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Abstract. In this paper we address the problem of scheduling and synthesiz-
ing distributed control programs for a batch production plant. We use a timed
automata model of the batch plant and the veri�cation tool Uppaal to solve the
scheduling problem.

In modeling the plant, we aim at a level of abstraction which is suÆciently ac-
curate in order that synthesis of control programs from generated timed traces is
possible. Consequently, the models quickly become too detailed and complicated
for immediate automatic synthesis. In fact, only models of plants producing two
batches can be analyzed directly! To overcome this problem, we present a general
method allowing the user to guide the model-checker according to heuristically cho-
sen strategies. The guidance is speci�ed by augmenting the model with additional
guidance variables and by decorating transitions with extra guards on these. Ap-
plying this method have made synthesis of control programs feasible for a plant
producing as many as 60 batches.

The synthesized control programs have been executed in a physical plant. Besides
proving useful in validating the plant model and in �nding some modeling errors,
we view this �nal step as the ultimate litmus test of our methodology's ability to
generate executable (and executing) code from basic plant models.
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1. Introduction

In this paper we suggest a solution to the problem of synthesizing and verifying
valid scheduling control programs for resource allocation, based on a batch plant
of SIDMAR [Boel and Stremersch 1999],[Fehnker 1999], which is a case study of
the VHS project1. We model the plant in a network of timed automata, with the
di�erent components of the plant (e.g. batches, recipes, casting machine, cranes,
etc.) constituting the individual timed automata. The scheduling problem is for-
mulated as a time-bounded reachability question allowing us to apply the real-time
model-checking tool Uppaal [Larsen et al. 1995],[Larsen et al. 1997] to derive a
schedule. An overview of the methodology is shown in Figure 1.1.

Uppaal o�ers a trace with actions of the model and timing information of the
actions. The remaining e�ort required in transforming such a model trace into
an executable control program depends heavily on the accuracy of the model with
respect to the control programming language and the physical properties of the
plant. Given a suÆciently high level of accuracy of the plant model, a schedule can
be obtained from a trace by projection, and synthesis of the control program from
a schedule amounts to textual substitution. However, a model suitable for such
program synthesis becomes very detailed as all the necessary information about
the plant, such as the timing bounds and the physical constraints for movements
of loads, cranes etc, has be to speci�ed. As an immediate drawback, synthesizing
schedules for several batches quickly becomes infeasible.

To deal with this (unavoidable) problem we introduce a method, allowing the user to
guide the model-checking according to certain chosen strategies. Each strategy will
contribute with a reduction of the search-space, but in contrast to fully automatic
reduction methods it is up to the user to 'guarantee' preservation of schedulability.
However, if a schedule is identi�ed via the guided search, the schedule is indeed a
valid one for the original model.

To be able to run the generated control programs in a physical plant, we consider a
LEGO MINDSTORMS plant, instead of the original plant of SIDMAR. We have
used the plant to successfully run synthesized control programs and by doing so
increased our con�dence in the plant model. We view this �nal, scienti�cally rather
simple step as the ultimate litmus test of our methodology's ability to generate
executable (and executing) code from rather natural plant models.

The SIDMAR plant has been studied by several other researchers. Our timed
automata model is based on the model in [Fehnker 1999], which is similar to ours
but more abstract in the sense that some information, such as delays for the moving
of batches, is not included. A Petri net model of the plant is presented in [Boel
and Stremersch 1999]. In [Stobbe 2000], constraint programming techniques are
used to generate schedules of the SIDMAR plant for up to 30 batches. To obtain
this techniques similar to ours are used for reducing the size of the search space.
Other work applying the model of timed automata and Uppaal to analyze and
solve planning problems of batch plants include [Kristo�ersen et al. 1999] in which
an experimental batch plant is studied.

The rest of this paper is organized as follows: In the next two sections we describe
the scheduling problem and how it has been modeled in Uppaal. In Section 4 and
5 we present the guiding techniques and evaluate their e�ect on the plant model. In

1 See the web site http://www-verimag.imag.fr//VHS/main.html.
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Fig. 1.1: Overview of methodology.

Section 6 we describe experiments with the LEGO plant and how programs are
synthesized for the plant. Section 7 concludes the paper. Finally, timed automata
descriptions of four plant components are enclosed in the appendix.

