
Modeling and Trade-off Analysis of NFRs
Mehrdad Saadatmand, Antonio Cicchetti, Mikael Sjödin

Mälardalen Real-Time Research Centre (MRTC)
Mälardalen University, Västerås, Sweden

{mehrdad.saadatmand, antonio.cicchetti, mikael.sjodin}@mdh.se

Abstract—In this paper we introduce a generic approach to
analyze system design models with regard to the satisfaction
of their Non-Functional Requirements (NFRs) to enable the
evaluation of their NFRs’ trade-offs. NFRs and their satisfaction
become especially critical and deserve more attention in certain
application domains such as real-time and embedded systems.
This is mainly due to the constraints and resource limitations in
these systems. A design that cannot achieve the functionality of
the system under these limitations can mean a failure. However,
one big issue is that NFRs are interconnected and cannot be
considered in isolation as they can have direct impacts on
each other like security and performance. This means that a
careful balance and trade-off analysis among NFRs is necessary.
In doing so, the role of functional parts that contribute and
are implemented to satisfy an NFR should also be taken into
account. We focus on these needs and identify what information
about NFRs is required in order to perform trade-off analysis
and comparison of design models. We propose and explain our
approach to incorporate this information into system models
using UML profiling method to annotate model elements with
necessary information and then calculate satisfaction values of
NFRs using model transformation technique.

Index Terms—Non-Functional Requirements, Trade-off Anal-
ysis, UML, MBD, MDA.

I. INTRODUCTION

The role of Non-Functional Requirements (NFR) through-
out the software development process is gaining more and
more attention, especially that the improper handling of NFRs
has been identified as an important source of failure in many
projects [1], [2]. However, NFRs are still rarely taken into
account seriously and treated as first-class elements in software
development, and are mostly considered as an after-thought in
the final phases of development [3], [4]. There are several
reasons that contribute to this fact. For example, NFRs are
usually stated in an informal way and at a high abstraction
level, therefore, appropriate methods and tools are required
that can incorporate them at earlier phases of development
and along with functional requirements. The importance of
the integration of NFRs with functional parts becomes more
apparent when we realize that different NFRs on the same
functionality can result in different design decisions and im-
plementations [5].

Proper handling of NFRs is even critical in certain do-
mains such as embedded and real-time systems. Successful
design of these systems depends heavily on the satisfaction
of their non-functional requirements. This is mainly due to
the constraints and limitations of these systems in terms of
available resources [6]. Therefore, an embedded system needs

to achieve its functionality under these limitations and NFRs.
The problem is that each design decision can have impact on
the system’s NFRs and the system designer should be able
to identify and evaluate these impacts. For example, if there
is an execution time constraint on a component responsible
for sorting numbers, then choosing a slower algorithm than a
more time-optimized one can lead to the violation of system
requirements and deviation of its behavior from the desired
one. This situation becomes more complicated when we realize
that NFRs not only crosscut different parts of a system, but can
also have mutual impacts on each other. For example, choosing
a time-optimized and faster sorting algorithm can help with
the satisfaction of the timing requirements but may require
more memory and thus violate memory constraints. Also, an
NFR such as security crosscuts different parts of a system
(e.g., user interface, database, communications and network
transmissions) and affects some other NFRs like performance
[7]. Therefore, the tools and methods that are suggested for
handling of NFRs should not only be able cover and cope with
their informal nature, high abstraction level, and integration
with functional ones, but also should be able to help with
identifying their dependencies and impacts on each other to
enable analysis of their trade-off.

Model-Based Development (MBD) helps to raise the ab-
straction level and cope with the design complexity of systems.
This can make it especially interesting for the design of
real-time embedded systems which can have high degree of
complexity. By raising the abstraction level, MBD also enables
analysis at earlier phases of development which in turn enables
identification of problems before reaching the implementation
phase [8]. Since NFRs have a high abstraction level [3] and
also MBD provides views of the system at higher abstraction
levels, providing an MBD approach to incorporate NFRs into
models is deemed more appropriate especially in integrating
NFRs with functional aspects of the system.

In this paper, we propose a UML profile [9] for trade-off
analysis of generic NFRs. The analysis in this work implies
analyzing the dependencies and impacts of NFRs (irrespective
of their type, e.g., performance, security. . . ) as well as the
functional features of the system to provide system designers
with a better insight into how good a system design is in terms
of the satisfaction level of its NFRs. The main contributions
can thus be summarized in the following points:

• providing an approach to capture and model NFRs in an
open and generic way and include them with functional
features as well as the dependencies and relationships



among them,
• enabling designers to evaluate and compare different

design models with regard to their NFRs and identify
designs which can result in better overall satisfaction of
NFRs,

• identifying deviations in the satisfaction of system’s
NFRs and highlighting potentially problematic parts that
deserve more attention.

