
A Compact Approach to Clustered Master-Slave Ethernet Networks

Mohammad Ashjaei, Moris Behnam, Thomas Nolte
Mälardalen University, Västerås, Sweden

mohammad.ashjaei@mdh.se

Luis Almeida, Ricardo Marau
IT / DEEC, University of Porto, Portugal

lda,marau@fe.up.pt

Abstract
Ethernet switches are increasingly used in real-time

distributed systems as a technical solution to guarantee
the timeliness in communications. However, there are
still limitations related to real-time behavior caused by
the limited number of priority levels and the possibility of
memory overruns with consequent message losses. These
limitations can be eliminated using a master/slave tech-
nique such as proposed by the FTT paradigm. This led
to the FTT-SE protocol that schedules transmissions cen-
trally in a master node. While this protocol has already
been well studied and investigated for small networks with
a single switch, its extension to larger networks is still an
open issue. In this paper we propose a compact clustered
solution to scale the FTT-SE protocol to networks of mul-
tiple switches by organizing the network in sub-networks
composed of one master and one switch each and which
can be connected directly, without bridges. This paper
also shows how the timeliness of the traffic can still be en-
forced. The response time analysis, implementing a pro-
totype and developing a simulator is currently on-going.

1 Introduction
Communication within embedded systems is substan-

tially increased when the systems are distributed, large
scale and complex. To support a higher number of
nodes and functionality, several protocols have been pro-
posed to achieve real-time behavior while exchanging
higher amounts of data. One possible technique based
on switched Ethernet is using a master/slave scheme in
which a master node controls all transactions between
the slave nodes. Also, the master node is responsible to
schedule all communication considering the real-time and
QoS constraints. This technique is used, for example, in
the EtherCAT [1] and the Ethernet Powerlink (EPL) [2],
where a master node dispatches transmissions according
to scheduling tables.

The FTT-SE protocol (Flexible Time Triggered
Switched Ethernet) [3] is a master-slave technique that
supports run-time adaptation of the network traffic enforc-
ing an explicit synchronization. Several methods have
also been investigated to handle asynchronous traffic in
the FTT-SE protocol [4]. However, until recently this pro-
tocol considered single switch networks, only. Different
alternatives to handle the limitation of a single switch have
been suggested in [5]. Furthermore, scheduling and re-
sponse time analysis of a multi-hop FTT-SE network con-
figuration using a single master with multiple switches has
been studied in [6]. Nevertheless, a solution based on a

single master is suitable for small and medium size net-
works, only, and contains a single point of failure.

In this paper, we propose a solution to support large
scale FTT-SE networks with multiple switches, by defin-
ing sub-networks (clusters) composed of one switch and
one master each, and connecting them together directly,
as needed. We show how this can be achieved keeping
the timeliness of the communications. The proposed solu-
tion covers both synchronous and asynchronous message
transmissions.

2 FTT-SE Protocol
FTT-SE is a real-time communication protocol that im-

plements the flexible time triggered paradigm to guaran-
tee the traffic timeliness. A dedicated node called mas-
ter controls transmissions in the network at every Elemen-
tary Cycle (EC). For each EC, the master node schedules
all ready messages according to an on-line policy, such
as fixed priority, and encodes the schedule into a Trigger
Message (TM). The master node broadcasts the TM to all
slave nodes at the beginning of the EC [3], slave nodes
receive the TM, decode it and transmit the messages that
were scheduled for transmission. During transmission of
the TM by the master, slave nodes send the status of their
ready asynchronous traffic to the master. As illustrated in
Figure 1, the time it takes for a slave node to decode the
TM and start its transmissions of messages is called the
turn around time. Moreover, scheduler considers an idle
time in transmission bandwidth to prevent overrun of mes-
sages. Figure 1 shows the communications within each
EC assuming a simple example of a network consisting
of one master node and two slave nodes (A and B). As
shown in the figure, the data communication slot within
each EC is divided in two sub-slots, where one dedicated
to synchronous traffic (periodic) called the synchronous
window (SW), and the other to asynchronous (aperiodic)
traffic (ASW). The input and output ports of switches are
called uplinks and downlinks respectively.

The master node considers the asynchronous requests
from the slaves (for example A and B for two slaves in
Figure 1) and schedules ready aperiodic messages for the
upcoming EC [4]. In the best case, this method takes at
least one EC to schedule the aperiodic traffic [4] (one or
two additional ECs are required to send the request to the
master).

