
Timing Analysis of Component-based Embedded Systems

Jan Carlson
Mälardalen Real-Time Research Centre

Mälardalen University, Sweden
jan.carlson@mdh.se

ABSTRACT
The recent trend towards applying component-based and
model-driven approaches also to the development of safety-
critical real-time embedded systems, opens new possibili-
ties for model-level analysis of aspects that traditionally are
analysed very late in the development when the system has
been fully implemented. For real-time systems, the tempo-
ral aspect is as important as the functional to the overall
correctness of the system, and thus timing analysis in dif-
ferent forms play a key role in their development. This pa-
per presents the timing analysis of ProCom, a component
model specifically targeting distributed real-time embedded
systems, focusing in particular on three methods for compo-
sitional model-level analysis of worst-case execution time.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication; D.2.13 [Software Engineering]: Reusable Soft-
ware; C.3 [Special-purpose and Application-based Sys-
tems]: Real-time and embedded systems

Keywords
Component-Based Development, Compositional Real-Time
Analysis, Embedded Systems

1. INTRODUCTION
The domain of safety-critical, real-time embedded systems

is characterized by on one hand the need for analysis pro-
viding accurate and reliable estimations of the system be-
haviour, including timing, and on the other hand severe re-
source limitations in terms of, for example, memory and
computational resources. As a result of the demand to con-
stantly provide more advanced functionality at the same or
lower development costs, system complexity is approaching
the limit of what can be effectively handled by traditional
development approaches.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CBSE’12, June 26–28, 2012, Bertinoro, Italy.
Copyright 2012 ACM 978-1-4503-1345-2/12/06 ...$10.00.

Recently, component-based software engineering (CBSE)
and model-driven development (MDD) have received much
attention also in these domains. These approaches aim to
aid system developers by promoting, respectively, the con-
struction of systems from existing components instead of
building them from scratch each time, and the use of mod-
els as key design artefacts instead of code.

Another consequence of adopting a model- or component-
based approach is that some of the analyses that tradition-
ally could only be performed once the system is fully de-
veloped can be applied in earlier stages of development, to
guide the search for the most suitable design alternatives.

The work presented in this paper is carried out in the con-
text of ProCom, a component model specifically targeting
distributed real-time embedded systems, and addresses some
of the timing analysis challenges found on different levels of
model granularity. We present an overview of the overall
timing analysis scheme envisioned for ProCom, and describe
in detail three analysis methods for model-level analysis of
worst case execution time.

The paper is organized as follows: Section 2 gives a short
introduction to ProCom, followed by an overview of the dif-
ferent timing analysis methods in Section 3. Sections 4, 5
and 6 provide more details on the three model-level analysis
techniques for worst case execution time. Section 7 surveys
related work, and Section 8 concludes the paper.

2. PROCOM
The ProCom component model [8] addresses the particu-

larities of the embedded systems domain, including resource
limitations and requirements on safety and timeliness. Pro-
Com is organized in two distinct layers, called ProSave and
ProSys, that differ in terms of architectural style and com-
munication paradigm. Both layers are hierarchical, i.e., sup-
porting composite components internally defined by inter-
connected subcomponents. The way in which the two layers
are linked together is that a primitive ProSys component can
be modelled as a collection of ProSave subcomponents. At
the bottom of the hierarchical nesting, the primitive ProSave
components are implemented by C functions.

2.1 ProSave
ProSave components are passive units interacting through

explicit data and control flow connections between data ports
where data of a given type can be written or read, and trigger
ports that control the activation of components. Data ports
always appear in a group together with a single trigger port,
and the ports in the same group are read or written together

jcn01
Textruta
15th International ACM SIGSOFT Symposium on Component Based Software Engineering (CBSE'12), Bertinoro, Italy, June 26-28, 201, ACM.

C
C1

C
C1

C2 C2

Figure 1: Original and simplified ProSave notation.

in a single atomic action. Together, an input group and its
associated output groups are called a service.