Enabling trade-off analysis of NFRs through a UML profile
has several key benefits. UML is a standard modeling solution
already adopted by industry and there are many design and
analysis tools based on it. By offering a UML-based solution
for trade-off analysis of NFRs, it becomes possible to make
use of currently available tools. Also, the learning curve for
developers already using UML will be less which implies
both cost and time savings for companies [9]. Moreover, the
approach we propose here tries to extend design models with
necessary information to enable trade-off analysis of NFRs,
and thus can enable using already designed system models
and can save modeling efforts. We propose stereotypes in
our profile by which model elements can be decorated and
related with the necessary information that enable designers
to consult models for specific information about NFRs and
trade-off analysis of them.

The remainder of the paper is structured as follows. In
Section II, we have a look at NFRs in general, including
their definition, characteristics, and the issues around them.
In Section III, we discuss the required characteristics and
information that a solution for managing trade-offs of NFRs
should be able to offer. Section IV explains the profile structure
and concepts. Section V shows an application of the profile
in a portion of a mobile phone design and the analysis is then
performed on the annotated model. In Section VI, we will
have a look at other related works and finally in Section VII,
conclusions are made and future directions are explained.

II. NON-FUNCTIONAL REQUIREMENTS

Requirements are generally divided into two main cate-
gories: functional and non-functional. In the simplest form,
functional requirements are those which define what the sys-
tem should do, while the term non-functional requirement is
used for requirements which specify how a system should
perform or as suggested in [10] ”a non-functional requirement
is an attribute of or a constraint on a system”. There is
a big number of suggested definitions for non-functional
requirements which are discussed in [11]. These requirements
are usually described with terms that end with ’ility’ such
as availability, ’ity’ such as atomicity, while a few other
ones such as performance and user-friendliness do not follow
this pattern. According to the IEEE standards, 610.12-1990
and ISO/IEC/IEEE 24765:2010(E) [12], [13], the following
definitions is provided for non-functional requirements: ”a
software requirement that describes not what the software will
do but how the software will do it (i.e., design constraints)”.

One concept that is often confused with NFR is the concept
of Non-Functional/Extra-Functional Property (NFP/EFP). The

former can be considered as an expression of a need (possibly
informal), and the latter as a statement that is usually asserted
formally and can be therefore proven and analyzed (e.g.,
calculated response time of a component). This implies that
”a requirement can require that a certain property holds (e.g.,
absence of deadlock, meeting deadline, not overflowing a
queue, etc.) and that in order for a property to hold a number of
requirements may have to be met, which we normally neither
express nor assert formally” 1. For example, ”response time
of a component should not exceed 2ms” is a requirement,
while ”response time of component A never exceeds 2ms”
and ”response time of component B is equal to 1ms” are
expressions of properties in a system. In [14], NFP is used
instead of NFR when talking about the final product implying
that the requirement has been concretized and become an
actual property of it.

NFRs have several characteristics that make their considera-
tion in software development process a challenging task. While
Functional Requirements (FRs) are typically realized and im-
plemented one by one and step by step as part of the software
product, NFRs do not usually follow this pattern and the design
decisions taken to implement the functionality of the software
affect their satisfaction. Similarly, while FRs normally have
localized effects, NFRs are basically specifications of global
constraints (e.g., performance, security, availability, etc.) to be
satisfied by the software [3]. In this regard, NFRs can crosscut
different parts of the system (e.g., security). Also, NFRs are
interconnected and there are dependencies among them which
implies that the satisfaction of one NFR can conflict and impair
the satisfaction of other ones. Therefore, trade-off analysis is
required to identify such impacts and establish balance among
NFRs in a system.

On the other hand, NFRs are usually specified in an abstract
and informal way [3], [14] and thus, providing a more formal
approach using model-based development which tries to raise
the abstraction level of systems can help with the treatment of
NFRs during the software development. There are several rea-
sons for incorporating NFRs in the development process and
explicitly dealing with them. Among them are the increasing
number of applications such as in real-time embedded systems
where NFRs play a critical role, and also the strong interaction
between functional and non-functional requirements. More-
over, an explicit treatment of NFRs facilitates prediction of
quality properties of the final product in a more reliable and
reasonable way [14].