Furthermore, the FTT-SE protocol fragments large
messages into several packets which are scheduled sep-
arately, and selecting the optimum packet size has been
studied in [7] to maximize the schedulability of traffic.



Figure 1. FTT-SE Elementary Cycle
3 System Model

In this paper we assume that the network is composed
of several switches connected in a tree topology in which
one switch on the top of the hierarchy is connected to one
or more switches in the second level of hierarchy. This
may continue to deeper levels in the hierarchical architec-
ture. Moreover, each switch has one master node attached,
together with several nodes, forming a sub-network. Also,
each switch, master and sub-network of the network hier-
archy is a parent switch, master and sub-networks for the
lower hierarchy level connected to it. The level on the top
of the network hierarchy is called the root level. Figure 2
shows an example of the mentioned architecture in which
five sub-networks are connected together. Sub-network 1
contains SW1, master M1 and nodes A and B. SW1 is
the parent switch for SW2 and SW3 and, in turn, SW2
is the parent switch for SW4 and SW5. Furthermore, the
switches are considered as store-and-forward type.

Synchronous message streams are modeled using
the periodic real-time model mi(Ci,Mmax,Di, Ti, Oi,
Si, Dsi, Ri), where Ci is the total transmission time of
the message, Di and Ti are relative deadline and period
of the message, respectively, Oi is the offset, Mmax is
the maximum packet transmission time for the large mes-
sages that are fragmented by the protocol. Also, Ri de-
notes the set of switches in the route of a message from
the source node Si to the destination node Dsi. For asyn-
chronous message streams, the model is similar to the pe-
riodic model except that there is no offset Oi, and Ti is the
minimum inter-arrival time of the message [6].

Moreover, when using multiple switches in a network,
we define two kinds of messages. If the sender and re-
ceiver of a message are connected to the same switch,
i.e., they belong to the same sub-network, the message
is called local. Otherwise, a message is called global.
Finally, note that we are considering a restricted model
with unicast messages, only. The extension to multicast
messages will be done in future work. This extension is
more critical to the analysis than to the operational as-
pects, which raise no specific difficulty. Substantial ex-
perience with this issue has already been developed in the
current FTT-SE implementation [3].

4 Problem Formulation
Simply connecting the sub-networks as defined previ-

ously is not enough to achieve an efficient bandwidth uti-
lization and an analyzable network. This is due to follow-
ing reasons:

Confinement of broadcast domains. Within each
sub-network, the respective master controls the traffic us-
ing broadcasting one TM per EC. By simply connect-
ing sub-networks together, the broadcast nature of each
TM will make them propagate through the entire network,
generating unwanted interference.

Figure 2. An example of network with five
switches

Figure 3. Overrun caused by EC non syn-
chronicity

Time synchronization. According to FTT-SE, all
transmissions between nodes scheduled in each EC should
be finished within the same EC. This should also apply
to the traffic that travels across sub-networks, which re-
quires that the ECs in all sub-networks are synchronized.
Therefore, all masters should broadcast their TMs approx-
imately at the same absolute time. Otherwise, transmis-
sions can overrun the EC causing undesired interference
(Figure 3).

Scheduling synchronization. All masters that sched-
ule global messages should do it consistently, i.e., they
should be scheduled in the same ECs, in order to limit
the interference between global messages sharing commu-
nication paths. Otherwise, global messages scheduled in
one sub-network but not in another one may suffer from
unwanted interference and miss their deadlines (Figure 4).

5 Confinement of broadcast domains
In order to prevent TMs to cross the sub-network

boundaries we propose using multicast groups. Each sub-
network has, thus, its own multicast address that includes
all the local nodes and excludes the connections to other
sub-networks. Thus, sending a TM to such an address
naturally confines its distribution to the associated local
nodes. Nevertheless, the nodes transmissions are carried
out in the usual way, with direct addressing. Another al-
ternative would be to use one VLAN per cluster but we
believe this would be more complex to implement due to
the number of situations of traffic that needs to cross the
VLANs boundaries, i.e., the global traffic. A deeper com-
parison of both approaches will be carried out in future
work.



Figure 4. Overrun caused by message inter-
ference

6 Time Synchronization
Among the diverse ways of synchronizing the ECs in

all sub-networks we propose using a simple explicit syn-
chronization mechanism based on a specific message that
is broadcast to the entire network by the root master. We
call this message the Global Trigger Message (GTM) and
it is a minimum size Ethernet packet. All masters in all
sub-networks are waiting for the GTM to initiate their lo-
cal ECs by sending their own local TM (Figure 5). This
mechanism generates a staggered start of the ECs in sub-
networks at different depths in the hierarchy but we con-
sider this delay acceptable given the minimum length of
the GTM.

