
Mälardalen University Licentiate Thesis
No.150

Satisfying Non-Functional
Requirements in Model-Driven

Development of Real-Time
Embedded Systems

Mehrdad Saadatmand

May 2012

School of Innovation, Design and Engineering
Mälardalen University

Västerås, Sweden



Copyright c©Mehrdad Saadatmand, 2012
ISSN 1651-9256
ISBN 978-91-7485-066-6
Printed by Arkitektkopia, Västerås, Sweden
Distribution: Mälardalen University Press



Abstract

Design of real-time embedded systems is a complex and challenging task. Part
of this complexity originates from their limited resources which incurs han-
dling a big range of Non-Functional Requirements (NFRs). Therefore, sat-
isfaction of NFRs plays an important role in the correctness of the design of
these systems. Model-driven development has the potential to reduce the de-
sign complexity of real-time embedded systems by increasing the abstraction
level, enabling analysis at earlier phases of development and code generation.
In this thesis, we identify some of the challenges that exist in model-driven de-
velopment of real-time embedded systems with respect to NFRs, and provide
techniques and solutions that aim to help with the satisfaction of NFRs. Our
end goal is to ensure that the set of NFRs defined for a system is not violated
at runtime.

First, we identify and highlight the challenges of modeling NFRs in
telecommunication systems and discuss the application of a UML-based ap-
proach for modeling them. Since NFRs have dependencies, and the design de-
cisions to satisfy them cannot be considered in isolation, we propose a model-
based approach for trade-off analysis of NFRs. The approach enables the com-
parison of different design models with respect to the satisfaction level of their
NFRs. Following the issue of evaluating the interdependencies of NFRs, we
also propose solutions for establishing and maintaining balance between differ-
ent NFRs. In this regard, we categorize our suggested solutions into static and
dynamic methods. The former refers to a static design and set of features which
ensures and guarantees (by construction) the balance of NFRs, while the latter
means establishing balance at runtime by reconfiguring the system and runtime
adaptation. Finally, we discuss the role of the execution platform in preserva-
tion and monitoring of timing properties in real-time embedded systems and
propose an approach to enrich the platform with necessary mechanisms for
monitoring them.

i





To my parents...





Acknowledgments

I would like to start by thanking and appreciating the work of all the people
at IDT department for making it a very friendly and cooperative research and
educational environment which I believe can serve as a role model for other
institutes.

Many special thanks to my main supervisor, Mikael Sjödin, who has been
very supportive and encouraging beyond just academical work and also to my
assistant supervisors Antonio Cicchetti and Radu Dobrin for all their guidance.
Working with you all is a great pleasure.

Thanks to Per Wolde who has been a great friend of mine since the very
first days that I came to Sweden and his support for me to start this work. To
my office mates, Federico and again Antonio, with whom I have had great
memories especially from all the travels that we had together; thank you.

I would like to also thank my managers and colleagues at Enea & Xdin:
Barbro Claesson, Erik Netz, Anders Törnqvist, Thomas Barnå, Celi, Mathias
L., Daniel B., Joel H., Detlef; also all the great people at IDT whose acquain-
tance I treasure: Barbara, Farhang, Moris, Saad, Rafia, Åsa, Gunnar, Malin,
Monika, Carola, Ingrid, Susanne, Andreas J., Thomas N., Ivica, Dag, Gordana,
Jan C., Jan G., Hans, Frank L., Paul, Cristina S., Kristina L., Mats, Björn, Lars,
Adnan, Aida, Aneta, Séverine, Nima, Jagadish, Yue Lue, Thomas L., Etienne,
Mikael Å., Juraj, Josip, Ana, Luka, Leo, Hüseyin , Hongyu, Kivanc, Andreas
G., Daniel, Sasi, Sara, Stefan, Abhilash...

A very special thanks to Nazanin for being by my side with her positive
spirit; my life in Sweden would have not been the same without you.

My deepest gratitudes to my family who have always been there for me no
matter what. Without them I could have never reached this far.

Mehrdad Saadatmand
Västerås, May, 2012

v





List of Publications

Papers Included in the Licentiate Thesis 1 2

Paper A UML-Based Modeling of Non-Functional Requirements in Telecom-
munication Systems. Mehrdad Saadatmand, Antonio Cicchetti and
Mikael Sjödin. The Sixth International Conference on Software Engi-
neering Advances (ICSEA 2011), Barcelona, Spain, October, 2011.

Paper B Modeling and Trade-off Analysis of NFRs. Mehrdad Saadatmand,
Antonio Cicchetti and Mikael Sjödin. MRTC report ISSN 1404-3041
ISRN MDH-MRTC-267/2012-1-SE, Mälardalen Real-Time Research
Centre, Mälardalen University, April, 2012. 3

Paper C Modeling Security Aspects in Distributed Real-Time Component-
Based Embedded Systems. Mehrdad Saadatmand and Thomas Leveque.
The Ninth International Conference on Information Technology : New
Generations (ITNG), Las Vegas, Nevada, USA, April, 2012.

Paper D Design of Adaptive Security Mechanisms for Real-Time Embedded
Systems. Mehrdad Saadatmand, Antonio Cicchetti and Mikael Sjödin.
The Fourth International Symposium on Engineering Secure Software
and Systems (ESSoS), Eindhoven, The Netherlands, February, 2012.

Paper E The Role of Schedulers in Model-Driven Development of Real-
Time Systems. Mehrdad Saadatmand, Mikael Sjödin and Naveed Ul

1A licentiate degree is a Swedish graduate degree halfway between M.Sc. and Ph.D.
2The included articles have been reformatted to comply with the licentiate layout.
3Under submission for conference publication. Also partially published as a WiP paper in

the Sixteenth IEEE International Conference on Emerging Technology & Factory Automation
(ETFA11), Toulouse, France, September, 2011.

vii



viii

Mustafa. MRTC report ISSN 1404-3041 ISRN MDH-MRTC-264/2012-
1-SE, Mälardalen Real-Time Research Centre, Mälardalen University,
March, 2012.



ix

Additional Papers, Not Included in the Licentiate
Thesis
• On Generating Security Implementations from Models of Embedded Sys-

tems. Mehrdad Saadatmand, Antonio Cicchetti and Mikael Sjödin. The
Sixth International Conference on Software Engineering Advances (IC-
SEA 2011), Barcelona, Spain, October, 2011.

• Enabling Trade-off Analysis of NFRs on Models of Embedded Systems.
Mehrdad Saadatmand, Antonio Cicchetti and Mikael Sjödin. The Six-
teenth IEEE International Conference on Emerging Technology & Fac-
tory Automation (ETFA11), WiP session, Toulouse, France, September,
2011.

• A Methodology for Designing Energy-aware Secure Embedded Sys-
tems. Mehrdad Saadatmand, Antonio Cicchetti and Mikael Sjödin. The
Sixth IEEE International Symposium on Industrial Embedded Systems
(SIES11), Västerås, Sweden, June, 2011.

• Toward a Tailored Modeling of Non-Functional Requirements for
Telecommunication Systems. Mehrdad Saadatmand, Antonio Cicchetti
and Mikael Sjödin. The Eighth International Conference on Information
Technology : New Generations (ITNG), Las Vegas, USA, April, 2011.

• On the Need for Extending MARTE with Security Concepts. Mehrdad
Saadatmand, Antonio Cicchetti and Mikael Sjödin. The Second Interna-
tional Workshop on Model Based Engineering for Embedded Systems
Design (M-BED 2011), Grenoble, France, March, 2011.





Contents

I Thesis 1

1 Introduction 3
1.1 Basic Terms and Definitions . . . . . . . . . . . . . . . . . . 3
1.2 Background and Motivation . . . . . . . . . . . . . . . . . . 6
1.3 Problems and Contributions Overview . . . . . . . . . . . . . 7
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Research Overview 11
2.1 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Research Contributions . . . . . . . . . . . . . . . . . . . . . 16
2.3 Research Methodology . . . . . . . . . . . . . . . . . . . . . 18

3 Conclusions 21
3.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Bibliography 25

II Included Papers 27

4 Paper A:
UML-Based Modeling of Non-Functional Requirements in
Telecommunication Systems 29
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Telecommunication Systems . . . . . . . . . . . . . . 33
4.2.2 Problems with Non-Functional Requirements . . . . . 34

4.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 35

xi



xii Contents

4.4 Suggested UML profile . . . . . . . . . . . . . . . . . . . . . 37
4.4.1 Modeling Traceability Using SysML . . . . . . . . . 38
4.4.2 MARTE for Non-functional Requirements and Analy-

sis Support . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.3 Covering Security Aspects . . . . . . . . . . . . . . . 40

4.5 Modeling a Security Requirement Using the Suggested Profile 41
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . 45
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Paper B:
Modeling and Trade-off Analysis of NFRs 51
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Non-Functional Requirements . . . . . . . . . . . . . . . . . 55
5.3 Characteristics of the Solutions . . . . . . . . . . . . . . . . . 57
5.4 Suggested Profile . . . . . . . . . . . . . . . . . . . . . . . . 58
5.5 Implementation and Usage Example . . . . . . . . . . . . . . 61
5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.7 Conclusion and Future work . . . . . . . . . . . . . . . . . . 67
5.8 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 68
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Paper C:
Modeling Security Aspects in Distributed Real-Time Component-
Based Embedded Systems 73
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3 Automatic Payment System . . . . . . . . . . . . . . . . . . . 77
6.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.4.1 General Approach . . . . . . . . . . . . . . . . . . . 79
6.4.2 ProCom Component Model . . . . . . . . . . . . . . 80
6.4.3 Data Model . . . . . . . . . . . . . . . . . . . . . . . 82
6.4.4 Physical Platform And Deployment Modeling . . . . . 84
6.4.5 Security Properties . . . . . . . . . . . . . . . . . . . 85
6.4.6 Cost of Security Implementations . . . . . . . . . . . 87
6.4.7 Security Implementation Strategy . . . . . . . . . . . 88
6.4.8 Transformation . . . . . . . . . . . . . . . . . . . . . 89

6.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 92



Contents xiii

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 Paper D:
Design of Adaptive Security Mechanisms for Real-Time Embedded
Systems 99
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.2 Background and Motivation . . . . . . . . . . . . . . . . . . 102
7.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.3.1 Log Information and Adaptation Mechanism . . . . . 105
7.3.2 Implementation Details . . . . . . . . . . . . . . . . . 107
7.3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . 108

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . 114
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8 Paper E:
The Role of Schedulers in Model-Driven Development of Real-
Time Systems 119
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.2 Background and Motivation . . . . . . . . . . . . . . . . . . 122

8.2.1 CHESS Project . . . . . . . . . . . . . . . . . . . . . 122
8.2.2 OSE Real-Time Operating System . . . . . . . . . . . 124
8.2.3 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.3 Scheduler Design and Implementation . . . . . . . . . . . . . 126
8.3.1 System Components . . . . . . . . . . . . . . . . . . 129
8.3.2 Signals and Communications . . . . . . . . . . . . . . 131
8.3.3 Priority Assignment . . . . . . . . . . . . . . . . . . 132
8.3.4 Scheduling of Tasks . . . . . . . . . . . . . . . . . . 132
8.3.5 Monitoring of Tasks . . . . . . . . . . . . . . . . . . 135

8.4 Experiment and Monitoring Results . . . . . . . . . . . . . . 136
8.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.6 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . 143
8.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 144
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145





I

Thesis

1





Chapter 1

Introduction

The main goal in the design of a software system is to deliver a product which
satisfies all the requirements of different stakeholders. Requirements are gen-
erally categorized into functional and non-functional. Although non-functional
requirements usually receive less attention in the design of many types of sys-
tems (for example in desktop applications) they play an important role in cer-
tain domains; particularly, real-time embedded systems. Satisfaction of non-
functional requirements, such as timing, is critical in these systems and can
determine the success or failure of the final product. In this thesis, we look at
different challenges of satisfying non-functional requirements within the con-
text of model-driven development of real-time embedded systems. In our work
which extends from the system model down to the execution platform, we pro-
pose solutions and methods that help to better satisfy non-functional require-
ments.

1.1 Basic Terms and Definitions

In this section, we provide definitions for some of the key terms that are used
throughout the thesis.

We consider two categories of requirements: functional and non-
functional. In the simplest form, functional requirements are those which de-
fine what the system should do, while the term non-functional requirement
is used for requirements which specify how a system should perform, or as
suggested in [1] ”a non-functional requirement is an attribute of or a con-

3



4 Chapter 1. Introduction

straint on a system”. There is a big number of suggested definitions for non-
functional requirements which are discussed in [2]. These requirements are
usually described with terms that end with ’ility’ such as availability, ’ity’ such
as atomicity while a few other ones such as performance and user-friendliness
do not follow this pattern. According to the IEEE standards, 610.12-1990 and
ISO/IEC/IEEE 24765:2010(E) [3, 4], the following definitions are provided
for requirement, functional and non-functional requirement, and also derived
requirement:

• Requirement:

1. a condition or capability needed by a user to solve a problem or
achieve an objective.

2. a condition or capability that must be met or possessed by a system,
system component, product, or service to satisfy an agreement,
standard, specification, or other formally imposed documents.

3. a documented representation of a condition or capability as in (1)
or (2).

4. a condition or capability that must be met or possessed by a sys-
tem, product, service, result, or component to satisfy a contract,
standard, specification, or other formally imposed document.

• Functional Requirement:

1. a statement that identifies what a product or process must accom-
plish to produce required behavior and/or results.

2. a requirement that specifies a function that a system or system com-
ponent must be able to perform.

• Non-Functional Requirement: a software requirement that describes not
what the software will do but how the software will do it (i.e., design
constraints). Examples: software performance requirements, software
external interface requirements, software design constraints, and soft-
ware quality attributes. Non-functional requirements are sometimes dif-
ficult to test, so they are usually evaluated subjectively.

• Derived Requirement:

1. a lower-level requirement that is determined to be necessary for a
top-level requirement to be met.



1.1 Basic Terms and Definitions 5

2. a requirement that is not explicitly stated in customer requirements,
but is inferred from contextual requirements (such as applicable
standards, laws, policies, common practices, and management de-
cisions) or from requirements needed to specify a product or ser-
vice component.

In this thesis, we use the term extra-functional as a synonym to non-
functional, however, to be consistent with the style that is used in the literature,
we use it as an adjective for properties as in the phrase ”extra-functional prop-
erties”. This brings us to the next term which is property. It is defined in IEEE
standard ISO/IEC/IEEE 24765:2010(E) [3] as:

A responsibility that is an inherent or distinctive characteristic or trait
that manifests some aspect of an object’s knowledge or behavior (respon-
sibility: A generalization of properties (attributes, participant properties,
and operations) and constraints. An instance possesses knowledge, ex-
hibits behavior, and obeys rules. These are collectively referred to as the
instances responsibilities. A class abstracts the responsibilities in com-
mon to its instances. A responsibility may apply to each instance of the
class (instance-level) or to the class as a whole (class-level) [5]).

In this work, we distinguish between requirements and properties by con-
sidering the former as an expression of a need (possibly informal), and the lat-
ter as a statement that is usually asserted formally and can be therefore proven
and analyzed (e.g., calculated response time of a component). This implies
that ”a requirement can require that a certain property holds (e.g., absence of
deadlock, meeting deadline, not overflowing a queue, etc.) and that in order
for a property to hold a number of requirements may have to be met, which we
normally neither express nor assert formally”1.

Based on these definitions, we use the term satisfaction for requirements
and preservation for extra-functional properties (i.e., to keep properties within
their acceptable and valid ranges and protect them from violation). Accord-
ingly, ”response time of a component should not exceed 2ms” is a requirement,
while ”response time of component A never exceeds 2ms” and ”response time
of component B is equal to 1ms” are expressions of properties in a system.

Balancing trade-offs among requirements can incur adjusting system prop-
erties that are related to those requirements. Moreover, we consider a rela-
tionship between an NFR and extra-functional properties of the system in the
sense that, in order to satisfy an NFR, its related extra-functional properties

1These definitions have been provided and formulated with the help of Prof. Tullio Vardanega.



6 Chapter 1. Introduction

should have valid values. For example, to satisfy performance requirements of
a real-time system, execution and response time values (among others) should
remain within a valid range. Moreover, a property per se does not tell much
about its validity. Only when a property is considered along with its related
NFR or NFRs, it becomes possible to evaluate whether it is valid for a spe-
cific system and design or not. For example, a component with the worst-case
execution time of 100ms can be acceptable in designing one system but the
same component can violate the requirements of another system and may not
be appropriate for it.

1.2 Background and Motivation

Embedded computer systems are systems that are designed to operate as part
of other devices. These systems are usually designed for specific and dedicated
functions, and interact with their external environment through sensors and ac-
tuators [6, 7]. This interaction often brings along real-time requirements. How-
ever, besides real-time requirements, resource constraints in these systems also
introduce other limitations with respect to properties such as energy consump-
tion, performance, and safety. Due to resource constraints that these systems
have, the correct functionality of the whole system depends heavily on the sat-
isfaction of its NFRs. On the other hand, NFRs are often interconnected and
cannot be considered in isolation. An example of such interconnection and de-
pendency can be observed more explicitly between security and performance
requirements in a system. Therefore, in satisfying a requirement, its impacts
on other requirements should also be taken into account, and trade-off analysis
among NFRs needs to be done [2, 8]. Handling a big range of requirements,
establishing balance among them and performing trade-off analysis contribute
to the high design complexity of real-time embedded systems and make it a
challenging task [7].

Model-Driven Development (MDD) is a promising approach in raising ab-
straction level and reducing design complexity of real-time embedded systems,
which also enables analysis of the system at earlier phases of development.
This helps with the identification of problems in the system design before
reaching the implementation phase [9, 10]. The implementation of the system
can also be generated from the design models through a set of model transfor-
mations. In this context, non-functional requirements are captured by expres-
sion of extra-functional properties that are attached to model elements. In an
integrated model-driven and component-based approach, the model elements



1.3 Problems and Contributions Overview 7

that extra-functional properties are annotated on can be components.
However, in order to ensure correctness of the generated system, it is im-

portant to ensure that in each step, extra-functional properties that are specified
on the model are preserved. This means that for each transformation, input
properties should be preserved in the output of the transformation. It also in-
cludes the system execution at runtime which is the result of executing the
generated source code. This implies that the execution platform should be able
to actively monitor and enforce extra-functional properties at runtime. To this
end, the execution platform also requires to be semantically aware of the spec-
ified properties and related events in order to monitor them and detect their
probable deviations.

1.3 Problems and Contributions Overview

There are several challenges in satisfying non-functional requirements using
a model-driven development method for real-time embedded systems. These
challenges include (but are not limited to) issues such as how to model NFRs,
how to model their interdependencies, and also how to ensure that the imple-
mentation that is generated from the model behaves as expected during execu-
tion and not in a way that impairs the satisfactions of NFRs at runtime.

As the first step, we introduce an approach using Unified Modeling Lan-
guage (UML) for modeling non-functional requirements and extra-functional
properties in telecommunication systems (as an example and sub-domain of
real-time embedded systems). It is done by suggesting adoption from and
combining several already existing UML-based languages. In satisfying an
NFR, its impacts on other NFRs should also be taken into account. To enable
model-based trade-off analysis of NFRs, we propose a UML profile for model-
ing dependencies and impacts of NFRs and functional parts that contribute to
the satisfaction of each NFR in a positive or negative way. The concepts that
are provided in this UML profile are based on the Soft-goal Interdependency
Graph (SIG) approach that is used in the NFR Framework [11].

As an example of interdependency of NFRs, we consider security and tim-
ing requirements in real-time embedded systems. To satisfy security require-
ments certain mechanisms, such as encryption, should be applied. However,
adding such security mechanisms may result in the violation of the timing re-
quirements of the system. In the context of an integrated model-driven and
component-based approach, we propose an approach to automatically derive
the component model of a system that includes components implementing se-



8 Chapter 1. Introduction

curity mechanisms (from an original component model without security com-
ponents). This is done by identifying and annotating sensitive data flows in the
model. The derived component model uses the same meta-model as the orig-
inal model, and therefore, enables using the same timing analysis applicable
to the original model. This way, timing impacts of added security components
can be analyzed at earlier phases and before the implementation phase.

Modeling NFRs and including them along with functional elements, and
analyzing the model do not guarantee that the system that is generated from
the model is capable of satisfying those NFRs. Violations in this respect can
not only happen during transformations to generate intermediate models and
finally code, but also during execution of the generated code on the platform.
To mitigate such violations, extra-functional properties of the system can be
enforced and monitored during runtime. Upon detection of such violations,
adaptation and reconfiguration of the system may be performed as a counter-
active measure. We have developed an adaptive approach for balancing the se-
curity level of a system with its timing requirements at runtime. The approach
is based on keeping a history of the timing behaviors of encryption algorithms
and using a weaker but less time-consuming one when a timing violation oc-
curs. The introduced adaptation mechanism is suitable for complex real-time
systems where timing analysis is not practical or not much information about
timing characteristics of each individual task is available.

On the other hand, in order to monitor and detect violation of extra-
functional properties at runtime, the execution platform should have certain
capabilities. We discuss these capabilities for timing requirements which are
of great importance in real-time embedded systems. We also introduce the
concept of second-layer scheduler for monitoring of real-time events, such as
deadline misses and execution time overruns, on top of a real-time operating
system with a priority-based preemptive scheduling policy to provide such ca-
pabilities.

1.4 Thesis Outline

The thesis is organized into two parts:
Part I includes three chapters. Chapter 1 provided an introduction to the thesis
and formulated the research problem. In Chapter 2, the research overview
describing detailed research goals and contributions is offered. In Chapter 3
we summarize the work and present suggestions for the future work.
Part II presents the technical contributions of the thesis in detail in the form of



1.4 Thesis Outline 9

research papers which are organized in Chapters 4-8.





Chapter 2

Research Overview

In this thesis, we target some of the challenges related to the satisfaction of
non-functional requirements in the context of model-driven development of
real-time embedded systems. Towards this goal, we also discuss techniques
that help with the preservation of extra-functional properties in these systems
and mitigate their deviations from the desired behavior. The importance of
this research objective becomes more obvious and is motivated considering the
following points:

• Satisfaction of non-functional requirements is important in the design of
real-time embedded systems. A system design which cannot satisfy its
non-functional requirements (e.g., timing requirements) can mean failure
of the end product.

• The non-functional requirements are mapped to architectural models and
captured by extra-functional properties.

• Analysis is performed on models of embedded systems in order to cal-
culate extra-functional properties of the system and its components,
such as response time, and to evaluate satisfaction feasibility of its non-
functional requirements. Analyses are based on some assumptions and
preconditions. Violation of these assumptions equals to the violation and
invalidation of the analysis results.

• At runtime, several factors such as transient loads, difference between
the ideal execution environment (taken into account for analysis) and the

11



12 Chapter 2. Research Overview

actual one, can lead to violation of the assumptions that were used to
perform analysis [12].

• It may not be practical and/or economical to perform analysis on all types
of extra-functional properties. In such cases, runtime monitoring and
handling of violations can be used to preserve extra-functional proper-
ties.

In this context, the term preserve that we use in our work implies and is
based on the assumption that there is some knowledge about valid and invalid
values (e.g., range of values) that an extra-functional property can have in a
specific design.

Satisfaction of non-functional requirements in real-time embedded systems
has been considered in this thesis in the context of model-driven development
and particularly Model-Driven Architecture (MDA) methodology that is sug-
gested by Object Management Group (OMG) [13]. UML is the key modeling
language at the heart of MDA. Figure 2.1 depicts the MDA design flow that
defines the development context of this thesis.

As shown in figure 2.1, different types of analyses are performed at differ-
ent levels throughout the transformation chain for code generation to ensure
correctness of the design. The idea here is to provide a read-only Platform-
Specific Model (PSM) to the user, and also make the manual editing of the code
unnecessary. This is important in order to maintain design consistency. As a
consequence, the results of the analyses are propagated back to the Platform-
Independent Model (PIM), so that the user can identify parts of the model that
need to be modified in order to achieve the desired behavior.

2.1 Research Goals
Aligned with the context that was described in the previous section the follow-
ing research goals have been defined:

G1: Evaluation of UML approaches for modeling NFRs in telecommu-
nication systems: In order to include NFRs in the design models of a sys-
tem, the modeling language that is used to design the system should provide
concepts for modeling of NFRs. Considering the characteristics of telecom-
munication systems and the problems that were observed in developing such
systems in terms of their NFRs, we have proposed a UML-based approach us-
ing a combination of several existing UML profiles [14] for modeling of NFRs



2.1 Research Goals 13

Figure 2.1: Model-driven development context

in these systems. We did this by looking at the EAST-ADL [15] modeling lan-
guage which is defined for automotive domain using a similar approach and by
adopting from a set of different UML profiles. We have also touched upon ben-
efits and drawbacks of using UML profiles for defining new modeling concepts
compared to defining a Domain-Specific Language (DSL) [16] from scratch.

G2: Providing an approach for model-based trade-off analysis of NFRs:
To model interdependency of NFRs and identify their impacts on each other,



14 Chapter 2. Research Overview

we have proposed a UML profile. The profile offers necessary concepts to
model an NFR along with it refinements which can include one or several other
NFRs as well as functional parts that contribute to its satisfaction. This way,
it enables to create a hierarchy of NFRs, form child-parent relationship among
them, and also establish relationships to the functional elements in the model
that provide realization and implementations of NFRs.

To enable trade-off analysis of NFRs in a quantitative manner, we intro-
duce numerical properties as part of the defined stereotypes in the profile. This
allows to calculate the satisfaction level of an NFR by taking into account both
the contribution degree of each of its children NFRs and any negative or posi-
tive impact that other NFRs in the system may have on it.

G3: Identification and development of methods for balancing extra-
functional properties of real-time embedded systems: Timing properties
are of utmost importance in real-time embedded systems. Also as mentioned
earlier, interdependencies of different extra-functional properties cannot be ne-
glected in the design of these systems. Therefore, for this research goal, we
have specifically looked at the interdependency of timing and security prop-
erties as an example of such relationships and how we can establish balance
among them. Basically, we categorize the approaches for the aforementioned
problem into static and dynamic (adaptive), which are explained below and
may also be applicable for other extra-functional properties as well.

• One approach to establish balance between timing and security proper-
ties in a system is to identify parts of the system (i.e., sensitive data)
in the model that need to be protected, add security features to protect
them, and finally perform timing analysis on the derived model to ensure
that the added security features do not violate the timing requirements.
This method leads to a static design in the sense that a specific secu-
rity mechanism, which is analyzed, and thus, known to execute within
its allowed time budget is always used in each execution. We have pro-
posed and implemented a method to automatically derive the component
model of the system including components that implement its security
requirements. The original component model of the system is used as
input for a transformation that considers the sensitive data flows in the
original system model and adds appropriate security components. The
key ideas here are to facilitate implementation of security features for
non-security experts, bring security considerations into earlier phases of
development, and thus most importantly enable timing analysis of the



2.1 Research Goals 15

system including security components at the model level. This helps de-
signers to identify problems and imbalance between timing and security
at the model level and fix it before reaching the implementation phase.

• The static method may not be practical for systems with high complexity
which are hardly analyzable or systems with unknown timing behaviors
of their components. Instead, for such systems, a dynamic way to select
appropriate security mechanisms, based on the state of the system, can
be used to adapt its behavior at runtime, and stay within the timing con-
straints. To this end, we have suggested an approach, along with its im-
plementation for selecting appropriate encryption algorithms at runtime
(in terms of their timing behaviors) in an adaptive way. In this approach,
the timing behavior of each execution of the encryption procedures is
logged, and used as feedback for selecting a more suitable encryption
algorithm in the next execution.