The approaches that are suggested for the explicit treatment
of NFRs are sometimes categorized into two groups: product-
oriented and process-oriented [15]. The former approaches try
to formalize NFRs in the final product in order to perform
evaluation on the degree to which requirements are met.
In the latter approaches, NFRs are considered along with
functional requirements to justify design decisions and guide
and rationalize the development process and construction of

1These definitions have been provided and formulated with the help of
Prof. Tullio Vardanega, University of Padova, Italy



the software in terms of its NFRs [14], [15].

III. CHARACTERISTICS OF THE SOLUTIONS

Based on the identified challenges that were discussed
previously, in this section we formulate the key characteristics
that a model-based solution for representation and trade-off
analysis of NFRs should have.

Traceability of design decisions related to an NFR: consid-
ering that NFRs usually crosscut different parts of the system,
the designer should be able to understand which parts of the
system contribute (both positively and negatively) to a specific
NFR; for example, an encryption component that is intended
to satisfy security requirements. With this information, after
trade-off analysis, the designer can identify parts of the sys-
tems that should be removed, replaced, improved or kept.

Traceability among NFRs: throughout the whole design
process of a system, higher level NFRs are refined and broken
down into more concrete ones, particularly in a top-to-bottom
approach. For example, a high level and abstract NFR such
as security can be refined into access control or encryption
requirements at lower levels. Therefore, in order to check the
satisfaction of security in the system, it is necessary to keep
track of its refinements and lower level requirements that cover
different aspects of security along with information on how
much each one contributes towards its parent NFR.

Satisfaction level of an NFR: it should be possible to
evaluate the total satisfaction level/degree of an NFR in the
system. This is necessary to compare current design against
system specification and customer requirements as well as
different design alternatives. In the end, the goal is that the
designer gets an idea to what extent each NFR is satisfied.
Judging where this level is acceptable or not is done as the
next step after applying the approach we suggest in this paper
and probably by checking it with the stakeholders.

Impact of an NFR on other NFRs: as mentioned before,
NFRs cannot be considered in isolation in a system without
taking into account their impacts on each other. Therefore, it
is required to identify and evaluate the effects that a model
element and design decision that is used to satisfy one NFR,
has on another NFR in the system. For example, performing
heavy computations by an encryption component in an embed-
ded system can also mean consuming more battery. Therefore,
the side effects of such design decision should be identifiable
for the designer.

Priority of an NFR: not all NFRs have the same importance
in the system. In order to increase the overall satisfaction of
NFRs and also to resolve conflicts among NFRs (reduce the
impact of one NFR in favor of another), it is necessary to know
the importance of each NFR and compare them. Considering
priority for NFRs is also important in order to capture the
preferences of customers/users. Similarly, priorities can also
be considered for different features implemented to satisfy an
NFR.

Coherent terms for NFRs: one subtle problem with NFRs
that is more often noticed in large enterprises is that different
(sub)departments may have different interpretations for an

NFR term or use different terms to refer to an NFR [16].
Therefore, it is important to provide a coherent and consis-
tent notation for defining NFRs and relating them to design
elements.

Coherent measurements of NFRs: to compare different
NFRs and perform trade-off analysis among them, evaluation
of the satisfaction degree and impacts of NFRs should follow a
coherent representation. In other words, the criteria or metrics
used should be such that to allow pair-wise comparison of
NFRs (e.g. using the same types, scales and units, or a
convertible format).

IV. SUGGESTED PROFILE

Figure 1 shows the structure of our profile to include the
necessary information mentioned in the previous section in
models to enable trade-off analysis of NFRs.
System: this stereotype is used to annotate the system

which is the context of the analysis and to which different
NFRs belong. It includes satisfactionValue tagged value to
represent quantitatively the total satisfactions of the system’s
NFRs.
NFR: each NFR is identified using this stereotype. A higher

level NFR (in terms of abstraction level) can be refined into
one or more other NFRs. Therefore, there is an association
relationship to itself (reflexive aggregation).
Feature: this stereotype represents a feature in the sys-

tem that contributes to the satisfaction of an NFR and is an
equivalent of Operationalization concept in NFR framework
and Softgoal Interdependency Graph (SIG) [17] (described
later in the paper) or tactics as used in [4].
NFRContributes: this stereotype which is used on

relationships between model elements shows that an element
(NFR or Feature) contributes directly to the satisfaction of
another element. The contributionValue property of this stereo-
type is used to specify the degree of this contribution.
NFRImpacts: this is similar to NFRContributes stereo-

