
Towards Mode Switch Handling in
Component-based Multi-mode Systems

Yin Hang, Jan Carlson, Hans Hansson
Mälardalen Real-Time Research Centre, Mälardalen University, Västerås, Sweden

{young.hang.yin, jan.carlson, hans.hansson}@mdh.se

ABSTRACT
Component-based software engineering (CBSE) is becoming
a prominent solution to the development of complex embed-
ded systems. Meanwhile, partitioning system behavior into
different modes is an effective approach to reduce system
complexity. Combining the two, we get a component-based
multi-mode system, for which a key issue is its mode switch
handling. The mode switch of such a system corresponds
to the joint mode switches of many hierarchically organized
components. Such a composable mode switch is not trivial
as it amounts to coordinate the mode switches of different
components. In this paper, we identify the major challenges
of the composable mode switch handling and classify exist-
ing approaches with respect to how they handle these chal-
lenges. We also provide a more detailed presentation of the
corresponding solutions included in our approach – theMode
Switch Logic (MSL).

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-
Purpose and Application-Based Systems—Real-time and
embedded systems; D.2.13 [Software Engineering]:
Reusable Software

Keywords
component-based, multi-mode, mode switch

1. INTRODUCTION
Component-based software engineering (CBSE) provides

a promising design paradigm for the development of complex
embedded systems. CBSE boasts quite a number of appeal-
ing features, such as complexity management, increased pro-
ductivity, higher quality, faster developing time, lower main-
tenance costs and reusability [2]. A key purpose of CBSE is
to allow systems to be built from reusable components, i.e. a
system does not have to be developed from scratch, instead,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CBSE’12, June 26–28, 2012, Bertinoro, Italy.
Copyright 2012 ACM 978-1-4503-1345-2/12/06 ...$10.00.

some of its components or subsystems may be directly ob-
tained from a repository of pre-developed components.

In contrast to CBSE, a common approach in embedded
system design is to partition the system behavior into differ-
ent operational modes. Each mode corresponds to a specific
system behavior. Although some applications may run in
all modes, there are also mode-specific applications, which
run only in selected modes. A multi-mode system starts by
running in a default mode and switches to another appro-
priate mode when some condition changes. A representative
multi-mode system is the control software of an airplane,
which could run in the modes taxi (the initial mode), tak-
ing off, flight and landing. Different sets of applications are
running in different modes. For instance, the application for
controlling the wheels only runs in taxi mode whereas the
navigation application may run only in flight mode.

Traditional component models do not include handling
of operational modes, whose traditional handling does not
assume systems built from reusable components. To get the
benefits of both approaches there is a need for techniques
that in a predictable and consistent way integrate the two.

Our focus is on multi-mode systems developed in a
component-based manner, called component-based multi-
mode systems (MMS for abbreviation), assuming that the
system is always component-based. Fig. 1 illustrates the hi-
erarchical component structure of a typical MMS. The sys-
tem consists of three components: a, b and c. Component b
is composed of three other components: d, e and f. With re-
spect to the terminology of CBSE, we distinguish two basic
types of components: (1) a primitive component, whose be-
havior is given directly by associated software, thus cannot
be further decomposed into other components; (2) a compos-
ite component which is a composition of other components.
Obviously, in Fig. 1, a, c, d, e and f are primitive compo-
nents whereas Top and b are composite components. Since
the component hierarchy has a tree structure, a compos-
ite component and its subcomponents have a parent-and-
children relationship. For instance, b is the parent of d, e
and f, which in turn are the children of b. Moreover, the
system supports two modes: m1 and m2. When the sys-
tem is in mode m1, Component f is deactivated (i.e. not
running), as Fig. 1 shows by not displaying f in mode m1.
In contrast, when the system is in mode m2, f is activated
whilst c and e are deactivated. Besides, Component a has
different mode-specific behaviors represented by black and
grey colors in Fig. 1. This example will be used throughout
this paper.

From Fig. 1, it can be observed that an MMS exhibits

Figure 1: The component hierarchy of a component-

based multi-mode system

unique system behavior in each mode reflected by particular
configurations of its components at various levels. When an
MMS switches from one mode to another mode, the switch
is achieved by the joint mode switches of components com-
posed together to form the complete system. We call this
composable mode switch. We have developed a Mode Switch
Logic (MSL) [4] guiding the composable mode switch of
MMSs. In this paper, we shed light on the composable mode
switch issue and identify related challenges. As a second con-
tribution, we investigate and classify different existing ap-
proaches with respect to their mode switch handling. The
last contribution of this paper is that it presents the solu-
tions of our MSL to some major challenges of mode switch
handling in MMSs. By integrating solutions to these chal-
lenges, our MSL provides guarantees for the correctness and
consistency of mode switch in MMSs.