G4: Identification and development of methods for runtime monitoring
of extra-functional properties, focusing on timing properties: The above
mentioned methods are not enough per se for runtime preservation and en-
forcement of extra-functional properties and require some support mechanisms
from the underlying platform, which brings us to the next problem that exists
in achieving this goal. Many of the real-time operating systems that are used as
execution platform provide support for a priority-based scheduling paradigm.
However, in such platforms, there is often no explicit specification on how to
define and introduce different types of real-time tasks (i.e., periodic, sporadic,
aperiodic) in the system. Therefore, for example, periodic behavior is actually
implemented by using timer interrupts and this way a periodic task is created.
This means that the platform has no concept of periodic task and there is no
observable runnable entity in the system as a periodic task. Since the platform
has no awareness about the type of task it is scheduling and its timing parame-
ters such as deadline and worst-case execution time, monitoring and detection
of real-time events such as deadline misses and execution time overruns are not
supported and need to be implemented by end users in arbitrary ways. Monitor-
ing of timing behavior of the system at runtime is necessary in order to ensure
preservation of timing requirements. We have proposed the idea of the second-
layer scheduler which enables users to specify real-time tasks in detail using
their timing parameters (period, deadline, etc.). By having awareness about the
type of each real-time task that is defined in the system, the second-layer sched-
uler is capable of providing detailed monitoring information. This monitoring
information, among others, include deadline misses, execution time overruns,



16 Chapter 2. Research Overview

task preemptions, and completion times.

2.2 Research Contributions
The following published research results cover the research goals described in
the previous section, as summarized in Table 2.1.

Research Goals Papers
G1 A
G2 B
G3 C, D
G4 E, D

Table 2.1: Mapping of published papers to research goals

• Paper A: UML-Based Modeling of Non-Functional Requirements
in Telecommunication Systems; Mehrdad Saadatmand, Antonio Cic-
chetti, Mikael Sjödin; The Sixth International Conference on Software
Engineering Advances (ICSEA 2011), Barcelona, Spain, October, 2011

Abstract: In this paper, we propose a UML-based solution, consisting
of different modeling languages, to model non-functional requirements
in telecommunication domain, and discuss different challenges and is-
sues in the design of telecommunication systems that are related to these
requirements.

Contribution: I have been the initiator and main author of the paper.

• Paper B: Modeling and Trade-off Analysis of NFRs; Mehrdad Saa-
datmand, Antonio Cicchetti, Mikael Sjödin; MRTC report ISSN 1404-
3041 ISRN MDH-MRTC-267/2012-1-SE, Mälardalen Real-Time Re-
search Centre, Mälardalen University, April, 2012

Abstract: In this paper, we focus on establishing balance and enabling
trade-off analysis of Non-Functional Requirements(NFR) and identify
what information about NFRs is required in order to perform trade-off
analysis. We propose and explain an approach to incorporate this in-
formation into system models in order to enable trade-off analysis. Our
approach is based on UML profiling method to annotate model elements
with necessary information.



2.2 Research Contributions 17

Contribution: I have been the initiator and main author of the paper.

• Paper C: Modeling Security Aspects in Distributed Real-Time
Component-Based Embedded Systems; Mehrdad Saadatmand,
Thomas Leveque; 9th International Conference on Information Technol-
ogy : New Generations (ITNG), Las Vegas, Nevada, USA, April, 2012

Abstract: This paper introduces concepts and mechanisms that allow to
model security specifications and derive automatically the corresponding
security implementations by transforming the original component model
into a secured one taking into account sensitive data flows in the system.
The resulted architecture ensures security requirements by construction
and is expressed in the original meta model; therefore, it enables using
the same timing analysis and synthesis as with the original component
model.

Contribution: I have been the initiator and co-author of the paper. The
implementations were mainly done by the main author.

• Paper D: Design of Adaptive Security Mechanisms for Real-Time
Embedded Systems; Mehrdad Saadatmand, Antonio Cicchetti, Mikael
Sjödin; 4th International Symposium on Engineering Secure Software
and Systems (ESSoS’12), Eindhoven, The Netherlands, February, 2012

Abstract: In this paper, we target the timing requirements of real-time
embedded systems, and introduce an approach for choosing appropri-
ate encryption algorithms at runtime, to achieve satisfaction of timing
requirements in an adaptive way, by monitoring and keeping a log of
their behaviors. The approach enables the system to adopt a less or more
time consuming (but presumably stronger) encryption algorithm, based
on the feedback on previous executions of encryption processes. This is
particularly important for systems with high degree of complexity which
are hard to analyze statistically.

Contribution: I have been the initiator and main author of the paper.

• Paper E: The Role of Schedulers in Model-Driven Development of
Real-Time Systems; Mehrdad Saadatmand, Mikael Sjödin, Naveed Ul
Mustafa; MRTC report ISSN 1404-3041 ISRN MDH-MRTC-264/2012-
1-SE, Mälardalen Real-Time Research Centre, Mälardalen University,
March, 2012

Abstract: Model-driven development is a promising approach to cope
with the design complexity of these systems. It helps to raise abstrac-



18 Chapter 2. Research Overview

tion level, perform analysis at earlier phases of development, and en-
ables generation of code from the models. In this context, capabilities
of schedulers, as part of the underlying platform, play an important role.
They can affect the complexity of code generators, and how the model is
implemented on the platform. Also, the way a scheduler monitors tim-
ing behaviors of tasks, and schedules them can facilitate extraction of
runtime information. This information is then used as feedback to the
original model, in order to identify parts of the model that may require
to be re-designed and modified. This is especially important for round-
trip support in model-driven development of real-time systems. In this
paper, we describe our work in providing these features by introduc-
ing a second layer scheduler on top of OSE real-time operating systems
scheduler. The approach contributes to the predictability of the system
by bringing more awareness to the scheduler about the type of real-time
tasks (i.e., periodic, sporadic, and aperiodic) that are to be scheduled,
and the information that should be monitored and logged for each type.

Contribution: I have been the initiator and main author of the paper.

2.3 Research Methodology
Figure 2.2 depicts and summarizes the key steps that have taken place in per-
forming this research work.

Identification of NFRs in telecommunication systems, the general and spe-
cific challenges related to them, and the investigation of the state of the art
and practice to understand what has been done to cope with those challenges
resulted in a set of preliminary research goals. Providing and implementing
solutions for those research goals also required investigation of the state of art
and practice for other challenges and problems as well. The future work and
directions which have been identified after implementing a solution for a re-
search goal also resulted in new research goals which in turn required more
investigation.



Figure 2.2: Research Methodology





Chapter 3

Conclusions

In this research work, we focused on the importance of NFRs in real-time em-
bedded systems. We discussed different steps and points during the process
of model-driven development of these systems where problems leading to the
violation of the requirements can occur. It was shown how at the system model
level, NFRs can be modeled along with other parts of the system, and trace-
ability links among them can be established. Since the satisfaction of an NFR,
especially in real-time embedded systems, can often affect the satisfaction of
other NFRs of the system, we proposed a generic approach that enables system
designers to compare design models with respect to the satisfaction level of
their NFRs and perform trade-off analysis. This is achieved by considering the
interdependencies of NFRs as well as the impact of the functional parts. This
empowers system designers to make better decisions before continuing with
the rest of the development process and generating implementations.

Focusing on timing and security requirements, two approaches for estab-
lishing balance between these NFRs were also introduced. These approaches
target the problem of interdependency of NFRs and ensuring the balance
among them. We believe that the suggested solutions can also be considered
and modified for some other NFRs as well, but this needs to be further evalu-
ated.

Regarding the proposed second layer scheduler, while it adds the miss-
ing necessary mechanisms that are required for detailed monitoring of timing
events, its added overhead and performance costs should also be taken into
account. For different systems, this additional overhead may be or not be ac-
ceptable. This solution is especially interesting for RTOSes where it is not

21



22 Chapter 3. Conclusions

possible or not desirable to modify the kernel and the core scheduler. On the
other hand, an alternative solution would be to instead include the features that
we introduced as part of the second layer scheduler inside the core scheduler
which helps with the reduction of the overheads. One point to note is that any
added feature such as monitoring capabilities will have its performance costs
anyway. This emphasizes the importance of efficient monitoring of system
properties in real-time embedded systems which deserves further studies.

3.1 Future Work

While here we mainly looked at different steps during model-driven develop-
ment of real-time embedded systems where violation of NFRs can occur, to
further mitigate such violations it is also important to look at the transitions be-
tween each of these steps which in this context is model transformation (both
model-to-model and model-to-text transformations). Investigation of transfor-
mation rules that preserve extra-functional properties of the system and thus
can contribute to the satisfaction of NFRs is an interesting extension to this
work. Such transformations that can be proven and provide preservation guar-
antees are of special interest in the development of safety-critical systems and
in certification of the development process.

Also, by introducing our approach for trade-off analysis of NFRs and com-
paring different design alternatives, it would be interesting as a future work to
study methods that help with the optimization of design models with respect to
their NFRs. One of the problems in this direction that needs to be considered
is the scalability of the approach for large systems and issues of state explo-
sion type. Providing a more precise and detailed approach for quantification
of NFRs is another topic for further research. Moreover, performing trade-off
analysis of NFRs at runtime to re-configure the system according to different
states/modes and match different Quality of Service (QoS) levels (e.g., if the
available energy level goes below a certain limit) is another interesting future
work.

Here we took timing and security requirements as an example of NFRs, to
discuss dependencies and their impacts on each other and provided solutions
(static and dynamic) for establishing balance among them. Another direction
of this work could be to evaluate the applicability of the suggested methods for
other NFRs such as timing and energy consumption.

Regarding the runtime monitoring of extra-functional properties, there are
some issues that deserve special attention as future work. For some properties



3.1 Future Work 23

and in some systems, the difference between the time point when the value of
a property is requested and the time when the value is actually monitored and
obtained can affect the accuracy and usefulness of the monitored value. This is
important considering that the monitoring task needs also to compete with the
(main) tasks that implement an application. Therefore, for such situations, we
are considering to address this problem by providing a priority-based monitor-
ing in the sense that by assigning priorities for different properties, the user can
specify that the accuracy of which properties to monitor are more important for
him. Based on these priorities, the monitoring task can perform differently to
increase the accuracy of the monitored value while reducing the response time
for obtaining it. We leave the implementation and evaluation of this method as
a future work.





Bibliography

[1] Martin Glinz. On non-functional requirements. In 15th IEEE Interna-
tional Requirements Engineering Conference, pages 21–26, New Delhi,
India, October 2007.

[2] Lawrence Chung and Julio Cesar Prado Leite. Conceptual modeling:
Foundations and applications. chapter On Non-Functional Requirements
in Software Engineering, pages 363–379. Springer-Verlag, Berlin, Hei-
delberg, 2009.

[3] Systems and software engineering – Vocabulary (IEEE Standard).
ISO/IEC/IEEE 24765:2010(E), 15 2010.

[4] IEEE Standard Glossary of Software Engineering Terminology. IEEE Std
610.12-1990, 1990.

[5] IEEE Standard for Conceptual Modeling Language Syntax and Semantics
for IDEF1X/Sub 97/ (IDEF/Sub Object/). IEEE Std 1320.2-1998, 1998.

[6] S. Heath. Embedded systems design. EDN series for design engineers,
ISBN: 9780750655460. Newnes, 2003.

[7] Thomas Henzinger and Joseph Sifakis. The embedded systems design
challenge. In Jayadev Misra, Tobias Nipkow, and Emil Sekerinski, edi-
tors, FM 2006: Formal Methods, volume 4085 of Lecture Notes in Com-
puter Science, pages 1–15. Springer Berlin / Heidelberg, 2006.

[8] Luiz Marcio Cysneiros and Julio Cesar Sampaio do Prado Leite. Non-
functional requirements: From elicitation to conceptual models. In IEEE
Transactions on Software Engineering, volume 30, pages 328–350, 2004.

25



[9] Bran Selic. The pragmatics of model-driven development. IEEE Soft-
ware, 20:19–25, September 2003.

[10] Martin Törngren, DeJiu Chen, and Ivica Crnkovic. Component-based
vs. model-based development: A comparison in the context of vehicular
embedded systems. In Software Engineering and Advanced Applications,
2005. 31st EUROMICRO Conference on. IEEE, August 2005.

[11] Lawrence Chung, Brian A. Nixon, Eric Yu, and John Mylopoulos. Non-
Functional Requirements in Software Engineering, volume 5 of Interna-
tional Series in Software Engineering. Springer, 1999.

[12] S.E. Chodrow, F. Jahanian, and M. Donner. Run-time monitoring of real-
time systems. In Real-Time Systems Symposium, 1991, pages 74 –83, dec
1991.

[13] Model-Driven Architecture (MDA). http://www.omg.org/mda/,
Accessed: February 2012.

[14] Bran Selic. A systematic approach to domain-specific language design
using UML. In Proceedings of the 10th IEEE International Symposium
on Object and Component-Oriented Real-Time Distributed Computing,
Washington, DC, USA, 2007. IEEE Computer Society.

[15] EAST-ADL Specification V2.1. http://www.atesst.org, Ac-
cessed: November 2011.

[16] Ingo Weisemöller and Andy Schürr. A comparison of standard compliant
ways to define domain specific languages. pages 47–58, Berlin, Heidel-
berg, 2008. Springer-Verlag.



II

Included Papers

27





Chapter 4

Paper A:
UML-Based Modeling of
Non-Functional
Requirements in
Telecommunication Systems

Mehrdad Saadatmand, Antonio Cicchetti and Mikael Sjödin
The Sixth International Conference on Software Engineering Advances (IC-
SEA 2011), Barcelona, Spain, October, 2011.

29



Abstract

Successful design of real-time embedded systems relies heavily on the success-
ful satisfaction of their non-functional requirements. Model-driven engineering
is a promising approach for coping with the design complexity of embedded
systems. However, when it comes to modeling non-functional requirements
and covering specific aspects of different domains and types of embedded sys-
tems, general modeling languages for real-time embedded systems may not be
able to cover all of these aspects. One solution is to use a combination of mod-
eling languages for modeling different non-functional requirements as is done
in the definition of EAST-ADL modeling language for automotive domain. In
this paper, we propose a UML-based solution, consisting of different mod-
eling languages, to model non-functional requirements in telecommunication
domain, and discuss different challenges and issues in the design of telecom-
munication systems that are related to these requirements.



4.1 Introduction 31

4.1 Introduction

The nature of embedded systems such as resource constraints, close integration
and interaction with the environment through sensors and actuators (which can
also incur requirements on safety), timing characteristics and lack of traditional
user interfaces all bring with themselves requirements that make the design of
these systems complicated [1]. Much of this complexity is due to handling
a big range of different requirements, solving conflicts and finding the right
balance and trade-offs among them. Especially non-functional requirements
such as security usually cross cut organizational structures and development
teams. Thus traditional functional decompositions do not suit them. However,
compared to functional requirements not much work has been done on non-
functional requirements and lack of proper methods and techniques for model-
ing of non-functional requirements and their integration into the development
lifecycle are felt [2].

UML profile for Modeling and Analysis of Real-Time Embedded systems
(MARTE) [3] is one of the recent and major efforts on modeling Real-Time
Embedded Systems (RTES) and the non-functional properties in these systems.
MARTE enables detailed modeling of RTES and facilitates their analysis. On
the other hand, there is a big variety of systems in RTES domain and to cover
the specific aspects and needs of each group of those systems (subdomains), a
customized modeling approach is necessary. Such an approach has been used
in the automotive domain, leading to the definition of EAST-ADL profile [4]
for modeling of vehicular systems.

This paper focuses on telecommunication systems and the aspects that
modeling approaches for such systems should be able to cover regarding their
non-functional requirements. We propose a UML-profiling approach consist-
ing of features from different modeling languages to answer broader aspects in
modeling non-functional requirements of telecommunication systems. One of
these aspects is security. We will focus on security in this paper as an exam-
ple for one of the intrinsic characteristics of telecommunication domain that is
also not supported in EAST-ADL. Through an example, we show how it will
be possible to model security requirements along with other aspects such as
power, in one model while establishing traceability between high requirements
and their refinements (lower level ones).

Regardless of the set of non-functional requirements that a subdomain in
RTES has, modeling approaches for these systems should provide requirements
traceability. This becomes even more important due to limited resources that
systems in this domain have; while in other systems, it is usually a lot easier



32 Paper A

to add extra resources to the system such as additional memory and that way
fulfill a requirement. Therefore, a more careful balance and trade-off analysis
between requirements is necessary in order to satisfy all of them in RTES do-
main. Having traceability links among requirements and also between require-
ments and design artifacts facilitates to perform impact analysis and identify
the effects a change on one requirement can have on other parts of the system.

To cover different aspects regarding non-functional requirements in
telecommunication systems, we suggest a UML profiling solution consisting
of concepts from SysML [5] for traceability, and MARTE for modeling general
non-functional properties and their analysis. For security requirements, which
are inherent in telecommunication domain but are not covered by MARTE, we
adopt from available UML profiles for security, namely UMLsec [6]. Also
since MARTE, SysML and UMLsec are UML profiles, they are faster for de-
velopers using UML to catch on and they also serve as a possible unifying
factor between development departments. A comparison of different ways to
define Domain Specific Languages (DSL) and the benefits of each approach
are provided in [7, 8]. It is also important to note here that combining different
UML profiles is not a trivial task as it may seem and it can incur different prob-
lems such as semantic conflicts. These issues are discussed in an interesting
work in [9].

The contributions of this paper can be summarized in the following points:

• Showing an approach on how to model non-functional requirements in
telecommunication systems

• Identification of issues that should be taken into account in modeling
those requirements and the modeling concepts to cover them

As a guideline we use our observations during a project we have done at Er-
icsson plus the results of other studies such as [10, 2] to describe the modeling
challenges. In Section 4.2, we provide a deeper understanding of telecom-
munication systems, its characteristics and needs, and the problems observed
around non-functional requirements in those systems. We discuss the related
work and have a look at some modeling solutions in automotive domain in Sec-
tion 4.3. In Section 4.4, we describe the ingredient concepts of our proposed
approach for modeling non-functional requirements in telecommunication do-
main by highlighting some key relevant concepts offered in SysML, MARTE
and UMLsec. Section 4.5 shows the application of the method as a usage ex-
ample. In Section 4.6, we compare the features of our suggested approach with



4.2 Motivations 33

those of EAST-ADL in automotive domain, and finally, in Section 4.7 we sum-
marize the work and suggest different areas that need to be studied as future
work.

4.2 Motivations
The observations and results in this section are achieved through collaboration
with Ericsson engineers (Stockholm, Sweden) and gathered through several
meetings with different teams, such as Radio Base Stations (RBS) development
group, during CHESS project [11] at Ericsson.

4.2.1 Telecommunication Systems

As a type of real-time embedded systems, telecommunication systems have
specific characteristics, which incur certain requirements and prioritization of
some requirements over the others. These systems need to be secure, are highly
distributed, have a dynamic nature, require massive processing capacity and
high availability (99.999% availability, which is sometimes referred to as five
nines), and need to be scalable. The distribution in these systems can be re-
garded in two perspectives: the distribution inside one node (such as using
multicore solutions and distribution of software functions among different pro-
cessing units) and also the geographical distribution of nodes across different
regions and the communication among them.

Typically, telecommunication networks consist of many different types of
nodes such as Radio Base Stations (RBS), Radio Network Controllers (RNC),
Media Gateways (MGW) and others that span across a big geographical area
and communicate over different kinds of lines.

Regardless of the integration and interconnection of different nodes in the
network, design of each node is a big complex challenge in itself. For example,
an RNC can easily contain between 500 to 700 CPUs, with software functions
spanning across several CPUs. This number, however, is decreasing as new
processors with higher capacities are produced. This reduction is important for
the total cost, power consumption and heat generation of systems. As for func-
tionality and services, in a typical telecommunication system a big number of
connections should be established, routed and managed per second. Besides,
cost calculation should also be done on them. Moreover, a typical telecommu-
nication system can have a life span of about 20-30 years. Thus upgrade-ability
and maintenance of such systems is also of great importance. Software upgrade



34 Paper A

should be done in such a way to have the least effect on the availability of the
system. That is why requirements such as hot-swapping and plugging and the
ability to perform restarts at different granularity levels (a single board, collec-
tion of boards or a complete node) are highly desirable and demanded in this
domain.

4.2.2 Problems with Non-Functional Requirements
Due to the hierarchical and subsystem structure of telecommunication systems,
first overall non-functional requirements are defined on the system and then
they should be refined several times and in each step more concrete and design-
decision information is added. However, not all requirements get refined, and
as discussed in [10], this leads to weak traceability chains. What can happen
is that the requirements that are defined on the system model are consumed
(meaning that they are read and implemented in the system) and no explicit
connection between the design artifact and the requirement leading to that de-
sign decision gets established. Also for verification, most of the requirements
are tested on a reference configuration and then if some requirements are not
met, changes are applied on the system model and again a reference configura-
tion is built with the new requirements. Basically, there are two general issues
with this current approach:

• Poor support for traceability of requirements to design artifacts

• The feedback loop for analysis of non-functional requirements takes
much time and effort and the wish is to be able to perform verification of
non-functional requirements at earlier phases

The organization in large companies usually have a hierarchical structure,
which suits the actual system hierarchical structure as mentioned above. Ac-
cording to the study done in [2], this organizational structure matches the sys-
tem structure well, as subsystems tasks and modules are allocated to specific
departments and thus is more suitable for functional requirements. However,
this is not the case for non-functional requirements. The problem as men-
tioned in [2] is that the autonomy of departments at the lowest levels of hier-
archy makes management of non-functional requirements harder and that the
decisions about these requirements should be done at higher levels of hier-
archy and aligned and managed from top to down. This problem becomes
more obvious with certain types of requirements such as security, usability and
user-interface characteristics, which should be aligned in different subsystems.



4.3 Related Work 35

Thus, non-functional requirements can easily cross-cut organizational structure
of a company and therefore a methodology that works for functional decom-
position may stop to work for non-functional requirements.

In such organizations, it also happens that different teams may have differ-
ent interpretations and definitions for some non-functional requirements, which
can cause problems for communication between the teams. On the other hand,
this also means that people from different teams may talk about a specific re-
quirement using different terms. If we can provide a consistent way of mod-
eling non-functional requirements and a mechanism to establish associations
between a requirement or a design artifact and its source requirement, such
problems can be mitigated and detected more easily. Also as can be implicitly
noticed from the discussion in previous section, there are many requirements
that have conflict with others, and trade-off decisions to balance them need to
be taken. However, these compromisations and decisions, which may be made
inside a subgroup, are somewhat unknown to upper levels and are only known
by some engineers working in that section. For example, it is quite common
that specific tweaking and settings in the code on bandwidth or memory usage
are applied to ensure a certain level of balance between performance and main-
tainability of the system. Such decisions even if documented are hard to follow
and track later on, especially for upper levels in the organizational hierarchy.
On the other hand, some requirements that are decided on higher levels are lost
in the transition to go to development teams in lower levels of hierarchy. This
observation is also in alignment and confirmed by the study in [10], which
states the problem as non-functional requirements ”are not always available
when needed”. These issues can be alleviated by applying traceability (which
can be traversed back and forth) between requirements and using a better form
for representation and documentation of non-functional requirements.

4.3 Related Work

Requirement Modeling: Telecommunication Standardization Sector (ITU-T)
have offered several languages for system modeling in telecommunication do-
main. Each of these languages try to target different aspects and phases in
system development. For example, Message Sequence Chart (MSC) is used
for modeling asynchronous interaction scenarios. Specification and Descrip-
tion Language (SDL), which has both textual and graphical representations,
uses block, process, channel and signal concepts to describe behavior in com-
municating real-time systems. At higher abstraction layers and for model-



36 Paper A

ing requirements, ITU-T has suggested User Requirements Notation (URN).
URN consists of two notations: Goal-oriented Requirement Language (GRL)
to model goals and non-functional requirements and Use Case Maps (UCM) to
describe functional scenarios. GRL is used to capture informal system goals,
specification and rationals. We refer interested readers to ITU-T website [12]
for more information on these languages. Some efforts have been done to de-
fine these languages as UML profiles such as [13].

As for general UML-based approaches in RTES domain, MARTE with its
expressive power and formal semantics enables capturing non-functional re-
quirements in more formal ways and with necessary details for performing
analysis earlier in system development phases. For system engineering, mod-
eling general requirements and the relationships among them, SysML offers
Requirements model, and semantics and notations for requirements traceabil-
ity.

Modeling Security Requirements: There have been efforts on modeling and
analysis of security aspects using UML to bring them into earlier phases of de-
velopment . For example, SecureUML [14] focuses on modeling Role-Based
Access Control (RBAC) by extending UML as a profile, while AuthUML [15]
is a framework for analysis of access control in the specification phase and
thus less suited for code generation. UMLsec on the other hand, uses stereo-
types and tag values for modeling general security aspects such as secure links,
connections, RBAC, secure information exchange, etc. to enable analysis and
early automatic verification (which also matches our goal for early analysis of
requirements). A comparison between SecureUML and UMLsec for model-
ing role-based access control is done in [16]. The UMLsec analysis tool suite
can help to identify parts of the model that do not match a specified secu-
rity requirement. This enables to perform a level of security analysis on the
model and find inconsistencies before going into implementation phases. As
for other works in this area, the study in [17], for example, introduces stereo-
types to specify vulnerabilities so that developers can notice them and avoid
in implementation. It also claims that these specifications can be used to gen-
erate test cases for security. Article [18] tries to merge Mandatory Access
Control (MAC) and Discretionary Access Control (DAC) with RBAC. It is a
good work for modeling access control aspects, but lacks other security aspects
of UMLsec and their analysis. Doan and Demurjian [19], on the other hand,
discuss security analysis based on RBAC and MAC in use-case and class di-
agrams. Houmb and Hansen [20] introduce SecurityAssessmentUML, which
is intended to capture and document the results of risk (i.e., vulnarabiltiies,
threats, etc.) identification and analysis. Discussion and comparisons of differ-



4.4 Suggested UML profile 37

ent UML-based security models can be found in the related work sections in
[14, 6, 17, 18, 19].

Requirement Modeling in Automotive Domain: As an example of a UML-
based domain-tailored approach, EAST-ADL has been developed in automo-
tive domain for modeling software architecture and electronic parts of a system.
By complementing and making use of general available modeling solutions in
RTES domain, EAST-ADL tries to cover the specific requirements of automo-
tive domain. It adopts concepts from UML, AADL [21] and SysML to provide
modeling semantics aligned with AUTOSAR [22] specification. AUTOSAR
focuses on lower design levels such as component model, software modules,
control units, APIs and implementation parts of automotive systems.

For modeling requirements, EAST-ADL makes use of SysML require-
ments semantics and specializes them to match automotive domain (e.g., defi-
nition of timing, delay and safety requirements). However, it does not provide
enough features to enable some analyses such as scheduling and timing verifi-
cations earlier than implementation phase [23]. There are studies such as [23]
that suggest decorating EAST-ADL models with some features from MARTE
such as timing and allocation packages to enable early scheduling analysis.
TIMMO project [24] is one of the efforts using this idea to complement timing
model of EAST-ADL for automotive domain. In general, EAST-ADL and its
requirement model may not be appropriate and compatible as a whole for re-
quirements in telecommunication domain. It does not cover security aspects,
which are important for telecommunication systems, is aligned with EAST-
ADL’s specific abstraction levels, and is based on concepts like ECU, Vehicle-
Feature, AutosarSystem, and Sensor which are not relevant for telecommuni-
cation systems. In order to better capture requirements of telecommunication
systems that originate from their specific characteristics such as intensive per-
formance demands, distribution, use of multicore solutions, virtualization and
hierarchical schedulers, etc. a tailored solution for this (sub)domain is required.

4.4 Suggested UML profile

Adopting a model-based approach for the development of telecommunication
systems helps to raise the abstraction level and cope with the design complex-
ity. This also targets the challenge to shorten the feedback loop and enable
analysis in earlier phases of development.