ProSave components follow a strict read-execute-write cy-
cle where activation is always initiated externally. Initially,
all services of a component are in an idle state, just receiving
data on its input data ports. When the input trigger port
of a service is activated, the data at the input data ports of
the service are atomically copied to internal representations
which remain unchanged until the end of the service exe-
cution. Then, the service functionality is executed, during
which each output port group of the service produces data
once. When all output port groups have produced data,
the service immediately returns to the idle state. Trigger
activations arriving while in the executing state are ignored.

In addition to simple connections from output to input
ports, connectors provide detailed control over the data- and
control flow. The connectors influencing the control flow are:
Fork which forwards control to all output ports; Join which
forwards control to the output port only when all input ports
have been triggered; Selection which forwards control to one
of the output ports depending on the value of its data ports;
and Or which directly forwards control from any of its input
ports to the output port.

Figure 1 (left) shows a composite ProSave component C
consisting of a single service (i.e., one input port group)
with two output port groups. Triangles and squares denote
trigger and data ports, respectively, and the filled circle rep-
resents a control fork connector forwarding the triggering
to subcomponents C1 and C2. Since this paper focuses on
the control flow aspect of ProSave, we will use a simplified
notation shown in Figure 1 (right).

2.2 ProSys
ProSys components are active units communicating by

asynchronous messages sent and received through typed mes-
sage ports. Compared to ProSave, the component semantics
at the ProSys level is less restricted. The semantics does not
enforce explicit relations between input and output ports,
nor does it places any restrictions on the interleaving of ex-
ecution of functionality and sending or receiving messages.

Figure 2 exemplifies the ProSys notation, depicting a com-
posite component with one input message port, two output
message ports and two subcomponents. Note that the con-
trol flow of the composite cannot be determined without
additional knowledge about the subcomponents, since no re-
strictions on the control flow of subcomponents are imposed
by the ProSys semantics. For example, it is not known if S1
sends messages in response to incoming messages on one of
its ports, or as part of an internal activity. In this paper, we
will use a simplified version of the notation, where the mes-
sage channel symbol is replaced by simple arrows between
the ports.

S

S1 S2

Figure 2: ProSys notation.

3. ANALYSIS OVERVIEW
The objective of real-time analysis is to establish worst

case response times for crucial functionalities to ensure that
system level end-to-end deadlines are met in all situations.
Traditionally, this analysis is performed at task level, as-
suming knowledge of all tasks in the system in terms of
activation patterns (e.g., period) and worst case execution
time (WCET).

For applications developed in a rich modelling formalism,
such as ProCom, the existence of additional information cre-
ates opportunities for more advanced timing analysis, com-
pared to the traditional real-time analysis on task level.
Analysis on a model level can be performed also in early
stages of development, when parts of the system are still
undefined. In hierarchical models, compositional analysis
can improve analysis scalability. Rather than analysing the
entire system at once, analysis of individual part derive tim-
ing information that can in turn be used in the analysis of
enclosing entities.

The ProCom timing analysis consists of three major types
of analysis: code level WCET analysis, model level WCET
analysis and response time analysis. They are described
below, and the model level WCET analysis mechanisms are
further detailed in the next section.

3.1 Code level WCET analysis
The objective of this analysis is to establish WCET infor-

mation for individual primitive ProSave components, i.e.,
components with functionality that is (or will be) imple-
mented by user provided code. This type of analysis is not
ProCom specific, although explicit knowledge from the com-
ponent model, such as value range constraints, could be ex-
ploited for increased precision.

Timing information can be extracted from code by means
of testing or by static analysis deriving a safe approximation
of the WCET From a CBSE perspective, both testing and
static analysis have higher impact if performed on individual
components in a general context, since this allows the timing
information to be reused when the component is reused in
new systems. On the other hand, analysis or testing in a
particular system context can give more precise information.

3.2 Model level WCET analysis
The role of the model level WCET analysis is to cover all

hierarchical levels of a ProCom model, deriving WCET in-
formation for the top level entities from information about
the primitive components at the bottom. In order to permit
analysis also in early stages, and to facilitate reuse of analy-
sis results, we propose a fully compositional approach where
each composite component is analysed in isolation, based
only on WCET information about its constituent subcom-
ponents (previously derived or manually estimated) and not
on their internal structure.