In order to recover from GTM losses, we define time-
out intervals for each master according to its position in
the network hierarchy. If a master does not receive a GTM
after its time-out interval, it will generate one and sent to
its children. Nevertheless, other fault-tolerance mecha-
nisms related to tree reconfiguration have implications on
the timeliness of the traffic and will be addressed in future
work.

Figure 5. Global synchronization using a
Global Trigger Message

7 Global Scheduling
7.1 Periodic Message Scheduling

According to the FTT-SE protocol, each EC has two
scheduling windows (SW and ASW) to handle syn-
chronous and asynchronous traffic in the network. Our
goal is to schedule the local and global traffic within those
windows efficiently.

For this purpose we have divided each scheduling win-
dow in global and local sub-windows to separate local
transmissions from global ones. For each asynchronous
and synchronous window, specific bandwidth for local
and global messages is considered as shown in Figure 6.
By having a dedicated bandwidth for local message trans-
missions, the same message scheduling approach used for
a single switch network in [4] can be reused for the local

message scheduling. The optimal selection of bandwidth
reservation for the local and global messages can be stud-
ied as an optimization problem.

Figure 6. EC windows considering local and
global traffic

As for synchronous global messages, we schedule
them in parallel in all masters, with similar parameters.
For this purpose, we make sure that all synchronous
global schedulers are synchronized, i.e., scheduling the
global synchronous messages in the same ECs in all sub-
networks. The synchronization of the schedules is facil-
itated with a cyclic EC counter that is broadcasted to the
whole network within the GTM. Since each global syn-
chronous message is scheduled in all sub-networks, the
schedulers ensure that there is enough bandwidth for its
timely transmission along its path. However, note that it
will be effectively triggered in one of the sub-networks,
only, in which the respective producer is.

Looking at the network shown in Figure 2, consider
that there is a synchronous global message that must be
sent from C to D. It must cross the following links UC,
DW2=UW1, DW1=UW3 and DD in which UC is the up-
link connected to node C and DD is the downlink con-
nected to node D and DW2 and UW3 are the downlink of
SW2 and uplink of SW3, respectively. To make sure that
all links in the path have adequate bandwidth reserved for
the message transmission in a given EC, all masters in-
volved directly and indirectly in the path must schedule
it consistently, namely masters M2, M1 and M3. Never-
theless, to ensure about the consistency of the schedulers,
all masters schedule the message within the global syn-
chronous window.
7.2 Aperiodic Message Scheduling

Similarly to the synchronous window for handling pe-
riodic messages, we have also divided the asynchronous
window into two parts for local and global aperiodic mes-
sages, respectively. Therefore, local aperiodic messages
have their own bandwidth for transmission. Thus, they
can be handled exactly as in the case of single switch net-
works presented in [4].

Concerning global asynchronous messages, the solu-
tion proposed for global synchronous scheduling does not
work. In fact, unlike synchronous messages, the time at
which asynchronous messages become ready to be trans-
mitted is not known in advance. Therefore, we propose
two possible solutions to perform the global asynchronous
message scheduling such that it is analyzable and support
timeliness guarantees.

7.2.1 Bandwidth reservation per sub-network
In this solution we further divide the bandwidth allocated
to the global asynchronous sub-window among all sub-
networks, i.e., we allocate a dedicated bandwidth to each
sub-network. Considering the network architecture in Fig-
ure 2 with 5 sub-networks, we divide the global asyn-
chronous sub-window in 5 sub-windows such that each



sub-network has its dedicated sub-window for schedul-
ing the global aperiodic messages that are requested by
its slave nodes. Since there is an exclusive window for
each sub-network taken into account by all masters, there
will be no interference between the global aperiodic mes-
sages produced in different sub-networks. Moreover, this
method is again similar to the single switch FTT-SE case.
A similar approach was also proposed in [8] but with
bandwidth being reserved for each node instead. The main
disadvantages regarding this method are the following:
• Similarly to the single switch case, idle time must

be considered in both analysis and implementation
of the protocol for each sub-window dedicated to
each sub-network to avoid overrun of aperiodic mes-
sages. Therefore, the accumulation of all idle times
decreases the bandwidth utilization and efficiency.

• Whenever there are no global asynchronous requests
in one EC in a given sub-network, the respective
bandwidth will be wasted and cannot be used by
other sub-networks, further reducing the protocol
bandwidth efficiency.