2. The Scheduling Problem

Our plant is based on a part of the SIDMAR steel production plant located at
Gent in Belgium. We will consider the part of the plant between the blast furnace
and the continuous casting machine where molten pig iron is converted into steel of
di�erent qualities. The process is started when pig iron being poured into ladles by
one of two converter vessels. The iron is transported in the ladles while it is being
processed. By treatments in di�erent machines the iron is converted into steel and
�nally casted in the casting machine. Depending on the machines used and how
long the treatment in the machines last, di�erent qualities of steel are produced.
When the steel in a ladle has been casted the empty ladle must be moved to a
storage place. From here the ladles are cleaned and reused. However, this is not
part of our model, where ladles are stored at the storage place but not reused. The
physical components of the process are: two converter vessels where molten iron is
poured into ladles, �ve machines, tracks connecting these, two cranes running on
one overhead track, a bu�er place, a storage place for empty ladles, and one casting
machine. The layout of the plant can be seen in Figure 2.1.

Machines number one and four are of the same type and so are machines number
two and �ve. Each crane can only hold one ladle and they cannot overtake each
other. On each track and in each machine there is room for at most one ladle. This
means that the ladles cannot overtake each other without using one of the cranes.

The steel must sustain a minimum temperature during the process. This gives
an upper bound on the time a batch is allowed to spend in the plant from it is
poured and until it is casted. Casting takes a �xed time and must be continuous.
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Fig. 2.1: Layout of the plant.

Therefore a new ladle �lled with steel must be waiting in the holding place of the
casting machine when casting of a ladle has �nished.

Steel of di�erent qualities can be produced depending on which types of machines
are visited and for how long. For each batch this is speci�ed by a recipe. The
problem to be solved can now be stated as:

Given an ordered list of recipes, if possible synthesize a control program for the
plant such that steel speci�ed by the recipes are produced in the right order
and within a given time.

The major part of solving this problem is �nding a schedule for the production if
one exists. A schedule for the plant de�nes which action takes place in the plant
e.g. moving of batches and cranes, and when the actions take place.

3. Scheduling with Timed Automata

Finding a schedule for producing an ordered list of steel qualities is the main part
of the problem. It can be solved in a number of ways. Here we chose to model
the plant using timed automata [Alur and Dill 1994] and use the veri�cation tool
Uppaal [Larsen et al. 1995],[Larsen et al. 1997] to solve the scheduling problem 2.
For a discussion of this approach to scheduling see [Fehnker 1999].

The modeling language in Uppaal is networks of timed automata extended with
data variables [Larsen et al. 1997]. To meet requirements from various case-
studies the language has been further extended with the notion of committed lo-
cations [Bengtsson et al. 1996], urgent synchronization actions [Larsen et al. 1997],

2 See the web site http://www.uppaal.com/ for more information about Uppaal.
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Fig. 3.1: A Network of Timed Automata.

and data structures such as arrays of data-variables etc. In this section we give
a brief informal description of the modeling language of Uppaal. For a detailed
description we refer the reader to [Larsen et al. 1997].

3.1 Networks of Timed Automata

Consider the network of timed automata P and Q shown in Figure 3.1. Automaton
P has two control locations S0 and S1, two real-valued clocks x and y, and a
data variable j. A state of the automaton is of the form (l; s; t; k), where l is a
control location, s and t are non-negative reals giving the value of the two clocks
x and y, and k is a natural number giving value to the data variable j. A control
location is labelled with a condition (the location invariant) on the clock values that
must be satis�ed for states involving this location. Assuming that the automaton
starts to operate in the state (S0; 0; 0; 0), it may stay in location S0 as long as the
invariant x � 4 of S0 is satis�ed. During this time the values of the clocks increase
synchronously. Thus from the initial state, all states of the form (S0; t; t; 0), where
t � 4, are reachable. The edges of a timed automaton may be decorated with a
condition (guard) on the clocks and the data variable values that must be satis�ed
in order for the edge to be enabled. Thus, only for the states (S0; t; t; k), where
1 � t � 4 and k < 50, is the edge from S0 to S1 enabled. Additionally, edges
may be labelled with assignments and synchronization labels. An assignment may
reset the value of the clocks and update the data variables. For example, when
following the edge from S0 to S1 the clock y is reset to 0 and the data variable j is
incremented by 2, leading to states of the form (S1; t; 0; 2), where 1 � t � 4. The
synchronization label is used to establish synchronization between automata. For
example the transition from S1 to S0 of automaton P is labeled with a!, requiring
the transition to be synchronized with the transition of automaton Q o�ering the
complementary action a?.