As a result of the two layers, ProSave and ProSys, three
different analysis mechanisms are needed, one for each type

of composite entity: composite ProSave component, primi-
tive ProSys component (i.e., a ProSys component internally
modelled as a collection of interconnected ProSave compo-
nents), and composite ProSys components.

The main difference between the three analysis mecha-
nisms is a result of the different component entities and
communication style in the two layers. The ProSave seman-
tics places more restrictions on how a component is allowed
to interact with its environment. As a result, the WCET
information associated with a ProSave component is fairly
simple, essentially a WCET value for each service, while the
information needed for a ProSys component is more elab-
orate as it must capture the WCET and output messages
associated with internal activities as well as with received
messages. On the other hand, ProSave provides richer con-
structs for controlling the communication between subcom-
ponents of a composite in terms of data and control flow.
Consequently, the analysis of composite ProSys components
has fewer constructs to consider than the other two.

Detailed descriptions and examples of the three analysis
mechanisms are given in Sections 4, 5 and 6, respectively.

3.3 Response time analysis
Traditionally, this analysis is performed on the system as

a whole, since it requires information about all parts of the
system to determine the overall impact on a specific task.

ProCom uses a hierarchical scheduling approach by means
of virtual nodes, intermediate entities between software com-
ponents and hardware nodes. Components are allocated to
virtual nodes, and the virtual nodes are in turn allocated
to the nodes of the underlying distributed system. each vir-
tual node has an execution budget defining for example how
much CPU resources it is entitled to and bounds on how the
access may be distributed over time. This means that the
response time analysis is separated in two parts:

a) Each virtual node can be analysed in isolation, inde-
pendently of other parts of the system, to determine
if the budget is sufficient to satisfy all timing require-
ments within the node.

b) On system level, we can determine if a given allocation
of virtual nodes over the physical nodes is schedulable,
i.e., if the execution budgets of all virtual nodes can
be satisfied in all circumstances.

Note that the result from a) is valid also if the virtual node
is reused (with the same budget) in another system.

The ProCom modelling support in terms of virtual nodes
and allocation models, and its impact on timing analysis, is
described in [1].

4. PROSAVE ANALYSIS
The analysis at ProSave level is performed on a single

composite ProSave component. From WCET information
about each subcomponent (mapping each service to an in-
teger representing its WCET), and from the way they are
connected, WCET information for the composite is derived.

The explicit relation between input and output port groups
in ProSave makes it possible to follow the control flow within
the composite. Another useful aspect of the restricted se-
mantics is that a service does not permit being triggered
again during execution, and the control flows of different ser-
vices is not allowed to mix. This means that it is sufficient
to analyse a single invocation of each service in isolation.

Algorithm 1 ProSaveWCET(p, S)

1: if no connection p→ p′ exists then
2: return 〈0, S〉
3: Let p′ be the port for which the connection p→ p′ exists
4: if p′ is an output port of the service under analysis then
5: return 〈0, S〉
6: Let C be the construct (connector or subcomponent service)

to which p′ belongs
7: w ← wcet(C)
8: if C is a subcomponent service or control fork then
9: for each output port p′′ of C do

10: 〈w′, S′〉 ← ProSaveWCET(p′′, S)
11: w ← w + w′

12: S ← S′

13: return 〈w, S〉
14: else if C is a control join with output port p′′ then
15: Let P be the set of input ports of C
16: if P ⊆ S ∪ {p′} then
17: 〈w′, S′〉 ← ProSaveWCET(p′′, S − P)
18: return 〈w + w′, S′〉
19: else
20: return 〈w, S ∪ {p′}〉
21: else if C is a selection then
22: wtot ← 0
23: Stot ← ∅
24: for each output port p′′ of C do
25: 〈w′, S′〉 ← ProSaveWCET(p′′, S)
26: wtot ← max(wtot, w′)
27: Stot ← Stot ∪ S′

28: return 〈w + wtot, Stot〉
29: else if C is a control or with output port p′′ then
30: 〈w′, S′〉 ← ProSaveWCET(p′′, S)
31: return 〈w + w′, S′〉

The analysis is detailed in Algorithm 1. We denote by
wcet(C) the WCET information associated with a service
C of one of the subcomponents, or the WCET overhead
associated with the type of connector C (fork, join, etc.).
For each service of the component under analysis, let p be
the trigger port of the input port group, compute

〈w, S〉 = ProSaveWCET(p, ∅)

and associate the service with w in the produced WCET
information for the composite.