In this section, the key concepts that a desired UML profile for telecommu-
nication systems should be able to offer are discussed. We explain traceabil-



38 Paper A

ity concepts from SysML, modeling general non-functional requirements with
MARTE highlighting its relevant and interesting features for telecommunica-
tion domain and how to model security aspects along with an example of its
analysis. Later in section 6, we compare the features of our suggested UML
profile with EAST-ADL.

4.4.1 Modeling Traceability Using SysML

For modeling of requirements, SysML provides a specific diagram, which
can be a solution to the issues regarding management of non-functional re-
quirements of telecommunication systems identified in previous sections. An
important feature of SysML is to represent requirements as first-class model
elements. So requirements are included as parts of the system architecture
and have semantics [25]. This also enables establishing relationships be-
tween requirements and other model elements showing, for example, design
artifacts implementing and satisfying a requirement. It is possible to decom-
pose requirements and create a hierarchy of requirements, which is needed to
cope with the complexity of requirements faced in telecommunication domain.
SysML provides different types of associations among requirements, which
include: copy, deriveReqt, satisfy, verify, refine and trace.

The counterpart of these associations are derivedFrom, satisfiedBy, re-
finedBy, tracedTo, verifiedBy and master properties that a requirement element
can have. For example, satisfiedBy property of a requirement element contains
the information of the model element that satisfies this requirement (counter-
part of satisfy association). This way, SysML facilitates traversing back and
forth between requirements and also model elements from high level depart-
ments in organizational hierarchy to lower level departments and development
teams.

Another feature that SysML provides is requirements table. Require-
ments table provides traceability information for requirements in a single view,
which is very helpful in managing the big number of versatile requirements
in telecommunication systems. In this tabular representation of requirements,
information such as requirements properties and types, dependency relation-
ships with other elements/requirements and other information such as design
rationale and test procedures may be included. By going through this table,
it is possible to analyze the change (e.g., modification, deleting) effect of one
requirement on other requirements in the systems. So basically, by providing
different types of association and dependency and the tabular representation
of requirements, SysML can answer problems identified for traceability and



4.4 Suggested UML profile 39

impact analysis of requirements in a complex and hierarchical telecommuni-
cation system. Moreover, by using stereotypes it is possible to extend SysML,
which makes it very flexible to add new semantics such as new types of associ-
ations or requirements. An example of this extension is provided in [25], where
three stereotypes for functional requirements, non-functional requirements and
external interface are defined and used to model a system.

4.4.2 MARTE for Non-functional Requirements and Analy-
sis Support

To represent the properties of non-functional requirements such as timing con-
straints in a formal way, MARTE provides rich modeling semantics. MARTE
profile consists of different subpackages and in this section we try to identify
packages and semantics in them, which serve to represent the type of non-
functional requirements we identified in a telecommunication system.

MARTE NFP Types, Value Specification Language (VSL) and the stereo-
types defined in NFP package (Non-Functional Properties) help to define dif-
ferent non-functional properties specific to different domains. NFP package
makes it possible to define percentage, dimensions, measurement precision and
similar concepts for non-functional properties. Examples of basic NFP types
already defined in MARTE type library can be power, frequency, duration, en-
ergy, weight, length, arrivalpattern (periodic,aperiodic, sporadic), price, etc.
For time specifications, MARTE offers the time package and representation of
time in MARTE can be in the form of a physical (continuous or discretized)
or logical clocks (processor cycles, engine rotation, algorithmic steps. . . ). The
concept of multiform time provided in MARTE is very useful for telecom-
munication domain, which has already started heading for multi- and many-
core solutions. The semantics to model the execution platform (operating sys-
tem, virtual machines, hardware) are packaged in Generic Resource Modeling
(GRM), Software Resource Modeling (SRM) and Hardware Resource Mod-
eling (HRM). With SRM it is possible to model concepts such as resources,
services, concurrency and mutual exclusion features in a Real-Time Operating
System (RTOS) as well as virtual machines, which are used in telecommunica-
tion systems. The stereotypes in HRM package enable modeling of processing
units, different levels of memory, devices and their physical aspects such as
layout in the system, power consumption, and heat dissipation. These concepts
can be used to target non-functional requirements such as cost sensitivity, exe-
cution capacity, and environmental requirements (layout, size, structure, etc.).

An interesting feature provided in GRM is the modeling of primary and



40 Paper A

secondary schedulers, which enables modeling of systems having hierarchical
schedulers. This is helpful for telecommunication domain in which, use of
hypervisors and virtual operating systems on top of another operating system
is common.

To model dependability requirements (reliability, availability, maintainabil-
ity, safety), which is an important feature of telecommunication systems, there
is a suggestion for an extension to MARTE, that is introduced in [26] as De-
pendability and Analysis Modeling (DAM) (sub)profile and offers relevant
concepts such as threats (fault, failure, error, hazard, accident), maintenance,
redundancy, etc.

4.4.3 Covering Security Aspects
Security in embedded systems is becoming more important and gaining greater
attention. More mechanical parts are replaced by computer systems and the use
of wireless technologies for communication between different units is becom-
ing a dominant trend. In automotive domain for example, features such as traf-
fic and accidents notification systems, built-in bluetooth devices and distance
calculator between cars are representatives of such cases that require communi-
cation with other cars and devices. Such features along with electronic access
controls (e.g., access to the vehicle internal bus and electronic locks) also open
up the system for more security threats.

Due to the nature of systems in telecommunication domain, which natu-
rally involve long distance communications and at a big level of distribution
and scalability with many nodes and access points on the way, security as-
pects have always been an unavoidable part. A single telecommunication node
such as a Radio Base Station (RBS) can serve different requests from different
sources and these operations should be kept separate from each other keeping
data intact and safe from interference. It becomes more critical when we add
to the picture other services in the system such as call cost calculation for users
and (recently) data traffic including images, emails, and other sensitive and per-
sonal information. However, in the design of a system, security considerations
should not be considered as an add-on, but they should be taken into account
from early phases of design.

UMLsec covers a broad scope and has a versatile tool suite for analysis.
Using that we can complement modeling of security requirements as first class
entities. With the help of SysML, relationships between them and other non-
functional requirements and also design artifacts can be added and detailed
non-functional properties using MARTE can be specified for them if neces-



4.5 Modeling a Security Requirement Using the Suggested Profile 41

sary. So for example, it becomes possible to model nodes in a system as re-
sources using MARTE GRM package, and then define necessary users, roles
and communication security requirements between the nodes using UMLsec
profile. The relation between these elements and the source requirement ele-
ment incurring such security design can be established using SysML require-
ments concepts.

UMLsec offers several stereotypes such as Internet, wire, LAN, encrypted
for physical links between nodes. These concepts can be applied on commu-
nication links in telecommunication systems. Each link type in UMLsec is de-
fined as prone to different types of threats (read, insert, delete) from different
attackers. For example, a link stereotyped as LAN or wire, has no threat from
a default (external) attacker. However, an insider attacker can still pose read,
insert and delete threats regarding the packets and information transferred on
such a link. If it is needed to define new types of links, attackers or threats,
UMLsec allows this. The new concepts can be defined in the UMLsec ap-
propriate format in an XML file, so that the analysis tool can perform correct
analysis based on these custom concepts on a model that makes use of them. In
this sense, the analysis tool is flexible and extensible. Secrecy stereotype that is
used on dependency relationships applies a secrecy/confidentiality requirement
on the elements of dependency base class. This way, we specify that there is a
secrecy requirement for the involved elements.

4.5 Modeling a Security Requirement Using the
Suggested Profile

In a typical 3G telecommunication network, different groups of Radio Base
Station (RBS), Radio Network Controller (RNC) and Media Gateway (MGW)
nodes are connected and communicate. When a Mobile Equipment (ME) wants
to join the network, it starts communicating with RBS and authenticating itself
to the system. Security operations such as key exchange take place through the
communication path from the mobile equipment to the RNC. In our case study,
we have two RBS 3202 nodes that communicate with an RNC. The output
power requirements for RBS 3202 are as follows:
Req1: Optimized Power 15W, Standard Power 20W, High Power 30W and
Dual High Power 60W.
One of the security requirements that exist for the connection between the RBS
and RNC is:
Req2: Data communication between RBS nodes and RNC should only be



42 Paper A

Figure 4.1: Security Requirement on RBS Nodes

readable by inspection group.
The second requirement incurs that no one from outside and also inside

of the network should be able to read the data traffic on the links between
RNC and RBS except users in the inspection group. Thus the data should be
encrypted using a specific key for this group. We try to violate this in our
example model by using unencrypted links and then perform analysis on the
model.

As shown in Figure 4.1, the requirements and the relationships between
them and design artifacts are modeled using SysML concepts. MARTE non-
functional concepts (i.e., nfp, nfpconstraint, PowerUnitKind and NFP Power)
are used for modeling output power requirements of RBS nodes. Security con-
cepts in our model are represented using UMLsec stereotypes. The link be-
tween RBS1 and RNC is marked with wire stereotype and the one between
RBS2 and RNC is marked with LAN stereotype (in UMLsec wire and LAN are
two different security stereotypes that can incur different security characteris-
tics).

Doing analysis using UMLsec analysis tool on the model yields the result
that is shown in Figure 4.2. The important part in this analysis output (marked
with *) is that LAN and wire links are not readable by a default (external)
attacker thus the model satisfies the secrecy requirement for this attacker type,



4.6 Discussion 43

::::::::Against Default Attacker
=======Here begins the verification
The name of the dependency is RBS2_Dependency
The stereotype of the communication link of the dependency RBS2_Dependency is LAN
The stereotype of the dependency is: secrecy

* The UML model satisfies the requirement of the stereotype secure links.
...
::::::::Against Insider Attacker
=======Here begins the verification
The name of the dependency is RBS2_Dependency
The stereotype of the communication link of the dependency RBS2_Dependency is LAN
The stereotype of the dependency is: secrecy

* The UML model violates the requirement of the stereotype secure links, but
it has been fixed.
...

Figure 4.2: Result from UMLsec Analysis Tool

but an insider attacker on LAN or wire can access the information and therefore
the model violates the requirement. Although UMLsec has a general encrypted
stereotype to label encrypted communications, it is also possible to define a
custom stereotype for example as “Uniquely encrypted by SIM ID” and define
different threats that different attackers can pose on these links such that only
inspection group users can have access. Then we can use this stereotype on
the links instead of LAN and wire that we used earlier, to create a model that
satisfies the requirement and verify it with the analysis tool.

4.6 Discussion

As mentioned in the related work section, EAST-ADL is a modeling solution
for automotive domain that is built using a similar approach to what we pro-
posed here by adopting from several UML profiles. It is successfully accepted
in the automotive domain and its usage together with AUTOSAR is gaining
more momentum. In table 4.1, a comparison of capabilities of our suggested
solution using MARTE plus SysML and UMLsec against those of EAST-ADL
is presented, with a focus on modeling concepts and features that are necessary
for NFRs in telecommunication domain (e.g., processing capacity and memory
consumption that are important for performance analysis). It summarizes the
concepts we discussed and identified in previous sections. The star mark in
the table is used to indicate that the feature is not enough/fully supported, such
as the dependability modeling in our approach. However, it can be covered
by using the DAM profile introduced earlier, which is built as an extension to
MARTE. Modeling of time for schedulability analysis support in EAST-ADL
needs also to be complemented (as is investigated in [24]).



44 Paper A

Modeling Feature Our Approach EAST-ADL

Generic NFRs (SysML Style) X X
Traceability of NFRs X X
Timing, Clock, Schedulability Support X *
Memory consumption X 7
Processing capacity X 7
Power consumption X 7
Virtual machines and hierarchical schedulers X 7
Hardware platform X X
Multicore X 7
Allocation and Deployment X X
Communication media X 7
Safety 7 X
Security X 7
Variability (product families) 7 X
Methodology (e.g., abstraction levels) 7 X
Dependability (e.g., fault, error... ) * X
Synchronization mechanisms X 7
Arbitrary Non-Functional Properties X 7
Component model X (AUTOSAR)

Table 4.1: Comparison of the suggested UML-based modeling solution with
EAST-ADL of Automotive domain.

From the table, it can be seen that by tailoring a UML profile for telecom-
munication systems based on the concepts in the three available profiles we
discussed in this paper (MARTE, SysML and UMLsec), it is possible to better
cover the requirements of telecommunication systems, than just re-using only
EAST-ADL modeling semantics from automotive domain, which are tailored
for the needs of systems in that domain. Security is one of the specific needs of
telecommunication systems that is not supported by EAST-ADL and has not
been in the main focus in automotive domain (so far). While on the other hand,
safety requirements, which are very important for automotive systems, are ex-
plicitly supported in EAST-ADL. For differences between safety and security
requirements, interested readers can refer to [27].

While in this paper, we discussed a UML-based solution by adopting and
tailoring already existing profiles, other methods of defining a specific lan-
guage for modeling telecommunication systems are, of course, possible. How-
ever, although designing a domain specific language from scratch may match
the needs of telecommunication systems better, it also implies the need to de-
sign dedicated modeling tools, and additional costs for training the users to
learn the new language. On the other hand, some of the benefits of a solution
based on UML are that many users are already familiar with UML, and thus,



4.7 Conclusion and Future Work 45

the learning curve is smaller. Also, there are already many tools for creating
UML models which can be used ’out of the box’ [7, 8]. One point to remem-
ber though is that, as mentioned before, combining different UML profiles can
be problematic in some cases. For example, there is FlowPort both in SysML
and MARTE. However, the semantics of FlowPort in SysML are different from
those of MARTE. A systematic approach is suggested in [9] to ensure consis-
tency in merging UML profiles.

Regarding the management of models, based on the features of the model-
ing tool, there can be several scenarios. For example, different models can be
created for different aspects of the system. This can also help with the analysis,
as one model for each type of analysis can be created. However, maintaining
consistency between different models of the system and redundant information
modeling are some of the challenges of this approach. Another scenario could
be to have one single model for the system, and then have the modeling tool
provide different views of the core model. This way, a user can just focus on the
aspects of his/her interest in each view, while modifications are persisted into
one single model representing the system. This method is under development
in CHESS project [11].

As for the analysis of the models, although this topic is not the main focus
of this paper, but we provide some hints here. Basically, the process of anal-
ysis can be different for various analysis tools, and depending on which types
of analysis are of interest for different end-users. In case of having just one
single model of the system, if an analysis tool can ignore non-relevant model
elements and perform analysis on the relevant parts, the model can be fed as in-
put to the analysis tool directly. However, if non-relevant model elements may
cause problems for the analysis, then it is possible to use model transformation
to extract only the relevant ones into a new model appropriate as input for the
analysis tool. Also, if the input model of any analysis tool has its own specific
meta-model, then model transformation techniques can again be used to trans-
form the original model into a new model conforming to the meta-model of the
analysis tool.

4.7 Conclusion and Future Work

In this paper, we discussed several challenges in modeling non-functional re-
quirements in telecommunication domain. We also suggested a modeling ap-
proach for representation of non-functional requirements and their properties
in this domain. Our approach was to consider telecommunication systems



46 Paper A

as a subdomain of RTES and therefore adopt from available modeling solu-
tions for non-functional requirements and their analysis that already exist in
RTES domain. Some concepts of MARTE that can cover the requirements of
telecommunication systems were highlighted. For traceability aspects, SysML
and the features it provides in establishing traceability in modeling of non-
functional requirements were introduced. Finally, as a specific and intrinsic
requirement in telecommunication domain, it was shown how it is possible
to model and analyze security that is addressed in our suggested approach by
adopting UMLsec. This way, we showed not only how it is possible to model
different types of non-functional requirements, but also how model-based anal-
ysis can help with the need to perform analysis of non-functional requirements
at earlier phases of development and therefore reduce time and cost. In CHESS
European project [11], we are developing a similar solution by using subsets
from MARTE, SysML and DAM profile (without security considerations yet)
to generate code for telecommunication systems (in this case, Ericsson plat-
forms) considering and preserving non-functional requirements modeled using
the mentioned subsets.

As further studies, it is necessary to augment the suggested approach in
this paper, such as introducing it as part of a well-structured methodology sim-
ilar to the methodology suggested in [28]. This methodology is more suited
for automotive domain as it makes use of EAST-ADL and its abstraction lev-
els. Applicability of the same concepts to telecommunication domain could be
an interesting topic to investigate. Especially that EAST-ADL offers concepts
for modeling variability requirements, which can be very useful in telecom-
munication domain for modeling product families, targeting cost-sensitivity
non-functional requirements and performing cost analysis.

Also other challenges that exist regarding non-functional requirements in
a model-based development approach can be guaranteeing and preservation of
these requirements on the target platform, introducing runtime adaptability and
reconfiguration based on the requirements and handling their violations.

As a last note, in this paper we set the basis for a UML-based solution
for telecommunication systems similar to EAST-ADL in automotive domain.
While it was demonstrated how we can relate high-level and abstract represen-
tation of an NFR such as security with its lower level realizations and perform
security analysis on it, a full scale solution needs contributions from differ-
ent industrial partners active in the domain as has been done in the process of
defining EAST-ADL and AUTOSAR.



Bibliography

[1] Tom Henzinger and Joseph Sifakis. The embedded systems design chal-
lenge. In Proceedings of the 14th International Symposium on Formal
Methods (FM), Lecture Notes in Computer Science. August 2006.

[2] Andreas Borg, Angela Yong, Pär Carlshamre, and Kristian Sandahl. The
bad conscience of requirements engineering : An investigation in real-
world treatment of non-functional requirements. In Third Conference
on Software Engineering Research and Practice in Sweden (SERPS’03),
Lund :, 2003.

[3] MARTE specification version 1.0 (formal/2009-11-02). http://www.
omgmarte.org, Accessed: August 2011.

[4] EAST-ADL Specification V2.1. http://www.atesst.org, Ac-
cessed: August 2011.

[5] OMG SysML Specifcation V1.2. http://www.sysml.org/
specs.htm, Accessed: August 2011.

[6] Jan Jürjens. Secure Systems Development with UML, ISBN: 978-3-540-
00701-2. Springer, 2005.

[7] Ingo Weisemöller and Andy Schürr. A comparison of standard compliant
ways to define domain specific languages. pages 47–58, Berlin, Heidel-
berg, 2008. Springer-Verlag.

[8] Bran Selic. A systematic approach to domain-specific language design
using uml. In Proceedings of the 10th IEEE International Symposium
on Object and Component-Oriented Real-Time Distributed Computing,
2007.

47



48 Bibliography

[9] Florian Noyrit, Sébastien Gérard, François Terrier, and Bran Selic. Con-
sistent modeling using multiple uml profiles. In Model Driven Engineer-
ing Languages and Systems. 2010.

[10] Andreas Borg, Mikael Patel, and Kristian Sandahl. Good practice and im-
provement model of handling capacity requirements of large telecommu-
nication systems. In RE ’06: Proceedings of the 14th IEEE International
Requirements Engineering Conference, Washington, DC, USA, 2006.

[11] CHESS Project: Composition with Guarantees for High-integrity Embed-
ded Software Components Assembly. http://chess-project.
ning.com/, Accessed: August 2011.

[12] Telecommunication Standardization Sector (ITU-T). http://www.
itu.int/en/pages/default.aspx, Accessed: June 2011.

[13] Muhammad R. Abid, Daniel Amyot, Stéphane S. Somé, and Gunter
Mussbacher. A uml profile for goal-oriented modeling. In Procs. of
SDL’09, 2009.

[14] Torsten Lodderstedt, David A. Basin, and Jürgen Doser. Secureuml: A
uml-based modeling language for model-driven security. In Proceedings
of the 5th International Conference on The Unified Modeling Language,
UML ’02, 2002.

[15] Khaled Alghathbar and Duminda Wijesekera. authuml: a three-phased
framework to analyze access control specifications in use cases. In FMSE
’03: Proceedings of the 2003 ACM workshop on Formal methods in se-
curity engineering, pages 77–86, New York, NY, USA, 2003. ACM.

[16] A. Cenys, A. Normantas, and L. Radvilavicius. Designing role-based
access control policies with uml. In Journal of Engineering Science and
Technology Review, volume 2, pages 48–50, 2009.

[17] Karine P. Peralta, Alex M. Orozco, Avelino F. Zorzo, and Flávio M.
Oliveira. Specifying security aspects in uml models, September 2008.

[18] S. Demurjian, J. Pavlich-Mariscal, and L. Michel. Enhancing uml to
model custom security aspects. In Proceedings of the 11th International
Workshop. on Aspect-Oriented Modeling, October 2007.



[19] Thuong Doan and Steven Demurjian. A.: Mac and uml for secure soft-
ware design. In In: Proc. of 2nd ACM Wksp. on Formal Methods in
Security Engineering, pages 75–85. ACM Press, 2004.

[20] Siv Hilde Houmb and Kine Kvernstad Hansen. Towards a uml profile for
security assessment. In Workshop on Critical Systems Development with
UML, 2003.

[21] AADL. The Architecture Analysis & Design Language: An Introduction
. http://www.aadl.info/aadl/currentsite/aadlstd.
html, Accessed: August 2011.

[22] AUTOSAR Home Page. http://www.autosar.org/, Accessed:
August 2011.

[23] Saoussen Ansi, Arnaud Albinet, Sara Tucci-Pergiovanni, Chokri
Mraidha, Sebastien Gérard, and François Terrier. Completing east-
adl2 with marte for enabling scheduling analysis for automotive applica-
tions. In Embedded Real Time Software and Systems Conference (ERTS),
Toulouse, France, 2010.

[24] TIMMO Project. http://www.timmo.org/, Accessed: August
2011.

[25] Michel dos Santos Soares and Jos L. M. Vrancken. Model-driven user
requirements specification using sysml. Journal of Software, 3:57–68,
2008.

[26] S. Bernardi, J. Merseguer, and D. Petriu. A dependability profile within
marte. Journal of Software and Systems Modeling, 2009.

[27] Eirik Albrechtsen. Security vs safety. NTNU - Norwegian University
of Science and Technology http://www.iot.ntnu.no/users/
albrecht/, Accessed: May 2011.

[28] A. Albinet, J-L. Boulanger, H. Dubois, M-A. Peraldi-Frati, Y. Sorel, and
Q-D. Van. Model-based methodology for requirements traceability in
embedded systems. In Procs. of ECMDA’07, Haifa, Israel, June 2007.





Chapter 5

Paper B:
Modeling and Trade-off
Analysis of NFRs

Mehrdad Saadatmand, Antonio Cicchetti and Mikael Sjödin
MRTC report ISSN 1404-3041 ISRN MDH- MRTC-267/2012-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, April, 2012.

51



Abstract

In this paper we introduce a generic approach to analyze system design models
with regard to the satisfaction of their Non-Functional Requirements (NFRs)
to enable the evaluation of their NFRs’ trade-offs. NFRs and their satisfaction
become especially critical and deserve more attention in certain application do-
mains such as real-time and embedded systems. This is mainly due to the con-
straints and resource limitations in these systems. A design that cannot achieve
the functionality of the system under these limitations can mean a failure. How-
ever, one big issue is that NFRs are interconnected and cannot be considered in
isolation as they can have direct impacts on each other like security and perfor-
mance. This means that a careful balance and trade-off analysis among NFRs
is necessary. In doing so, the role of functional parts that contribute and are
implemented to satisfy an NFR should also be taken into account. We focus on
these needs and identify what information about NFRs is required in order to
perform trade-off analysis and comparison of design models. We propose and
explain our approach to incorporate this information into system models using
UML profiling method to annotate model elements with necessary informa-
tion and then calculate satisfaction values of NFRs using model transformation
technique.



5.1 Introduction 53

5.1 Introduction

The role of Non-Functional Requirements (NFR) throughout the software de-
velopment process is gaining more and more attention, especially that the im-
proper handling of NFRs has been identified as an important source of failure
in many projects [1, 2]. However, NFRs are still rarely taken into account
seriously and treated as first-class elements in software development, and are
mostly considered as an after-thought in the final phases of development [3, 4].
There are several reasons that contribute to this fact. For example, NFRs are
usually stated in an informal way and at a high abstraction level, therefore, ap-
propriate methods and tools are required that can incorporate them at earlier
phases of development and along with functional requirements. The impor-
tance of the integration of NFRs with functional parts becomes more apparent
when we realize that different NFRs on the same functionality can result in
different design decisions and implementations [5].

Proper handling of NFRs is even critical in certain domains such as em-
bedded and real-time systems. Successful design of these systems depends
heavily on the satisfaction of their non-functional requirements. This is mainly
due to the constraints and limitations of these systems in terms of available re-
sources [6]. Therefore, an embedded system needs to achieve its functionality
under these limitations and NFRs. The problem is that each design decision
can have impact on the system’s NFRs and the system designer should be able
to identify and evaluate these impacts. For example, if there is an execution
time constraint on a component responsible for sorting numbers, then choos-
ing a slower algorithm than a more time-optimized one can lead to the viola-
tion of system requirements and deviation of its behavior from the desired one.
This situation becomes more complicated when we realize that NFRs not only
crosscut different parts of a system, but can also have mutual impacts on each
other. For example, choosing a time-optimized and faster sorting algorithm
can help with the satisfaction of the timing requirements but may require more
memory and thus violate memory constraints. Also, an NFR such as security
crosscuts different parts of a system (e.g., user interface, database, communi-
cations and network transmissions) and affects some other NFRs like perfor-
mance [7]. Therefore, the tools and methods that are suggested for handling of
NFRs should not only be able cover and cope with their informal nature, high
abstraction level, and integration with functional ones, but also should be able
to help with identifying their dependencies and impacts on each other to enable
analysis of their trade-off.

Model-Based Development (MBD) helps to raise the abstraction level and



54 Paper B

cope with the design complexity of systems. This can make it especially in-
teresting for the design of real-time embedded systems which can have high
degree of complexity. By raising the abstraction level, MBD also enables anal-
ysis at earlier phases of development which in turn enables identification of
problems before reaching the implementation phase [8]. Since NFRs have a
high abstraction level [3] and also MBD provides views of the system at higher
abstraction levels, providing an MBD approach to incorporate NFRs into mod-
els is deemed more appropriate especially in integrating NFRs with functional
aspects of the system.

In this paper, we propose a UML profile [9] for trade-off analysis of generic
NFRs. The analysis in this work implies analyzing the dependencies and im-
pacts of NFRs (irrespective of their type, e.g., performance, security. . . ) as
well as the functional features of the system to provide system designers with a
better insight into how good a system design is in terms of the satisfaction level
of its NFRs. The main contributions can thus be summarized in the following
points:

• providing an approach to capture and model NFRs in an open and
generic way and include them with functional features as well as the
dependencies and relationships among them,

• enabling designers to evaluate and compare different design models with
regard to their NFRs and identify designs which can result in better over-
all satisfaction of NFRs,

• identifying deviations in the satisfaction of system’s NFRs and highlight-
ing potentially problematic parts that deserve more attention.

Enabling trade-off analysis of NFRs through a UML profile has several
key benefits. UML is a standard modeling solution already adopted by in-
dustry and there are many design and analysis tools based on it. By offering
a UML-based solution for trade-off analysis of NFRs, it becomes possible to
make use of currently available tools. Also, the learning curve for developers
already using UML will be less which implies both cost and time savings for
companies [9]. Moreover, the approach we propose here tries to extend design
models with necessary information to enable trade-off analysis of NFRs, and
thus can enable using already designed system models and can save modeling
efforts. We propose stereotypes in our profile by which model elements can be
decorated and related with the necessary information that enable designers to
consult models for specific information about NFRs and trade-off analysis of
them.



5.2 Non-Functional Requirements 55

The remainder of the paper is structured as follows. In Section 5.2, we
have a look at NFRs in general, including their definition, characteristics, and
the issues around them. In Section 5.3, we discuss the required characteristics
and information that a solution for managing trade-offs of NFRs should be
able to offer. Section 5.4 explains the profile structure and concepts. Section
5.5 shows an application of the profile in a portion of a mobile phone design
and the analysis is then performed on the annotated model. In Section 5.6, we
will have a look at other related works and finally in Section 5.7, conclusions
are made and future directions are explained.