In general, a timed automaton is a �nite-state automata extended with a �nite
collection C of real-valued clocks ranged over by x; y etc. and a �nite set of data
variables D ranged over by i; j etc. We use B(C) ranged over by g to stand for the
set of formulas that can be an atomic constraint of the form: x � n or x�y � n for
x; y 2 C, �2f<;�;=;�>g and n being a natural number, or a conjunction of such
formulas. Similarly, we use B(D) to stand for the set of data-variable constraints
that are the conjunctive formulas of i � j or i � k, where � 2 f<;�;=; 6=;�; >g
and k is an integer number. To denote the set of formulas that are conjunctions
of clock constraints and a data-variable constraints we use B(C;D) (ranged over by
g). The elements of B(C;D) are called constraints or guards.
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An assignment in Uppaal is a sequence of operations of the form x := 0, or i :=
Expr, where x is a clock, i is a data variable, and Expr is an integer expression,
e.g. 2 � (i� j)+ 3 (where j is a data variable). We shall use R to denote the set of
assignments. Furthermore, we use Act to denote a �nite set of actions ranged over
by a, a?, a!, b?, b!, etc.

Definition 1. (Timed Automata) A timed automaton A over clocks C and data
variables D is a tuple hN; l0;�!; Ii where N is a �nite set of (control-)locations,
l0 is the initial location, �!� N � B(C;D) � Act � R � N corresponds to the
set of edges and �nally, I : N 7! B(C) assigns invariants to locations. In the case,

hl; g; a; r; l0i 2�!, we write l
g;a;r

�! l0. 2

To formalize the semantics we use variable assignments. A variable assignment is a
mapping which maps the clocks C to the non-negative reals and the data variables
D to integers. A semantical state of an automaton A is now a triple (l; u), where l is
a location of A and u is a an assignment for C and D, and the semantics of A is given
by a transition system with the following two types of transitions (corresponding
to delay-transitions and action-transitions):

Æ (l; u) �! (l; u� d) if I(l)(u) and I(l)(u� d)

Æ (l; u) �! (l0; u0) if there exist g and r such that l
g;a;r

�! l0, g(u), u0 = r[u] and
I(l0)(u0)

where d is a non-negative real number, u � d denotes the assignment which maps
each clock x in C to the value u(x) + d and leaves each data variable i with the
unchanged value u(i), and r[u] denotes the result of updating the clocks C and the
data-variables in D according to r 2 R.

Finally, we brie
y introduce the notion of networks of timed automata [Yi et al.

1994],[Larsen et al. 1995]. A network is a �nite set of automata composed in parallel
with a CCS-like parallel composition operator [Milner 1989]. For a network with
the timed automata A1; : : : ; An the intuitive meaning is similar to the CCS parallel
composition of A1; :::; An with all actions being restricted, that is, (A1j:::jAn)nAct.
Thus an edge labelled with action a must synchronize with an edge labelled with an
action complementary to a, and edges with the silent � action are internal, so they
do not synchronize. In Uppaal '?' and ' !' are used to represent complementary
actions, so a? and a! are considered complementary and can synchronize.

Given a network of timed automata and a set of states,Uppaal can analyze whether
or not one of the states is reachable from the initial state of the network. If the
answer is positive, Uppaal produces a trace with action- and delays-transitions
leading from the initial state to one of the speci�ed states.

For the model of the plant, which will be presented in the following, a trace de�nes a
schedule for the plant since it speci�es what happens in the plant (the synchroniza-
tion actions) and when (the delays). From a schedule a working program controlling
the plant may be generated. The level of detail in the trace (and therefore in the
schedule) in
uences the work needed to generate the program. In [Fehnker 1999]
the traces generated did not include time for the moving of batches, making the
generation of executable programs from the schedules hard. To minimize the ef-
fort needed during the translation, we produce traces with detailed and precise
information about timing of all actions in the plant.
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Fig. 3.2: Synchronization between the automata of a model.