A key challenge of the analysis is to handle nested com-
binations of connectors, in particular nested fork/join and
selection/or constructs. The way in which this is handled in
the algorithm is by propagation of state information both
forward and backward as the control chains are traversed.
The state is simply a set of ports denoting the input ports of
join connectors that have been reached so far in the analysis.
This prevents the analysis from including components after
a join connector multiple times.

When analysis reaches a selection, it performs a separate
analysis of each output alternative and use the maximum
WCET from all branches as the overall result. Forks are
handled in a similar way, but with the important difference
that the resulting state from the first branch is used as input
to the analysis of the second branch, etc. Also, the overall
result is the sum of all branches, rather than the maximum.

Example
Figure 3 shows a composite ProSave component A consisting
of four subcomponent and four connectors. All components
involved consist of only a single service.

The analysis of A follows the triggering path through B,

C

B

A

E

3 & 5

4
<90,{}> 10

40 80

7

1
<0,{ j1}>

2
<40,{ j1}>

8
<140,{}>

C

D

<80,{}>

20
6

<100,{}>

<100,{}>

X W Sub component S l tiF kX W Sub component
X with WCET W

Selection

Or

Fork

JoinControl connection

Figure 3: Example of analysis at ProSave level.

stops at port j1 of the join connector. On the way back (steps
1 and 2), the WCET is accumulated and the state {j1} is
passed along to be used in the second fork branch. When
the join connector is reached after traversing the selector
and C, the state indicates that all ports of the join have
been triggered, and thus the traversal continues through E
and WCET is accumulated on the way back to the selection
(3 and 4). The second path from the selection is explored
using the same state as for the first one, thus resulting in
the same traversal through the join and E (5). Returning
to the selection (6), the maximum of the two alternatives
is taken (7). Finally, the result of the fork connector is the
sum of its branches, which is returned as the result of the
whole analysis (8).

5. PROSAVE TO PROSYS ANALYSIS
The analysis bridging the gap between the two levels of

the model is applied to primitive ProSys components, i.e.,
ProSys components that internally are constructed by inter-
connected ProSave components and connectors. Thus, the
analysis algorithm is very similar to the one presented in
the previous section. The most important difference is the
format of the final analysis result, reflecting the difference
between the analysed enclosing entities (a ProSave and a
ProSys component, respectively).

Since ProSys components are not passively waiting to be
triggered, but instead can contain multiple internal activi-
ties as well as activities triggered by incoming messages, the
WCET of a ProSys component cannot be represented by a
single integer. Instead, we need to represent the WCET as-
sociated with the arrival of messages to the different input
ports, as well as WCET associated with internal periodic
activities. In addition to this, we need information about
how often messages are sent from the output ports, in order
to perform analysis on enclosing levels of nesting.

Formally, the WCET information associated with a ProSys
component C is represented by a tuple 〈pw,mw〉, where

pw is a multiset of elements on the form 〈t, w, o〉;
mw is a set of elements on the form 〈pi, w, o〉;

t represents a period (t ∈ Z+);
pi is an an input message port of C;
w represents a WCET value (w ∈ Z+);
o is a set of elements on the form 〈po,m〉;
po is an an output message port of C; and
m represents the number of messages (m ∈ Z+).