5.2 Non-Functional Requirements
Requirements are generally divided into two main categories: functional and
non-functional. In the simplest form, functional requirements are those which
define what the system should do, while the term non-functional requirement
is used for requirements which specify how a system should perform or as
suggested in [10] ”a non-functional requirement is an attribute of or a con-
straint on a system”. There is a big number of suggested definitions for non-
functional requirements which are discussed in [11]. These requirements are
usually described with terms that end with ’ility’ such as availability, ’ity’ such
as atomicity, while a few other ones such as performance and user-friendliness
do not follow this pattern. According to the IEEE standards, 610.12-1990 and
ISO/IEC/IEEE 24765:2010(E) [12, 13], the following definitions is provided
for non-functional requirements: ”a software requirement that describes not
what the software will do but how the software will do it (i.e., design con-
straints)”.

One concept that is often confused with NFR is the concept of Non-
Functional/Extra-Functional Property (NFP/EFP). The former can be consid-
ered as an expression of a need (possibly informal), and the latter as a statement
that is usually asserted formally and can be therefore proven and analyzed (e.g.,
calculated response time of a component). This implies that ”a requirement can
require that a certain property holds (e.g., absence of deadlock, meeting dead-
line, not overflowing a queue, etc.) and that in order for a property to hold
a number of requirements may have to be met, which we normally neither
express nor assert formally” 1. For example, ”response time of a component
should not exceed 2ms” is a requirement, while ”response time of component

1These definitions have been provided and formulated with the help of Prof. Tullio Vardanega,
University of Padova, Italy



56 Paper B

A never exceeds 2ms” and ”response time of component B is equal to 1ms”
are expressions of properties in a system. In [14], NFP is used instead of NFR
when talking about the final product implying that the requirement has been
concretized and become an actual property of it.

NFRs have several characteristics that make their consideration in software
development process a challenging task. While Functional Requirements (FRs)
are typically realized and implemented one by one and step by step as part of
the software product, NFRs do not usually follow this pattern and the design
decisions taken to implement the functionality of the software affect their sat-
isfaction. Similarly, while FRs normally have localized effects, NFRs are basi-
cally specifications of global constraints (e.g., performance, security, availabil-
ity, etc.) to be satisfied by the software [3]. In this regard, NFRs can crosscut
different parts of the system (e.g., security). Also, NFRs are interconnected and
there are dependencies among them which implies that the satisfaction of one
NFR can conflict and impair the satisfaction of other ones. Therefore, trade-
off analysis is required to identify such impacts and establish balance among
NFRs in a system.

On the other hand, NFRs are usually specified in an abstract and informal
way [3, 14] and thus, providing a more formal approach using model-based
development which tries to raise the abstraction level of systems can help with
the treatment of NFRs during the software development. There are several rea-
sons for incorporating NFRs in the development process and explicitly dealing
with them. Among them are the increasing number of applications such as
in real-time embedded systems where NFRs play a critical role, and also the
strong interaction between functional and non-functional requirements. More-
over, an explicit treatment of NFRs facilitates prediction of quality properties
of the final product in a more reliable and reasonable way [14].

The approaches that are suggested for the explicit treatment of NFRs are
sometimes categorized into two groups: product-oriented and process-oriented
[15]. The former approaches try to formalize NFRs in the final product in
order to perform evaluation on the degree to which requirements are met. In
the latter approaches, NFRs are considered along with functional requirements
to justify design decisions and guide and rationalize the development process
and construction of the software in terms of its NFRs [15, 14].



5.3 Characteristics of the Solutions 57

5.3 Characteristics of the Solutions

Based on the identified challenges that were discussed previously, in this sec-
tion we formulate the key characteristics that a model-based solution for rep-
resentation and trade-off analysis of NFRs should have.

Traceability of design decisions related to an NFR: considering that NFRs
usually crosscut different parts of the system, the designer should be able to un-
derstand which parts of the system contribute (both positively and negatively)
to a specific NFR; for example, an encryption component that is intended to
satisfy security requirements. With this information, after trade-off analysis,
the designer can identify parts of the systems that should be removed, replaced,
improved or kept.

Traceability among NFRs: throughout the whole design process of a sys-
tem, higher level NFRs are refined and broken down into more concrete ones,
particularly in a top-to-bottom approach. For example, a high level and abstract
NFR such as security can be refined into access control or encryption require-
ments at lower levels. Therefore, in order to check the satisfaction of security
in the system, it is necessary to keep track of its refinements and lower level
requirements that cover different aspects of security along with information on
how much each one contributes towards its parent NFR.

Satisfaction level of an NFR: it should be possible to evaluate the total
satisfaction level/degree of an NFR in the system. This is necessary to compare
current design against system specification and customer requirements as well
as different design alternatives. In the end, the goal is that the designer gets an
idea to what extent each NFR is satisfied. Judging where this level is acceptable
or not is done as the next step after applying the approach we suggest in this
paper and probably by checking it with the stakeholders.

Impact of an NFR on other NFRs: as mentioned before, NFRs cannot be
considered in isolation in a system without taking into account their impacts
on each other. Therefore, it is required to identify and evaluate the effects that
a model element and design decision that is used to satisfy one NFR, has on
another NFR in the system. For example, performing heavy computations by
an encryption component in an embedded system can also mean consuming
more battery. Therefore, the side effects of such design decision should be
identifiable for the designer.

Priority of an NFR: not all NFRs have the same importance in the system.
In order to increase the overall satisfaction of NFRs and also to resolve con-
flicts among NFRs (reduce the impact of one NFR in favor of another), it is
necessary to know the importance of each NFR and compare them. Consid-



58 Paper B

ering priority for NFRs is also important in order to capture the preferences
of customers/users. Similarly, priorities can also be considered for different
features implemented to satisfy an NFR.

Coherent terms for NFRs: one subtle problem with NFRs that is more often
noticed in large enterprises is that different (sub)departments may have differ-
ent interpretations for an NFR term or use different terms to refer to an NFR
[16]. Therefore, it is important to provide a coherent and consistent notation
for defining NFRs and relating them to design elements.

Coherent measurements of NFRs: to compare different NFRs and perform
trade-off analysis among them, evaluation of the satisfaction degree and im-
pacts of NFRs should follow a coherent representation. In other words, the
criteria or metrics used should be such that to allow pair-wise comparison of
NFRs (e.g. using the same types, scales and units, or a convertible format).

5.4 Suggested Profile

Figure 5.1 shows the structure of our profile to include the necessary informa-
tion mentioned in the previous section in models to enable trade-off analysis of
NFRs.

satisfactionValue: Double{readOnly}
rationale: String
priority: Integer
deviationIndicator: Double{readOnly}

«stereotype»
NFR

«metaclass»
UML::Classes::Kernel::Classifier

NFR Profile

«metaclass»
UML::Classes::Dependencies::Realization

contributionValue: Double

«stereotype»
NFRContributes «stereotype»

NFRApplies

parentNFR

0..1

childNFR

0..*

«stereotype»
System

satisfactionValue:Double{readOnly}

satisfactionValuel: Double{readOnly}
rationale: String
priority: Integer
deviationIndicator: Double{readOnly}

«stereotype»
Feature

0..*

1..*

childFeature

0..*

parentFeature

0..*

0..1

«metaclass»
UML::Classes::Dependencies::Dependency

«stereotype»
NFRCooperates

«stereotype»
NFRImpacts

impactValue: Double

Figure 5.1: Profile for Trade-off analysis of NFRs

System: this stereotype is used to annotate the system which is the con-
text of the analysis and to which different NFRs belong. It includes satisfac-



5.4 Suggested Profile 59

tionValue tagged value to represent quantitatively the total satisfactions of the
system’s NFRs.

NFR: each NFR is identified using this stereotype. A higher level NFR
(in terms of abstraction level) can be refined into one or more other NFRs.
Therefore, there is an association relationship to itself (reflexive aggregation).

Feature: this stereotype represents a feature in the system that con-
tributes to the satisfaction of an NFR and is an equivalent of Operationaliza-
tion concept in NFR framework and Softgoal Interdependency Graph (SIG)
[17] (described later in the paper) or tactics as used in [4].

NFRContributes: this stereotype which is used on relationships be-
tween model elements shows that an element (NFR or Feature) contributes
directly to the satisfaction of another element. The contributionValue property
of this stereotype is used to specify the degree of this contribution.

NFRImpacts: this is similar to NFRContributes stereotype but is used to
include the impact of a model element on other NFRs in the system in a quan-
titative manner. In other words, this stereotype is defined to capture the side
effects of features and NFRs. ImpactValue property of this stereotype shows
the degree of the impact. A positive value for the ImpactValue implies a posi-
tive side effect, and a negative one implies a negative side effect accordingly.

NFRCooperates: is used to relate two or more elements that cooper-
ate together to satisfy an NFR. This is similar to the AND relation in NFR
framework and SIG.

NFRApplies: the relation between NFR related model elements and
functional ones can be modeled using NFRApplies stereotype (e.g. an NFR
that applies to a component).

Rationale: this property and tagged value in NFR and Feature stereo-
types can be used to include the description and rationale for an NFR, its re-
finements into other NFRs or Features implementing it.

Priority: this property in NFR and Feature stereotypes is used to cap-
ture customer preferences and priorities in terms of the importance of NFRs
and Features. This helps to identify less important parts in case modification
and removal of some features or NFRs is necessary.

DeviationIndicator: is a read-only property which is calculated
and set automatically. DeviationIndicator takes into account the priority and
satisfaction value, and provides a number which indicates to the designer the
importance and magnitude of how much the satisfaction of an NFR or Fea-
ture has deviated/violated. While the satisfaction value does not reflect user
preferences and priorities, the deviation indicator value shows which parts of
the system deviated more from the specification (i.e., being fully satisfied) and



60 Paper B

need to be modified to achieve a better satisfaction level.
There are also several rules on the elements and their relationships de-

scribed above:

• The allowed range of values to set is between -1 and 1 (except for pri-
ority). For example a negative value on the NFRImpacts relationship
shows the negative impact of the source element on the target element.

• The satisfaction value for each leaf node is considered to be 1.

• Allowed values for priority are: 1 (very low), 2 (low), 3 (medium), 4
(high), 5 (very high).

• The sum of contribution values of the links connecting children nodes
(refinement/lower level elements) to their parent should be less or equal
to 1 (maximum is 1).

• Contribution of a child node to its parent is calculated as the satisfac-
tionValue of the child node multiplied by its contributionValue or im-
pactValue.

• The satisfactionValue of a node is, therefore, calculated as the sum of the
contributions from all of its children nodes plus the sum of the impacts of
all other nodes, divided by the total number of NFRImpacts relationships
to it plus 1. In other words, if sk is the satisfaction value for each child
node of a node, lk is the value on the link that connects the child node k to
its parent node (NFRContributes), and ij is the impact value of another
node on this parent node, the satisfaction value of the parent node is
calculated as:

∑
sk ∗ lk +

∑n
ij

n+ 1
(5.1)

This calculation is performed starting from leaf nodes (considering that
the satisfaction of leaf nodes is 1) and is calculated recursively upwards
toward the top element which is the system.

• The DeviationIndicator is calculated after the calculation of satisfaction
value using the following formula:

DeviationIndicator =

Priority − Priority ∗ SatsifactionV alue
(5.2)



5.5 Implementation and Usage Example 61

Based on this calculation and considering that the SatisfactionValue is
always between -1 and 1 and priority is an integer value between 1 and
5, the value of DeviationIndicator will be in the range of [0, 10]. The
perfect situation is when the DeviationIndicator value is 0, and the more
this value increases the more is the deviation from the desired design,
and thus, it indicates a bigger and more severe problem.

5.5 Implementation and Usage Example

The profile concepts described in the previous section were implemented in
MDT Papyrus [18]. In Figure 5.2 an example usage of the profile is shown on
parts of a mobile phone system. Two NFRs are defined. One on the quality of
the taken camera picture and the other one on the battery life. There are two
features that contribute to the quality of taken photos: usage of a flash and type
of the lens. Also two features are considered for Battery Life: adjustment
of screen’s brightness level and auto standby feature. The contribution of each
feature to its parent NFR is annotated using NFRContributes stereotype and
its contributionValue attribute. In this system, the use of flash consumes lots
of battery. The impact of the Flash feature on Battery Life is therefore
specified using NFRImpacts stereotype and its impactValue attribute which is
-0.8. Preferences of the customer in terms of the relative importance of NFRs
and Features are captured through the priority property of each model element.
For example, Battery Life has priority level 5 which means it is more
important than the Camera Picture Quality which has priority level 4.
Satisfaction and DeviationIndicator values are initially 0 as no calculation has
yet been done on the model.

One point here is that, although these values are assigned subjectively by
the system designer, there are methods such as sensitivity analysis [4] that help
to increase the confidence in the chosen decision. Now what we need to under-
stand is the impact that having the Flash feature has on the system.

By having the necessary information in the model, it is now possible to per-
form analysis on the model to determine impacts of each design decision on the
system and evaluate their dependencies. To traverse the model and perform cal-
culations, we have developed a model-to-model (M2M) transformation using
QVT Operational language (QVT-O)[19] in Eclipse [20]. It reads as input a
UML model annotated with our profile, traverses the nodes and calculates sat-
isfaction values and writes the results back in the same model. In other words,
we use an in-place transformation (i.e. input and output models are the same).



62 Paper B

Figure 5.2: Example usage of NFR profile for a Mobile Phone (before calcula-
tions)

To calculate the satisfaction values, a recursive algorithm is used in the
model transformation based on the rules mentioned in the previous section. For
each node, all the incoming links that have NFRImpacts or NFRContributes
stereotypes are retrieved. If a node does not have any such links (meaning that
it is a leaf node), its satisfaction value is set to 1. Otherwise, the source of
the link, which is another node, is retrieved and the algorithm continues by
calculating the satisfaction value of the source node; hence the recursion.

The algorithm basically applies Formula 5.1 which is mentioned in the pre-
vious section. For example, in Figure 5.2, the satisfaction values for Auto
Standby and Brightness Level features are set to 1, since they are leaf
nodes. The satisfaction value of Battery Life is then calculated as the
satisfaction value of Brightness Level (1) multiplied by the value on
the link that connects it to Battery Life (0.5), plus the same multiplica-
tions for Auto Standby (1*0.5) and Flash (1*-0.8) which results in 0.20.
The discrepancy observed between this calculated value (0.20) and the one in
Figure 5.3 (0.199. . . ) which is calculated automatically through the in-place
model transformation on the model is due to the OCL implementation of real



5.5 Implementation and Usage Example 63

numbers that QVT-O uses.

Figure 5.3: Analyzed model of the system

By performing the transformation on the whole model, the satisfaction val-
ues are calculated for each node and propagated upwards toward the system
element as shown in Figure 5.3:

(1 ∗ 0.4 + 1 ∗ 0.6) ∗ 0.3 + ((1 ∗ 0.5 + 1 ∗ 0.5)− 0.8) ∗ 0.7 = 0.44

Therefore, the total satisfaction value in this case will be 0.44. Trying the
procedure again on the same model but without having the Flash feature
results in:

(1 ∗ 0.6) ∗ 0.3 + (1 ∗ 0.5 + 1 ∗ 0.5) ∗ 0.7 = 0.88

Similarly, as soon as the satisfaction value for a feature or NFR is calcu-
lated, the deviationIndicator property value is also calculated using Formula 5.2
and set in the model. For the leaf nodes, since their satisfaction values are al-
ways 1, their deviationIndicator value will always result in 0. For the Camera
Picture Quality NFR, the deviationIndicator value is calculated as:



64 Paper B

4− 4 ∗ 1.0 = 0

which means that there has been no deviation from the desired design.
However, for the Battery Life NFR, this value will be:

5− 5 ∗ 0.2 = 5− 1 = 4

This value shows that there exists some deviation which in this case is due
to the side effects of having the Flash feature on Battery Life. Based
on the specification of the actual system that is being developed, this could, for
instance, imply that the type of flash is not good enough in terms of energy
consumption for this system and needs re-consideration.

Since the calculation of the deviation indicator is based on the priority of
each NFR or Feature, in a larger model where deviations in several parts of
the system are observed, the user can understand on which parts of the model,
modifications should be done and in which order. In other words, parts with
higher deviation value indicate more critical problems and deserve more atten-
tion.

Figure 5.4: Analyzed model of the system without the Flash feature



5.6 Related Work 65

Figure 5.4 shows performing the analysis on the same model but without
the Flash feature. This model could, for example, represent another family of
mobile phones or another usage scenario. It can be seen that the total satisfac-
tion level of the system is higher in this case: 0.88 versus 0.44 in the previous
case. The removal of the Flash feature, however, also causes some deviation
(1.6) for the Camera Picture Quality NFR.

Based on these calculations, our suggested approach enables a more accu-
rate comparison of design alternatives considering the interdependencies and
trade-offs among different NFRs of the systems helping designers to make bet-
ter decisions. Also the introduced modeling concepts and calculations above
provide for several interesting features. One feature is the possibility to opti-
mize the total satisfaction of the system considering different design alterna-
tives. For example, in the mobile phone system described, if the designer needs
to select among several possible solutions that contribute to better image qual-
ity, he/she can find the ones that lead to the highest satisfaction value of the
system. Another possibility is to have run-time adaptability or re-configuration
based on different quality of service levels. For example, if the battery level
goes low beyond a certain limit, the system can go into a power-saving mode
using features that incur minimum impact on battery consumption or replacing
active components with back-up/standby ones which may provide lower quali-
ty/fewer services but consume less battery (e.g., in design diversity techniques
[21]). Without the analysis introduced here, such a decision may not only be
hard, but also will be blind in the sense that the side effects of a feature/com-
ponent replacement on other aspects of the system will be unknown.

5.6 Related Work

There are versatile research works that try to target different issues regarding
NFRs. [22] focuses on the problem of informal and separated documentation
of design decisions and NFRs. To alleviate the problem, it introduces two pro-
files to model design decisions and generic NFRs to treat them as first-class
entities in software architectures and maintain the traceability of design deci-
sions and architectural elements. NFR framework proposed in [17] is one of
the fundamental works in the area of NFRs which is a process-oriented and
goal-oriented approach. It uses Softgoal Interdependancy Graph (SIG) to rep-
resent NFRs, their refinements and entities that NFRs are applied to (termed
as Operationalization), and the interdependencies among them to include their
impacts and relations. The dependencies and contributions of NFRs are spec-



66 Paper B

ified using make, hurt, help, break and undetermined relationship types. Be-
sides NFR softgoals, and operationalizating softgoals, NFR framework also
introduces claim softgoals which convey the rationale and argument for or
against a design decision. It provides notations to mark critical NFRs in the
graph and also an evaluation procedure to determine satisfaction and conflicts
of NFRs. The approach suggested in NFR framework is basically a quali-
tative approach. Moreover, the criticality concept in NFR framework seems
more suitable for developers and does not convey enough information for pri-
oritization of NFRs particularly from the customer’s perspective and also for
performing trade-off analysis[4]. [23] offers a UML profile for modeling SIG
and concepts of NFR framework to represent NFRs as UML elements in or-
der to integrate them with functional parts of the system (that are modeled in
UML). T. Marew et al. [4] introduces Q-SIG which is a quantified version
of SIG that enables quantitative evaluation of impacts and trades-offs among
NFRs. In this paper, we introduced modeling concepts that enable designers to
apply the Q-SIG approach in the form of UML models, and provided a tooling
solution for evaluation and trade-off analysis of NFRs on these models using
this approach. ProcessNFL that is introduced in [3] is a textual language for
describing non-functional properties during the software development. It of-
fers templates for describing three abstractions that capture different aspects
of non-functional properties: NF-Attributes, NF-Properties and NF-Actions.
Moreover, the language enables to express the relationships between these ab-
stractions to include dependencies and impacts of non-functional properties in
the system. The language is an effort for explicit treatment of non-functional
properties during software development.

While deciding on the satisfaction of NFRs is mainly considered to be sub-
jective, there are several works that try to provide quantifications for NFRs to
ease their evaluation and analysis. Kassab et al. in [1, 24] offer a method to
quantify NFR size in a software project based on the functional size measure-
ment method to help with the estimation of effects of NFRs on the effort of
building the software in a quantitative manner. [2] makes use of Requirements
Hierarchy Approach (RHA) as a quantifable method to measure and manipu-
late the effects that NFRs have on a system. It does so by capturing the effects
of functional requirements. In [25], an approach for quantifying NFRs based
on the characteristics of and information from execution domain, application
domain and component architectures is suggested.

SysML [26] which is a UML profile for system engineering also includes
a package for generic modeling of requirements (both NFRs and FRs) and the
relationships among them. These relationships mainly capture the traceabil-



5.7 Conclusion and Future work 67

ity and hierarchy of requirements (e.g., refinement). While SysML does not
specifically focus on NFRs and analysis of them, our approach and SysML can
be used together to complement each other.

5.7 Conclusion and Future work

In this paper, a UML profile for modeling NFRs and their dependencies was
introduced to enable performing trade-off analysis among them. It was shown
how it can help to compare different design models, determine which ones
achieve a higher satisfaction of the NFRs, and identify parts of the model which
might be good candidates for modification to reach a higher satisfaction level
in the system.

One point to note about the proposed approach is the issue of scalability
and evaluating how it can be applicable for very complex and large systems.
While this is basically a general concern in model-driven engineering, there are
some solutions for management of large models which can be considered such
as using a multi-view approach and providing better degree of separation of
concerns by defining different views over the model of a system [27]. Also in
this work, we assumed that the designer can provide values (though subjective)
for contribution and impact relationships among NFRs and functional features.
As mentioned, there are some techniques that help system designers in pro-
viding such quantitative information. However, this may also imply that our
suggested approach can be especially more applicable for component-based
systems where systems are built out of already existing components and thus
more knowledge about their characteristics and behaviors are available (e.g.,
memory usage, execution time). Moreover, our approach can also be useful
in the analysis of software architecture evolution, when new requirements or
features are introduced into a system or existing ones are modified [28].

As the continuation of this work, we plan to develop an analysis tool as an
Eclipse plug-in that can read as input, models annotated with our NFR trade-
off profile and provide total satisfaction values for different NFRs, identify
parts contributing negatively to an NFR, and perform calculations for overall
optimization of NFRs in the system considering different design alternatives
and scenarios. With the help of the tool, when some parts of the system need to
be changed and updated, the user can identify the side effects of such changes
on other parts and the system as a whole in terms of NFRs, at model level and
before implementing the intended changes. The defined profile depicted in this
paper is the first step toward enabling such features.



68 Paper B

Using the introduced modeling concepts here along with a back-annotation
mechanism in model-based development of embedded systems will also be an
interesting topic to further investigate and work on. Having such a mechanism,
it would be possible to monitor the system and provide feedbacks to the design
model about possible violations in the system (or any of its subsystems) in
terms of satisfaction levels of their NFRs. Also, the usage of the suggested
approach for run-time adaptability and re-configuration of systems is another
direction for further investigation.

5.8 Acknowledgements
This work has been partially supported by the CHESS European Project
(ARTEMIS-JU100022) [29] and Xdin AB [30].



Bibliography

[1] Mohamad Kassab, Olga Ormandjieva, Maya Daneva, and Alain Abran.
Software process and product measurement. chapter Non-Functional
Requirements Size Measurement Method (NFSM) with COSMIC-FFP,
pages 168–182. Springer-Verlag, Berlin, Heidelberg, 2008.

[2] Andrew J. Ryan. An approach to quantitative non-functional require-
ments in software development. In Proceedings of the 34th Annual Gov-
ernment Electronics and Information Association Conference, 2000.

[3] N.S. Rosa, P.R.F. Cunha, and G.R.R. Justo. Processnfl: a language for
describing non-functional properties. In System Sciences, 2002. HICSS.
Proceedings of the 35th Annual Hawaii International Conference on,
pages 3676 – 3685, jan. 2002.

[4] Tegegne Marew, Joon-Sang Lee, and Doo-Hwan Bae. Tactics based
approach for integrating non-functional requirements in object-oriented
analysis and design. The Journal of Systems and Software, 82:1642–
1656, October 2009.

[5] Yi Liu, Zhiyi Ma, and Weizhong Shao. Integrating non-functional re-
quirement modeling into model driven development method. In Software
Engineering Conference (APSEC), 2010 17th Asia Pacific, pages 98 –
107, December 2010.

[6] Thomas Henzinger and Joseph Sifakis. The embedded systems design
challenge. In Jayadev Misra, Tobias Nipkow, and Emil Sekerinski, edi-
tors, FM 2006: Formal Methods, volume 4085 of Lecture Notes in Com-
puter Science, pages 1–15. Springer Berlin / Heidelberg.

69



70 Bibliography

[7] Jongdeog Lee, Krasimira Kapitanova, and Sang H. Son. The price of
security in wireless sensor networks. Journal of Computer and Telecom-
munications Networking, 54:2967–2978, December 2010.

[8] Bran Selic. The pragmatics of model-driven development. IEEE Software
Journal, 20:19–25, September 2003.

[9] Bran Selic. A systematic approach to domain-specific language design
using uml. In Object and Component-Oriented Real-Time Distributed
Computing, 2007. ISORC ’07. 10th IEEE International Symposium on,
pages 2 –9, May 2007.

[10] Martin Glinz. On non-functional requirements. In 15th IEEE Interna-
tional Requirements Engineering Conference, pages 21–26, New Delhi,
India, October 2007.

[11] Lawrence Chung and Julio Cesar Prado Leite. Conceptual modeling:
Foundations and applications. chapter On Non-Functional Requirements
in Software Engineering, pages 363–379. Springer-Verlag, Berlin, Hei-
delberg, 2009.

[12] IEEE Standard Glossary of Software Engineering Terminology. IEEE Std
610.12-1990, 1990.

[13] Systems and software engineering – Vocabulary (IEEE Standard).
ISO/IEC/IEEE 24765:2010(E), 15 2010.

[14] Nelson S. Rosa, George R. R. Justo, and Paulo R. F. Cunha. A framework
for building non-functional software architectures. In Proceedings of the
2001 ACM symposium on Applied computing, SAC ’01, pages 141–147,
New York, NY, USA, 2001. ACM.

[15] J. Mylopoulos, L. Chung, and B. Nixon. Representing and using nonfunc-
tional requirements: a process-oriented approach. Software Engineering,
IEEE Transactions on, 18(6):483 –497, jun 1992.

[16] Mehrdad Saadatmand, Antonio Cicchetti, and Mikael Sjödin. Uml-based
modeling of non-functional requirements in telecommunication systems.
In The Sixth International Conference on Software Engineering Advances
(ICSEA 2011), October 2011.



Bibliography 71

[17] Lawrence Chung, Brian A. Nixon, Eric Yu, and John Mylopoulos. Non-
Functional Requirements in Software Engineering, volume 5 of Interna-
tional Series in Software Engineering. Springer, October 1999.

[18] MDT Papyrus . http://www.eclipse.org/modeling/mdt/
papyrus/, Accessed: February 2012.

[19] QVT Operational Language. http://www.eclipse.org/m2m/,
Accessed: February 2012.

[20] Eclipse Modeling Framework Project (EMF). http://www.
eclipse.org/modeling/emf/, Accessed: February 2012.

[21] John P. J. Kelly, Thomas I. McVittie, and Wayne I. Yamamoto. Imple-
menting design diversity to achieve fault tolerance. IEEE Software Jour-
nal, 8:61–71, July 1991.

[22] Liming Zhu and Ian Gorton. Uml profiles for design decisions and non-
functional requirements. In Proceedings of the Second Workshop on
SHAring and Reusing architectural Knowledge Architecture, Rationale,
and Design Intent, SHARK-ADI ’07, pages 8–, Washington, DC, USA,
2007. IEEE Computer Society.