3.2 A Model for Scheduling the Plant

An instance of the problem is given by a list of qualities of steel (or recipes) and
a maximal production time. A model of a problem instance consists of: for each
recipe one automaton representing the recipe and one automaton representing the
movement of the batch; one automaton for each of the two cranes; one automaton
testing that the recipes �nish in the correct order; one automaton for making some
actions synchronizing; and one automaton modeling the casting machine. Figure 3.2
shows the synchronizations between the di�erent automata. The batch automata
communicate with each other through two shared arrays and the two cranes also
share an array. These arrays will be described in more detail later.

The most complex of the automata is the one modeling the possible behaviors
of a batch (see Figure 7.4 of the appendix3)4. The batch automaton re
ects the
topology of the plant (shown in Figure 2.1) as well as the physical constraints
on the movements of a batch. Basically, there is one location for each position
of the plant a batch can be located at. A position is either a machine, a track
segment, the storage place, the casting machine, or a position on the overhead
track. Positions on the overhead track are over one of the two tracks, the storage
place, the casting machine, or in between any of these. A batch automaton has
a clock named x associated to it which is used to measure the time spend on
moving along a track. The time spend is the worst case time measured in the

3 Unless stated otherwise, guided versions of the automata are shown since these have
been used for most of the experiments.
4 Pictures of all the automata and the LEGO plant can be found at the web site
http://www.brics.dk/~baris/CaseStudy/.
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Fig. 3.3: Part of the unguided batch automaton.

physical plant which is given by the constant bmove. Shared among all the batch
automata in a model are the two binary arrays posI and posII, which are used
for storing which positions are occupied on the two tracks. Figure 3.3 shows the
part of the unguided batch automaton modeling the position named i2, between
machines number one and two on track one. Moving a batch between positions
in the model is done in two steps. First a transition is taken to an intermediate
position, e.g. from i2 to i1aa. A batch can only start to move to a position if this
position is free, which in this case is ensured by checking the array posI using the
guard posI[3] == 0. Taking the transition resets the clock x and updates which
positions are occupied by the assignment posI[3] := 1; posI[4] := 0. The batch can
stay in the intermediate position at most bmove time units because of the invariant
x � bmove in the location. However, it cannot leave the location before bmove time
units have passed because of the guard x== bmove on the transition leaving the
intermediate location. This means that moving a batch along a track is modeled
as taking exactly bmove time units. A batch can also move when it is carried by a
crane. The time spend during such moving is measured by the crane automaton.

Each batch has a recipe associated to it (a recipe using machine type one and two is
shown in Figure 3.4). The recipe de�nes which machines should be visited, in which
order, and for how long. It also measures the overall time the batch has spend in
the plant. A recipe has two clocks associated to it. One is reset as the batch starts
in the plant and measures the overall time spend in the plant by the batch. The
other clock is used for measuring the time of the di�erent treatments the batch
goes through. When a batch is located at a machine of the right type according
to the recipe, the batch and the recipe can synchronize to start the machine. This
resets the clock measuring the time of treatments. When the speci�ed time for the
treatment has passed the recipe and the batch synchronize to turn the machine o�.
When the treatments are completed and the batch is ready to be casted the recipe
synchronizes with the test automaton to ensure that the production order is kept.
Here it is also checked that the batch has not spend too much time in the plant.

As mentioned the positions of a crane are over the two tracks, over the storage
place, over the casting machine and in between these. An automaton modeling a
crane has two locations for each of these positions, one modeling the crane being
empty and one modeling the crane carrying a batch. The automaton modeling the
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Fig. 3.4: An example recipe automaton.

upper crane which is only moving between the two tracks is shown in Figure 3.5 (the
automaton modeling the other crane can be seen in Figure 7.2 of the appendix.) A
crane picking up a batch is modeled by the two automata synchronizing. Similarly
when a crane moves or sets a batch down. Each crane automaton has one clock
which is used for measuring time when the crane is moving. The movement of a
crane between two positions is modeled like movement between two positions in the
batch automaton with an intermediate location where the time for the movement
passes. The two crane automata share a binary array like the batch automata for
storing which positions are occupied

The test automaton synchronizes with a recipe automaton just before the recipe
allows the batch to enter the casting machine. This ensures that the order of the
production as stated in the problem description is kept (Figure 7.3 in the appendix
shows a test automaton).