type but is used to include the impact of a model element on
other NFRs in the system in a quantitative manner. In other
words, this stereotype is defined to capture the side effects of
features and NFRs. ImpactValue property of this stereotype
shows the degree of the impact. A positive value for the
ImpactValue implies a positive side effect, and a negative one
implies a negative side effect accordingly.
NFRCooperates: is used to relate two or more elements

that cooperate together to satisfy an NFR. This is similar to
the AND relation in NFR framework and SIG.
NFRApplies: the relation between NFR related model el-

ements and functional ones can be modeled using NFRApplies
stereotype (e.g. an NFR that applies to a component).
Rationale: this property and tagged value in NFR and

Feature stereotypes can be used to include the description
and rationale for an NFR, its refinements into other NFRs
or Features implementing it.
Priority: this property in NFR and Feature stereotypes

is used to capture customer preferences and priorities in terms
of the importance of NFRs and Features. This helps to identify



satisfactionValue: Double{readOnly}
rationale: String
priority: Integer
deviationIndicator: Double{readOnly}

«stereotype»
NFR

«metaclass»
UML::Classes::Kernel::Classifier

NFR Profile

«metaclass»
UML::Classes::Dependencies::Realization

contributionValue: Double

«stereotype»
NFRContributes «stereotype»

NFRApplies

parentNFR

0..1

childNFR

0..*

«stereotype»
System

satisfactionValue:Double{readOnly}

satisfactionValuel: Double{readOnly}
rationale: String
priority: Integer
deviationIndicator: Double{readOnly}

«stereotype»
Feature

0..*

1..*

childFeature

0..*

parentFeature

0..*

0..1

«metaclass»
UML::Classes::Dependencies::Dependency

«stereotype»
NFRCooperates

«stereotype»
NFRImpacts

impactValue: Double

Fig. 1. Profile for Trade-off analysis of NFRs

less important parts in case modification and removal of some
features or NFRs is necessary.
DeviationIndicator: is a read-only property which

is calculated and set automatically. DeviationIndicator takes
into account the priority and satisfaction value, and provides
a number which indicates to the designer the importance and
magnitude of how much the satisfaction of an NFR or Feature
has deviated/violated. While the satisfaction value does not
reflect user preferences and priorities, the deviation indicator
value shows which parts of the system deviated more from
the specification (i.e., being fully satisfied) and need to be
modified to achieve a better satisfaction level.

There are also several rules on the elements and their
relationships described above:

• The allowed range of values to set is between -1 and 1
(except for priority). For example a negative value on the
NFRImpacts relationship shows the negative impact of
the source element on the target element.

• The satisfaction value for each leaf node is considered to
be 1.

• Allowed values for priority are: 1 (very low), 2 (low), 3
(medium), 4 (high), 5 (very high).

• The sum of contribution values of the links connecting
children nodes (refinement/lower level elements) to their
parent should be less or equal to 1 (maximum is 1).

• Contribution of a child node to its parent is calculated as
the satisfactionValue of the child node multiplied by its
contributionValue or impactValue.

• The satisfactionValue of a node is, therefore, calculated
as the sum of the contributions from all of its children
nodes plus the sum of the impacts of all other nodes,
divided by the total number of NFRImpacts relationships
to it plus 1. In other words, if sk is the satisfaction value
for each child node of a node, lk is the value on the
link that connects the child node k to its parent node
(NFRContributes), and ij is the impact value of another
node on this parent node, the satisfaction value of the
parent node is calculated as:

∑
sk ∗ lk +

∑n
ij

n+ 1
(1)

This calculation is performed starting from leaf nodes
(considering that the satisfaction of leaf nodes is 1) and
is calculated recursively upwards toward the top element
which is the system.

• The DeviationIndicator is calculated after the calculation
of satisfaction value using the following formula:

DeviationIndicator =

Priority − Priority ∗ SatsifactionV alue
(2)

Based on this calculation and considering that the Satis-
factionValue is always between -1 and 1 and priority is
an integer value between 1 and 5, the value of Devia-
tionIndicator will be in the range of [0, 10]. The perfect
situation is when the DeviationIndicator value is 0, and
the more this value increases the more is the deviation
from the desired design, and thus, it indicates a bigger
and more severe problem.

