
Adding Flexibility and Real-Time Performance by Adapting a Single Processor
Industrial Application to a Multiprocessor Platform

Leif Enblom, Lennart Lindh
Mälardalens University, MRTC (Mälardalens Real Time Research Center)

{leif.enblom, lennart.lindh}@mdh.se

Abstract— This paper describes a way to get more
flexibility in a real-time product and its base platform (real-
time operating system and hardware). Industrial hardware
and software platforms are due to change and in some
cases a new platform is needed after five to ten years, if not
earlier. This is costly and there is a need to be able to make
the product grow in performance without changing the
platform. The ongoing work that is described in this paper
is performed in cooperation with industry and the attempt is
to convert a single processor software application to a
multiprocessor application. By changing the platform to a
flexible multiprocessor real-time platform, flexibility and
performance will be increased, resulting in a more
optimized platform for different configurations of the
application.

Index Terms – multiprocessor system, scalable multiprocessor
system, real-time system

I. I NTRODUCTION AND MOTIVATION

A multiprocessor application in an industrial system is
often different compared to a massively parallel application.
Usually a small number of processors collaborate and
applications do not act on very much data. The challenge is
rather concerning response time, where a late response is an
error and can result in damage to equipment or even
humans. Response time constraints range from a couple of
ms up to around 20ms for the application described in this
paper, depending on where in the system measurement is
performed.

The need for more real-time performance in many
industry control and protection systems is increasing from
year to year. New functionality is added into systems, which
may alter system behavior, timing constraints and overall
performance. A simple and maybe not very costly temporal
solution is to follow the evolution of ever-increasing
performance of CPUs, upgrading the system when
calculation demand exceeds maximum calculation power.
This may not be attractive for industrial systems for a
number of reasons. Industrial systems, that are located in
harsh electrically and magnetically influenced
environments, may encounter limited possibilities for
cooling and protecting equipment. Sometimes cooling and
protecting is not possible or even forbidden. Thus,
increasing computing performance by increasing the clock-
frequency on the board is not in itself feasible, if this
implies more power consumed. Multiple boards on the other
hand may require as much or even more power than a
system with one CPU, but cooling is made easier. For some

environments, requirements are restricting power
consumption for a single board to a specific amount, while
the allowed power consumption in the whole rack-mount,
where the boards are placed, is greater. In these
environments it is attractive with a flexible solution where
the application designer can choose to use one or multiple
boards.

The work that is progressing, attempts to evaluate the
possibilities to create a system that is not limited to a
specific number of CPUs. Both the hardware and software
system should be scalable, and the system today is for the
main part based on standard components, which should be
the case for the new system as well (with exception of the
RTU[2]). The use of standard components is attractive and
can give faster time to market as well as cutting
development costs. Hardware designers are hard to find and
standard components are well tested and comparably cheap.
The design of a new PCB (Printed Circuit Board) with a
high clock-frequency is not easy to implement, and a
standard PCB can reduce these problems.

An interesting aspect of the adaptation to a
multiprocessor system is the flexibility of hardware
configuration. Sometimes the calculating demand of the
system used today exceeds the possibilities to increase
performance on a single board, and an identical system (in
another rack-mount) has to be built to support all additional
functionality needed. This identical system is inserted in
parallel, communicating mostly over fiber-network
interconnect, thus increasing the hardware needed. In this
case the proposed multiprocessor solution can decrease the
number of components used, limiting the need for an
additional rack-mount.

II. T HE SOFTWARE MODEL AND THE
HARDWARE ARCHITECTURE

The SARA-system (Scalable Architecture for Real-time
Applications)[1] is a system based on the idea to
incorporate as many parts of a real-time operating system
into hardware as possible. In this system the central part is
the hardware RTU (Real Time Unit)[2] that is responsible
for many operations commonly carried out in software. The
scheduler is for example integrated into the RTU, capable of
controlling tasks on a variable number of CPUs in the
system. The scalability of the SARA-system can be used in
the transition from a single processor system into a
multiprocessor system. In this work the SARA-system is
inspirational in converting the original system into the new.

An overview of the original hardware architecture can be
seen in Figure 1. The present system is a single processor



system, mounted in a rack-mount with a standard back-
plane Compact PCI-bus. Asynchronous data, originating
mainly from the AIM (Asynchronous Input Module), stream
into the system towards the CPU-board. The system has to
evaluate the data continuously, and make appropriate
decisions on time. There are strict criteria on the response-
times to events that have to trigger the actuator.

Peripheral
Board

CPU Board

CPU

Memory

Bridge

Compact PCI-
bus

Asynchronous
Input
Device(AIM)

A
ct

ua
to

r

System
environment

Local
Bus

Figure 1, The original Hardware Architecture

The software model of the original system is depicted in
Figure 2, with applications utilizing the system by
communicating with a VOS (Virtual Operating System). T1
– T4 in the figure depicts tasks in the application and base-
system executing on the CPU-board. The main reason why
VOS was created was portability, enabling the developer to
move existing applications from one platform to another
without having to adopt the code to a new operating system
and hardware. Different real-time operating systems can be
run below the VOS interface, for example WindRiver's
VxWorks[3] or any real-time operating kernel supporting
the features of VOS.