There is also one automaton which has no in
uence on the overall behavior of the
model (shown in Figure 3.6). However, since we will use the traces from the model
for generating schedules, it is important that the all actions of the plant a�ecting
the schedule appear directly in the trace. Some of these actions are internal actions
in the batch automaton and will therefore not appear in the generated traces. An
example is the movements of a batch on the belts. The purpose of this automaton
is to synchronize with the internal actions (modi�ed to external actions) to make
them appear in the traces.

Finally there is an automaton modeling the casting machine (see Figure 7.1 of
the appendix). It synchronizes with a batch to start the casting. After a speci�c
time when the batch has been casted, the casting machine and the batch should
synchronize again to let the batch leave the casting machine and to let a new one
enter.
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Fig. 3.5: The upper crane.

4. Guiding Timed Automata

The timed automata described in the previous section models the steel production
plant at a high level of accuracy. The details in the model are needed to allow
generation of schedules from model traces by projection, and to allow generation
of control programs from schedules by textual substitution. However, the fact
that the model is detailed and consisting of a many parallel timed automata with
several clocks is also a serious problem, as the model is too big and complicated for
automatic analysis. In fact, �nding traces of a plant model with just a few batches
is infeasible in practice (see Section 5). The limiting factor is the amount of time
and memory consumed during the analysis to (symbolically) explore and store the
reachable state-space of the analyzed model. To solve this problem we introduce a
way of user directed guiding of a state-space exploration algorithm according to a
number of certain chosen strategies.
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run
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b3right!
b3left!
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b4right!
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m1left!
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m4left!
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moveAup!
moveAdown!
moveBup!
moveBdown!

caststart!

cpos[2]:=1,
cpos[4]:=1,
nextbatch:=1

Fig. 3.6: The automaton ensuring synchronization.

4.1 Guiding

The overall idea of guiding an automata model is to let the user implement reduc-
tion strategies by augmenting the automata with a set of additional clocks, data
variables, constraints and assignments 5. Each strategy will contribute to the re-
duction of the state-space by constraining the behavior of the model. However, in
contrast to automatic state-space reduction techniques, the guiding technique trust
the user to preserve schedulability of the plant model.

Assume a network of timed automata over clocks C and data variables D. The
automata are guided by introducing a set of new clocks CG and integer variables
DG. We call CG [ DG guiding variables. A guide is implemented by conjuncting
new constraints from B(CG [ C;DG [ D) to the existing guards of the automata,
new clock constraints from B(CG [ C) to the location invariants, and adding new
assignments of variables in CG [ DG to the resets. Thus, the guides may test the
values of all the clocks and the data variables in the transition guards and the
location invariants of the automata. A guide may also assign the guiding variables
in the reset sets. However, the original clocks and data variables of the timed
automata (i.e. C [ D) should not be assigned. This ensures the essential property
that a trace generated from a guided network of timed automata indeed is a valid
trace of the original network of timed automata. In the plant model this means
that the schedules generated from the guided plant model is guaranteed to also be
valid in the original plant model.

4.2 Implemented Strategies

We have used guiding to implement a number of strategies in the plant model. In
the following we describe the strategies abstractly, in terms of the physical plant,

5 The technique of adding guiding variables presented in this paper is reminiscent of the
notion of history and prophesy variables used in traditional program veri�cation, as in the
work of Abadi and Lamport [Abadi and Lamport 1991].
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posI[2]:=0,
posI[3]:=0

Fig. 4.1: Guided part of the batch automaton.

and give some detailed examples of how the guides are introduced in the plant
model. We emphasize that many of the strategies are heuristics and most of them
could in fact reduce the number of valid schedules of the plant model. However,
this is not a problem as long as it is still possible to generate valid schedules from
the model (as we are not concerned with �nding optimal schedules).

The implemented strategies are based on the general observation that the plant
model described in the previous section models all possible behaviors of the plant.
This also includes several behaviors that should not (or are unlikely to) appear
in a valid schedule. The implemented strategies aim at reducing these `unwanted'
behaviors.

Strategy 1: Ordering of Batches. When the scheduling problem is stated the
production order of the steel qualities is given. One strategy is to use this order
when starting new batches in the plant. To implement the strategy we introduce
the guiding variable nextbatch in the recipe automaton associated to each batch,
to control which batch is allowed to start next. According to the engineers at
SIDMAR the same strategy is used there.