Algorithm 2 ProSaveProSysWCET(p)

1: if no connection p→ p′ exists then
2: return 〈0, ∅〉
3: Let p′ be the port for which the connection p→ p′ exists
4: if p′ is an output port of the analysed component then
5: return 〈0, {〈p′, 1〉}〉
6: Let C be the construct (connector or subcomponent service)

to which p′ belongs
7: w ← wcet(C)
8: if C is a subcomponent service or control fork then
9: o← ∅

10: for each output port p′′ of C do
11: 〈w′, o′〉 ← ProSaveProSysWCET(p′′)
12: w ← w + w′

13: o← o+ o′

14: return 〈w, o〉
15: else if C is a control join or a control or with output port

p′′ then
16: 〈w′, o′〉 ← ProSaveProSysWCET(p′′)
17: return 〈w + w′, o′〉
18: else if C is a selection then
19: wtot ← 0
20: otot ← ∅
21: for each output port p′′ of C do
22: 〈w′, o′〉 ← ProSaveProSysWCET(p′′)
23: wtot ← max(wtot, w′)
24: otot ← max(otot, o′)
25: return 〈w + wtot, otot〉

We also restrict the set mw to not contain two elements
〈p1, w1, o1〉 and 〈p2, w2, o2〉 such that p1 =p2. Thus mw can
be viewed as a function from the input message ports of
C to 〈w, o〉 tuples. Similarly, o is restricted to contain at
most one occurrence of each port, and thus can be seen as a
funtion, with o(p) = m if 〈p,m〉 ∈ o and o(p) = 0 if p does
not occur in any of the tuples in o.

As an example, a ProSys component C with one input
port m1 and output ports m2 and m3, could be decorated
with the following WCET information:

wcet(C) = 〈{〈200, 50, {〈m2, 1〉}〉},
{〈m1, 20, {〈m2, 1〉, 〈m3, 2〉}〉}〉

representing that there is an activity with period 200 and
WCET 50 that sends at most one m2 message, and that the
processing of a m1 message requires 20 units of WCET and
sends at most one m2 message and two m3 messages.

Another change compared to the ProSave analysis is the
state information needed during the traversal. Instead of
keeping track of reached join connector ports, we now only
need to propagate as a partial result the number of sent mes-
sages from the different output ports, in the format specified
by o in the definition of the WCET information above. We
define two operators over this information (using the func-
tion interpretation of the set, as described above):

(o1 + o2) (p) = o1(p) + o2(p)
(o1 max o2) (p) = max(o1(p), o2(p))

Algorithm 2 defines the detailed analysis algorithm. For
each clock of the analysed component, let t and p be the
period and the output trigger port of the clock, compute

〈w, o〉 = ProSaveProSysWCET(p)

and add 〈t, w, o〉 to the pw part of the WCET info for the
component. Then, for each input message port p, compute

〈w, o〉 = ProSaveProSysWCET(p)

F

AS

70

140500

s1

s2

s3

s4

s
G H30 20

Sub component
X with WCET W

O tControl connection

X W t Clock with
period t

2 s5

Or connectorControl connection

Figure 4: Example of analysis of a primitive ProSys
component.

and add 〈p, w, o〉 to the mw part of the WCET info for the
component.

Since the analysed enclosing entity is not a ProSave com-
ponent service, as in the previous section, we cannot rely on
the ProSave semantics of allowing at most a single active
invocation at a time, and no mixing of control flow from
different services. Consequently, join connectors must be
treated differently in the analysis of a ProSys component,
since in the worst case, the join ports are reached from dif-
ferent control chains.

As shown in Algorithm 2, join connectors are treated in
the same way as or connectors, which results in a safe ap-
proximation. In cases where control chains of multiple pe-
riodic activities are joined, a tighter analysis would be pos-
sible, where the chain after the join is only included in the
activity with longest period. However, when chains orig-
inating from message ports are involved, a tighter analy-
sis becomes much more complex, and would require a more
complex WCET information format.

Example
Figure 4 depicts a ProSys component S, consisting internally
of ProSave components A (from the previous example), F, G
and H. The analysis algorithm is called three times, for the
clock and the two input message ports, respectively. Each
result corresponds to a line in the following WCET informa-
tion, which is the result of the whole analysis of S:

wcet(S) = 〈{〈500, 140, {〈s3, 1〉}〉},
{〈 s1, 90, {〈s4, 1〉, 〈s5, 1〉}〉,
〈 s2, 50, {〈s5, 1〉}〉}〉

6. PROSYS ANALYSIS
The third type of model-level WCET analysis is performed

on a composite ProSys component. From information about
the subcomponents, in the format defined in the previous
section, and the interconnection structure, WCET informa-
tion for the composite is derived.