V. IMPLEMENTATION AND USAGE EXAMPLE

The profile concepts described in the previous section were
implemented in MDT Papyrus [18]. In Figure 2 an example
usage of the profile is shown on parts of a mobile phone
system. Two NFRs are defined. One on the quality of the
taken camera picture and the other one on the battery life.
There are two features that contribute to the quality of taken
photos: usage of a flash and type of the lens. Also two features
are considered for Battery Life: adjustment of screen’s
brightness level and auto standby feature. The contribution of
each feature to its parent NFR is annotated using NFRCon-
tributes stereotype and its contributionValue attribute. In this
system, the use of flash consumes lots of battery. The impact of
the Flash feature on Battery Life is therefore specified
using NFRImpacts stereotype and its impactValue attribute
which is -0.8. Preferences of the customer in terms of the



Fig. 2. Example usage of NFR profile for a Mobile Phone (before calculations)

relative importance of NFRs and Features are captured through
the priority property of each model element. For example,
Battery Life has priority level 5 which means it is more
important than the Camera Picture Quality which has
priority level 4. Satisfaction and DeviationIndicator values are
initially 0 as no calculation has yet been done on the model.

One point here is that, although these values are assigned
subjectively by the system designer, there are methods such
as sensitivity analysis [4] that help to increase the confidence
in the chosen decision. Now what we need to understand is
the impact that having the Flash feature has on the system.

By having the necessary information in the model, it is now
possible to perform analysis on the model to determine impacts
of each design decision on the system and evaluate their
dependencies. To traverse the model and perform calculations,
we have developed a model-to-model (M2M) transformation
using QVT Operational language (QVT-O) [19] in Eclipse
[20]. It reads as input a UML model annotated with our
profile, traverses the nodes and calculates satisfaction values
and writes the results back in the same model. In other words,
we use an in-place transformation (i.e. input and output models
are the same).

To calculate the satisfaction values, a recursive algorithm is
used in the model transformation based on the rules mentioned
in the previous section. For each node, all the incoming
links that have NFRImpacts or NFRContributes stereotypes are
retrieved. If a node does not have any such links (meaning that
it is a leaf node), its satisfaction value is set to 1. Otherwise,
the source of the link, which is another node, is retrieved and
the algorithm continues by calculating the satisfaction value
of the source node; hence the recursion.

The algorithm basically applies Formula 1 which is men-
tioned in the previous section. For example, in Figure 2, the
satisfaction values for Auto Standby and Brightness
Level features are set to 1, since they are leaf nodes. The

satisfaction value of Battery Life is then calculated as the
satisfaction value of Brightness Level (1) multiplied by
the value on the link that connects it to Battery Life (0.5),
plus the same multiplications for Auto Standby (1*0.5)
and Flash (1*-0.8) which results in 0.20. The discrepancy
observed between this calculated value (0.20) and the one in
Figure 3 (0.199. . . ) which is calculated automatically through
the in-place model transformation on the model is due to the
OCL implementation of real numbers that QVT-O uses.

By performing the transformation on the whole model, the
satisfaction values are calculated for each node and propagated
upwards toward the system element as shown in Figure 3:

(1∗0.4+1∗0.6)∗0.3+((1∗0.5+1∗0.5)−0.8)∗0.7 = 0.44

Therefore, the total satisfaction value in this case will be
0.44. Trying the procedure again on the same model but
without having the Flash feature results in:

(1 ∗ 0.6) ∗ 0.3 + (1 ∗ 0.5 + 1 ∗ 0.5) ∗ 0.7 = 0.88

Similarly, as soon as the satisfaction value for a feature
or NFR is calculated, the deviationIndicator property value is
also calculated using Formula 2 and set in the model. For
the leaf nodes, since their satisfaction values are always 1,
their deviationIndicator value will always result in 0. For the
Camera Picture Quality NFR, the deviationIndicator
value is calculated as:

4− 4 ∗ 1.0 = 0

which means that there has been no deviation from the
desired design. However, for the Battery Life NFR, this
value will be:

5− 5 ∗ 0.2 = 5− 1 = 4

This value shows that there exists some deviation which in



Fig. 3. Analyzed model of the system

this case is due to the side effects of having the Flash feature
on Battery Life. Based on the specification of the actual
system that is being developed, this could, for instance, imply
that the type of flash is not good enough in terms of energy
consumption for this system and needs re-consideration.

Since the calculation of the deviation indicator is based on
the priority of each NFR or Feature, in a larger model where
deviations in several parts of the system are observed, the user
can understand on which parts of the model, modifications
should be done and in which order. In other words, parts
with higher deviation value indicate more critical problems
and deserve more attention.