A recipe automaton is shown in Figure 3.4. The guide is implemented in the guard
nextbatch==(number-1) on the �rst transition of the automaton, where number
is a unique constant number associated to each recipe. The guide ensures that the
recipe starts the batch when the value of nextbatch is equal to number-1. The
recipe automaton increments the nextbatch variable on a transition from location
goT2 to onT2 (see also Strategy 2 below) to allow the next batch to start.

Strategy 2: Delaying of Batches. Related to the �rst strategy is the starting
time of batches. Since there is an upper bound on the time a batch is allowed to
spend in the plant, all batches should not be started at the same time. Therefore,
we prevent a batch from starting based on the progress of the batch just before it.
The strategy is implemented in the recipe automata by delaying the update of the
nextbatch variable. In the recipe1 automaton shown in Figure 3.4 the nextbatch
guiding variable is incremented on the transition from location goT2 to onT2

instead of immediately after the test on the �rst transition. This prevents the next
batch to start before the batch has been treated by two machines.
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Strategy 3: Global Routing of Batches. To guiding the movements of the
batches we introduce a new guiding variable named next for each batch. The
value of next speci�es where the batch should go next, based on the next machine
treatment speci�ed in its recipe. When there is a choice of machines the recipe will
chose the machine on the track with fewest batches present. For example the choice
of the �rst machine is implemented by a guiding expression on the �rst transition
of the recipe automaton:

if (track1 � track2) then next :=m1 else next :=m4

where track1 is the number of batches present on track one and track2 the number
of batches on track two. In the recipe automaton in Figure 3.4 the value of track1
and track2 are computed as the sum of active bits in the bit vectors posI and
posII respectively (recall from the previous section that posI and posII are used
to ensure mutex on the positions of the two production tracks).

Strategy 4: Local Routing of Batches. The possible movements of the batches
are further reduced by a strategy deciding how a batch should move between two
given position. The implemented strategy selects the only direct route between
two positions. To implement the strategy in the plant model we use the guiding
variable next. A guard constraining the value of next is added to all transitions
of the batch automata leaving a location modeling a physical position in the plant.
Figure 4.1 shows a part of the guided batch automaton corresponding to the partial
original automaton shown in Figure 3.3. Machine one is the only machine located
to the left of position i2 on track 1. Therefore, the guides require the next variable
to have value m1 (representing machine 1) to move in the left direction. This is
ensured by the guard next==m1 on the transition from location i2 to i1aa. The
transitions from location i2 to k1 represents the batch being picked up by one of
the cranes. When this is the case the next destination of the batch should not be
a machine on track one (i.e. not machine 1, 2, or 3) therefore next is required to
be greater than m3.

Strategy 5: Moving of Cranes. When a crane is carrying a batch it always
follows the strategy of the batch. If a crane is empty, the strategy is to move only
when something is ready to be picked up or if it is blocking the other crane. Guiding
guards in the crane automata testing bits in posI and posII ensure that the cranes
move towards the pick up positions on the tracks when a batch is waiting to be
picked up (see e.g. the transition from location c2emp to c2c1emp in Figure 7.2
of the Appendix).

To allow an empty crane to move in other situations the guiding variables creq1 and
creq2 are introduced. Guards testing their value are introduced on some transitions
to allow the crane to move from certain positions in a speci�ed directions when the
variables are non-zero. The variables are typically assigned by the other crane
to indicate that it is moving towards a (possibly) occupied position that must be
empty. For example, in the craneB automaton shown in Figure 7.2 the variable
creq1 is assigned on the transitions from location c2emp to c1emp to allow crane
1 to leave crane position 1 (modeled by the locations c1emp, c1up, c1down, and
c1full in the craneB automaton).

