at its job may not always translate the 
description into the logic you intended, and also may not 
produce the most efficient circuit possible. For these 
reasons it is useful to have an idea of how your description 
will be translated into logic. 

The two types of coding styles in Verilog:  

Structural or Continuous - used for primitive 
descriptions or data flow without storage  

and(q, a, b); //structural assignment using Verilog 
primitive gate  

assign q = a & b | c; //continuous assignment  

Behavioural or Procedural - can be used to describe 
circuits with storage, and / or combinational logic: 

always@(posedge clock)  

begin  

count <= count + 1;  

if(a)  

z <= b;  

end 

Gate level of abstraction describes the circuit purely in 
terms of gates. This approach works well for simple 
circuits where the number of gates is small, because the 
designers can instantiate and connect each gate 
individually. Also this level is very intuitive to the designer 
because of the direct correspondence between the circuit 
diagram and the Verilog description.  

If the design is very large then a higher level of 
abstraction should be used above gate level. Data Flow 
allows the designer to design a circuit in terms of the data 
flow between registers and how a design processes data 
rather than the implementation of individual gates. The 
design tools would then convert the description to a gate 
level circuit.[5] 

This level of abstraction allows designers to describe the 
circuit's functionality in an algorithmic way. That is the 
designer describes the behavior of the circuit without any 
consideration to how the circuit transfers to hardware. 

 

IV.B.  Verilog Basic Unit Mapping 
 

We will present an example of an UML model for a 
universal CRC serial register (modulo P(x) register): UML 
Class Diagram and Simplified UML State Machine 
Diagram. 

 

 

 
Fig 2. UML Class Diagram of a modulo P(x) register 

 

The structure is centered on the “Register” class from 
which the other two classes are derived: “SHIFT_Register” 
as the register that performs the CRC calculations and the 
“P_X_Register” that memorizes the current P(x) 



coefficients. The class “XOR_Gate” is necessary to 
personalize the CRC register shifting according to the P(x) 
polynomial coefficients.  

The behavior of the modulo P(x) register for a particular 
0x1021 16-bit polynomial can be represented with a 
simplified UML State Diagram as in Figure 3. 

 

 

 
Fig. 3. Simplified UML Diagram for the modulo P(x) register 

 

 

IV.C.  Error Decoding  

 

Decoding ECC [6] involves the extraction of two 
information entities from the received word. These are the 
set of Partial Syndromes, and the Error Locator 
Polynomial. From these two parameters, Error Locations 
and Error magnitudes are extracted, and are directly 
applied upon the rec We will present an example of an 
UML simplified model for a universal Reed-Solomon 
Decoder.  

Figure 4. UML Class Diagram of a simplified Reed-
Solomon Decoder 

 

In the “Syndrome Calculator”class errors are detected by 
calculating the syndrome polynomial which is used by the 
“Key Equation Solver” Class to solve the key equation. 
The structure is centered on the “Key Equation Solver” 
class from which other two classes are derived: 
“Berlekamp-Massey” and the “Euclidian”. The Berlekamp-
Massey algorithm is a shift-register synthesis algorithm [7] 
that has a complex structure but use fewer gates to be 
implemented than the Euclidian algorithm. 

 Based on the “Error Position Finder” class locations of 
the errors are determined. The magnitude of the errors are 
determined based on the error evaluator polynomial in the 
“Error Value Evaluator” Class.  

 

IV.D.  Verilog Basic Unit Mapping 

 

Based on the UML Class Diagram and the UML State 
Diagram, we can obtain the XMI file generated by an UML 
Design Tool. This format is the OMG (Object Management 
Group) format for describing UML specifications and has 
been adopted by most UML Tools.  

 

Fig. 4. Structural XML-based representation of Serial CRC 

CCITT  

 

We present an example, how the markup technology 
XML generation can be applied to structurally represent 
this  ECC model. As an example, we take the interface 
description of the Serial CRC CCITT model in Verilog 
language (module) (see Figure 4). The description has two 
hierarchical levels of structure: entity at the higher level 
and its I/O ports at the lower level.  

Furthermore, each port has the following attributes: port 
name, type (input, output, etc.) and optional the dim for the 
dimension of the port. 

When introducing the markup information into the 
model, each level of abstraction is replaced with the 
corresponding tag, which may be defined freely by the 
designer.  

For example, the domain language level can be marked 
by <verilog> tag, the component interface level-by 
<module> tag, and port level-by <port> tag. Furthermore, 
the attributes of the abstraction are replaced by the property 
of the tag and its value. The property of tag can be defined 
freely, whereas the value of the property must be the same 
as the attribute of the abstraction. For example, module 
CRC can be marked as <module name= ”CRC”/>.  

Using the XSLT transformation language we will 
transform the XMI file and generate a Verilog 
implementation. 
 

 

 

 

 

 

 

 

 

 

 



module serial_crc_ccitt (clk, reset, enable, 

init, data_in, crc_out); 

input clk; 

input reset; 

input enable; 

input init; 

input data_in; 

output [15:0] crc_out;  

reg [15:0] lfsr; 

assign crc_out = lfsr; 

always @ (posedge clk) 

if (reset) begin lfsr <= 16'hFFFF; end  

else if (enable) begin 

  if (init) begin lfsr <=  16'hFFFF; end 

  else begin 

    lfsr[0]  <= data_in ^ lfsr[15]; 

    lfsr[1]  <= lfsr[0];  

    lfsr[2]  <= lfsr[1]; 

    lfsr[3]  <= lfsr[2];  

    lfsr[4]  <= lfsr[3]; 

    lfsr[5]  <= lfsr[4] ^ data_in ^ lfsr[15]; 

    lfsr[6]  <= lfsr[5];  

    lfsr[7]  <= lfsr[6]; 

    lfsr[8]  <= lfsr[7];  

    lfsr[9]  <= lfsr[8]; 

    lfsr[10] <= lfsr[9];  

    lfsr[11] <= lfsr[10]; 

    lfsr[12] <= lfsr[11] ^ data_in ^ lfsr[15]; 

    lfsr[13] <= lfsr[12];  

    lfsr[14] <= lfsr[13]; 

  end 

end  

endmodule 

Figure 5. A Verilog Module for a particular 0x1021 16-bit 

polynomial. 

 

The design started with the creation of UML Diagrams 
that describe the essential elements of modulo P(x) data 
manipulation: shift register, XOR Matrix, register for 
memorizing the particular implemented P(x).  This was 
done both structural and behavioral by the appropriate 
UML diagrams (Figure 2 and Figure 3). The process 
continued with the XMI generation and was finalized in a 
Verilog implementation as exemplified in Figure 5. 

 

 

V. CONCLUSION 
 

We have presented a methodology for designing ECC 
circuits using the UML meta-model to obtain the Verilog 
implementation for that specific circuit. The methodology 
includes the UML Class Diagram and State Machine 
Diagram conception, the XMI generation and XMI-XSLT 
translation to Verilog. This methodology can be applied for 
implementing various circuits with a diverse range of P(x) 
polynomial, code length, detecting and correcting 
capabilities, specified in the appropriate and detailed UML 
Class Diagrams.  
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