Figure 4 shows performing the analysis on the same model
but without the Flash feature. This model could, for example,
represent another family of mobile phones or another usage
scenario. It can be seen that the total satisfaction level of the
system is higher in this case: 0.88 versus 0.44 in the previous
case. The removal of the Flash feature, however, also causes
some deviation (1.6) for the Camera Picture Quality
NFR.

Based on these calculations, our suggested approach enables
a more accurate comparison of design alternatives considering
the interdependencies and trade-offs among different NFRs
of the systems helping designers to make better decisions.
Also the introduced modeling concepts and calculations above
provide for several interesting features. One feature is the
possibility to optimize the total satisfaction of the system
considering different design alternatives. For example, in the
mobile phone system described, if the designer needs to select
among several possible solutions that contribute to better
image quality, he/she can find the ones that lead to the highest
satisfaction value of the system. Another possibility is to have
run-time adaptability or re-configuration based on different
quality of service levels. For example, if the battery level

goes low beyond a certain limit, the system can go into a
power-saving mode using features that incur minimum impact
on battery consumption or replacing active components with
back-up/standby ones which may provide lower quality/fewer
services but consume less battery (e.g., in design diversity
techniques [21]). Without the analysis introduced here, such a
decision may not only be hard, but also will be blind in the
sense that the side effects of a feature/component replacement
on other aspects of the system will be unknown.

VI. RELATED WORK

There are versatile research works that try to target dif-
ferent issues regarding NFRs. [22] focuses on the problem of
informal and separated documentation of design decisions and
NFRs. To alleviate the problem, it introduces two profiles to
model design decisions and generic NFRs to treat them as first-
class entities in software architectures and maintain the trace-
ability of design decisions and architectural elements. NFR
framework proposed in [17] is one of the fundamental works in
the area of NFRs which is a process-oriented and goal-oriented
approach. It uses Softgoal Interdependancy Graph (SIG) to
represent NFRs, their refinements and entities that NFRs are
applied to (termed as Operationalization), and the interdepen-
dencies among them to include their impacts and relations. The
dependencies and contributions of NFRs are specified using
make, hurt, help, break and undetermined relationship types.
Besides NFR softgoals, and operationalizating softgoals, NFR
framework also introduces claim softgoals which convey the
rationale and argument for or against a design decision. It
provides notations to mark critical NFRs in the graph and
also an evaluation procedure to determine satisfaction and
conflicts of NFRs. The approach suggested in NFR framework
is basically a qualitative approach. Moreover, the criticality
concept in NFR framework seems more suitable for developers
and does not convey enough information for prioritization



Fig. 4. Analyzed model of the system without the Flash feature

of NFRs particularly from the customer’s perspective and
also for performing trade-off analysis [4]. [23] offers a UML
profile for modeling SIG and concepts of NFR framework to
represent NFRs as UML elements in order to integrate them
with functional parts of the system (that are modeled in UML).
T. Marew et al. [4] introduces Q-SIG which is a quantified
version of SIG that enables quantitative evaluation of impacts
and trades-offs among NFRs. In this paper, we introduced
modeling concepts that enable designers to apply the Q-SIG
approach in the form of UML models, and provided a tooling
solution for evaluation and trade-off analysis of NFRs on these
models using this approach. ProcessNFL that is introduced
in [3] is a textual language for describing non-functional
properties during the software development. It offers templates
for describing three abstractions that capture different aspects
of non-functional properties: NF-Attributes, NF-Properties and
NF-Actions. Moreover, the language enables to express the re-
lationships between these abstractions to include dependencies
and impacts of non-functional properties in the system. The
language is an effort for explicit treatment of non-functional
properties during software development.

While deciding on the satisfaction of NFRs is mainly
considered to be subjective, there are several works that try to
provide quantifications for NFRs to ease their evaluation and
analysis. Kassab et al. in [1], [24] offer a method to quantify
NFR size in a software project based on the functional size
measurement method to help with the estimation of effects of
NFRs on the effort of building the software in a quantitative
manner. [2] makes use of Requirements Hierarchy Approach
(RHA) as a quantifable method to measure and manipulate the
effects that NFRs have on a system. It does so by capturing
the effects of functional requirements. In [25], an approach
for quantifying NFRs based on the characteristics of and
information from execution domain, application domain and
component architectures is suggested.

SysML [26] which is a UML profile for system engineering
also includes a package for generic modeling of requirements
(both NFRs and FRs) and the relationships among them. These
relationships mainly capture the traceability and hierarchy
of requirements (e.g., refinement). While SysML does not
specifically focus on NFRs and analysis of them, our approach
and SysML can be used together to complement each other.