Algorithm 3 defines the detailed analysis algorithm, and
Algorithm 4 shows how this analysis is called multiple times
to produce the full WCET information for the analysed com-
posite ProSys component.

The main differences compared to the analysis in the pre-
vious section is that on one hand the interconnection struc-
ture is much simpler but on the other hand the WCET infor-
mation of the subcomponents is much more complex. The

Algorithm 3 ProSysWCET(p, n)

1: Let P be the set of ports p′ that have connections p→ p′

2: wtot ← 0
3: otot ← ∅
4: for each p′ in P do
5: if p′ is an output port of the analysed component then
6: otot ← otot + {〈p′, n〉}
7: else
8: Let C′ be the subcomponent to which p′ belongs
9: 〈pw,mw〉 ← wcet(C′)

10: 〈w, o〉 ← mw(p′)
11: wtot ← wtot + w ∗ n
12: for each 〈p′′,m〉 in o do
13: 〈w′, o′〉 ← ProSysWCET(p′′, n ∗m)
14: wtot ← wtot + w′

15: otot ← otot + o′

16: return 〈wtot, otot〉

Algorithm 4 mainProSysWCET(C)

1: pw← ∅
2: for each subcomponent C′ of C do
3: 〈pw′,mw′〉 ← wcet(C′)
4: for each 〈t, 〈w, o〉〉 in pw′ do
5: wtot ← w
6: otot ← ∅
7: for each 〈p, n〉 in o do
8: 〈w′, o′〉 ← ProSysWCET(p, n)
9: wtot ← wtot + w′

10: otot ← otot + o′

11: pw← pw ∪ 〈t, 〈wtot, otot〉〉
12: mw← ∅
13: for each input message port p of C do
14: 〈w, o〉 ← ProSysWCET(p, 1)
15: mw← mw ∪ 〈p, 〈w, o〉〉
16: return 〈pw,mw〉

detailed analysis is quite straightforward, but the second ar-
gument might require some explanation. This integer rep-
resents the number of messages that can arrive to the port
that the analysis has reached, and acts as a multiplier ap-
plied to the WCET and to the output messages associated
with the output ports when we continue the traversal.

Example
Figure 5 shows an example of a composite ProSys compo-
nent to be analysed. The numbers and the dashed arrows
illustrate the WCET information associated with the sub-
components.

Subcomponent S is the component from the previous ex-
ample (the ports are relocated to simplify the connections),
and we assume the following WCET information for the
other subcomponent T:

wcet(T) = 〈{〈200, 20, {}〉},
{〈 t1, 40, {}〉,
〈 t2, 50, {〈t3, 2〉}〉}〉

The analysis of U starts by analysing the periodic activ-
ities in the subcomponents. The activity in S results in
140 WCET and a s3 message, which in turn adds 40 to the
WCET when following the connection to t1. The activity in
T does not result in any output messages, only 20 WCET.
None of the periodic activities result in any output mes-
sages from U. Next, the effects of an incoming u1 message
is analysed. Traversing the chains of messages through the
subcomponents and collecting WCET along the way results

S

U
s1

s2

s3

s4
s5 T

t3

t1

t2

u1

u2

90
140

0

20
40

2 3

50
50

Figure 5: Example of ProSys level analysis.

in 240 WCET and three u2 messages. Note that the two
t3 messages send in response to t2 result in the multiplier 2
begin applied to the WCET and the messages in the anal-
ysis of s2. Thus, the resulting WCET information for the
analysed component U is:

wcet(U) = 〈{〈500, 180, {}〉,
〈200, 20, {}〉},

{〈 u1, 240, {〈u2, 3〉}〉}〉

7. RELATED WORK
Puschner et al. [7] describe compositional WCET anal-

ysis in a more general context of hierarchical development
processes, and addressing compositionality of WCET infor-
mation. Contrasting our approach, they primarily consider
the composition of tasks into systems, and not composition
of sub-task design entities.

A new challenge for WCET analysis is analysis of code
generated from high-level models. Kirner et al. [4] adjust
the code generation process for Matlab/Simulink to pro-
duce code decorated with additional information, such as
loop bounds, to permit automated WCET analysis. A sim-
ilar approach, but targeting AADL, is taken by Gilles and
Hugues [3].