7.2.2 Bandwidth reservation per sn-cluster
In this case we reorganize the network in clusters of sub-
networks, which we call sn-clusters. Basically, a sn-
cluster merges all sub-networks that have the same parent
sub-network. Using again the example in Figure 2, SW4
and SW5 are grouped as one sn-cluster while SW2 and
SW3 are grouped as another sn-cluster together with the
root sub-network SW1. The global asynchronous band-
width is now divided among the sn-clusters, only, con-
sequently decreasing the number of global asynchronous
sub-windows (Figure 7) and the total idle time.

The rationale of this solution is to let each parent mas-
ter manage in an integrated way the global asynchronous
requests of all its children sub-networks. In this case,
the nodes send their global aperiodic message requests
to the parent master in a specific signaling message, sent
immediately after the signaling message of the local re-
quests. The parent master schedules those requests to-
gether considering the sn-cluster assigned bandwidth and
prepares a special TM, called asyncTM, just with the
triggers for such messages, to be broadcast in the chil-
dren sub-networks, after their regular local TM. This is
achieved sending the asyncTM to each child sub-network
multicast address.

Figure 7. Global asynchronous reservation
per cluster

Considering again Figure 2, if there is a ready global
aperiodic message from node E, then node E sends the re-
quest to master M2 (parent master). Then, M2 will sched-
ule this request together with any other requests coming
from its children sub-networks, using the sn-cluster as-
signed bandwidth (sub-window), and send an asyncTM
with the respective triggers to sub-networks SW4 and
SW5. The advantages and drawbacks of this solution are:

• There is less idle time associated to the global asyn-
chronous sub-windows and thus any bandwidth slack
can be used more efficiently than in the first solution.

• It involves extra complexity, not only in forming the
sn-clusters but also in assigning the respective band-
width and in the extra signaling and the trigger mes-
sages that are needed.

Finally, note that the bandwidth distribution among sn-
clusters is another optimization problem that needs further
investigation.

8 Conclusions and Future Work
In this paper we propose a solution to scale the FTT-SE

protocol to large networks using a compact clustered ap-
proach in which the clusters are sub-networks composed
of one master, one switch and the nodes connected to it.
The sub-networks are connected directly, thus in a com-
pact way, without any specific interconnection equipment
such as gateways. We addressed the design issues to make
this an efficient solution that provides timely communica-
tions, covering both synchronous and asynchronous traf-
fic.

Currently, we are refining the design of the current so-
lution as well as implementing a prototype and develop-
ing a modular simulator based on Matlab/Simulink. Si-
multaneously, we are developing a response time analysis
suitable for the protocol presented in this paper. Once im-
plementation and simulator are available, we will validate
the proposed approach and we will also apply it to general
master-slave networks.

References

[1] “Real-time PROFINET IRT, http://us.profibus.com
/profinet/07”.

[2] “Ethernet Powerlink, available at http://www.ethernet
-powerlink.org”.

[3] R. Marau, L. Almeida, and P. Pedreiras, “Enhancing real-
time communication over cots ethernet switches”, in 6th
IEEE International Workshop on Factory Communication
Systems (WFCS’06), June 2006, pp. 295 –302.

[4] R. Marau, P. Pedreiras, and L. Almeida, “Asynchronous
Traffic Signaling over Master-Slave Switched Ethernet pro-
tocols”, in 6th International Workshop on Real Time Net-
works (RTN’07), July 2007.

[5] F. Yekeh, M. Pordel, L. Almeida, M. Behnam, and P. Por-
tugal, “Exploring alternatives to scale FTT-SE to large net-
works”, in 6th IEEE International Symposium on Industrial
Embedded Systems (SIES’11), june 2011, pp. 107 –110.

[6] M. Behnam, Z. Iqbal, P. Silva, R. Marau, L. Almeida, and
P. Portugal, “Engineering and Analyzing Multi-Switch Net-
works with Single Point of Control”, in International Work-
shop on Worst-case Traversal Time (WCTT’11), November
2011.

[7] M. Behnam, R. Marau, and P. Pedreiras, “Analysis and op-
timization of the MTU in real-time communications over
Switched Ethernet”, in 16th IEEE International Conference
on Emerging Technologies Factory Automation (ETFA’11),
september 2011, pp. 1 –7.

[8] A. Mifdaoui, F. Frances, and C. Fraboul, “Performance
Analysis of a Master/Slave Switched Ethernet for Military
Embedded Applications”, IEEE Transactions on Industrial
Informatics, vol. 6, no. 4, pp. 534 –547, november 2010.