The rest of the paper is organized as follows: In Section 2,
we investigate existing approaches to mode switch. In Sec-
tion 3, challenges of composable mode switch are identified
and existing approaches are classified accordingly. Section
4 presents our mode-aware component model. Section 5
discusses the mode incompatibility problem and mode map-
ping. Section 6 describes the mode switch runtime mecha-
nism, and in Section 7 we make our conclusion.

2. EXISTING APPROACHES TO MODE
SWITCH

There are hitherto few approaches supporting composable
mode switch, including Rubus [7], AADL [3], COMDES-
II [9] and MyCCM-HI [1]. These approaches are not dedi-
cated to mode switch handling of MMSs, although we will
only introduce them from the mode switch perspective.

Rubus: Rubus is an industrial component model targeting
embedded control systems for ground vehicles [7]. In Rubus,
mode is a system-level concept as different modes are typi-
cally defined at the top level through a mode/state transi-
tion diagram. In each mode, there is a system-wide static
configuration of components. A mode switch of the system
corresponds to the switch between different such configura-
tions. Individual components are not mode-aware and it is
up to the system integrator to integrate them into a multi-
mode system. There is no published information about the
Rubus mode switch handling at runtime.

AADL: the Architecture Analysis & Design Language [3],
is a modeling language that supports analyses of a system’s
architecture with respect to performance-critical properties
at the component level. AADL represents modes as states
within a state machine abstraction, where each state corre-
sponds to a distinct mode and the transitions between dif-
ferent states represent mode switch. For each component, a
mode switch is triggered by a predefined mode switch event
arriving at its input event port(s).

COMDES-II: COMponent-based design of software for
Distributed Embedded Systems-version II, employs a hier-
archical model to specify the system architecture [9]. The
mode switch of a multi-mode component is controlled by
a state machine. Component configuration in each mode in
COMDES-II is similar to AADL (e.g. predefined modes and
mode-specific behaviors), yet COMDES-II allows the com-
position of multi-mode components whereas, in AADL such
compositions are not explicitly addressed.

MyCCM-HI: Make Your Component-Container Model-
High Integrity, is a component framework for critical, dis-
tributed, real time and embedded software [1]. Components
and their behaviors are described by the input architecture
description language COAL (Component-Oriented Architec-
ture Language), which supports enumerating different oper-
ational modes of the system and each component. Each
multi-mode component is associated with a mode automa-
ton component implementing its mode switch mechanisms.
A composite component and its subcomponents can inter-
act with each other during a mode switch via their mode
automata components.

MSL – Our approach: None of the above presented ap-
proaches provide a systematic strategy to cope with the co-
ordination of the mode switches of different components,
while the mode switches of many components can often be
interdependent. Our MSL circumvents this unexplored is-
sue, by focusing on the management of interdependent mode
switches. A component is not only aware of its modes and
its configuration in each mode, but also able to communicate
with its parent and children during a mode switch. Thus the
system mode switch becomes a complex procedure involving
many mode switches of different components with interde-
pendency. The final goal is to guarantee the correctness of
the mode switch of the entire system.

Other research into mode switch: The research on
mode switch in real-time systems is relatively more produc-
tive. Sha et al. [13] have developed a simple mode switch
protocol in a prioritized preemptive scheduling environment
guaranteeing short and bounded mode switch latency. This
protocol is improved by Tindell et al. [15] for periodic and
sporadic tasks in a single processor system. Pedro and
Burns [10] provide a simple mode switch model and im-
prove schedulability during mode switch by adding proper
offsets. Real and Crespo [12] conduct a survey of differ-
ent mode switch protocols and propose several new proto-
cols along with associated schedulability analysis. Phan et
al. present a multi-mode automaton [11] model for model-
ing multi-mode applications. Moreover, mode switch can be
supported by a few programming languages/models. Apart

from AADL, Giotto [8] and TDL [14] also support multi-
mode and mode switch.

3. CLASSIFICATION OF MODE SWITCH
APPROACHES

In this section we provide a classification of the introduced
approaches to handling mode switch, as we will distinguish
different approaches based on how they handle a set of major
challenges related to composable mode switch.