Schedulability analysis, i.e., ensuring that all timing re-
quirements in a system are satisfied also in the worst case
scenario, is a well researched area [6]. Of particular im-
portance to our work is the recent interest in hierarchi-
cal scheduling, and the related schedulability analysis, as
a means to perform analysis on individual subsystems in
isolation without full knowledge of the entire system [9, 2].

We have previously addressed parts of the model-level
WCET analysis for ProCom [5]. That work was restricted to
analysis composite ProSave components (the same scope as
the analysis in Section 4), but is was done in the context of
parametric WCET analysis, where WCET is represented by
a formula over the input data ports rather than by a single
value.

8. CONCLUSION
We have outlined the timing analysis envisioned for Pro-

Com, ranging from code analysis of individual primitive
components, to the response time analysis of individual vir-
tual nodes in isolation. In particular, we have focused on
model-level WCET analysis bridging the gap between these
two, providing detailed descriptions of the three analysis
methods needed to address all levels of the ProCom hier-
archy.

Making the analysis fully compositional means improved
scalability, a possibility to analyse parts of the system in
early stages of development, and also facilitates reuse of

an analysis results. However, this compositional approach
comes at the cost of reduced precision compared to both
monolithic model-level analysis and analysis of generated
code. To some extent, this trade-off is inevitable, but the
effect can be reduced by applying a flattening transformation
to some or all parts of the model before analysis is carried
out.

One line of future work is to develop a more flexible chain
of analysis methods where the lines between code and model-
level analysis are less strict. For example, results from model-
level value range propagation analysis (bounding the pos-
sible range of component ports based on the connections
and abstractions of component functionality) can be used to
tighten the timing analysis on code level. We are also investi-
gating how these analysis methods, developed in the context
of an academic component model for embedded systems,
can be adjusted to state-of-practice industrial languages and
tools.

Acknowledgments
This work was supported by the Swedish Foundation for
Strategic Research via the strategic research centre Progress,
and by the Swedish Research Council project Contesse
(2010-4276).

9. REFERENCES
[1] J. Carlson, J. Feljan, J. Mäki-Turja, and M. Sjödin.

Deployment modelling and synthesis in a component
model for distributed embedded systems. In 36th
Euromicro Conference on Software Engineering and
Advanced Applications, pages 74–82. IEEE, 2010.

[2] R. Davis and A. Burns. Resource sharing in
hierarchical fixed priority pre-emptive systems. In
Proceedings of the 27th IEEE Real-Time Systems
Symposium, pages 257–267, December 2006.

[3] O. Gilles and J. Hugues. Applying WCET analysis at
architectural level. In 8th International Workshop on
Worst-Case Execution Time (WCET) Analysis, 2008.

[4] R. Kirner, R. Lang, G. Freiberger, and P. Puschner.
Fully automatic worst-case execution time analysis for
Matlab/Simulink models. In Proceedings of the 14th
Euromicro Conference on Real-Time Systems, pages
31–40. IEEE Computer Society, 2002.

[5] T. Leveque, E. Borde, A. Marref, and J. Carlson.
Hierarchical composition of parametric WCET in a
component based approach. In 14th IEEE International
Symposium on Object/Component/ Service-oriented
Real-time Distributed Computing. IEEE, March 2011.

[6] J. W. S. Liu. Real-Time Systems. Prentice Hall, 2000.

[7] P. Puschner, R. Kirner, and R. G. Pettit. Towards
composable timing for real-time programs. In 1st
International Workshop on Software Technologies for
Future Dependable Distributed Systems, pages 1–5.
IEEE, 2009.

[8] S. Sentilles, A. Vulgarakis, T. Bureš, J. Carlson, and
I. Crnković. A component model for control-intensive
distributed embedded systems. In 11th International
Symposium on Component Based Software Engineering.
Springer, 2008.

[9] I. Shin and I. Lee. Compositional real-time scheduling
framework with periodic model. ACM Transactions of
Embedded Computer Systems, 7:30:1–30:39, May 2008.