CPU
Board

VOS

Application &
base-system

RTOS

CPU

T1 T2 T3

T4

Figure 2, The Software Model of the Original System

The new proposed hardware architecture looks as
depicted in Figure 3. As can be seen, the RTU and an
additional board have been introduced where the RTU
schedules tasks running on both CPU Board 1 and CPU
Board 2. In this MIMD[4] architecture, tasks being
scheduled by the RTU run independently on the boards.
Independently means that the code that executes does not
need to be aware of on which board it runs. There is no need
for a scheduler on each of the boards, thus reducing time

spent in context switches. As many parts of the system as
possible consist of standard components, including the
boards, the rack-mount and the back-plane bus, but there
still exist some legacy in-house components (such as the
AIM), and the RTU is a custom defined component.

Peripheral
Board

CPU Board 1

CPU

Memory

Bridge

Compact PCI-bus

Asynchronous
Input
Device

CPU Board 2

CPU

Memory

Bridge A
ct

ua
to

r

System
environment

RTU

Figure 3, The new Hardware Architecture

The software model of the system in the new
multiprocessor system is illustrated in Figure 4. Context
switches are triggered by the RTU, and the RTOS on each
board saves current context and makes next task running.

CPU Board 1 CPU Board 2

T1 T2 T3 T4

RTUVOS VOS

RTOS RTOS

Figure 4, The Software Model of the New System

The RTOS provides an interface for accessing the
features of the RTU, changing priority of the tasks, setting
periodic timers and interrupt-handling methods.

III. S OFTWARE CONSIDERATIONS

There are different aspects of the software system that
has to be evaluated and analyzed. Today at least three areas
of interest can be outlined as described below.

A. VOS

VOS is the main interface between existing applications
built for the system. A number of fundamental calls and
functions of the VOS have to make use of the RTU in the
new system, and among the features that have to be
supported are:

1. Threads have to be able to be deleted and created, as
well as being suspended. When the task is to be run is
decided by the RTU. This is done by issuing an interrupt to



the CPU-board where the task resides, triggering the local
task-switch routine.

2. Shared resources have to be protected by binary
semaphores and counting semaphores. Resources that have
to be protected are of special interest in a multiprocessor
system. There has to be a central resource so that the
different CPU-boards can take and release the semaphores
atomically. This is possible through a hardware semaphore
implemented in the RTU.

3. Memory handling is essential in the system, where
tasks in the original system allocate memory from pre-
configured memory-pools. This feature will function alike
in the new system.

4. Message passing between tasks in the original system
is performed through message queues that can be globally
accessed by every task. Messages can be sorted by priority
as well as handled in FIFO order. In the new multiprocessor
system, message passing can be integrated into the RTU by
means of messages queues in hardware. A reader wanting to
receive messages from a message queue gets blocked when
there are no available messages, and whenever a message
arrives at the queue the task get ready to run, i.e. it is put
into the ready-queue of the RTU.

5. Periodic triggers as well as delay functionality are
essential in a real-time system and are supported by the
original system and in the new as well.

B. I/O and Interrupts

Interrupts are an essential issue in the present system. A
frequent amount of incoming data needs to be handled by
the application, originating from I/O boards (mostly the
AIM). Handlers, i.e. callback functions, take care of
incoming signals on the single CPU main board. A uniform
handling concerning interrupts is needed in the new system
and tasks have to be partitioned onto the boards in a right
way. It is desirable to allocate all ISR (Interrupt Service
Routines) on one single board thus collecting the base-
system there. Applications can then be placed on the
secondary board, relieving the pressure on the base-system,
and simultaneously the application gets more computing
time by not being interrupted by the base-system. This will
be more discussed in chapter four below.

C. Applications

Applications written for a single processor system can
inherently have semantics and code that pose a threat to an
adaptation to a multiprocessor platform. Message passing is
for example performed in the original system through
message buffers that reside solely on one board. The new
system must support uniform use of the send and receive
primitives across the whole platform, and this is
accomplished through the use of message queues integrated
in the RTU. This gives the possibility to write and adapt
application message passing that scales arbitrarily in the
multiprocessor system.

A uniform approach to the use of shared resources has to
be developed, which includes for example semaphores.

Semaphores that can be taken locally in the original system
have to conform in the same way in the multiprocessor
system. The RTU has got support for hardware semaphores
that can be used to achieve a centralized access-point to
semaphores and protect resources.