5. Experimental Results

The plant models have been analyzed in the validation and veri�cation toolUppaal
[Larsen et al. 1995],[Larsen et al. 1997]. In this section we present the results of an
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All Guides No Guides
# BFS DFS BSH BFS DFS BSH

sec MB sec MB sec MB sec MB sec MB sec MB

1 0.1 0.9 0.1 0.9 0.1 0.9 3.2 6.1 0.8 2.2 3.9 3.3
2 18.4 36.4 0.1 1.0 0.1 1.1 - - 19.5 36.1 - -
3 - - 3.2 6.5 3.4 1.4 - - - - - -
4 - - 4.0 8.2 4.6 1.8 - - - - - -
5 - - 5.0 10.2 5.5 2.2 - - - - - -
10 - - 13.3 25.3 16.1 9.3 - - - - - -
15 - - 31.6 51.2 48.1 22.2 - - - - - -
20 - - 61.8 89.6 332 46.1 - - - - - -
25 - - 104 144 87.2 83.3 - - - - - -
30 - - 166 216 124.2 136 - - - - - -
35 - - 209 250 - - - - - - - -

Table I: Time and space requirements for generating schedules.

experiment where two versions of the plant model have been analyzed: the version
with no guides described in Section 3, and a version with all guides described in
Section 4. To evaluate the e�ect of adding guides, we use the standard UNIX
programs time and top to measure the CPU time and the memory consumed by
Uppaal when generating a trace from the two models.

Uppaal o�ers a number of options to control the internal veri�cation algorithm
applied in the tool [Larsen et al. 1997]. When analyzing the plant models we have
used the compact data-structure for constraints [Larsson et al. 1997], the control-
structure reduction [Larsson et al. 1997], and a recently implemented version of the
(in-)active clock reduction [Daws and Tripakis 1998]. In addition we experiment
with using breadth-�rst (BFS), depth-�rst search strategy (DFS), and depth-�rst
search in combination with bit-state hashing (BSH) [Holzmann 1991] 6.

Table I shows the time (in seconds) and space (in MB) consumed by Uppaal
version 3.0.12 7 when generating schedules from the two models. The numbers in
the leftmost column corresponds to the number of batches in the model (and in
the generated schedule). We use the marker \-" to indicate that the corresponding
execution requires more than 256MB of memory, more than two hours of execution
time, or that a suitable hash table size has not been found 8.

As can be seen in Table I, the use of guides signi�cantly increases the size of
models that can be analyzed. In the guided model, schedules can be generated for
35 batches using 250 MB in 3.5 minutes, whereas no schedule can be generated
for three batches (or more) when no guides are used. It can also be observed
that the bit-state hashing technique does not allow analysis of larger models in

6 The bit-state hashing technique generates a sub set of the reachable state-space. A
feasible schedule found with this technique is guaranteed to also be feasible in the original
plant model.
7 The tool was installed on a Linux Redhat 5.2 machine equipped with a Pentium III
processor and 256MB of memory.
8 When applying the hash table technique, we have used table sizes from 1048577 to
33554441 bits. The reported results corresponds to the most suitable hash table sizes
found.
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Fig. 6.1: The LEGO plant.

this experiment, even though it performs well space-wise on most models. We
experienced that �nding suitable hash table sizes is very tedious for large system
models. The largest system analyzed in the experiment is therefore a guided model
using depth-�rst search strategy but without the bit-state hashing technique.

We have also installed Uppaal on a Sun Ultra machine equipped with 1024 MB
of memory. On this machine, a schedule for 60 batches can be generated from the
guided model in 2 257 seconds.

6. Synthesis of Control Programs

We did not expect to be able to run the generated control programs in the original
plant of SIDMAR. Therefore we have used a LEGO plant (see Figure 6.1) to
run the synthesized programs in. This allows for experimenting with the plant to
validate the model and it also makes it easy to �nd answers to a number of questions
about the plant (e.g. measuring time bounds). The plant consists of a number of
distributed units, each controlled locally by one RCX [LEGO 1998] brick. There
are three types of units used in the plant: a crane, a machine with a track segment,
and the casting machine. For the cranes there is an overhead track. The interface to
the units consists of a set of commands like MoveTrackRight, TurnOnMachine, and
LiftBatch. Commands are send to the local units by one central controller which
is running the synthesized program. Ideally, one would want the local controllers
to give feedback to the central controller when actions have �nished or when an
error occurs. However, since the communication between the RCX bricks is slow
and unreliable especially if more than one brick tries to send at one time, the only
feedback from the local controllers are acknowledgements of commands received
from the global controller. This has big in
uences on the generated programs.
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: : : Delay(5)
Load1.Track1Right Crane1.Move1Left
Delay(10) Delay(5)
Load1.Machine1On Load1.Machine2On
Load2.Track5Right Delay(1)
Delay(4) Crane1.Move1Left
Crane1.Move1Left Delay(6)
Delay(6) Crane1.Move1Left
Load1.Machine1Off Delay(3)
Load1.Track2Right Load1.Machine2Off
Crane1.Pickup1 : : :

Fig. 6.2: Part of a generated schedule.