3.1 Problems and challenges of composable
mode switch

The handling of composable mode switch is not trivial, as
it poses multiple potential problems and challenges. Many
contributing factors need to be considered, such as compo-
nent model, component hierarchy, component connection,
system architecture and component execution pattern. The
following are the major challenges that have to be addressed:

Component model
CBSE specifies that a software component must conform to
a component model. A large number of component mod-
els have already been proposed targeting various applica-
tion domains, e.g. AUTOSAR, COMDES-II, MyCCM-HI,
ProCom and Rubus. Among these component models, only
COMDES-II, MyCCM-HI and Rubus have multi-mode sup-
port. To compose multi-mode components in an MMS, tra-
ditional component models must be extended, since in an
MMS a component must be aware of its own modes which
could be switched at runtime. In our MSL, we have pro-
posed a mode-aware component model taking into account
both the mode switch of a single component and the mode
switch synchronization between different components.

Multi-mode component composition
An MMS can be composed of both single-mode and multi-
mode components. For a multi-mode component, its sup-
ported modes should also be composable. Since reusable
components are developed independently, it is very likely
that the supported modes and the number of supported
modes differ between components. Hence, when a composite
component is built by reusable components from a compo-
nent repository, the supported modes of each component
are likely to be inconsistent with the modes of the com-
posed component. Therefore, the correspondence between
the modes of different components must be defined during
composition. Even though COMDES-II and MyCCM-HI
both allow a multi-mode component to be composed into an-
other multi-mode component, this mapping between modes
is implicit. The mode mapping mechanism of our MSL ex-
plicitly addresses the mode mapping problem.

The mode switch runtime mechanism
The mode switch of an MMS must be carried out under the
guidance of some runtime mechanism to ensure its correct-
ness and efficiency. This is to a large extent neglected by
existing mode switch handling approaches. Such runtime
mechanism includes many aspects, such as

Mode switch propagation: A mode switch can be trig-
gered by any component. Other components that change
their configurations in the new mode must be informed of

this mode switch. Since a component has no global knowl-
edge of the system component hierarchy, a mode switch
event cannot be simply broadcast from one component to
all the other components. Instead, a stepwise propagation
mechanism is required; by taking advantage of the hierar-
chical component structure, a mode switch event can be di-
rectly or indirectly propagated to any related component.
Later we shall show how this can be achieved by our Mode
Switch (MS) propagation mechanism.

The guarantee of consistent mode switch: The mode
switch of a system may correspond to the mode switches
of many components. When the system completes a mode
switch, all its components must be in a consistent state. For
instance, it must be avoided that components supposed to
run in the new mode are still running in the old mode af-
ter the system has completed a mode switch. A correct MS
propagation mechanism plays a significant role in notifying
different components of the mode switch event, however,
additional rules should be applied to guarantee the overall
mode switch consistency. MyCCM-HI uses different mode
switch protocols to keep system state consistency, yet this
is not sufficient for component mode switches with interde-
pendency. In our MSL, we use a mode switch dependency
rule to guarantee consistent mode switch.

Mode switch and atomic execution: When a mode
switch is triggered, the MMS is supposed to stop running
in the old mode and start its mode switch as soon as possi-
ble. However, there could be any ongoing atomic execution
in one or a set of components that cannot be aborted by
a mode switch triggering. Our MSL handles atomic com-
ponent execution by an extended MS propagation mecha-
nism [6]. This is however separate work and in this paper
we assume that component execution is not atomic.

Conflict handling for multiple mode switch trigger-

ing: Normally, an MMS performs a mode switch rather
swiftly, yet not instantaneously. Multiple mode switch
triggering could happen either simultaneously or within a
short interval. Without proper treatment, an ongoing mode
switch could be compromised by the triggering of a new
mode switch. In our MSL, the initial solution is to use an
arbitration mechanism managed by a component with high
authority to resolve the conflict. Further details and the
in-depth solution are included in our future work.

3.2 The Classification
Table 1 compares Rubus, AADL, COMDES-II, MyCCM-

HI with our MSL in terms of the three main challenges ad-
dressed in this paper; namely component model, mode map-
ping, and runtime mechanism:

Component model: We consider if the approach supports
multi-mode and if the mode switch of a component can be
treated as a global or local activity. Only the Rubus com-
ponent model is not multi-mode. In Rubus, mode switch is
always a global activity as it is handled at the system level.
In AADL and COMDES-II, mode switch is a local activ-
ity for an individual component. In MyCCM-HI and MSL,
mode switch can be both global and local.