[23] Sam Supakkul. A uml profile for goal-oriented and use casedriven rep-
resentation of nfrs and frs. In In Proceedings of the 3rd International
Conference on Software Engineering Research, Management and Appli-
cations, pages 112–121, 2005.

[24] M. Kassab, M. Daneva, and O. Ormandjieva. Early quantitative assess-
ment of non-functional requirements, June 2007.

[25] Raquel Hill, Jun Wang, and Klara Nahrstedt. Quantifying non-functional
requirements: A process oriented approach. In Proceedings of the
Requirements Engineering Conference, 12th IEEE International, pages
352–353, Washington, DC, USA, 2004. IEEE Computer Society.

[26] OMG SysML Specifcation V1.2. http://www.sysml.org/
specs.htm, Accessed: March 2012.

[27] Marco Panunzio and Tullio Vardanega. A metamodel-driven process fea-
turing advanced model-based timing analysis. In Reliable Software Tech-
nologies Ada Europe 2007, volume 4498 of Lecture Notes in Computer
Science, pages 128–141. Springer Berlin / Heidelberg, 2007.



[28] Hongyu Pei-Breivold, Ivica Crnkovic, and Magnus Larsson. A systematic
review of software architecture evolution research. Journal of Informa-
tion and Software Technology, July 2011.

[29] CHESS Project: Composition with Guarantees for High-integrity Embed-
ded Software Components Assembly. http://chess-project.
ning.com/, Accessed: March 2012.

[30] Xdin AB. http://xdin.com/, Accessed: April 2012.



Chapter 6

Paper C:
Modeling Security Aspects in
Distributed Real-Time
Component-Based
Embedded Systems

Mehrdad Saadatmand and Thomas Leveque
The Ninth International Conference on Information Technology : New Gener-
ations, Las Vegas, Nevada, USA, April, 2012.

73



Abstract

Model Driven Engineering (MDE) and Component Based Software Develop-
ment (CBSD) are promising approaches to deal with the increasing complexity
of Distributed Real-Time Critical Embedded Systems. On one hand, the func-
tionality complexity of embedded systems is rapidly growing. On the other
hand, Extra-Functional Properties (EFP) must be taken into account and re-
source consumption must be optimized due to limited resources. However,
EFP are not independent and impact each other. This paper introduces con-
cepts and mechanisms that allow to model security specifications and derive
automatically the corresponding security implementations by transforming the
original component model into a secured one taking into account sensitive data
flow in the system. The resulted architecture ensures security requirements by
construction and is expressed in the original meta model; therefore, it enables
using the same timing analysis and synthesis as with the original component
model.



6.1 Introduction 75

6.1 Introduction

Design of real-time embedded systems is a challenging task. This is mainly
due to the complexity of these systems that originate from different range of
extra-functional properties that they need to satisfy, while taking into account
their limitations of resources. This gets even more complex when we realize
that the extra-functional properties in these systems are tightly inter-connected
and cannot be considered in isolation [1]. Due to the nature of real-time em-
bedded systems (e.g. usage of sensors and actuators and interacting with the
environment), timing properties in these systems are of utmost importance.
However, implications of other properties and aspects, such as security, on
timing properties should also be taken into account to ensure a correct design.

Security aspects in embedded systems are gaining more and more attention
especially when they are distributed. Introducing security in the design of an
embedded system has impacts on other properties such as timing, performance,
memory usage, and energy consumption. On the other hand, the usage and hos-
tile operational environment of embedded systems makes them also exposed to
specific attacks that might not be that relevant for other systems [2]. For exam-
ple, smart cards and wireless sensor networks which are physically exposed,
are quite tamper-prone compared to a bank database server which is protected
from access and isolated physically in a separate room. There is a need to
include security properties in the design of a distributed real-time embedded
system while still enabling prediction of timing properties.

Model-Driven Engineering (MDE) and Component-Based Development
(CBD) are two promising approaches that can be used orthogonally to allevi-
ate the design complexity of real-time embedded systems. Component-Based
Development enables reuse of already existing software units (components)
by developing a system as an assembly of components instead of building the
system from scratch. Model-Driven Engineering, on the other hand, helps to
raise the abstraction level and perform analysis at earlier phases of develop-
ment. This enables the identification of problems in the system design before
reaching the implementation phase [3, 1, 4].

Using benefits of these two approaches, we propose to specify security
needs as annotations on the ProCom component model [5] and derive the
equivalent component model which implements the security specification. Us-
ing our approach, the designer specifies sensitive data flows with required se-
curity properties and selects an implementation strategy to fulfill these require-
ments. Based on this information, a component model conforming to the orig-
inal meta-model is generated which satisfies the security specification and the



76 Paper C

Worst Case Execution Time (WCET) of the resulted components is computed.
Therefore, same tools and analyses such as timing analysis and synthesis are
applicable for the original component model and the derived one. As a result,
timing implications of specified security properties are predictable. This ap-
proach facilitates system designers in bringing security aspects into the design
model.

The remainder of the paper is structured as follows. In Section 6.2, moti-
vation of this work and security challenges in the design of embedded systems
are discussed. Section 6.3, introduces Automatic Payment System as an ex-
ample of distributed real-time embedded systems with security requirements.
The suggested approach is described in detail in Section 6.4. Implementation
and analysis results are explained in Section 6.5. Section 6.6 discusses related
work. Finally, we conclude the paper and describe future work and directions
of this work in Section 6.7.

6.2 Motivations

Security is an aspect that is often neglected in the design of embedded
systems. However, the use of embedded systems for critical applications such
as controlling power plants, vehicular systems control, and medical devices
makes security considerations even more important. This is due to the fact that
there is now a tighter relationship between safety and security in these systems
(refer to [6] for definitions of security and safety and their differences). Also
because of the operational environment of embedded systems, they are prone
to specific types of security attacks such as physical and side channel attacks
[7] that might be less relevant for other types of systems. Increase in use and
development of distributed networked and connected embedded devices also
opens them up to new types of security issues. Features and devices in a car
that communicate with other cars (e.g. the car in front) or traffic data centers
to gather traffic information of roads and streets, use of mobile phones beyond
just making phone calls and for purposes such as buying credits, paying bills,
and transferring files (e.g. pictures, music,etc.) are tangible examples of such
usages in a distributed networked environment.

Because of the constraints and resource limitations in embedded systems,
satisfying a non-functional requirement such as security requires careful bal-
ance and trade-off with other properties and requirements of the systems such
as performance and memory usage. Therefore, introducing security brings
along its own impacts on other aspects of the systems. This further empha-



6.3 Automatic Payment System 77

sizes the fact that security cannot be considered as a feature that is added later
to the design of a system and needs to be considered from early stages of de-
velopment and along with other requirements. Considering the characteristics
of embedded systems, major impacts of security features in these systems are
on performance, power consumption, flexibility and maintainability, and cost
[7]. Therefore in the design of embedded systems, implications of introducing
security decisions should be taken into account and analyzed.

Today, security is mostly taken into account at code level which requires
detailed knowledge about security mechanisms while there is a need to raise
the abstraction level to deal with the complexity of security implementation.

6.3 Automatic Payment System
An example of a distributed embedded system with real-time and security re-
quirements is the Automatic Payment System that is being designed for toll
roads as depicted in Figure 6.1. In this system, the purpose is to reduce the
waiting time and thus traffic that is caused by that at tolling stations.

Figure 6.1: Automatic Payment System for Toll Roads.

For each tolling station, a camera is used that detects a vehicle as it ap-
proaches the station (e.g. at 100/200 meter distance), and scans and reads its
license plate information. This information is passed to the payment station



78 Paper C

subsystem which then sends the toll fee to the vehicle through a standardly de-
fined wireless communication channel. The vehicle shows the amount to pay to
the driver through its User Interface (UI) and the driver inserts a credit card and
accepts the payment to be done. The credit card number is then sent securely to
the payment station which then performs the transaction on it through a (third
party) merchant (through a wired Internet connection at the station). The driver
is then notified about the success of the transaction and receives an OK mes-
sage to go. Different objects in this system and the interactions between them
are shown in Figure 6.2.

Figure 6.2: Automatic Payment System for Toll Roads.

The system should perform all these operations in a certain time limit in
order to allow a smooth traffic flow. Such time constraints can be calculated
considering the specifications of camera and required time for detection, traffic
and safety regulations (e.g, allowed speed), and other similar factors. For ex-
ample, if the vehicle is detected at 100 meter distance from the station, and the
allowed speed at that point is 20 km/h, then the system has a strict time win-
dow during which it should be able to store the vehicle information, establish
communication, and send the payment information to it. Different scenarios
can happen in this system. For example, it could happen that the driver/vehicle
fails to provide credit card information, or the credit card is expired. In this



6.4 Approach 79

case, the system can log the vehicle information in a certain database and send
the bill later to the owner, or even it can be set to not open the gate for the vehi-
cle to pass and also show a red light for other cars approaching that toll station
to stop. Besides the mentioned timing constraints that exist in this system, the
communication between different nodes and transfer of data need to be secured
and protected. In this system, we have the following security requirements:

1. Sensitive data such as credit card information should not be available to
unauthorized parties.

2. The vehicle only accepts transactions initiated by the payment station.

To achieve these requirements, the station needs to authenticate itself to the
vehicle so that the vehicle can trust and send the credit card information. More-
over, sensitive information that is transferred between different parts should
also be encrypted.

6.4 Approach

6.4.1 General Approach
Our approach aims to introduce security concerns in the design of embed-

ded systems. The main idea is to identify the different data entities which
need to be confidential and/or that the sender must be authenticated. From
the specification of security needs at data level and physical platform level,
a transformation is applied on the component model in order to add security
implementation. The resulted system ensures the security specification.

Figure 6.3 shows the overall process of the approach. The system is de-
scribed in several models based on ProCom component model [5]. While the
approach is not ProCom specific, it relies on the main assumption that a compo-
nent model transformation to introduce security implementation exists which
has been proved in ProCom but remains as future work for other component
models. In the remaining, we will refer to component model to represent the
architecture model. Security needs are specified as annotations on top of the
data model and the physical platform model. A benefit of the ProCom compo-
nent model is his ability thanks to its attribute framework to extend any element
with additional attribute. We use this mechanism to specify our annotations.
Having this information in the model, the following steps are then performed:



80 Paper C

Component

Model

Data Model

Security

Annotations

Step 1: Transformation

Step 2:

Analyze

Step 3: 

Synthesis

Secured

Component

Model

Physical

Input/Output Transformation

/Computation
Model Annotates

Physical

Platform Model

Security

Annotations

Analysis 

Results

back annotations
System

Figure 6.3: Approach Process.

1. The component model which specifies the functional and extra-
functional part of the system is transformed in a functional equivalent
model with added security implementations;

2. Analysis can be performed on the secured component model whose re-
sult is back annotated (for example with timing properties) to the original
model; and

3. Finally, the system is synthesized.

The considered process is iterative and allows to refine security specification
after evaluating resulted system properties such as timing properties.

6.4.2 ProCom Component Model
While the approach principles seem to be component model generic, we

implemented it using ProCom. The ProCom component model targets dis-
tributed embedded real-time system domain. In particular, it enables to deal



6.4 Approach 81

with resource limitations and requirements on safety and timeliness concerns.
ProCom is organized in two distinct layers that differ in terms of architectural
style and communication paradigm. For this paper, however, we consider only
the upper layer which aims to provide a high-level view of loosely coupled
subsystems. This layer defines a system as a set of active, concurrent subsys-
tems that communicate by asynchronous message passing, and are typically
distributed. Figure 6.4 shows ProCom design of the Automatic Payment Sys-
tem example.

Input Message Port

Merchant
SubSystem

Payment
Station

Subsystem

Vehicle
SubSystem CI

Output Message Port

C
C

I

A
s
k
 C

C
I

PT

Ask CI

PI

TA

V
IP

S

Camera
Subsystem

User
Interface

Subsystem

Message Channel

SubSystem

CI: Customer Info
PT: Payment Ticket
TA: Transaction acknowledgement

CCI: Customer Card Info
PI: Payment Info
PS: Payment Status

VI: Vehicle Info

Figure 6.4: Component Model of the System using ProCom.

A subsystem can internally be realized as a hierarchical composition of other
subsystems or built out of entities from the lower layer of ProCom. Figure 6.5
shows the implementation of the subsystem E as an assembly of two compo-
nent C1 and C2. Data input- and output ports are denoted by small rectangles,
and triangles denote trigger ports. Connections between data- and trigger ports
define transfer of data and control, respectively. Fork and Or connectors, de-
picted as small circles specify control over the synchronization between the
subcomponents.



82 Paper C

C1

C2

Subsystem E

(a) (b)

Figure 6.5: ProCom SubSystem Implementation.

6.4.3 Data Model
As components are usually intended to be reused, data should also be

reused. To this end, we propose to extend the approach described in [8]. Ev-
ery data entity is stored in a shared repository. Its description contains its type
(String, int...), its maximum size and its unit. A data entity can also be a com-
posite entity defined as a list of data entities. Table 6.1 and Table 6.2 show data
entities of our example. As described in the last section, subsystems communi-

Data Entity Type Max Size Unit
CCNumber String 16 byte

ExpirationDate String 4 byte
AskCI Empty 0 byte

AskCCI Empty 0 byte
PaymentStatus boolean 1 byte

VehicleNumber String 20 byte
VehicleType Enum 8 byte

AmountToPay float 4 euro

Table 6.1: Primitive Data Entities.

cate through asynchronous message passing represented by message channels.
A message channel is associated with a list of data entities which defines the
message content. Table 6.3 presents mapping between message channels and
data entities for our example. We can observe that the same data entity can be
used several times in different message channels. The mapping between data



6.4 Approach 83

Data Entity Contains
CreditCard CCNumber, ExpirationDate

CustomerInfo VehicleNumber, CreditCard
PaymentTicket AmountToPay, PaymentStatus

PaymentRequest AmountToPay, CreditCard

Table 6.2: Composite Data Entities.

Message Channel Data Entities
AskCI AskCI

CI CustomerInfo
PT PaymentTicket

AskCCI AskCCI
PS PaymentStatus

CCI CreditCard
VI VehicleNumber, VehicleType
TA CCNumber, AmountToPay, PaymentStatus
PI PaymentRequest

Table 6.3: Mapping between Data Entities and Message Channels.



84 Paper C

Bank

ECU1 ECU3
ECU4

C
A

N

T
C

P
/IP

WIFI IPSec

Inter Physical Platform
Connection 

Physical Platform 

Vehicle Station

ECU4ECU2

ECU
Computation Unit allocation
(= Physical Node)

Intra Physical Platform
Connection

Figure 6.6: Physical Platform Model of the System.

ports of message ports and data entities is based on naming convention which
enables to distinguish between data ports that require to encrypt/decrypt their
data and those that do not. We call data model the set of data entities which are
used in the related design.

6.4.4 Physical Platform And Deployment Modeling
The physical entities and their connections are described in a separate

model called Physical Platform Model (see Figure 6.6). This model defines
the different Electronic Computation Unit (ECU) called Physical Node includ-
ing their configuration such as processor type and frequency, the connections
between physical nodes and the physical platforms which represents a set of
ECU fixed together.

ProCom system deployment is modeled in two steps, introducing an inter-
mediate level where subsystems are allocated to virtual nodes that, in turn, are
allocated to physical nodes. In a similar way, message connections are allo-
cated to virtual message connections which, in turn, are allocated to physical



6.4 Approach 85

connections. Figure 6.7 defines the physical platform and related mapping of
Automatic Payment System model. To simplify the example, we assume one
to one mapping between virtual node and physical node.

Merchant

SubSystem

Payment

Station
Subsystem

Vehicle
SubSystem

PT

PI

TA

Bank

CI

Ask CI

WIFI IPSec

ECU1 ECU3 ECU4

V
I

C
C

I

A
s
k
 C

C
I

P
S

C
A

N

T
C

P
/IP

Camera

Subsystem

User

Interface

Subsystem

Inter Physical Platform
Connection 

Physical Platform 

Vehicle Station

ECU4ECU2

ECU
Computation Unit allocation
(= Physical Node)

Intra Physical Platform
Connection

Figure 6.7: Deployment Model of the System depicting allocation to Physical
Platforms.

6.4.5 Security Properties

Instead of defining the security properties on the architecture, i.e. the com-
ponent model, we propose to annotate the data model and compute the required
security properties on the architecture, based on these security requirements. It
is an original part of our approach where designer can think about sensitive
data without considering the architecture models. The designer applies secu-
rity properties to identify and annotate sensitive data in the system, which re-
quire to be protected using some security mechanisms (e.g., confidentiality and
encryption, authentication, integrity, etc.). We consider two types of security
properties:



86 Paper C

• Confidentiality ensures that the considered information can not be read
by any external person of the system; and

• Authentication which ensures that the considered information comes
from the expected sender.

Table 6.4 shows security annotations associated to data entities for our ex-
ample. In addition to security properties on the data model, we define the

Data Entity Security properties
CCNumber Confidentiality
VehicleNumber Authentication
AskCI Authentication
AskCCI Authentication
PaymentRequest Authentication
PaymentStatus Authentication

Table 6.4: Data Entity Security Properties.

security properties related to the physical platform which are independent of
any application:

• Exposed defines that the physical platform is potentially accessible to
external persons and that they may be able to open it and modify physical
parts.

• NotAccessible defines that the physical platform is not considered as
accessible to unauthorized persons.

In a similar way, physical connections are annotated:

• NotSecured defines that the physical connection protocol does not im-
plement reliable security.

• Secured defines that the physical connection is considered as secured
due to its intrinsic security implementation.

Using these properties, the responsible of the physical platform annotates
physical entities and the physical connections between them in the platform
model. Thanks to these annotations, we can deduce which parts do not need
additional security implementations if it is already provided. For example, if a
link is established using mere TCP/IP, it is annotated as NotSecured, while in



6.4 Approach 87

case that IPSec protocol suite is used for a link, that link is annotated as Se-
cured. This means that the link is considered trusted and already secured, and
no security component is necessary to be added for the link. Table 6.5 shows
the security properties of Automatic Payment System physical platforms.

Physical Platform or Connection Security properties
Vehicle Exposed
Station NotAccessible
Bank NotAccessible
WIFI NotSecured
IPSec Secured
TCP/IP NotSecured
CAN NotSecured

Table 6.5: Security Properties of Physical Entities.

6.4.6 Cost of Security Implementations

To satisfy the identified security properties in the system, different security
mechanisms, namely encryption/decryption algorithms in this paper, can be
used. As stated before, using a security mechanism in the system has its
own costs in terms of timing and performance, power consumption and so
on. Therefore, choosing an appropriate security mechanism is critical in order
to ensure the satisfaction of timing requirements of the system while fulfilling
the security requirements. For this purpose, and to take into account the timing
costs of different security mechanisms, we rely on the results of studies such as
[9] that have performed these cost measurements. Based on such methods, we
assume the existence of such timing measurements for the platforms used in
our system in the form of the Table 6.6. We assume that execution time can be
computed knowing targeting platform, algorithm, key size and data size. We
suggest to provide a timing estimation toolkit which enable to provide estimate
based on measurements. It can be observed that depending on the targeted
platform, some algorithms may not be supported.

Table 6.6 shows estimates based on results presented in [9]. These results
are related to a specific platform. We do not aim to explain how to get such
table. However we assume that it is possible to get such estimates.



88 Paper C

Strength Rank Algorithm Key Size ET-P1 ET-P2 ET-Pn
1 AES 128 NS 480 . . .
2 3DES 56 292 198 . . .
3 DES 56 835 820 . . .

. . .
(ET-Px: Executime Time on Platform x in bytes per second, NS: Not Supported on corresponding platform)

Table 6.6: Execution times and strength ranking of different security algo-
rithms for a specific platform

6.4.7 Security Implementation Strategy
As mentioned previously, based on the selected strategy, a security mech-

anism is chosen from the table and the components implementing it are added
to the component model. The user can then perform timing analysis on the de-
rived component model to ensure that the overall timing constraints hold and
are not violated. We propose several strategies to help choosing between all
possible security implementations:

• The StrongestSecurity strategy selects the strongest security implemen-
tation available on the platforms;

• The StrongestSecurityAndLimitImplemNb
strategy selects the strongest security implementation available on the
platforms which ensures that we use as few as possible different security
implementations since each message channel can use a different encryp-
tion algorithm;

• The LowestExecTime strategy selects the security implementation
available on the platforms which has the lowest execution time;

• The LowestExecTimeAndLimitImplemNb strategy selects the lowest
execution time implementation available on the platforms which ensures
that we use as few as possible different security implementations; and

• The StrongestSecuritySchedulable strategy selects the strongest secu-
rity implementation available on the platforms where the system remains
schedulable.

The selection is driven by the fact that the same algorithm must be used for
the sender and receiver components which may be deployed on different plat-
forms which in turn may not support the same algorithms. The StrongestSe-
curitySchedulable strategy is hard to implement and will be part of our future



6.4 Approach 89

works. However, it is the most interesting one. More complex security imple-
mentation strategies can be considered but are not covered by this paper. In
particular, our future works will try to define required security strength associ-
ated to data and message channels.

6.4.8 Transformation

The transformation is performed in four steps:

1. First, we identify the part of message which needs to be confidential or
authenticated and on which communication channels;

2. Then, we add components in charge of encryption, decryption of the
identified communication channels;

3. Then, the strategies are used to choose which encryption algorithm to
use and generate the code of added components; and

4. Finally, the Worst Case Execution Time (WCET) of added components
is estimated.

It relies on the following assumptions:

• The confidentiality is ensured using asymmetric keys; and

• The authentication is ensured using electronic certificates.

The transformation aims to ensure that data decryption is performed once
and only once before that data will be consumed and that data encryption is
performed once and only once when a message should be sent. To illustrate
the algorithm, let’s consider the example in Figure 6.8. We assume that only
data D1 need to be confidential. The pseudo algorithm of the transformation is
described in Listing 6.1.

Encryption/Decryption (in EnD1 and DeD1) is done only for confidential
data while other data are just copied. An additional port is used to send digest
used for authentication. The decryption component (DeD1) ensures that all
message data will be available at the same time thought output data ports. This
implementation ensures the original operational semantic of the component
model. Then, the security strategy is used to choose which encryption/decryp-
tion algorithm must be used and what its configuration will be.



90 Paper C

(a) Before transformation, no security

C2

C1

C2

D1

D1

C1
D2

D2

D2

C2

(b) After transformation, secured system

C1

C2

EnD1

Original elementsGenerated elements

ED1

ED1 DeD1

C1

Digest

Digest

D2

D2

D2

Figure 6.8: Transformation.

Listing 6.1: Transformation Pseudo Algorithm

msgToSecure = {}
f o r a l l c h a n n e l s M i n component model {
P = M. a l l o c a t e d P h y s i c a l C h a n n e l ;
i f ( (M. g e t C o n f i d e n t i a l D a t a ( ) <> {} ) o r

(M. g e t A u t h e t i c a t e d D a t a ( ) <> {} ) and
( P . i s N o t S e c u r e d ( ) ) and
( ( P . i s I n t r a P l a t f o r m ( ) and

P . s o u r c e P o r t . p l a t f o r m . i s E x p o s e d ( ) ) o r
( P . i s I n t e r P l a t f o r m ( ) ) )

add M i n msgToSecure ;
}

f o r a l l M i n msgToSecure {
P = M. a l l o c a t e d P h y s i c a l C h a n n e l ;



6.5 Implementation 91

Source = M. s o u r c e P o r t ;
EnD = c r e a t e component

wi th same p o r t s a s Source ;
i f (M. g e t A u t h e t i c a t e d D a t a ( ) <> {} )

add one o u t p u t p o r t D i g e s t t o EnD
add one i n p u t p o r t D i g e s t t o Source

EnD . i n C o n n e c t i o n s = Source . i n C o n n e c t i o n s ;
c r e a t e c o n n e c t i o n s where EnD . o u t P o r t s

a r e c o n n e c t e d t o c o r r e s p o n d i n g
Source . i n P o r t s ;

g e n e r a t e EnD i m p l e m e n t a t i o n code

Des t = M. d e s t P o r t ;
DeD = c r e a t e component

wi th same p o r t s a s Des t ;
i f (M. g e t A u t h e t i c a t e d D a t a ( ) <> {} )

add one o u t p u t p o r t D i g e s t t o Des t
add one i n p u t p o r t D i g e s t t o DeD

DeD . o u t C o n n e c t i o n s = Des t . o u t C o n n e c t i o n s ;
c r e a t e c o n n e c t i o n s where Des t . o u t P o r t s

a r e c o n n e c t e d t o c o r r e s p o n d i n g
DeD . i n P o r t s ;

g e n e r a t e DeD i m p l e m e n t a t i o n code
}

6.5 Implementation
This approach has been experimented partially in PRIDE, the ProCom de-

velopment environment. The feasability at model level of the approach has
been validated while the code generation part remains as future works. The se-
curity annotations have been added using the Attribute framework[10] which
allows to introduce additional attribute to any model element in ProCom. The
model transformation has been implemented using a QVTo[11] transformation
plugged at the end of the process described in [12]. These experiments aims to
show the benefits at design level of the approach where timing properties of the
overall system can be analysed. The current implementation only supports the
LowestExecTime and StrongestSecurity strategies. The analysis of estimate



92 Paper C

accuracy is out of the scope of this paper.
This paragraph presents some ideas to generate code of security compo-

nents. In order to keep the approach generic, we intend to let certificate spec-
ification and other encryption algorithm specific parameters to be filled in the
generated code. One generator is associated for each algorithm. The suitability
for timing analysis of the generated component code need to be planned but
at least will allow for measurement based timing analysis as any other Pro-
Com component. While the system functionality remains the same, the system
needs to react to authentication errors. This problem could be partially solved
by letting opportunity to the developer to add code to manage authentication
errors in the generated code which leads to define what must be the output data
in this specific case.

6.6 Related Work

With the growing complexity of real-time embedded systems, management
of run-time data in these systems has become more important than before and
has gained more attention. It has become extremely hard for one person to
keep track of all data that is passing through different parts of the systems.
Currently, most design methods based on component models focus on func-
tional structuring of the system without considering data flow meaning and
semantics[8]. [8] introduces a data-centric approach which models data and
proposes to use real time database for data management at runtime in real-
time embedded systems. It introduces an architectural view for data entities to
complement component-based views. Unfortunately, it does not address extra-
functional properties such as security. Our work follows a similar approach to
model data entities as a basis to define security specification.

For modeling security features in general, several solutions have been of-
fered such as UMLsec [13] that is a UML profile for the specification of se-
curity relevant information in UML diagrams. It is one of the major works in
this area and also comes with a tool suite which enables evaluation of security
aspects and their violations. There are other similar approaches that have nar-
rower focus like SecureUML [14] that enables modeling of role-based access
controls. However, modeling security requirements in isolation (from other as-
pects of the system) is not enough and become problematic to predict impact on
other extra-functional properties especially for real-time embedded. There are
works such as [2] and [7] that discuss security issues unique to embedded sys-
tems. In [15] we have proposed and discussed benefits of extending MARTE



6.6 Related Work 93

[16] modeling language with security annotations to cover the modeling needs
of embedded systems. This work focused on providing UML stereotypes to
specify confidentiality property of message communication and related tim-
ing estimates. Contrasting, our work models confidentiality and authentication
properties at higher abstraction level enabling the designer to focus on sen-
sitive data without thinking about the security implementation which will be
automatically generated.

In [17], a method is introduced to specify security requirements on UML
models and check their satisfaction by relating model-level requirements to
code level implementations. UMLsec is used to include security requirements
at model level, and JML annotation language is used to relate code blocks back
to the security requirements specification, therefore enables evaluation of secu-
rity requirement assurance. While this work is also an MDE based approach for
defining security requirements, it does not provide timing impacts of security
implementation and does not automatically derive security implementation.