VII. CONCLUSION AND FUTURE WORK

In this paper, a UML profile for modeling NFRs and their
dependencies was introduced to enable performing trade-off
analysis among them. It was shown how it can help to compare
different design models, determine which ones achieve a
higher satisfaction of the NFRs, and identify parts of the model
which might be good candidates for modification to reach a
higher satisfaction level in the system.

One point to note about the proposed approach is the issue
of scalability and evaluating how it can be applicable for very
complex and large systems. While this is basically a general
concern in model-driven engineering, there are some solutions
for management of large models which can be considered such
as using a multi-view approach and providing better degree of
separation of concerns by defining different views over the
model of a system [27]. Also in this work, we assumed that
the designer can provide values (though subjective) for contri-
bution and impact relationships among NFRs and functional
features. As mentioned, there are some techniques that help
system designers in providing such quantitative information.
However, this may also imply that our suggested approach can
be especially more applicable for component-based systems
where systems are built out of already existing components and
thus more knowledge about their characteristics and behaviors
are available (e.g., memory usage, execution time). Moreover,
our approach can also be useful in the analysis of software
architecture evolution, when new requirements or features are
introduced into a system or existing ones are modified [28].



As the continuation of this work, we plan to develop an
analysis tool as an Eclipse plug-in that can read as input,
models annotated with our NFR trade-off profile and provide
total satisfaction values for different NFRs, identify parts
contributing negatively to an NFR, and perform calculations
for overall optimization of NFRs in the system considering
different design alternatives and scenarios. With the help of
the tool, when some parts of the system need to be changed
and updated, the user can identify the side effects of such
changes on other parts and the system as a whole in terms of
NFRs, at model level and before implementing the intended
changes. The defined profile depicted in this paper is the first
step toward enabling such features.

Using the introduced modeling concepts here along with a
back-annotation mechanism in model-based development of
embedded systems will also be an interesting topic to further
investigate and work on. Having such a mechanism, it would
be possible to monitor the system and provide feedbacks to
the design model about possible violations in the system (or
any of its subsystems) in terms of satisfaction levels of their
NFRs. Also, the usage of the suggested approach for run-
time adaptability and re-configuration of systems is another
direction for further investigation.

VIII. ACKNOWLEDGEMENTS

This work has been partially supported by the CHESS
European Project (ARTEMIS-JU100022) [29] and Xdin AB
[30].

REFERENCES

[1] M. Kassab, O. Ormandjieva, M. Daneva, and A. Abran, “Software pro-
cess and product measurement,” J. J. Cuadrado-Gallego, R. Braungarten,
R. R. Dumke, and A. Abran, Eds. Berlin, Heidelberg: Springer-Verlag,
2008, ch. Non-Functional Requirements Size Measurement Method
(NFSM) with COSMIC-FFP, pp. 168–182.

[2] A. J. Ryan, “An approach to quantitative non-functional requirements in
software development,” in Proceedings of the 34th Annual Government
Electronics and Information Association Conference, 2000.

[3] N. Rosa, P. Cunha, and G. Justo, “Processnfl: a language for describing
non-functional properties,” in System Sciences, 2002. HICSS. Proceed-
ings of the 35th Annual Hawaii International Conference on, jan. 2002,
pp. 3676 – 3685.

[4] T. Marew, J.-S. Lee, and D.-H. Bae, “Tactics based approach for
integrating non-functional requirements in object-oriented analysis and
design,” The Journal of Systems and Software, vol. 82, pp. 1642–1656,
October 2009.

[5] Y. Liu, Z. Ma, and W. Shao, “Integrating non-functional requirement
modeling into model driven development method,” in Software Engi-
neering Conference (APSEC), 2010 17th Asia Pacific, December 2010,
pp. 98 –107.

[6] T. Henzinger and J. Sifakis, “The embedded systems design challenge,”
in FM 2006: Formal Methods, ser. Lecture Notes in Computer Science,
J. Misra, T. Nipkow, and E. Sekerinski, Eds. Springer Berlin /
Heidelberg, vol. 4085, pp. 1–15.

[7] J. Lee, K. Kapitanova, and S. H. Son, “The price of security in wire-
less sensor networks,” Journal of Computer and Telecommunications
Networking, vol. 54, pp. 2967–2978, December 2010.

[8] B. Selic, “The pragmatics of model-driven development,” IEEE Software
Journal, vol. 20, pp. 19–25, September 2003.