Mode mapping: This is not considered by Rubus and
AADL. COMDES-II and MyCCM-HI implicitly support

Component model
Mode mapping

Runtime mechanism

Multi-mode
Global/Local Mode switch Consistency
mode switch propagation guarantee

Rubus ✗ Global ✗ ? ?
AADL X Local ✗ ✗ ✗

COMDES-II X Local Implicit ✗ ✗

MyCCM-HI X Global/Local Implicit ✗ Little
MSL X Global/Local X X X

X: Supported; ✗: Not supported/considered; ?: Information not available

Table 1: The comparison between different existing approaches and the MSL

mode mapping as they allow the composition of multi-mode
components, but neither of them provides any mode map-
ping mechanism, which is an essential part of our MSL.

Runtime mechanism: This is hardly supported by ex-
isting approaches. The runtime mechanism of Rubus is
not publicly known, since Rubus is commercial with limited
available information. Mode switch propagation is only han-
dled by MSL. AADL and COMDES-II do not have any run-
time mechanism. MyCCM-HI uses mode switch protocols
to achieve mode switch consistency. They are however in-
sufficient for composable mode switch, since these protocols
actually work for tasks while ignoring the component hierar-
chy and the mode switch interdependency between different
components. MSL guarantees mode switch consistency by
its mode switch dependency rule. The runtime mechanism
of MSL is not only limited to mode switch propagation and
consistency guarantee; other aspects covered, such as atomic
component execution and conflicting handling of multiple
mode switch triggering, will not be discussed in this paper.

It is obvious that MSL covers many mode switch issues
that have not been tackled or even considered in related
existing research.

4. COMPONENT MODEL
A mode-aware (or multi-mode) component is different

from traditional components in terms of the interface, inter-
nal properties, and other aspects. We propose a mode-aware
component model for both primitive and composite compo-
nents. The mode-aware component model in our MSL is
not based on any existing component model. Instead, it is
rather generic and most existing component models can be
extended to be mode-aware guided by the principles of MSL.
Just like traditional component models, both primitive and
composite components in MSL have a set of ports to com-
municate with other neighboring components. Furthermore,

• Both primitive and composite components support one
or more modes. Each mode of a multi-mode compo-
nent is associated with a unique mode ID.

• A primitive component has a dedicated mode switch
port for the communication with its parent during a
mode switch. A composite component has an addi-
tional dedicated port for the communication with its
subcomponents/children.

• Both primitive and composite components have a sep-
arate configuration in each mode. Component configu-
ration is a collection of mode-specific information such
as the mode-specific functional behavior and mode-
related properties of a component.

Figure 2: The mode-aware primitive component

model

Figure 3: The mode-aware composite component

model

• Component reconfiguration during a mode switch is
controlled by the runtime mechanism of MSL inte-
grated in the component.

Our mode-aware component model is illustrated in fig-
ures 2 and 3, from which the similarity and discrepancy of
both primitive and composite component models can be eas-
ily perceived. Both figures assume the pipe-and-filter type
of communication, as p0in · · · piin denote the input ports and
p0out · · · p

j
out denote the output ports. pMSX and pMSX

in are
the dedicated mode switch ports, the former for commu-
nicating with the parent and the latter for communicating
with the children. The configuration of primitive and com-
posite components are different. For instance, a primitive
component can have mode-specific behavior in each mode
while a composite component may have different sets of ac-
tivated subcomponents and connections in each mode. Fig.
4 illustrates the component connections of the example in
Fig. 1. When the system is in m1, the connection between
do and ei is activated, while this connection becomes deacti-
vated and is replaced by a new activated connection between
do and fi as the system switches to m2.

Figure 4: The component connection of a CBMMS

5. MODE MAPPING
As introduced in Section 3, the supported modes of differ-

ent components may need to be mapped during the multi-
mode component composition. As an illustration, consider
Table 2 where the components have the same hierarchy as b
in Fig. 1, but with different supported modes. Based on the
system requirement, b is expected to support m1b and m2b,
which are different from the supported modes of any of its
subcomponents.

When d, e and f are used to compose b, it must be clearly
specified how their supported modes are mapped to each
other. We call this mode mapping. Our mode mapping
mechanism [5] is based on the following:

• Each component (primitive or composite) knows its
supported modes, its initial mode and its current
mode, but knows nothing about the mode information
of other components in the system.