The work described in [18] considers security issues in model-based de-
velopment of service-oriented applications. It proposes a process meta-model
for modeling service orchestration as a workflow and another one for model-
ing high-level security properties. In addition, a more detailed model is used
to specify low level security specification and the tool generates the security
implementation from these models. Our approach is similar to this work in
the sense that it aims to define security properties at high level of abstraction.
While they focus on automatic service selection and other security properties
such as integrity, our objective is to compute timing impact of security im-
plementation and target another application domain. In addition, we identify
sensitive part of messages which need to be secured.

The work in [19], highlights the need to identify sensitive data and intro-
duces an extension to include security concerns as a separate model view for
web-services based on Web-Services Business Process Execution Language
(WS-BPEL). However, it does not take into account consequences of security
design decisions on timing.

Studies [9, 20] are two examples of works that measure the costs of security
algorithms. [9] provides performance comparisons of several encryption algo-
rithms, and [20] compares energy consumptions of encryption algorithms on
two sensor motes used for building wireless sensor networks. While the focus
in these works is not on system design, MDE, and CBD methods, in our work
they serve as hints and examples on how to get costs of security algorithms.



94 Paper C

6.7 Conclusion
Modeling of data in embedded systems is mainly done by specifying the

type of data, while the semantics of transferred data is needed for security
concerns such as identification of sensitive data. Security, as a non-functional
requirement, spans different parts of a system and needs to be modeled at all
levels (component architecture, data model, physical platform. . . ). In this pa-
per, we presented an approach which allows to define security specification of
embedded systems at high level of abstraction and to produce automatically
the security implementation.

Our contributions are

• To propose to model data semantic on top of ProCom architecture model;

• To propose a way to model security properties and needs as annotations
on the different models;

• To provide a transformation of component model which ensures by con-
struction security specification; and

• To enable timing analysis on secured component model by computing
timing estimates of security components.

All these features help system designers to focus more on system architec-
ture and timing properties which are critical in real-time embedded systems,
and at the same time, consider and apply security mechanisms in the design
models, without the need to have deep knowledge about how to implement
different security mechanisms. This also contributes to the aim and trend of
bringing security considerations in higher levels of abstraction.

As future works, we aim to provide analysis to compute security system
properties such as robustness of the system to a specific attack, to provide an
algorithm for the StrongestSecuritySchedulable, evaluation on an industrial use
case and to consider other extra functional properties such as power consump-
tion of security implementations and to provide trade-off analysis between se-
curity properties and other extra-functional properties.



Bibliography

[1] Markus Voelter, Christian Salzmann, and Michael Kircher. Model driven
software development in the context of embedded component infrastruc-
tures. In Colin Atkinson, Christian Bunse, Hans-Gerhard Gross, and
Christian Peper, editors, Component-Based Software Development for
Embedded Systems, volume 3778 of Lecture Notes in Computer Science,
pages 143–163. Springer Berlin / Heidelberg, 2005.

[2] Sigrid Gürgens, Carsten Rudolph, Antonio Maña, and Simin Nadjm-
Tehrani. Security engineering for embedded systems: the secfutur vision.
In Proceedings of the International Workshop on Security and Depend-
ability for Resource Constrained Embedded Systems, S&D4RCES ’10,
pages 7:1–7:6, New York, NY, USA, 2010. ACM.

[3] Martin Törngren, DeJiu Chen, and Ivica Crnkovic. Component-based
vs. model-based development: A comparison in the context of vehicular
embedded systems. In Software Engineering and Advanced Applications,
2005. 31st EUROMICRO Conference on. IEEE, August 2005.

[4] Bran Selic. The pragmatics of model-driven development. IEEE Soft-
ware, 20:19–25, September 2003.

[5] Séverine Sentilles, Aneta Vulgarakis, Tomas Bures, Jan Carlson, and
Ivica Crnkovic. A Component Model for Control-Intensive Distributed
Embedded Systems. In Michel R.V. Chaudron and Clemens Szyperski,
editors, Proceedings of the 11th International Symposium on Compo-
nent Based Software Engineering (CBSE2008), pages 310–317. Springer
Berlin, October 2008.

95



96 Bibliography

[6] Eirik Albrechtsen. Security vs safety. NTNU - Norwegian University
of Science and Technology http://www.iot.ntnu.no/users/
albrecht/, Accessed: May 2011.

[7] Paul Kocher, Ruby Lee, Gary McGraw, and Anand Raghunathan. Secu-
rity as a new dimension in embedded system design. In Proceedings of
the 41st annual Design Automation Conference, DAC ’04, pages 753–
760, New York, NY, USA, 2004. ACM. Moderator-Ravi, Srivaths.

[8] Andreas Hjertström, Dag Nyström, and Mikael Sjödin. A data-entity ap-
proach for component-based real-time embedded systems development.
In Proceedings of the 14th IEEE international conference on Emerging
technologies & factory automation, ETFA’09, pages 170–177, Piscat-
away, NJ, USA, 2009. IEEE Press.

[9] A. Nadeem and M.Y. Javed. A performance comparison of data encryp-
tion algorithms. In Information and Communication Technologies, 2005.
ICICT 2005. First International Conference on, pages 84 – 89, aug. 2005.

[10] Séverine Sentilles, Petr Štěpán, Jan Carlson, and Ivica Crnković. Inte-
gration of Extra-Functional Properties in Component Models. In 12th
International Symposium on Component Based Software Engineering.
Springer, 2009.

[11] Ivan Kurtev. State of the art of QVT: A model transformation language
standard. In Applications of Graph Transformations with Industrial Rel-
evance, volume 5088 of Lecture Notes in Computer Science, pages 377–
393. Springer Berlin, 2008.

[12] Thomas Leveque, Jan Carlson, Séverine Sentilles, and Etienne Borde.
Flexible semantic-preserving flattening of hierarchical component mod-
els. In 37th EUROMICRO Conference on Software Engineering and Ad-
vanced Applications (SEAA). IEEE Computer Society, August 2011.

[13] Jan Jürjens. Umlsec: Extending uml for secure systems development. In
UML ’02: Proceedings of the 5th International Conference on The Uni-
fied Modeling Language, pages 412–425, London, UK, 2002. Springer-
Verlag.

[14] Torsten Lodderstedt, David A. Basin, and Jürgen Doser. Secureuml: A
uml-based modeling language for model-driven security. In Proceedings
of the 5th International Conference on The Unified Modeling Language,
UML ’02, pages 426–441, London, UK, 2002. Springer-Verlag.



[15] Mehrdad Saadatmand, Antonio Cicchetti, and Mikael Sjödin. On the need
for extending marte with security concepts. In International Workshop on
Model Based Engineering for Embedded Systems Design (M-BED 2011),
March 2011.

[16] MARTE specification version 1.0 (formal/2009-11-02). http://www.
omgmarte.org.

[17] John Lloyd and Jan Jürjens. Security analysis of a biometric authenti-
cation system using umlsec and jml. In Proceedings of the 12th Interna-
tional Conference on Model Driven Engineering Languages and Systems,
MODELS ’09, pages 77–91, Berlin, Heidelberg, 2009. Springer-Verlag.

[18] Stéphanie Chollet, Philippe Lalanda, and Gabriel Pedraza. Secure Inte-
gration of Service-Oriented Application. September 2009.

[19] Meiko Jensen and Sven Feja. A security modeling approach for web-
service-based business processes. In Proceedings of the 2009 16th An-
nual IEEE International Conference and Workshop on the Engineering of
Computer Based Systems, ECBS ’09, pages 340–347, Washington, DC,
USA, 2009. IEEE Computer Society.

[20] Jongdeog Lee, Krasimira Kapitanova, and Sang H. Son. The price of
security in wireless sensor networks. Journal of Computer Networks,
54:2967–2978, December 2010.





Chapter 7

Paper D:
Design of Adaptive Security
Mechanisms for Real-Time
Embedded Systems

Mehrdad Saadatmand, Antonio Cicchetti and Mikael Sjödin
The Fourth International Symposium on Engineering Secure Software and Sys-
tems (ESSoS), Eindhoven, The Netherlands, February, 2012.

99



Abstract

Introducing security features in a system is not free and brings along its costs
and impacts. Considering this fact is essential in the design of real-time em-
bedded systems which have limited resources. To ensure correct design of
these systems, it is important to also take into account impacts of security fea-
tures on other non-functional requirements, such as performance and energy
consumption. Therefore, it is necessary to perform trade-off analysis among
non-functional requirements to establish balance among them. In this paper,
we target the timing requirements of real-time embedded systems, and intro-
duce an approach for choosing appropriate encryption algorithms at runtime, to
achieve satisfaction of timing requirements in an adaptive way, by monitoring
and keeping a log of their behaviors. The approach enables the system to adopt
a less or more time consuming (but presumably stronger) encryption algorithm,
based on the feedback on previous executions of encryption processes. This is
particularly important for systems with high degree of complexity which are
hard to analyze statistically.



7.1 Introduction 101

7.1 Introduction

Security is gaining more and more attention in the design of embedded sys-
tems. Embedded systems are nowadays everywhere. They are used in control-
ling systems of power plants, vehicular systems and medical devices, as well
as, mobile phones and music players. The operational environment, physical
accessibility, and mobility of embedded systems make them prone to certain
types of attacks which might be less relevant for ordinary computer systems,
such as side channel attacks, time and power analysis to determine security
keys and algorithms [1]. Also, the increasing use of embedded devices as parts
of networked and interconnected devices makes them prone to new types of
security issues [2].

On the other hand, introducing security in embedded systems requires care-
ful considerations, trade-off analysis, and balance with other aspects such as
performance, power consumption, and so on. This is mainly due to the re-
source constraints and limitations that these systems have. For example, choos-
ing an encryption algorithm that performs heavy computations, requires lots
of memory, and, as a result, consumes more energy, may impair the correct
functionality of the system and violate its specified requirements. This is ba-
sically because of the fact that non-functional requirements, such as security,
are not independent and cannot be considered in isolation [3]. Therefore, it
is important to understand the impacts and consequences of designed security
mechanisms on other aspects of the systems.

In real-time embedded systems, where timing requirements are critical,
choice of security mechanisms is important in terms of satisfaction of timing
requirements. One way to achieve this, is to find a security mechanism that fits
and matches the timing requirements of the system (e.g., by performing timing
analysis), and then implement it [4]. This method leads to a static design in the
sense that a specific security mechanism, which is analyzed, and thus, known to
execute within its allowed time budget, is always used in each execution. How-
ever, this method may not be practical for systems with high complexity, which
are hardly analyzable or systems with unknown timing behaviors of their com-
ponents. Instead, for such systems, an adaptive approach to select appropriate
security mechanisms, based on the state of the system, can be used to adapt its
behavior at runtime and stay within the timing constraints. In this paper, we
introduce this approach, and describe its implementation for selecting appro-
priate encryption algorithms at runtime (in terms of their timing behaviors) in
an adaptive way, using OSE real-time operating systems [5]. To this end, the
timing behavior of each execution of the encryption procedures is logged, and



102 Paper D

used as feedback for selecting a more suitable encryption algorithm in the next
execution.

The rest of the paper is structured as follows. Section 7.2 describes the mo-
tivation and background of this work. In Section 7.3, we discuss the approach,
describe how the adaptation mechanism in the proposed approach works. Im-
plementation and experimental results are also explained in this section. Sec-
tion 7.4, discusses the context where the proposed approach can be more ap-
plicable and suit well. In Section 7.5, related work is discussed, and finally
in Section 7.6, conclusions are drawn, and pointers to future directions of this
work are provided.

7.2 Background and Motivation

Designing security for real-time embedded systems is a challenging task. This
is due to the fact that security features have impacts on other aspects of the sys-
tem, such as timing, and if these impacts are not identified, analyzed, or man-
aged properly, they can lead to violations of other non-functional requirements,
and thus failure of the system. While in small and simple systems timing and
schedulability analysis, covering security algorithms, can be done to ensure
satisfaction of timing requirements, when it comes to very complex systems,
such static and offline analyses might not be practical and feasible [6]. Even in
cases where they are feasible, the results of such analyses may be invalidated
at run-time, due to several factors such as transient loads, difference between
the ideal execution environment (taken into account for analysis) and the ac-
tual one, which leads to violation of the assumptions that are used to perform
analysis [7].

Telecommunication systems are examples of systems with high complexity
that require massive execution capacity and have security requirements. Due
to the complexity of these systems, the main focus in their design is to be able
to handle massive connection requests and data loads that arrive in a bursty and
unpredictable fashion, than just trying to merely perform analysis of all possi-
ble conditions in the system [8]. Therefore, it is important that such systems
are designed in an adaptive way, so that they can reconfigure themselves at
runtime to continue providing their services, although under different Quality-
of-Service (QoS) levels. Also, most of the real-time tasks in these systems have
soft deadlines. This means it is acceptable, in general, for the functionality of
the system, if some tasks complete their jobs within a reasonable margin after
their deadlines, and the result of a single deadline miss is not catastrophic.



7.3 Approach 103

OSE is a Real-Time Operating System (RTOS) developed by Enea [9],
which is used heavily in telecommunication systems, especially by Ericsson,
from Radio Network Controllers, and Radio Based Stations (RBS) to mobile
devices. In this paper, focusing on the needs of such systems that require run-
time adaptation, an approach is suggested to select encryption algorithms at
runtime based on how they behave in terms of their time constraints. To im-
plement and evaluate the approach, OSE is used as the base platform. It is an
example of a RTOS which is designed from scratch to provide the necessary
determinism level required for fault-tolerant real-time embedded systems with
high availability, particularly in telecommunication domain.

7.3 Approach
To design a system that can adapt itself and adjust the balance between its time
constraints and security level, the approach depicted in Figure 7.1 is suggested.

Figure 7.1: Adaptive design of encryption algorithms

When an application needs to encrypt some data, it sends the data along
with the allowed execution time for the encryption procedure to the main en-
cryption process. Based on the received time constraint, this process will then



104 Paper D

try to encrypt the data with an appropriate encryption algorithm, by invoking
the corresponding process implementing that algorithm. This is done by first
consulting the log information generated by the monitor process plus a pre-
defined table for ranking of preferred encryption algorithms. An example of
such a table is shown in Table 7.1. The table is used to capture the preferences
for different encryption algorithms, but it has to be in descending order in terms
of execution times. As we will see, this is important for the correct behavior of
the system. Comparison of execution times for different encryption algorithms
can be obtained from the result of studies such as [10], which has performed
performance measurements of different encryption algorithms. This table is,
therefore, filled by the user, using the result of such studies. For each algo-
rithm in the table, there is a process that implements it (named in Figure 7.1 as
’process for encryption algorithm 1’. . . ’process for encryption algorithm n’).

Rank Encryption Algorithm
1 AES
2 3DES
3 DES

. . .

Table 7.1: Preferred encryption algorithms in descending order in terms of
execution times.

Then, when an appropriate encryption algorithm is decided (the following
section describes in detail how this is done), the main encryption process passes
the data to the process implementing that encryption algorithm to perform the
actual encryption of the data. The time taken from the point that the main
encryption process sends the plain data it has received from the application
process to one of the processes implementing an encryption algorithm, until
encrypted data is returned to the main encryption process by it, is sent as part
of the log information to the monitoring process. This log information will be
used as feedback in the next invocation of the main encryption process.

The assumption that is implicit in this design is that, when it is detected
that an executing encryption algorithm is exceeding its allowed time budget, it
is basically more costly to terminate it in the middle of the encryption proce-
dure, and restart encryption of the data with another encryption algorithm, than
just letting it finish its job, and instead use one with a lower execution time in
the next invocation of encryption procedures. This is why the encryption algo-
rithms in Table 7.1 need to be sorted according to their execution times. In this



7.3 Approach 105

way, the system first tries to encrypt all data with the algorithm at the top of
the table. If it is observed that it cannot fulfill the specified time constraint, the
second ranked algorithm (which has shorter execution time) will be chosen for
encryption in the next invocation.

On the other hand, if an encryption algorithm completes its job sooner than
its specified time limit, the unused portion of its time budget is used to calculate
and determine whether it is feasible to go back to the previous higher ranked
algorithm for the next encryption job or not. Using this approach, the system
tries to adapt itself based on the feedback it receives regarding its timing behav-
ior. Therefore, when a burst of processing loads arrive, the system adapts itself
to this higher load, and when the processing load decreases, it can gradually go
back to using more time-consuming (and presumably more secure) encryption
algorithms. This is, for example, very useful in telecommunication systems,
where lots of other services (than the one(s) using encryption) are active and
need to be responsive at the same time, where task pre-emption and context
switches increase dramatically and interfere with the encryption job.

7.3.1 Log Information and Adaptation Mechanism
The information that is logged by the monitor process has the following format:

Timestamp, Encryption algorithm, Time constraint, Actual execution time
An Example of the generated log information is shown in Table 7.2.

10360, AES, 50, 90
11800, 3DES, 80, 70
14500, 3DES, 60, 70
21353, DES, 60, 10
22464, 3DES, 90, 40
23112, AES, 50, 50
28374, AES, 60, 58

Table 7.2: Sample log information.

The table shows that the system has first performed encryption using AES
algorithm, with a time constraint of 50 time units, but the actual execution time
has been 90; in other words, it has violated its time constraint. Therefore, in
the next execution, 3DES is automatically chosen for encryption (as it is the
first lower ranked algorithm under AES in Table 7.1), which has finished its
job in 70 time units while having 80 as its time constraint. Hence, no change



106 Paper D

in the encryption algorithm is observed and the same algorithm (3DES) is used
for the third execution as well. The fifth and sixth rows in Table 7.2 (which
represent the fifth and sixth executions) show that the system has chosen to
apply a higher ranked encryption algorithm (fourth to fifth: DES->3DES, and
fifth to sixth: 3DES->AES).

In the log that is kept in memory from the log information generated above
by the monitoring process, if an encryption algorithm is again selected for the
next invocation, its latest log record will replace the previous one. In other
words, for each two consequent log records for a certain encryption algorithm,
only the most recent one is kept. This is done to only keep the information
that is necessary, which also leads to having only log information indicating
changes of encryption algorithms being stored. Table 7.3, shows what is ac-
tually necessary from the generated log information shown in Table 7.2, for
making adaptation decisions.

10360, AES, 50, 90
14500, 3DES, 60, 70
21353, DES, 60, 10
22464, 3DES, 90, 40
28374, AES, 60, 58

Table 7.3: Necessary portion of log information for making adaptation deci-
sions.

Considering the last row from the log as:

ts, alg, t, e
(ts: timestamp, alg: encryption algorithm, t: time constraint, e: actual execution time)

the decision that the system should adopt a lower ranked algorithm is made
using the following formula:

(i) e > t ⇒ move down in the encryption algorithms table and select the
next algorithm with a lower rank.

Also, considering the two log records described as follows:
ts(l), alg(l), t(l), e(l) : representing the last log record

ts(h), alg(h), t(h), e(h) : representing the log record for the first encryption al-
gorithm with a higher rank that was used before the last log record

the decision to adopt a higher ranked algorithm is made using the following
formula:



7.3 Approach 107

(ii) e(l) < t(l)∧ t(l)− e(l) > abs(e(h)− t(h))⇒ move up in the encryp-
tion algorithms table and select the previous higher ranked algorithm.

For example, in Table 7.3, applying formula (i) on row 1 (i.e., 90>50)
shows that AES has taken more time than it was allowed to; therefore, a lower
ranked algorithm (3DES) is used for the next invocation. However, for row 4,
and the higher ranked algorithm just before it, which is AES at row 1, formula
(ii) holds (i.e., 90-40>abs(90-50)); therefore, at the next invocation (corre-
sponding to row 5), AES algorithm was used again.

7.3.2 Implementation Details
The implementation of the approach is done on OSE real-time operating sys-
tems [5]. The OSE edition that is used is OSE Soft Kernel (OSE SFK), which
is a simulation of the actual environment to be downloaded to the target em-
bedded hardware, and is possible to run on a host machine (e.g., on Windows
or Linux).

The execution unit in OSE corresponding to a real-time task is called pro-
cess. For all the processes depicted in Figure 7.1, an OSE process is imple-
mented. OSE offers two types of processes: static and dynamic. Static pro-
cesses are created upon system startup, cannot be terminated, and last as long
as the system is up and running. On the other hand, dynamic processes can
be created and killed on the fly by another process using OSE APIs. Main
application, main encryption process, and monitoring process, are created as
static processes. Each encryption algorithm is implemented as dynamic pro-
cesses, which are, in turn, created by the main encryption process at runtime as
needed. This is just a design choice to reduce the number of active processes
in the system, as encryption algorithms can also be well created as static pro-
cesses, in which case, the overhead of creating them for each invocation will
be reduced, while increasing the total scheduling overhead and memory usage
of the system.

An interesting feature of OSE is offering the concept of load module. Load
modules are relocatable program units that can be loaded into a running system
and dynamically bound to that system. A loadable module can be uploaded,
rebuilt, and quickly downloaded while the remainder of the system continues
to run [5]. A load module can be considered similar to Windows .exe or .dll
files. Once installed, the program (consisting of one or more processes) that
they contain, can be created and started. In the case of our system, this means
that security designers can add new encryption algorithms to the system dy-



108 Paper D

namically or update them on the fly, while the system is active and running.
Such a feature is very important in high-availability systems, where updates
and upgrades (e.g., patching security issues) should affect the up-time of the
system to the least degree possible.

Also, the direct and asynchronous message passing mechanism in OSE,
makes this real-time operating system a great choice for use in distributed sys-
tems. This further facilitates the scalability of systems that are built on OSE.
Data between processes are passed as signals using three basic OSE APIs for
signal passing: send, receive, and alloc (to create signals containing data). The
Inter-Process Communication protocol (IPC) used in OSE, makes the location
of processes transparent to the user; meaning that no matter whether two pro-
cesses are located on the same board or on different ones, the communication
between them is done using the same set of APIs and code. Using this feature,
the proposed approach is implemented without the need to use shared mem-
ory among processes. The communication between processes is implemented
using the three above-mentioned APIs. This brings along the possibility to
deploy the processes shown in Figure 7.1 on different processors and boards
without affecting the generality of the approach, which is important for highly-
distributed real-time embedded systems such as telecommunication systems.

Using the aforementioned features, several signals have been defined for
synchronization, and to pass data between processes. For example, signal HIS-
TORY INFO REQUEST is defined which is sent from the main encryption
process to the monitoring process to request log information. In case of receiv-
ing this signal, the monitoring process sends last log record, and the log record
for the first encryption algorithm with a higher rank, used before the last record,
to the main encryption process using HISTORY INFO REPLY signal. Using
this signaling mechanism also allows to deploy processes on different nodes if
needed. This is possible since the necessary information to make adaptation
decisions such as the time it takes to encrypt is passed between processes as
part of the signals, making the actual location of processes in different nodes
unimportant and transparent for the approach to work. The rank table for en-
cryption algorithms is actually implemented using enumerations in C/C++ in
the main encryption process.

7.3.3 Evaluation

To test the behavior of the system, a tool called CPU Killer [11] was used to
create desired percentage of CPU loads at desired times. Moreover, Optima,
which is a debugging, profiling, and monitoring tool developed by Enea for



7.3 Approach 109

OSE, was also used to monitor and observe, in the form of graphs and tables,
CPU usage levels at different system ticks from the startup of OSE. The system
was run two times: once without having adaptation and the second time using
adaptation. At each time, CPU loads of 10%, 50%, 70%, and then back to
50%, and 10% were applied. The results are shown in Figure 7.2.

Figure 7.2: Results of running the system with and without adaptation.

The columns for each log record identify: system time (ticks), encryption
algorithm, time constraint (ticks), and actual execution time (ticks). As men-
tioned in the previous section, an enumeration in the form of ”enum algorithms
{ AES=1, THREEDES=2, DES=3 };” was used to represent the information
of Table 7.1 in the code. The logs are decorated here with additional marks to
facilitate explanation and understanding of the results.

In case I, where no adaptation was applied, AES (as number 1 in the sec-



110 Paper D

ond column) algorithm is constantly used for encryption. This is because the
goal is to provide the maximum level of security, and therefore, the system
is designed to prefer and choose the topmost encryption algorithm (whenever
possible) from the table, which represents the strongest one. The system was
started while applying 10% CPU load, and as can be seen from the figure, en-
cryption is done within its time constraint of 300 and no violation is observed.
However, when CPU load is increased to 50%, encryption starts violating its
time constraint. Violations are marked with * mark in the figure. In case of the
first violation, it can be seen that encryption was completed in 305 ticks while
the time constraint is 300 ticks. Violations get worse (with more time margins)
at 70% CPU load. It is only after going back to 10% CPU load, that encryption
can meet its constraint again.

In the second case (II), where adaptation was used, it can be easily under-
stood at the first sight that the number of violations have decreased. The first
violation occurs when the CPU load is set to 50%, however, the system adapts
itself to this new load and uses 3DES (as number 2 in the second column),
which helps the system to perform within its time constraint again. When CPU
load is set to 70%, violations are again observed. Therefore, the system adapts
itself by using DES (as number 3 in the second column) instead of 3DES,
to stay within the time constraint. Even using DES, the system still fails to
meet its constraint, however, within a smaller time margin. In spite of viola-
tions, since no lower rank algorithm than DES was defined in this experiment,
the system keeps using it as the last possible choice. When the CPU load is
reduced back to 50%, using the two formulas described at the beginning of
the section, the system realizes that it can go back to using a higher ranked
algorithm (3DES in this case; hence number 2 is again observed in the sec-
ond column as the used algorithm) without causing any violations. Finally, by
reducing the CPU load further to 10%, the systems goes back to using AES
again.

Two rows are marked with A (at time 2111 and 5950) to show anomaly
in the results. The first one which shows a violation for AES algorithm under
10% load, while previous rows show that it can meet its constraint under this
load. This can be due to some background services doing some work in the
system at that point, which has affected AES to perform encryption as before,
and thus, resulted in a violation. Or, it can be because of a relatively slow
movement of the slider in the CPU Killer application, which is used to raise
the CPU load to 50% manually, and thus resulting in the system working in a
CPU load between 10% and 50% for a short while at that moment. This can
also be the reason for the anomaly observed in the next row marked with A (at



7.4 Discussion 111

time 5950). In this case, this row shows that DES has managed to complete
within its time constraint under 70% CPU load. While, it could not perform so
in the previous rows related to this algorithm (having number 3 in the second
column). This can again be because of the relatively gradual decrease of the
CPU load from 70% to 50%, causing the system to work at some CPU load in
between.

Also another interesting observation from this result is that, as the conse-
quence of using adaption, more encryption jobs have been performed in the
second case (II), under a shorter period of time.

7.4 Discussion

Our suggested approach and the way we implemented it, gives this flexibil-
ity to have different time constraints for each invocation of encryption proce-
dures. This may not, however, be needed in all systems, and only a fixed value
(e.g., originating from a system level requirement) might seem to be enough
for many situations, but other systems can well benefit from this flexibility.

The whole adaptation mechanism can also be used as an option; in the
sense that, if a system detects certain patterns in CPU load variations and vio-
lation of timing constraints in the applied encryption algorithm, it can turn on
adaptation mechanism and let the system decide which encryption algorithm to
use. Moreover, use of the suggested adaptation mechanism may be most bene-
ficial when there are many requests for encryption and frequency of CPU load
changes are such that they make the overhead of adaptation mechanism accept-
able. On the other hand, if there are only a few encryption requests or there
are not big changes in CPU load (or the range of changes is very small and
known beforehand), using a fixed encryption algorithm may be more desirable
(to remove the overhead cost of adaptation).

The security level of the system, originating from the choice of encryption
algorithms, is actually determined by the list of encryption algorithms that de-
signers choose to include in the described encryption algorithms table. So, for
example, if for a system only AES and 3DES are acceptable, the table can be
constructed using only these two algorithms. This also defines what is the range
of strongest and weakest encryption algorithms that the system may be using
at any moment. Moreover, while we only focused on the algorithm itself, and
did not discuss key length or block length explicitly, these factors (even the
number of rounds), where applicable, can easily be taken into account using
the table. For example, instead of just having AES, we can put AES256 and



112 Paper D

AES128 as items in the table, to bring into picture the role of key length, and
the system will choose each when decided appropriate.