[9] ——, “A systematic approach to domain-specific language design using
uml,” in Object and Component-Oriented Real-Time Distributed Com-
puting, 2007. ISORC ’07. 10th IEEE International Symposium on, May
2007, pp. 2 –9.

[10] M. Glinz, “On non-functional requirements,” in 15th IEEE International
Requirements Engineering Conference, New Delhi, India, October 2007,
pp. 21–26.

[11] L. Chung and J. C. Prado Leite, “Conceptual modeling: Foundations and
applications,” A. T. Borgida, V. K. Chaudhri, P. Giorgini, and E. S. Yu,
Eds. Berlin, Heidelberg: Springer-Verlag, 2009, ch. On Non-Functional
Requirements in Software Engineering, pp. 363–379.

[12] “IEEE Standard Glossary of Software Engineering Terminology,” IEEE
Std 610.12-1990, 1990.

[13] “Systems and software engineering – Vocabulary (IEEE Standard),”
ISO/IEC/IEEE 24765:2010(E), 15 2010.

[14] N. S. Rosa, G. R. R. Justo, and P. R. F. Cunha, “A framework for building
non-functional software architectures,” in Proceedings of the 2001 ACM
symposium on Applied computing, ser. SAC ’01. New York, NY, USA:
ACM, 2001, pp. 141–147.

[15] J. Mylopoulos, L. Chung, and B. Nixon, “Representing and using
nonfunctional requirements: a process-oriented approach,” Software En-
gineering, IEEE Transactions on, vol. 18, no. 6, pp. 483 –497, jun 1992.

[16] M. Saadatmand, A. Cicchetti, and M. Sjödin, “Uml-based modeling
of non-functional requirements in telecommunication systems,” in The
Sixth International Conference on Software Engineering Advances (IC-
SEA 2011), October 2011.

[17] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-Functional Re-
quirements in Software Engineering, ser. International Series in Software
Engineering. Springer, October 1999, vol. 5.

[18] MDT Papyrus , http://www.eclipse.org/modeling/mdt/papyrus/, Ac-
cessed: February 2012.

[19] QVT Operational Language, http://www.eclipse.org/m2m/, Accessed:
February 2012.

[20] Eclipse Modeling Framework Project (EMF), http://www.eclipse.org/
modeling/emf/, Accessed: February 2012.

[21] J. P. J. Kelly, T. I. McVittie, and W. I. Yamamoto, “Implementing design
diversity to achieve fault tolerance,” IEEE Software Journal, vol. 8, pp.
61–71, July 1991.

[22] L. Zhu and I. Gorton, “Uml profiles for design decisions and non-
functional requirements,” in Proceedings of the Second Workshop on
SHAring and Reusing architectural Knowledge Architecture, Rationale,
and Design Intent, ser. SHARK-ADI ’07. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 8–.

[23] S. Supakkul, “A uml profile for goal-oriented and use casedriven
representation of nfrs and frs,” in In Proceedings of the 3rd Interna-
tional Conference on Software Engineering Research, Management and
Applications, 2005, pp. 112–121.

[24] M. Kassab, M. Daneva, and O. Ormandjieva, “Early quantitative
assessment of non-functional requirements,” Enschede, June 2007.
[Online]. Available: http://doc.utwente.nl/64134/

[25] R. Hill, J. Wang, and K. Nahrstedt, “Quantifying non-functional require-
ments: A process oriented approach,” in Proceedings of the Require-
ments Engineering Conference, 12th IEEE International. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 352–353.

[26] OMG SysML Specifcation V1.2, http://www.sysml.org/specs.htm, Ac-
cessed: March 2012.

[27] M. Panunzio and T. Vardanega, “A metamodel-driven process featuring
advanced model-based timing analysis,” in Reliable Software Tech-
nologies Ada Europe 2007, ser. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2007, vol. 4498, pp. 128–141.

[28] H. Pei-Breivold, I. Crnkovic, and M. Larsson, “A systematic review of
software architecture evolution research,” Journal of Information and
Software Technology, July 2011.

[29] CHESS Project: Composition with Guarantees for High-integrity Em-
bedded Software Components Assembly, http://chess-project.ning.com/,
Accessed: March 2012.

[30] Xdin AB, http://xdin.com/, Accessed: April 2012.

http://www.eclipse.org/modeling/mdt/papyrus/
http://www.eclipse.org/m2m/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://doc.utwente.nl/64134/
http://www.sysml.org/specs.htm
http://chess-project.ning.com/
http://xdin.com/