• Composite components know all the mode information
of their subcomponents, but have no mode information
of components at deeper nested levels.

These two properties enable a composite component to
manage the local mode mapping between itself and its sub-
components. In [5], we propose a Mode Mapping Automata
(MMA) managed by each composite component to handle
these mappings.

Component Supported modes

b m1b, m2b
d m1d, m2d, m3d
e m1e
f m1f , m2f , m3f , m4f

Table 2: The modes of b and its subcomponents

6. RUNTIME MECHANISM
As the principal ingredient of our MSL, the mode switch

runtime mechanism synchronizes and coordinates the mode
switches of different components to achieve a correct mode
switch of all involved components. The mode switch starts
when a mode switch decision is made and is terminated
when all involved components have completed their mode
switches. In this section, we look into this runtime mech-
anism with regard to mode switch propagation and mode
switch dependency rule. For better presentation, we intro-
duce the following notations. Let PC denote the set of prim-
itive components and CC the set of composite components:

PC ∩ CC = ∅. The top component is denoted by Top. For
ci ∈ CC (ci 6= Top), Pci denotes the parent of ci and SCci

the set of subcomponents of ci. .

6.1 Mode switch propagation
In Section 3.1, we have stated that our MS propagation

mechanism is able to distribute a mode switch event to all
involved components. There are a variety of mode switch
events, among which a typical one can be an alarm from
a sensor whose value is above a threshold. A mode switch
event is initially triggered by a Mode Switch Source (MSS)
which could be any component, primitive or composite. An
MSS is mode dependent and a system can have multiple
MSSs in each mode. Let ci denote an MSS with cj = Pci .
Our MS propagation mechanism works as follows:

MS propagation mechanism: When ci triggers a mode
switch, it sends a Mode Switch Request (MSR) to cj . As a
composite component, cj refers to the local mode mapping
and makes a decision upon receiving the MSR:

• If the MSR does not imply any mode switch of cj , then
cj approves the MSR by sending a Mode Switch In-
struction (MSI) to SCcj based on its mode mapping.

• If the MSR implies the mode switch of cj whose condi-
tion does not allow such a mode switch, then cj rejects
the MSR by doing nothing.

• If the MSR implies the mode switch of cj whose con-
dition allows such a mode switch and cj 6= Top, then
cj will forward the MSR to Pcj and let Pcj make fur-
ther decisions. If this MSR is finally approved, cj will
receive an MSI from Pcj and send the MSI to SCcj

based on its mode mapping.

∀ck ∈ CC, ck handles an incoming MSR or MSI exactly
in the same way as cj . ∀cl ∈ PC, cl can only receive an MSI
but does not propagate the MSI. An MSS is not blocked after
issuing an MSR. If Top is an MSS, it can directly issue an
MSI to SCTop. The mode switch propagation is terminated
when all related components have received an MSI associated
with the same MSR from an MSS.

where sending an MSI to SCcj means that the MSI is sent
to the children of cj for which the mode mapping results in
a mode different than the current mode. The other children
should not change mode, and hence, require no MSI. Fig.
5 depicts the relation between the local mode mapping and
the mode switch propagation within Component b, referring
to Table 2. The local mode mapping of b is presented by the
MMAs. Due to the limited space, we skip the description of
these MMAs which can be found in [5].

Apparently, each MSR will be eventually either approved
or rejected by a component, called Mode Switch Decision
Maker (MSDM). Depending on the location of an MSDM,
mode switch propagation can be either a local or global ac-
tivity. If Top is the MSDM that approves an upstream MSR,
the mode switch is a global activity. Otherwise, it becomes
a local activity within the MSDM.

6.2 Guaranteeing consistent mode switch
After MSI propagation, a component will start its recon-

figuration. To guarantee that all components are in a consis-
tent state after a mode switch, the mode switch of a system

Figure 5: Mode mapping and MS propagation

Figure 6: The complete mode switch process

cannot be completed until all reconfigurations are over. The
reconfigurations of different components should be properly
synchronized, guided by our mode switch dependency rule,
which works as follows:

Mode switch dependency rule: Each component starts
its reconfiguration after its MSI propagation. ci ∈ PC sends
a Mode Switch Completion (MSC) signal to Pci upon com-
pletion of its reconfiguration to indicate mode switch com-
pletion. cj ∈ CC completes its mode switch when its recon-
figuration is completed and it has received the MSC from all
ck ∈ SCcj that ck has previously received an MSI from cj.
Thereafter, cj sends an MSC to Pcj if cj 6= Top and cj is
not the MSDM. A mode switch is completed when the cor-
responding MSDM completes its mode switch.