As a result of the model checking in Uppaal a trace containing information about
synchronizations between automata and delays is obtained. Some of the synchro-
nizations in the model, like the recipe synchronizing with the test automaton, are
not relevant for the generated schedule. To get a schedule for the plant we project
the trace to the actions relevant for the plant. Given some numbering of tracks
and machines, part of a schedule looks like in Figure 6.2. There is a one-to-one
correspondence between a schedule of this kind and the commands of the synthe-
sized central control program. Each line with a Delay action is translated into
a delay in the control program (in RCX code there is a Wait instruction doing
this). For the rest of the lines only the second part is used, which de�nes what
unit the command should be send to and what the command is. For example in
the line Load1.Track2Right, the part Track2Right is translated to a command
MoveTrackRight and sent to the local controller of track two.

The projection and the translation have been implemented using the pattern scan-
ning and processing language gawk. Since the RCX language does not o�er reli-
able communication primitives, each line in the schedule is translated into a code
segment implementing such communication.

The synthesized programs have been executed in the plant. This was mainly in-
tended as validation of the Uppaal model of the plant. During the validation we
found three errors in the model: the crane started to move horizontally too early
when an empty ladle was picked up from the casting machine, causing the crane
to collide with the casting machine and accidently drop the lifted ladle, so here a
delay was missing in the model; when two cranes were located at positions next to
each other and started to move in the same direction they could collide because
the crane 'in front' was started last; in systems with only one batch the casting
machine did not turn correctly. These problems were corrected in the model and
new control programs were synthesized.

At one point during the experiments with the plant the batteries running the crane
started to wear out. This meant that the initial timing information obtained from
the plant was inaccurate because the cranes were moving slower. At this point
having the complete process from generating traces to synthesizing control programs
fully automated proved especially useful. New times for the moving of the cranes
were measured and put into the model. Since scheduling still was possible, new
programs were quickly synthesized and were running in the plant as expected.

Performing the experiments also validate the implementation of the translation
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from schedules to programs and here no problems were found. Our con�dence in
the correctness of the model has been signi�cantly increased by the experiments.

7. Conclusion

In this paper, we have used timed automata and the veri�cation tool Uppaal
to synthesize control programs for a batch production plant. To deal with the
unavoidable complexity of a plant model suitably accurate for program synthesis,
we suggest and apply a general approach of guiding a model according to certain
strategies. With this technique, we have been able to synthesize schedules for as
many as 60 batches on a machine with 1024 MB of memory. Applying bit-state
hashing the space consumption may be decreased even further.

Based on traces from the model checking tool Uppaal, schedules are generated.
From theses schedules, control programs are synthesized and later executed in a
physical plant. During execution a few modeling errors were detected. After cor-
rection, new schedules were generated and correct programs were synthesized and
executed in the plant.

The presented method for guiding model-checking has proved very successful in
signi�cantly increasing the size of models which can be analyzed. The largest
model we analyze consists of 125 timed automata and a total of 183 clocks. The
notion of guides allows the user to add heuristics for controlling the behavior of the
plant, and we believe that the approach is applicable and useful for model checking
in general and reachability checking in particular. The validation of the model
by running the synthesized programs also proved useful: having access to the (a)
physical plant during the design of the model, allowed a number of questions to be
readily answered.

Based on the traces generated from the Uppaal model other types of control pro-
grams can be synthesized. Here it would be especially interesting to study how more
communication between the distributed controllers can be used, e.g. for generating
more optimal programs, and for detecting run-time errors.

Acknowledgements: The authors wish to thank Ansgar Fehnker and K�are Jelling
Kristo�ersen for fruitful discussions and many useful suggestions.
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Fig. 7.1: The casting machine.
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Fig. 7.2: The lower crane.
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finalt1 t2 t3 terminus

finish!quality1? quality2? quality1?

Fig. 7.3: A test automaton for producing three batches.
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Fig. 7.4: The batch automaton.