Providing adaptations on encryption algorithms, also automatically leads
to some sort of security through obscurity (note the famous quote of ”security
through obscurity is not security”) [12, 13]. One interesting topic that we leave
as a future direction of this work to be investigated, is that whether adaptive
mechanisms, as the one described here, can lead to weaknesses in the sys-
tem and facilitate the job of attackers. For instance, issues such as this can
be analyzed more throughly that if attackers get to know the details of adapta-
tion mechanisms, they might force the system into adopting the lowest ranked
(weakest) encryption algorithm by creating CPU loads, and making it easier
for themselves to break into the system.

7.5 Related Work

Designing security features for embedded systems has its unique challenges
and requires specific engineering methods and considerations. These issues
have been the subject of many studies such as [14, 1, 2]. [14] and [1], focus on
these unique challenges of security in embedded systems in general, and dis-
cuss them under the processing gap, battery gap, flexibility, tamper resistance,
assurance gap, and cost titles. [14] also provides workload analysis of SSL
protocol, and examples for energy consumption of different ciphers, to discuss
and illustrate the impacts of security features in embedded systems. The vi-
sion for security engineering of embedded systems in the scope of a project is
described in [2].

[15] and [10] are examples of works that study the impacts of security
mechanisms on specific aspects of a system. Measurement and comparison
of memory usage and energy consumption of different encryption algorithms
on two different sensor nodes (MicaZ and TelosB motes) are performed and
discussed in [15], and [10] offers performance and timing comparisons of en-
cryption algorithms on two Pentium machines. The approach we proposed in
this paper, relies on the results from the performance and timing comparisons
of encryption algorithms as provided in the aforementioned study.

In this paper, an adaptive way to deal with the timing costs and require-
ments on security mechanisms was introduced. It should, however, be men-
tioned that there are other ways for taking into account these timing costs,
which might suit very well other types of systems than discussed here. In
systems with less complexity which are analyzable, a static and non-adaptive



7.5 Related Work 113

structure can be designed (i.e., a fixed set of security features will be used all
the time e.g., to encrypt data). The idea we proposed in [4] is basically an
example of such approach and systems.

The use of adaptive approaches and feedback mechanism for better CPU
utilization and task scheduling in dynamic systems, where execution times of
tasks can change a lot at runtime, has also been the topic of many studies in
the real-time systems domain, such as [16]. One of the interesting works in the
area of security for real-time embedded systems which uses an adaptive method
is the study done in [17]. One difference between our work and [17] is that,
there, the focus is on a set of periodic tasks with known real-time parameters,
whereas, our main target is complex systems consisting of periodic, sporadic
and aperiodic tasks. Therefore, the analysis and formulas they offered in that
work may not be applicable or need to be extended to support the type of sys-
tems we discussed here. Also, they consider the security level of the system as
a QoS value explicitly, while in this paper, it is considered implicitly and left to
the user through the use of a sorted table for encryption algorithms. Moreover,
the main adaptation component of the system in that work is key length, while
in our work it is the encryption algorithms that are adaptively replaced, and can
easily include key length or any other relevant parameters as well. One of the
interesting and close studies to our work is [18]. They basically use a similar
type of adaptation mechanism as ours. However, the main focus in this work
is on client-server scenarios using a database, and to manage performance of
transactions. Also, security level adjustment in this work is done periodically
using a security manager component, while in our method, adaptation mecha-
nism executes per request and is not active when application has no request for
encryption. Moreover, in that work, while security level switch is occurring,
it can lead to use of an inappropriate encryption method by a client, which is
solved by rejecting it, through passing several acknowledgment messages and
repeating the process. Therefore, synchronization and message loss due of out
of order arrival of messages are problematic for the security manager, which is
handled by re-sending of data and applying other means.

As another approach for managing security in real-time systems, Tao Xie
and Xiao Qin, has basically incorporated timing management of security mech-
anisms as part of the scheduling policy and developed a security-aware sched-
uler in [19].



114 Paper D

7.6 Conclusion and Future Work
In this paper, we discussed security, as a non-functional requirement, in the
design of real-time embedded systems, and particularly, how the choice of en-
cryption algorithms, can affect timing requirements in these systems. An adap-
tive approach for selection of encryption algorithms was suggested for systems
which need to balance their services at runtime in order to achieve their time
constraints. It was shown how the approach can help the system to react to
different processing loads and perform its encryption procedures within the
defined time constraints. While, OSE RTOS was used as the base platform
for implementation of the approach, there is nothing that stops it from being
implemented on other platforms.

In the suggested approach here, a gradual increase or decrease of the rank
of encryption algorithms was used. In other words, in each adaptation step, the
system chooses either the next higher or lower ranked algorithm. As a future
work, it can be evaluated how the approach would perform, if in each adapta-
tion, the lowest or highest ranked algorithm was selected instead. For example,
if it is observed that the system completes its encryption job earlier than its
time constraint, it jumps to the top of the rank table and chooses the highest
ranked algorithm for the next invocation. It would be interesting to study for
which systems/situations, each of these methods work better and categorize
systems accordingly. Calculating the overhead of adaptation mechanisms and
optimizing them is also left as a future study.

Moreover, in this work we focused on complex systems with not much
information about timing properties of each individual task in the system to
perform analysis. This situation was observed in the design of a telecommu-
nication sub-system during our work in the CHESS project [20]. Accordingly,
the approach that is suggested in this paper tries to improve satisfaction of tim-
ing constraints of the system by keeping a history of the timing behavior of
the system. There is room to improve the suggested adaptation mechanism by
taking into account more information about the system than was used here, and
also more knowledge about the task that requires encryption when available.

Another direction of this work is to introduce other factors besides time for
performing adaptations. These factors may include energy consumption, mem-
ory usage, and even situations where a system is under attack. Moreover, it was
discussed whether and how adaptation mechanisms might actually help attack-
ers to break more easily into a system. This issue can serve as an interesting
topic for more careful investigations.



Bibliography

[1] Paul Kocher, Ruby Lee, Gary McGraw, and Anand Raghunathan. Secu-
rity as a new dimension in embedded system design. In Proceedings of
the 41st annual Design Automation Conference, DAC ’04, pages 753–
760, 2004. Moderator-Ravi, Srivaths.

[2] Sigrid Gürgens, Carsten Rudolph, Antonio Maña, and Simin Nadjm-
Tehrani. Security engineering for embedded systems: the secfutur vision.
In Proceedings of the International Workshop on Security and Depend-
ability for Resource Constrained Embedded Systems, S&D4RCES ’10,
pages 7:1–7:6, New York, NY, USA, 2010. ACM.

[3] Luiz Marcio Cysneiros and Julio Cesar Sampaio do Prado Leite. Non-
functional requirements: From elicitation to conceptual models. In IEEE
Transactions on Software Engineering, volume 30, pages 328–350, 2004.

[4] Mehrdad Saadatmand, Antonio Cicchetti, and Mikael Sjödin. On gen-
erating security implementations from models of embedded systems. In
The Sixth International Conference on Software Engineering Advances
(ICSEA 2011), October 2011.

[5] Enea. The architectural advantages of enea ose in telecom applica-
tions. http://www.enea.com/Templates/Landing.aspx?
id=27011, Last Accessed: September 2011.

[6] Anders Wall, Johan Andersson, Jonas Neander, Christer Norström, and
Martin Lembke. Introducing temporal analyzability late in the lifecycle
of complex real-time systems. In Proceedings of RTCSA 03, February
2003.

115



116 Bibliography

[7] S.E. Chodrow, F. Jahanian, and M. Donner. Run-time monitoring of real-
time systems. In Real-Time Systems Symposium, 1991. Proceedings.,
Twelfth, pages 74 –83, dec 1991.

[8] Mehrdad Saadatmand, Antonio Cicchetti, and Mikael Sjödin. Uml-based
modeling of non-functional requirements in telecommunication systems.
In The Sixth International Conference on Software Engineering Advances
(ICSEA 2011), October 2011.

[9] Enea. http://www.enea.com, Last Accessed: September 2011.

[10] A. Nadeem and M.Y. Javed. A performance comparison of data encryp-
tion algorithms. In First International Conference on Information and
Communication Technologies, ICICT 2005., pages 84 – 89, 2005.

[11] CPU Killer. http://www.cpukiller.com/, Last Accessed:
September 2011.

[12] Rebecca T. Mercuri and Peter G. Neumann. Security by obscurity.
In Commun. ACM, volume 46, New York, NY, USA, November 2003.
ACM.

[13] Hissam S, Weinstock C., Plakosh D., Jayatirtha A. Perspectives
on open source. Software Engineering Institute, Carnegie Mel-
long http://www.sei.cmu.edu/library/abstracts/
reports/01tr019.cfm, Published: November 2001, Last Ac-
cessed: September 2011.

[14] Srivaths Ravi, Anand Raghunathan, Paul Kocher, and Sunil Hattangady.
Security in embedded systems: Design challenges. ACM Transactions on
Embedded Computing Systems (TECS), 3:461–491, August 2004.

[15] Jongdeog Lee, Krasimira Kapitanova, and Sang H. Son. The price of
security in wireless sensor networks. In Journal of Computer Networks,
volume 54, pages 2967–2978, New York, NY, USA, December 2010.
Elsevier North-Holland, Inc.

[16] Nima Moghaddami Khalilzad, Thomas Nolte, Moris Behnam, and
Mikael Åsberg. Towards adaptive hierarchical scheduling of real-time
systems. In 16th IEEE International Conference on Emerging Technolo-
gies and Factory Automation (ETFA’11), September 2011.



[17] Kyoung-Don Kang and Sang H. Son. Towards security and qos optimiza-
tion in real-time embedded systems. In SIGBED Rev., volume 3, pages
29–34, New York, NY, USA, January 2006. ACM.

[18] Sang H. Son, Robert Zimmerman, and Jörgen Hansson. An adaptable
security manager for real-time transactions. In Euromicro Conference on
Real-Time Systems, pages 63–70, 2000.

[19] T. Xie and X. Qin. Scheduling security-critical real-time applications on
clusters. In IEEE Transactions on Computers, volume 55, pages 864 –
879, july 2006.

[20] CHESS Project: Composition with Guarantees for High-integrity Embed-
ded Software Components Assembly. http://chess-project.
ning.com/, Last Accessed: August 2011.





Chapter 8

Paper E:
The Role of Schedulers in
Model-Driven Development
of Real-Time Systems

Mehrdad Saadatmand, Mikael Sjödin and Naveed Ul Mustafa
MRTC report, ISSN 1404-3041 ISRN MDH- MRTC-264/2012-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, March, 2012.

119



Abstract

Design of real-time embedded systems is a complex and challenging task.
Model-driven development has the potential to reduce the design complexity of
real-time embedded systems by increasing the abstraction level, enabling anal-
ysis at earlier phases of development, and automatic generation of code from
the models. In this context, capabilities of schedulers as part of the underly-
ing platform play an important role. They can affect the complexity of code
generators and how the model is implemented on the platform. Also, the way
a scheduler monitors timing behaviors of tasks and schedules them can facil-
itate extraction of runtime information. This information can then be used as
feedback to the original model in order to identify parts of the model that may
require to be re-designed and modified. In this paper, we describe our work
in providing these features by introducing a second layer scheduler on top of
OSE real-time operating system’s scheduler. The approach can also contribute
to the predictability of systems by bringing more awareness to the scheduler
about the type of real-time tasks (i.e., periodic, sporadic, and aperiodic) that
are to be scheduled, and the information that should be monitored and logged
for each type.



8.1 Introduction 121

8.1 Introduction

Model-Driven Development (MDD) is a promising approach to cope with the
design complexity of real-time embedded systems. It helps to raise the abstrac-
tion level and also perform analysis at earlier phases of development. There-
fore, problems in the design of a system can be identified before the implemen-
tation phase [1].

Automatic code generation is also one of the end goals in model-driven
development. In the context of real-time systems, this means generation of
periodic, sporadic and aperiodic tasks. However, most (industrial) Real-Time
Operating Systems (RTOS) such as VxWorks, RTEMS, RT-Linux, Windows
CE, OSE, and FreeRTOS do not explicitly support the definition of different
types of real-time tasks (i.e., periodic, sporadic, and aperiodic) and specifica-
tion of timing properties for them including period, deadline, Worst-Case Exe-
cution Time (WCET), etc. While in theory, a real-time task is simply specified
by its timing parameters, in practice and when it comes to implementations,
these parameters are introduced in the system in different ways. For example,
a periodic task may be implemented in the form of an interrupt while its period
is actually set by having a timer to trigger the interrupt periodically. For code
generation, this means that for every model element defined as periodic, what
is actually generated is an interrupt handler that behaves in a periodic way.
Therefore, when we look at these systems at runtime, no tangible and single
runnable entity as a real-time periodic task is actually observed. In other words,
the semantic mapping of a periodic task at model level and such an entity at
runtime becomes weak.

Moreover, other parameters of a real-time task, such as deadline, are lost
and not present at the implementation level, or taken into account and defined
in arbitrary and different ways in each implementation. This is because among
all these parameters, what is usually supported explicitly by most real-time
operating systems, is to specify only priority for a task. Other parameters are
left to be defined and implemented by system designers in arbitrary ways, such
as using timer interrupts and delays to enforce periodicity or Minimum Inter-
Arrival Time (MIAT). The problem becomes even more evident when it comes
to runtime monitoring of real-time systems and where a system needs to detect
events such as deadline misses, execution time overruns, etc.

To cope with these problems, we propose a second layer scheduler which
takes as input specification and implementation of real-time tasks, including
all of their temporal parameters, and schedules and executes them using the
underlying scheduler of the operating system. With this design, the code gen-



122 Paper E

erators can then generate tangible real-time tasks according to a well-defined
specification (e.g., definition of a task as: task(task type, period, deadline, exe-
cution time)), regardless of whether, for instance, they are going to be actually
implemented as a timer interrupt or some other mechanism. This way, an ac-
tual real-time task along with its parameters will be present and identifiable at
the code level. The top-level scheduler schedules the task and uses its param-
eters to manage and report events such as deadline misses or execution time
overruns. In this approach, even if the underlying platform changes and imple-
mentation of real-time tasks (e.g., as timer interrupt) are modified, it will not
require any changes in the code generators, and also specification of real-time
tasks. This improves the portability of the generated code and transformation
engines, making them as platform-independent [2] as possible.

In this work, we highlight the role of schedulers in model-driven develop-
ment of real-time systems and how they fit and contribute to different phases
of this approach. We also describe the suggested second layer scheduler we
built on OSE real-time operating system [3], and demonstrate how it improves
monitoring the timing behaviors of tasks at runtime and detecting events such
as deadline misses which are critical in real-time systems.

The remainder of the paper is as follows. In Section 8.2, we discuss the
background context and motivation of the work. Section 8.3 describes the pro-
posed approach along with its design and implementation details. In Section
8.4, an example is demonstrated and the implementation and behavior of the
suggested approach is evaluated. In Section 8.5 we have a look at the related
work, and finally in Section 8.6, we summarize the work and describe its future
extensions and directions.

8.2 Background and Motivation

8.2.1 CHESS Project

This work has been done in the context of CHESS European project [4]. This
project is about model-driven and component based development of real-time
embedded systems for telecommunication, space, railway, and automotive do-
mains which focuses on preservation and guarantee of extra-functional proper-
ties [5]. This is done by performing static analysis on design models and mon-
itoring the behavior of the generated system at runtime. The idea is to back-
annotate monitored results back to the model to inform the designer which
modeled features have led to the violation of specified requirements and may



8.2 Background and Motivation 123

need to be modified. The general structure of the approach is shown in Figure
8.1.

Figure 8.1: CHESS methodology

As can be seen from the above figure, different types of analysis are done at
different abstraction levels (marked as B, F, and H), and the results are propa-
gated back to the model (D). MAST [6] is one of the analysis tools that is used
in CHESS to perform schedulability analysis on the model. The system model
which is defined in the modeling language called CHESS ML, is transformed
into an appropriate model as input for the MAST analysis tool.

To ensure that the assumptions based on which the analyses were done
hold true, the system’s execution is monitored and runtime information are col-
lected. For example, the difference between the characteristics of the (ideal)
execution environment of the system taken into account for analysis and the
actual one when the system is implemented may lead to the violation of the
assumptions that are used to perform analysis [7]. Therefore, monitoring the



124 Paper E

behavior of the system at runtime is important in preservation of system prop-
erties.

Timing properties are of utmost importance in real-time embedded sys-
tems. In order to extract and collect information about runtime timing behav-
iors for back-annotation to the model, the platform should be able to provide
this information. Among the most important timing data for back-annotation
that are of interest are deadline misses, actual response time, and execution
time overruns. However, such a feature is not present explicitly in many com-
mercial real-time operating systems today and needs to be implemented in dif-
ferent ways by system developers. In the scope of this work, we narrow our
focus on Part I of Figure 8.1.

8.2.2 OSE Real-Time Operating System

OSE is a real-time operating system developed by Enea [8]. It has been de-
signed from the ground up for use in fault-tolerant distributed systems that are
commonly found in telecommunication domain, ranging from mobile phones
to radio base stations and is embedded in millions of devices around the world
[3]. It provides preemptive priority-based scheduling of tasks. OSE offers
the concept of direct and asynchronous message passing for communication
and synchronization between tasks, and OSE’s natural programming model is
based on this concept. Linx, which is the Interprocess Communication Proto-
col (IPC) in OSE, allows tasks to run on different processors or cores, utilizing
the same message-based communication model as on a single processor. This
programing model provides the advantage of not needing to use shared mem-
ory among tasks.

The runnable real-time entity equivalent to a task is called process in OSE,
and the messages that are passed between processes are referred to as signals
(thus, the terms process and task in this paper can be considered interchange-
ably). Processes can be created statically at system start-up, or dynamically
at runtime by other processes. Static processes last for the whole life time of
the system and cannot be terminated. Types of processes that can be created in
OSE are: interrupt process, prioritized process, background process, and phan-
tom process. One interesting feature of OSE is that the same programming
model is used regardless of the type of process. Of the timing properties that
we have been discussing so far, only priority can be assigned for prioritized
processes. Periodic behavior can be implemented by using timer interrupt pro-
cesses. Information such as task completion time, deadline misses and such, is
not reported by default and it needs to be implemented using system level APIs



8.2 Background and Motivation 125

for events such as process swap in and swap out which are triggered when a
process starts and stops running (i.e., context switches).

8.2.3 Goal
Figure 8.2 shows the target system that is built in the scope of this work. As
discussed before, most real-time operating systems, such as OSE, only allow
specification of priority for real-time tasks. In other words, semantically, there
is no parameter or kernel level value that represents deadline, execution time,
or period of a task. Similarly, the monitoring information and logs that are
generated by the system do not contain information about deadline misses, or
execution time overruns, because these concepts are not actually understood
by the kernel and have no meaning for it. Therefore, it is the job of a program-
mer to implement such features and collect information by also implementing
event handlers that monitor when a task gets CPU time and when it is pre-
empted, and then calculate deadline misses or execution time overruns through
this information.

The proposed solution that is shown in Figure 8.2 solves this situation by
introducing a second layer scheduler. The interface to this scheduler layer
representing the specification of a real-time task is in the form of: Task(release
time, period/MIAT, execution time, relative deadline, task type). Considering
these parameters, the second layer scheduler then schedules the tasks using the
priority-based scheduling mechanism of the core scheduler.

The code generator on the other hand, generates real-time tasks (from the
model) according to this specification, and need not care how such a task is
actually implemented on the core scheduler, hence more portability and re-
usability of the analyzed model and generated code are obtained.

From the monitoring perspective, since the second layer scheduler is re-
sponsible for scheduling tasks according to the described specification, it is
aware of concepts such as deadline, and can therefore, produce log informa-
tion representing events such as deadline misses. This generated log informa-
tion from the second layer scheduler can then be used to propagate necessary
information back to the model.

We believe that the suggested added layer in our approach can also help
with decreasing the gap between theoretical aspects of real-time systems and
their actual implementations by providing more semantics to parameters and
specifications of real-time tasks at implementation level and thus increasing
the applicability of theoretical knowledge such as schedulability analysis tech-
niques.



126 Paper E

Figure 8.2: Interfaces between different parts in the suggested approach

8.3 Scheduler Design and Implementation

In this section, the internal mechanism and design details of the second layer
scheduler are described.

The second layer scheduler developed on top of OSE, schedules a given set
of tasks (S) by releasing tasks to OSE core scheduler according to a selected
scheduling policy. S can contain three kinds of tasks: Periodic, Sporadic, and
Aperiodic tasks. Task parameters such as period and execution time are gen-
erated for the second layer scheduler from the model as input parameter files
with .prm extension.

As shown in Figure 8.3, the system consists of a few other components
besides the second layer scheduler process.

At system startup, first process creator is started. Process creator creates
an OSE process for each of the tasks that are specified as a set of input files.



8.3 Scheduler Design and Implementation 127

Figure 8.3: Components of The Design

Initially, all these processes will be in the waiting mode (to receive a signal
from the second layer scheduler process). From this point on, the second layer
scheduler process, which has the highest priority in the system, controls the
system. Based on a specified scheduling policy (e.g., EDF), the second layer
scheduler selects an appropriate task from the queue of waiting tasks, and sends
a start signal to it. It then enters a waiting state itself using OSE receive w tmo
(receive with timeout) system call. This system call makes the caller process
wait until it either receives a signal or the specified timeout expires. We make a



128 Paper E

specific use of this system call in our design by setting its timeout value equal
to the time interval available before arrival of a new instance of a higher priority
periodic task. Also, whenever a task finishes execution, it sends a completion
signal back to the second layer scheduler process. Therefore, if the running
task finishes its job before arrival of the next instance of a higher priority pe-
riodic task, the second layer scheduler will receive a completion signal (at the
receive w tmo system call), and continues its job (scheduling next tasks). Oth-
erwise, if the running task takes too much time, the timeout which is set in the
receive w tmo command in the second layer scheduler will expire, and since
the second layer scheduler process has the highest priority in the system, it pre-
empts the running task, takes the CPU, checks the list of waiting tasks again,
and selects the next appropriate task to run.

Right after receiving the completion signal by the second layer scheduler
process, it generates log information about the behavior of the task which has
just completed. Since the second layer scheduler has access to (and thus is
aware of) all the real-time parameters of each task (e.g., periodic/MIAT, dead-
line, execution time), it can gracefully detect deadline misses, execution time
overruns, and events of this kind, mark them in the log information and report
them. This way, all this critical log information about the behavior of the sys-
tem are also centralized, which can then be easily queried. This is an important
feature which is absent in many real-time operating systems today.

Creation of monitoring log files and persistence of the collected informa-
tion are done by the monitor process using the information that is sent to it
by the second layer scheduler process in the form of signals. In this design,
two separate log files are actually created: scheduling log file, and monitoring
log file. Scheduling log file contains listing of schedules generated by the sec-
ond layer scheduler by stating the time points at which a task in the task set is
scheduled, completed or preempted. This log file is generated by the second
layer scheduler. Events related to task deadlines can be investigated by exam-
ining the monitoring log file generated by the scheduler. Monitoring log file is
updated with new information only when an instance of a task is completed,
and scheduling log file is updated whenever a task is scheduled, preempted,
resumed or completed.

The scheduling policy that the second layer scheduler uses for periodic
tasks is selectable and not fixed. Same is the case with the scheduling mech-
anism for aperiodic and sporadic tasks. The selected policy is read as a con-
figuration value at system startup. This makes the suggested approach flexi-
ble. Currently Rate Monotonic Scheduling (RMS) and Earliest Deadline First
(EDF) policies are supported for periodic tasks while aperiodic and sporadic



8.3 Scheduler Design and Implementation 129

tasks can be scheduled using background [9] or polling server [9, 10] schemes.
Other policies can also be added to design.

In the following sections, the role of different components in our design are
described in detail.

8.3.1 System Components
Process Creator

Each task in a task set is specified by two files.

• Parameter File: A file with .prm extension provides task parameters in-
cluding release time, period/MIAT, execution time, relative deadline and
type of the task.

Type of task can have four valid values. Different task types and the val-
ues by which, each task type is represented in the system are mentioned
in Table 8.1.

Task Type Value
Periodic 0
Sporadic 1
Aperiodic 2

Polling Server 3

Table 8.1: Values for different task types

• Body File: A file with .c extension contains the body of the task. In other
words, .prm file of a task contains its timing non-functional specification
while .c file contains its functional implementation.

Process creator reads the parameters for each task from its .prm file into
a data structure, called ”constraints”, and creates a prioritized OSE process
against each user defined task. Moreover, It also creates following four OSE
prioritized processes:

• Second layer scheduler process

• Sporadic queue holding process



130 Paper E

• Aperiodic queue holding process

• Monitor process

None of the created OSE processes is started by process creator except the
second layer scheduler process. Task parameters and Process Identifiers (PIDs)
for all processes are then passed to the second layer scheduler in the form of
“constraints” data structure.

Second Layer Scheduler

After receiving “constraints” structure and PIDs of all OSE processes created
by process creator, the second layer scheduler schedules the tasks by releasing
them to core OSE scheduler according to selected scheduling algorithm. The
design provides options to select between RMS or EDF algorithm.

To schedule sporadic and aperiodic tasks, the second layer scheduler sup-
ports background scheduling and polling server for scheduling sporadic and
aperiodic tasks.

Sporadic Queue Holder

Task set can contain periodic, aperiodic and sporadic tasks. Sporadic queue
holder is a prioritized OSE process which maintains a list of sporadic tasks
waiting for scheduling, by using a queue. Each element of queue contains two
parameters for a sporadic task: PID corresponding to the given task, and re-
lease time of sporadic task.

To release a sporadic task, its PID and release time is to be placed in queue.
An interrupt process (in case of hardware driven sporadic tasks) or a prioritized
process (in case of software driven sporadic tasks) may initiate this placement
by sending a signal to sporadic queue holder.

Upon receiving this signal, sporadic queue holder extracts the PID and re-
lease time of sporadic task from signal and updates the queue with extracted
information.

The second layer scheduler checks if there is a sporadic task to be sched-
uled by making a query to sporadic queue holder process.

Aperiodic Queue Holder

Aperiodic queue holder has the same structure and mechanism as the sporadic
queue holder, except that it maintains a list of aperiodic tasks. Also separate
signals are defined for use with aperiodic and sporadic queue holders.



8.3 Scheduler Design and Implementation 131

Monitor

Monitor process generates a log file to state whether specified timing con-
straints for each task in task set S are met or not. For example, if the specified
MIAT parameter, in case of a sporadic task, is violated then monitor records
this violation in a monitoring log file.
When a task is released to the core OSE scheduler for execution, the second
layer scheduler observes its timing parameters. As soon as a task completes
its execution, the second layer scheduler sends a signal to the monitor process.
This signal contains start time, completion time, desired deadline, desired ex-
ecution time, desired MIAT, actual execution time, and actual MIAT of com-
pleted task. These timing values are extracted from .prm file of the task under
monitoring (i.e., desired deadline and execution time) and measured by the sec-
ond layer scheduler (i.e., actual deadline and execution time). Monitor extracts
these timing values from the received signal and saves the relevant monitoring
statements in a monitoring log file.

8.3.2 Signals and Communications
To achieve the scheduling of tasks in a reliable way, several signals are defined
and used by system. These signals play two important roles: carry required
data from one component to another, and ensure synchronous execution of all
components.

These signals are described below.

• start exe sig: Start execution signal. This signal is sent by the second
layer scheduler to a process to be scheduled on core OSE scheduler.
Target process can start execution only if it has received start exe sig
signal.

• comp sig: Completion signal. This signal is sent as an acknowledgment
to the second layer scheduler upon completion by a process which is
created against a user defined task.