The mode switch dependency rule above guarantees that
a composite component always completes its mode switch
after its subcomponents. Fig. 6 demonstrates the entire
mode switch process of the example in Fig. 1, assuming (1)
d is the MSS issuing an MSR; (2) this MSR leads to the
mode switches of all components except e, hence Top is the
MSDM. Since e does not switch mode in this scenario, b
does not send any MSI to e. Component reconfiguration is
illustrated by black bars. The top component has a short
reconfiguration time, thus its mode switch is temporarily
blocked by the MSC from its subcomponents a and b.

7. CONCLUSION AND FUTURE WORK
In this paper, we have introduced a component-based

multi-mode system (MMS), which not only supports multi-
ple operational modes but also reusable (multi-mode) com-
ponents. Some representative existing approaches have been
studied for handling the composable mode switch of MMSs,

from which we have identified a number of challenges, such
as the mode-aware component model, the mode incompat-
ibility problem during composition and the mode switch
runtime mechanism. Based on these challenges, we classify
the existing approaches and compare them with our Mode
Switch Logic (MSL). Moreover, we present pertinent solu-
tions in our MSL to some major challenging problems of
composable mode switch.

To date we have addressed several important problems
related to composable mode switch. It is our ambition to
implement our MSL into state-of-the-art component models
such as ProCom [16]. Furthermore, we plan to evaluate the
suitability of our MSL by an industrial case-study.

Acknowledgments
This work is supported by the Swedish Research Council.

8. REFERENCES
[1] E. Borde, G. Häık, and L. Pautet. Mode-based recon-

figuration of critical software component architectures. In
DATE’09, pages 1160–1165.

[2] I. Crnkovic and M. Larsson. Building reliable component-
based software systems. Artech House, 2002.

[3] P. H. Feiler, D. P. Gluch, and J. J. Hudak. The architecture
analysis & design language (AADL): An introduction. Tech-
nical Report CMU/SEI-2006-TN-011, Software engineering
institute, MA, Feb. 2006.

[4] Y. Hang, E. Borde, and H. Hansson. Composable mode
switch for component-based systems. In APRES ’11, pages
19–22.

[5] Y. Hang and H. Hansson. A mode mapping mechanism for
component-based multi-mode systems. In CRTS’11, pages
38–45.

[6] Y. Hang and H. Hansson. Timing analysis for mode switch
in component-based multi-mode systems. In ECRTS’12 (To
appear).

[7] K. Hänninen, J. Mäki-Turja, M. Nolin, M. Lindberg,
J. Lundbäck, and K.-L. Lundbäck. The Rubus compo-
nent model for resource constrained real-time systems. In
SIES’08, pages 177 –183, june.

[8] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto:
A time-triggered language for embedded programming. In
Proceedings of the IEEE, pages 166–184, 2001.

[9] X. Ke, K. Sierszecki, and C. Angelov. COMDES-II: A
component-based framework for generative development of
distributed real-time control systems. In RTCSA’07.

[10] P. Pedro and A. Burns. Schedulability analysis for mode
changes in flexible real-time systems. In ECRTS’98, pages
172–179.

[11] L. T. X. Phan, I. Lee, and O. Sokolsky. Compositional anal-
ysis of multi-mode systems. In ECRTS’10, pages 197–206.

[12] J. Real and A. Crespo. Mode change protocols for real-time
systems: A survey and a new proposal. Real-Time Systems,
26(2):161–197, 2004.

[13] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramam-
ritham. Mode change protocols for priority-driven preemp-
tive scheduling. Real-Time Systems, 1:243–264, 1989.

[14] J. Templ. TDL specification and report. Technical report,
Department of Computer Science, University of Salzburg,
Nov. 2003.

[15] K. W. Tindell, A. Burns, and A. J. Wellings. Mode changes
in priority pre-emptively scheduled systems. In RTSS’92,
pages 100–109.

[16] A. Vulgarakis, J. Suryadevara, J. Carlson, C. Seceleanu, and
P. Pettersson. Formal semantics of the ProCom real-time
component model. In SEAA’09, pages 478–485.