IV. F LEXIBILITY AND REAL -TIME
PERFORMANCE

The challenging part of the work is the adaptation of the
application, which has solely been written for a single-
processor system and utilizes a single processor RTOS.
Questions arise concerning the tasks and on which boards
they are to be placed to achieve an optimized application.
There is a need in the system to differentiate the real-time
parts of the system (generic I/O handlers and real-time tasks
having timing constraints) from less timing constrained
tasks such as logging functions and external HMI (Human
Machine Interface) communication. Different
configurations for where to place tasks on the different
boards need to be developed. Users of the system must be
able to easily alter the configuration and test it on the target
system. The solution is to provide a configuration
mechanism enabling the developer to move and compile
tasks into different images that can be downloaded to the
boards.

Communication between the boards has to be minimized
to gain best performance in the multiprocessor system. The
original application has been created and partitioned into
many tasks as illustrated in Figure 5 (the tasks merely
illustrate how the application can be configured). Different
groups of tasks that share common assignment and
cooperate a lot can be identified in the original system.
These tasks should be placed on the same board, and the
developer of the system can with a configuration manager
place them arbitrarily on the different boards.

CPU
Board

T2 T3

T1

T4

Input from
Peripheral
Board (AIM) Output to

Actuator

CPU
Board
1

CPU
Board

2

T2

T1

Input from
Peripheral
Board (AIM)

T3

T4

Output to
Actuator

Figure 5, example of tasks in the original system as
well as the new multiprocessor system and a possible
configuration.



Task T3 and task T4 in Figure 5 may for example
cooperate to a high degree, while task T1 is receiving a high
volume of data from the peripheral board (AIM). The data
is prepared for the application (task T3 and T4) by task T1,
and also sends some logging activities to T2. In finding a
configuration where maximum performance is reached,
tasks T3 and T4 might be placed on CPU board 2.

Data from the AIM is arriving at task T1 in bursts, and
during these periods CPU 1 will be highly loaded. As task
T1 is receiving data and preparing it, the application (task
T3 and T4) can continue to run without interruption.
Therefore a performance speedup in the application is
possible. The application designer might want to separate
task T1 from the application tasks as described, and this
should be performed with the help of a partition manager at
compile time.

Since we have introduced message passing between the
boards, we also have introduced more delay into some of
the data exchange. It is therefore especially important for
the developer of applications to partition tasks well. The
extra message passing between the two boards might
potentially lead to bus contention and longer delays. First
analytical results show that this is not a threat. The
interconnect is able to deliver much higher volumes of data
than is produced and sent.

A gain that is inherently provided by the RTU is a
performance increase due to the lack of timer-interrupts on
each board. The tasks do not require rescheduling or
corresponding actions until the RTU issues a command.
This gain can be as large as 32%[5], compared to a system
with a conventional scheduler in software having to
administer clock ticks.

Flexibility has been introduced in the system thanks to
the ability to choose to build a single processor system or a
multiprocessor system. It is not necessary to run the new
system on a multiprocessor architecture, so for the cases
where extra performance is not needed a single processor
solution is sufficient. At the same time as we have
introduced flexibility with the multiprocessor solution we
have also introduced complexity in terms of increased
difficulty debugging the application and more parameters to
remember when writing applications. This requires extra
attention on how the base-software and operating system is
constructed. Application coders should not be forced to take
special actions to send a message to a special board, for
example.

V. FUTURE WORK AND SUMMARY

As the work progresses, knowledge of how a complete
mapping of the system can be done is gained. While
identifying the problems involved when integrating the
multiprocessor system, problems may arise. These problems
may arise in the synchronization of tasks, preserving the
semantics of the applications, and providing full support for
all the features required. Furthermore there is a need of
identifying which additional features are needed in the
RTU, and how they have to be developed to make the new
system fully functional.

The SARA platform, which has been inspirational for
this attempt, already today provides full multiprocessor
support. Today's single processor applications in the present
system are quite well parallelized due to wise use of
threads, but performance is not sufficient for some
configurations of the application. The multiprocessor
solution utilizing a central hardware scheduler and resource
manager (RTU) can increase flexibility in terms of
scalability in hardware as well as software. There are big
challenges involving adapting present code to the new
system and the future will yield if the solution is
commercially feasible in terms of development time and
efforts.

VI. A CKNOWLEDGEMENTS

ABB Automation Products have supported this work.

VII. R EFERENCES

[1] Lennart Lindh, Tommy Klevin, Johan Furunäs,
"Scalable Architecture for Real-Time Applications -
SARA", Swedish National Real-Time Conference
SNART'99Linköping, Sweden, August 1999.

[2] Joakim Adomat, Johan Furunäs, Lennart Lindh, Johan
Stärner, "Real-Time Kernel in Hardware RTU: A step
towards deterministic and high performance real-time
systems", 8th Euromicro Workshop on Real-Time
Systems, L´Aquila, Italy, 1996.

[3] http://www.windriver.com
[4] Michael Flynn, Kevin Rudd, "Parallel Architectures",

ACM Computing Surveys, Vol. 28, No. 1, March 1996.
[5] Johan Furunäs, "Benchmarking of a Real-Time System

that utilizes a Booster",International Conference on
Parallel and Distributed Processing Techniques and
Applications (PDPTA2000), Las Vegas, USA, June
2000.