• aper update sig: Update signal for aperiodic queue holder. To release
an aperiodic task, an interrupt process or prioritized process sends the
aper update sig signal to aperiodic queue holder process. This signal
contains the PID and release time of an aperiodic task to be scheduled.
This signal is also used as a response to the second layer scheduler by
aperiodic queue holder on receiving start exe sig from scheduler.



132 Paper E

• spor update sig: Update signal for sporadic queue holder. To release
a sporadic task, an interrupt process or prioritized process sends the
spor update sig signal to sporadic queue holder process. This signal con-
tains the PID and release time of sporadic task to be scheduled.
This signal is also used as a response to the second layer scheduler by
sporadic queue holder on receiving start exe sig from scheduler.

• qupdate confirm sig: Queue update confirmation signal. This con-
firmation signal is sent back to the sender of an update signal, af-
ter receiving aper update sig (in case of aperiodic queue holder) or
spor update sig (in case of sporadic queue holder). Confirmation sig-
nal informs sender if queue is updated successfully. In case of failure,
sender can send aper update sig again with same content after waiting
for a finite amount of time.

• monitor info sig: Monitoring information signal. This signal is sent by
the second layer scheduler to the monitor, every time a task completes
its execution. Monitor uses the information contained in this signal to
determine if a completed task has met its constraints, such as deadline
and WCET.

8.3.3 Priority Assignment
In OSE, there are 32 priority levels. Priority 0 is considered the highest while
31 is considered as the lowest priority level. In our system, process creator
creates one OSE process for each task in the input task set. All such processes
are assigned priority level of 1. Similarly, sporadic queue holder process and
aperiodic queue holder process have priority level of 1. However, the second
layer scheduler process has priority level of 0 which is the highest possible
priority level. The reason for assigning priority level 0 to the scheduler is to
make it non preemptable by any other prioritized OSE process.

Monitor behaves as a background OSE process and hence has the lowest
priority level. This ensures that monitoring is performed only when no task is
ready and the scheduler is idle. This reduces the effect of monitoring on the
scheduling of tasks.

8.3.4 Scheduling of Tasks
As described in the previous section, all OSE processes are created by Process
creator but not started by it. Process creator starts only the second layer sched-



8.3 Scheduler Design and Implementation 133

uler process and passes “constraints” structure along with PIDs of all OSE
processes.

Scheduling of Periodic Tasks

The second layer scheduler examines the “type” parameter of all tasks to iden-
tify periodic tasks among the task set. Tasks are scheduled by releasing them to
core OSE scheduler according to specified scheduling algorithm, for example
RMS.

The second layer scheduler sends start exe sig to the the process repre-
senting the user defined task which has highest priority according to selected
scheduling algorithm. Then scheduler waits for receiving comp sig back from
target OSE process but with a finite waiting time called “timeout”.

If comp sig is received before the timeout is expired, it implies that the
target process has completed. Hence the second layer scheduler releases to the
core OSE scheduler the next ready OSE process representing the user defined
periodic task. If comp sig is not received within the timeout duration and a
process representing a user defined task with higher priority is ready, then the
former process is preempted and second layer scheduler releases to core OSE
scheduler the process with higher priority.

Scheduling of Sporadic and Aperiodic Tasks

To schedule a sporadic task, it is necessary that its corresponding PID and
release time are placed in the sporadic processes queue maintained by sporadic
queue holder. This can be achieved by sending a spor update sig signal to the
sporadic queue holder containing release time and PID of the OSE process
corresponding to the task. Signal, spor update sig, can be sent to the sporadic
queue holder either by an interrupt OSE process or a prioritized OSE process.
In the first case, target sporadic task becomes interrupt driven while in second
case it behaves as a program driven sporadic task. The above discussion is
valid also for achieving interrupt and program driven behavior for aperiodic
tasks.

Sporadic and aperiodic tasks can be scheduled by using one of following
two approaches:

• Background Scheme: One approach to schedule sporadic and aperiodic
tasks is to use time slots in which no periodic task is ready to run. In
such case, the second layer scheduler first makes query to sporadic queue



134 Paper E

holder by sending start exe sig to find if there is any ready sporadic task.
The spor update sig signal is sent back by sporadic queue holder to the
second layer scheduler, indicating availability status of sporadic task.
If there is a ready sporadic task, the second layer scheduler releases spo-
radic task to OSE core scheduler and waits until either it completes its
execution or a periodic task becomes ready. If sporadic task is completed
and no periodic task is ready to run, second layer scheduler again makes
query to sporadic queue holder to find if there are any more sporadic
tasks waiting in the queue.
If sporadic task queue is empty and no periodic task is ready to run, the
second layer scheduler makes query to aperiodic queue holder by send-
ing start exe sig. Availability status of aperiodic task is communicated
back to the second layer scheduler by sending aper update sig from ape-
riodic queue holder. If aperiodic queue is not empty and aperiodic task at
the head of the queue is ready to run, the second layer scheduler releases
that aperiodic task to core OSE scheduler.
If there is no periodic, sporadic and aperiodic task to execute, Monitor
process is released to core OSE scheduler by the second layer scheduler.

• Polling Server Scheme: An alternative approach to schedule sporadic
and aperiodic tasks is to use polling server. Polling server is a periodic
task like any other periodic task. It has a period Ps and execution time
Es. Execution time of polling server is known as its budget.
Polling server is scheduled along with all other periodic tasks according
to selected scheduling algorithm. However, when polling server gets the
chance to execute, the second layer scheduler makes query to sporadic
and aperiodic queue holding processes to find if there is any ready spo-
radic or aperiodic task. If sporadic or aperiodic task is ready to run, the
second layer scheduler releases that task to OSE core scheduler and bud-
get of polling server keeps declining per unit time.
If sporadic or aperiodic task completes its execution before budget is ex-
pired, the second layer scheduler picks next ready sporadic or aperiodic
task to release to OSE core scheduler. This sequence continues until ei-
ther there is no sporadic or aperiodic task or budget of server is expired
or a higher priority periodic task becomes ready to execute.
At the start of each period of the polling server, its budget is set equal
to its execution time. If at that time point, no sporadic or aperiodic task
is ready to run then budget immediately declines to zero. Otherwise the
budget decreases one level per time unit.



8.3 Scheduler Design and Implementation 135

8.3.5 Monitoring of Tasks
On completion of a task, independent of its type, the second layer scheduler
sends monitor info sig signal to Monitor. Monitor is implemented as a back-
ground OSE process. Hence, it can execute only when there is no periodic,
sporadic or aperiodic task ready to run. Monitor continuously checks its in-
put message queue for monitor info sig signal. This message carries following
information to the monitor process regarding completed task:

• start time of the task

• completion time of the task

• specified deadline parameter for the task

• specified MIAT parameter for the task

• specified execution time for the task

• actual execution time for task

• actual deadline for task

• actual MIAT for the task

Monitor uses this information to make decision if a completed task has met its
parameters or violated them. In any case, monitor records the information in a
monitoring log file.

Operation of the scheduler is summarized by the sequence diagram of Fig-
ure 8.4. In this diagram, the task set consists of two periodic tasks T1 and T2,
one sporadic task T3 and an aperiodic task T4. Timing parameters of the tasks
defined in this task set are listed below using the specification convention: Task
(Release Time, Period, WCET, Relative deadline, Task type).

Periodic task: T1(0, 12, 3, 8, 0)
Periodic task: T2(0, 4, 1, 3, 0)

Sporadic task: T3(0, 15, 2, 6, 1)
Aperiodic task: T4(0, 0, 1, 6, 2)

This figure shows a valid sequence of execution when RMS is used as the
scheduling policy for periodic tasks, while sporadic and aperiodic tasks are
scheduled using background scheme. As is evident from the sequence diagram,
monitor gets the chance to execute only when no other process is in ready state.



136 Paper E

Figure 8.4: Sequence diagram to demonstrate operation of the scheduler

8.4 Experiment and Monitoring Results

The described approach has been implemented and tested on OSE SoftKernel
(SFK) version 5.5.1 [8]. In this section, we show an example of a task set
which is implemented based on the specification of the proposed second layer
scheduler. The way the task set is scheduled and the log information that is
generated for the behaviour of tasks are illustrated.

A task set consisting of four tasks is created. Periodic tasks in the task
set are configured to be scheduled using RMS while aperiodic and sporadic
tasks are to be scheduled using polling server scheme (this can be changed by
changing configuration parameters).



8.4 Experiment and Monitoring Results 137

Timing constraints for tasks are given below (last parameter identifies the
type of task):

• T1(0, 10, 2, 5, 3) : Polling server with release time=0, period=10,
WCET/Budget=2, Relative Deadline=5, Task type=3.

• T2(0, 5, 2, 4, 0) : Periodic Task with release time=0, period=5,
WCET=2, Relative Deadline=4, Task type=0.

• T3(0, 5, 2, 4, 1) : Sporadic Task with release time=0, MIAT=5,
WCET=2, Relative Deadline=4, Task type=1. Two instances of Spo-
radic task T3 are released at time 0;

• T4(0, 0, 2, 7, 2) : Aperiodic Task with release time=0, period= 0 (Not
Applicable), WCET=2, Relative Deadline=7, Task type=2.

As mentioned before, these timing parameters are actually specified in the
.prm file of each task (i.e., t1.prm, . . . , t4.prm). Process creator opens these
files and populates ”constraints” data structure with these data.

Using the implemented second layer scheduler to schedule this task set, the
following log files are automatically generated:

• Scheduling log file: Scheduling log file provides the time points for
each task at which it is scheduled, preempted/not completed, resumed or
completed. Parts of the scheduling log information generated for the task
set are shown in Listing 8.1. To make it easier to follow and understand
the information in the log file, the PIDs that are assigned to each task by
the system are also mentioned below:

– PID of process representing T1 = 65595.

– PID of process representing T2 = 65596.

– PID of process representing T3 = 65597.

– PID of process representing T4 = 65598.

Listing 8.1: Scheduling log file
t a s k PID=65596
Schedu led f o r 5 t i c k s a t t i c k s =1115
t a s k PID=65596
Completed a t t i c k s =1117
t a s k PID=65597
Schedu led wi th b udg e t = 2 t i c k s a t t i c k s =1117
t a s k PID=65597



138 Paper E

Not comple t ed a t t i c k s =1119
Remaining E x e c u t i o n Time i n t i c k s =1
t a s k PID=65596
Schedu led f o r 5 t i c k s a t t i c k s =1120
t a s k PID=65596
Completed a t t i c k s =1122
t a s k PID=65596
Schedu led f o r 5 t i c k s a t t i c k s =1125
t a s k PID=65596
Completed a t t i c k s =1127
t a s k PID=65597
Resumed wi th bu dg e t = 2 t i c k s a t t i c k s =1127
t a s k PID=65597
Completed a t t i c k s =1128
t a s k PID=65597
Schedu led wi th b udg e t = 1 t i c k s a t t i c k s =1128
t a s k PID=65597
Not comple t ed a t t i c k s =1129
Remaining E x e c u t i o n Time i n t i c k s =1
t a s k PID=65596
Schedu led f o r 5 t i c k s a t t i c k s =1130
t a s k PID=65596
Completed a t t i c k s =1132
t a s k PID=65596
Schedu led f o r 5 t i c k s a t t i c k s =1135
t a s k PID=65596
Completed a t t i c k s =1137
t a s k PID=65597
Resumed wi th bu dg e t = 2 t i c k s a t t i c k s =1137
t a s k PID=65597
Completed a t t i c k s =1138
t a s k PID=65598
Schedu led wi th b udg e t = 1 t i c k s a t t i c k s =1138
t a s k PID=65598
Not comple t ed a t t i c k s =1139
Remaining E x e c u t i o n Time i n t i c k s =1
t a s k PID=65596
Schedu led f o r 5 t i c k s a t t i c k s =1140
t a s k PID=65596
Completed a t t i c k s =1142

• Monitoring log file: On completion of each instance of a task, mon-
itoring log file lists type of task, PID of process representing that task
in system, start time of the task, specified deadline, completion time of
the task, specified WCET for the task, actual execution time consumed
by the task, response time of the task, specified MIAT/period and actual
interval between two consecutive invocations of the task. Listing 8.2
shows parts of the monitoring log information generated for the task set.

Listing 8.2: Monitoring log file
PID =65596
Type of t a s k =0
s t a r t t ime i n t i c k s =1115



8.4 Experiment and Monitoring Results 139

s p e c i f i e d d e a d l i n e i n t i c k s =1119
c o m p l e t i o n t ime i n t i c k s =1117
s p e c i f i e d WCET i n t i c k s =2
a c t u a l e x e c u t i o n t ime i n t i c k s =2
Response t ime i n t i c k s =2
s p e c i f i e d P e r i o d / MIAT i n t i c k s =5
I n t e r v a l be tween two c o n s e c u t i v e i n v o c a t i o n s i n t i c k s =5
PID =65596
Type of t a s k =0
s t a r t t ime i n t i c k s =1120
s p e c i f i e d d e a d l i n e i n t i c k s =1124
c o m p l e t i o n t ime i n t i c k s =1122
s p e c i f i e d WCET i n t i c k s =2
a c t u a l e x e c u t i o n t ime i n t i c k s =2
Response t ime i n t i c k s =2
s p e c i f i e d P e r i o d / MIAT i n t i c k s =5
I n t e r v a l be tween two c o n s e c u t i v e i n v o c a t i o n s i n t i c k s =5
PID =65596
Type of t a s k =0
s t a r t t ime i n t i c k s =1125
s p e c i f i e d d e a d l i n e i n t i c k s =1129
c o m p l e t i o n t ime i n t i c k s =1127
s p e c i f i e d WCET i n t i c k s =2
a c t u a l e x e c u t i o n t ime i n t i c k s =2
Response t ime i n t i c k s =2
s p e c i f i e d P e r i o d / MIAT i n t i c k s =5
I n t e r v a l be tween two c o n s e c u t i v e i n v o c a t i o n s i n t i c k s =5
PID =65597
Type of t a s k =1
s t a r t t ime i n t i c k s =1117
s p e c i f i e d d e a d l i n e i n t i c k s =1121
c o m p l e t i o n t ime i n t i c k s =1128
s p e c i f i e d WCET i n t i c k s =2
a c t u a l e x e c u t i o n t ime i n t i c k s =3
Response t ime i n t i c k s =11
s p e c i f i e d P e r i o d / MIAT i n t i c k s =5
I n t e r v a l be tween two c o n s e c u t i v e i n v o c a t i o n s i n t i c k s =10
PID =65596
Type of t a s k =0
s t a r t t ime i n t i c k s =1130
s p e c i f i e d d e a d l i n e i n t i c k s =1134
c o m p l e t i o n t ime i n t i c k s =1132
s p e c i f i e d WCET i n t i c k s =2
a c t u a l e x e c u t i o n t ime i n t i c k s =2
Response t ime i n t i c k s =2
s p e c i f i e d P e r i o d / MIAT i n t i c k s =5
I n t e r v a l be tween two c o n s e c u t i v e i n v o c a t i o n s i n t i c k s =5
PID =65596
Type of t a s k =0
s t a r t t ime i n t i c k s =1135
s p e c i f i e d d e a d l i n e i n t i c k s =1139
c o m p l e t i o n t ime i n t i c k s =1137
s p e c i f i e d WCET i n t i c k s =2
a c t u a l e x e c u t i o n t ime i n t i c k s =2
Response t ime i n t i c k s =2
s p e c i f i e d P e r i o d / MIAT i n t i c k s =5
I n t e r v a l be tween two c o n s e c u t i v e i n v o c a t i o n s i n t i c k s =5
PID =65597



140 Paper E

Type of t a s k =1
s t a r t t ime i n t i c k s =1128
s p e c i f i e d d e a d l i n e i n t i c k s =1132
c o m p l e t i o n t ime i n t i c k s =1138
s p e c i f i e d WCET i n t i c k s =2
a c t u a l e x e c u t i o n t ime i n t i c k s =2
Response t ime i n t i c k s =10
s p e c i f i e d P e r i o d / MIAT i n t i c k s =5
I n t e r v a l be tween two c o n s e c u t i v e i n v o c a t i o n s i n t i c k s =9

The first four lines in the generated scheduling log information shown in
Listing 8.1 indicates that the periodic task T2 with PID of 65596, which is
started at tick time 1115, has completed at 1117. The next task which is sched-
uled is T3 with PID of 65597. The polling server has the capacity of two time
unit at this time instance, therefore, the sporadic task T3 can run until tick time
1119, and at 1120 another instance of T2 arrives which causes the second layer
scheduler to preempt T3. However, at 1119, T3 has not managed to complete
its job, and therefore, it is marked as ’Not completed’.

On the other hand, the monitoring information in Listing 8.2, among other
things, can be used to check whether any deadline miss has occurred or not. For
example, it shows that the first two instances of T2 (PID=65596) have met their
deadlines. The first instance has finished its job at 1117 and finished before its
deadline which is 1119. The deadline for the second instance is at 1124, and
it has managed to complete its job at 1122, and therefore, meet its deadline.
However, the deadline of the sporadic task T3, with PID of 65597, has been
1121 while it has managed to finish its job at 1128. Its actual execution time
has also been three time units which is one time unit more than its specified
WCET. This shows that there has been execution time overrun for this task and
there is something wrong with the specified WCET value of it, and it needs
to be re-considered. Such information are hardly provided by default in any
real-time operating system.

Figure 8.5 visualizes the schedule generated by the scheduler. This figure
is created (manually) using the information available in the scheduling log file
generated by the scheduler. The scheduling log file shows that the first task is
released at 1115 system ticks. To make this schedule easier to understand in
the figure, subtraction of 1115 ticks is performed at every time point.

As is indicated by a cloud symbol in Figure 8.5, actual execution time con-
sumed by first instance of sporadic task is 3 ticks instead of 2 ticks as specified
in timing constraint of WCET=2. Therefore, it misses its deadline of 5 ticks
and is completed at 13 ticks. Second instance of sporadic task is scheduled
immediately after completion of the first instance. This is because MIAT of 10



8.5 Related Work 141

Figure 8.5: Schedule generated by the design using second layer scheduler

ticks is already elapsed (10+2=12). The diagram in the lower part of Figure 8.5
indicates the replenishment and decrease of budget with passage of time as is
defined for the behavior of polling servers.

Now that the necessary information about the runtime behavior of tasks is
provided in the log files generated by the system, a user can easily query them,
extract desired parts, and draw conclusions. For example, it is very easy to find
out the number of deadline misses, execution time overruns, the task with max-
imum number of deadline misses, etc. by using the log files as the data source.
Similarly, at any time point, the number of periodic, sporadic, and aperiodic
tasks in the system can easily be requested from the second layer scheduler; a
simple but important feature which is not provided by default in many RTOSes
today. Also, it is now possible to identify and report the time period during
which maximum number of deadline misses have occurred, and examine as
well how the system has been behaving in terms of context switches and pre-
emptions during that period. These are features whose implementations can be
very hard and complex without having the necessary monitoring information
and using the suggested approach.

8.5 Related Work
Many of the operating systems and also programming languages today provide
support for measuring the CPU time a runnable entity (i.e., thread, etc.) con-
sumes to perform its function. However, the monitoring facilities and event
handling mechanisms provided by these platforms are not usually integrated



142 Paper E

with their scheduling facilities [11]. As a result, the platform cannot enforce
and monitor real-time properties of threads such as their allowed execution
times and deadlines. Real-Time Specification for Java (RTSJ) [11] is intro-
duced to integrate scheduling of threads with the execution time monitoring
facilities and enforce execution budgets on them in Java.

The work described in [12] is an attempt to implement sporadic servers in
Ada. It also uses the concept of queues to manage sporadic and aperiodic tasks
as we did here. However, it does not discuss real-time applications built on
this design and using these servers; i.e., how sporadic and aperiodic tasks are
defined and introduced to the system. [13], which also targets sporadic tasks in
Ada, highlights the problem that we mentioned in this paper which many real-
time platforms suffer from. It states the issue by claiming that the underlying
kernel needs to provide complex execution time monitoring mechanisms at
runtime and that ”such mechanisms are not generally supported by Ada 9X”.

One of the closest works to our approach is the implementation of a new
scheduling class called SCHED DEADLINE for the Linux kernel that adds
EDF scheduling policy support to Linux [14]. It is also motivated by acknowl-
edging the fact that due to limited support for specifying timing constraints for
real-time tasks (e.g., deadline) and lack of control over them, feasibility study
of the system under development and guaranteeing the timing requirements
of tasks are not possible. There are however several differences between this
work and ours. It focuses only on mechanisms for adding EDF scheduling pol-
icy to the Linux kernel, while we target the problem in a more general manner
and allowing the scheduling policy to be configurable. Our focus is mainly
on improving the monitoring of real-time events by providing more control
over real-time tasks and more knowledge about their timing constraints to the
scheduler regardless of the scheduling policy. Moreover, we try to provide an
abstraction layer around the core scheduler to hide platform-dependent imple-
mentation details from the user, while SCHED DEADLINE tries to solve a
different problem and is basically added as a separate module to the system.

One concept which also introduces different levels of abstraction around a
core scheduler is Hierarchical Scheduling Framework (HSF) [15, 10]. There
are fundamental differences between what we introduced here and HSF. HSF
is a modular approach in which a system is divided into several subsystems.
The subsystems are scheduled by a global (core) scheduler, while the tasks
in each subsystem are scheduled by local (sub-system) level schedulers. The
structure that we introduced here does not try to divide a system into different
subsystems where each of these subsystems may be scheduled differently by a
different scheduler.



8.6 Discussion and Conclusion 143

There are also studies that focus on execution monitoring of real-time sys-
tems. Many of these studies, such as [16], try to predict timing violations
in the system in different ways, for example, using statistical models. Our
suggested approach does not to try to predict violations and produces precise
monitoring information for behavior of real-time tasks and violation of timing
constraints. The monitoring part in our approach is coupled with the scheduler
and by bringing awareness to the scheduler about the type of tasks it is schedul-
ing, monitoring such information becomes a natural and straightforward part
of the scheduler.

8.6 Discussion and Conclusion

In this paper, we introduced the concept of the second layer scheduler as an ap-
proach to bring semantics and awareness for different types of real-time tasks
and their parameters to the scheduler. It was shown how this awareness im-
proves the monitoring capabilities of the system to help with the detection of
critical events such as deadline misses, and execution time overruns. While the
approach was motived and described in the context of model-driven develop-
ment of real-time systems, and how it can contribute to ease code generation
and enable back-annotation of data, it does not necessarily need to be used in
this context and the concept of the second layer scheduler is applicable and
practical per se.

Considering a larger set of timing parameters for scheduling of tasks and
generating detailed log information in the second layer scheduler can bring
along their own overheads. Measurement of these overheads and evaluation of
the price of these added features are left to be done as a future work. Especially
we plan to perform two overhead measurements: startup overhead (reading
configurations and initializing tasks), and context switch and scheduling deci-
sions overheads. It should however be noted that the actual logging is done by
the monitor process in our design which behaves as a background process. The
second layer scheduler only sends out a signal (including needed information)
to the monitor process and continues its job (asynchronously) without using
any critical section for data sharing by using message passing mechanisms of
OSE. This way, the overhead of creating log information in the second layer
scheduler process is tried to be mitigated.

Generation of such detailed monitoring information can also help with the
predictability of real-time systems at runtime. For instance, even in cases
where no deadline misses occur in the system, it becomes possible to ob-



144 Paper E

serve how close tasks are to missing their deadlines and whether this gap is
decreasing or increasing. Based on such analysis of monitoring information,
the system can also adapt itself in order to prevent deadline misses.

One issue that we did not discuss in this paper is the priority inversion prob-
lem. This problem is handled automatically by OSE for communication among
periodic tasks, but for sporadic and aperiodic tasks, the priority inversion issue
should be more investigated. Also the way the system is designed for the back-
ground scheme, periodic tasks will have higher priority over sporadic tasks,
and the priority of sporadic tasks will be higher than aperiodic ones. When the
polling server scheme is used, the priority of sporadic tasks will be dependent
on the priority of their periodic server, but still higher than aperiodic ones. This
can also be extended to be configurable by the user. Moreover, in this work,
since the tasks were assumed to be generated from a model, the task set was
considered to be known and static. We leave the extension of the implemen-
tation to accept new tasks dynamically as a future work. Also, the possibility
to have different numbers and types of servers for sporadic and aperiodic tasks
could be another future work.

Since the suggested approach is designed to be flexible in terms of the
used scheduling algorithms, it would be interesting as a future direction of
this work, to investigate the possibility to let the system intelligently select
an appropriate/optimal scheduling algorithm based on the requirements at the
model level, and generate code accordingly, especially that the back-annotation
mechanism can also be used as a feedback loop.

8.7 Acknowledgements
This work has been partially supported by the CHESS European Project
(ARTEMIS-JU100022) [4] and Enea Services Stockholm AB [8].



Bibliography

[1] Bran Selic. The pragmatics of model-driven development. IEEE Soft-
ware, 20:19–25, September 2003.

[2] A. Kleppe, J. Warmer, and W. Bast. MDA Explained: The Model Driven
Architecture - Practice and Promise. 2003.

[3] Enea. The architectural advantages of enea ose in telecom applica-
tions. http://www.enea.com/software/products/rtos/
ose/, Last Accessed: February 2012.

[4] CHESS Project: Composition with Guarantees for High-integrity Embed-
ded Software Components Assembly. http://chess-project.
ning.com/, Last Accessed: February 2012.

[5] Luiz Marcio Cysneiros and Julio Cesar Sampaio do Prado Leite. Non-
functional requirements: From elicitation to conceptual models. In IEEE
Transactions on Software Engineering, volume 30, pages 328–350, 2004.

[6] Modeling and Analysis Suite for Real-Time Applications (MAST).
http://mast.unican.es/, Last Accessed: February 2012.

[7] S.E. Chodrow, F. Jahanian, and M. Donner. Run-time monitoring of real-
time systems. In Real-Time Systems Symposium (RTSS). Proceedings.,
Twelfth, pages 74 –83, dec 1991.

[8] Enea. http://www.enea.com, Last Accessed: February 2012.

[9] Brinkley Sprunt. Aperiodic task scheduling for real-time systems. Tech-
nical report, Ph.D. thesis, Carnegie Mellon Univ, 1990.

145



[10] Robert Davis and Alan Burns. Hierarchical fixed priority pre-emptive
scheduling. In In Proceedings of the 26 th IEEE International Real-Time
Systems Symposium (RTSS’05), pages 389–398, 2005.

[11] Andy J. Wellings, Gregory Bollella, Peter C. Dibble, and David Holmes.
Cost enforcement and deadline monitoring in the real-time specification
for java. In 7th IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC), pages 78–85. IEEE Computer So-
ciety, 12-14 May 2004.

[12] B. Sprunt and L. Sha. Implementing sporadic servers in Ada. Technical
report. Carnegie Mellon University, Software Engineering Institute, 1990.

[13] A. Burns and A. J. Wellings. Implementing analysable hard real-time
sporadic tasks in ada 9x. Ada Letters., XIV:38–49, January 1994.

[14] Dario Faggioli, Fabio Checconi, Michael Trimarchi, and Claudio
Scordino. An EDF scheduling class for the Linux kernel. In Proceedings
of the Eleventh Real-Time Linux Workshop, Dresden, Germany, Septem-
ber 2009.

[15] Thomas Nolte, Moris Behnam, Mikael Åsberg, Reinder J. Bril, and Insik
Shin. Hierarchical scheduling of complex embedded real-time systems.
In École d’Éte Temps-Réel (ETR’09), pages 129–142, August 2009.

[16] Yue Yu, Shangping Ren, and Ophir Frieder. Prediction of timing con-
straint violation for real-time embedded systems with known transient
hardware failure distribution model. In Real-Time Systems Symposium,
2006. RTSS ’06. 27th IEEE International, pages 454 –466, dec. 2006.






