
Probabilistic Preemption Control using Frequency Scaling
for Sporadic Real-time Tasks

Abhilash Thekkilakattil, Radu Dobrin and Sasikumar Punnekkat
Mälardalen Real-Time Research Center, Mälardalen University, Sweden
{abhilash.thekkilakattil, radu.dobrin, sasikumar.punnekkat}@mdh.se

Abstract—Preemption related costs are major sources of
unpredictability in the task execution times in a real-time
system. We examine the possibility of using CPU frequency
scaling to control the preemption behavior of real-time sporadic
tasks scheduled using a preemptive Fixed Priority Scheduling
(FPS) policy. Our combined offline-online method provides
probabilistic preemption control guarantees by making use
of the release time probabilities of the sporadic tasks. The
offline phase derives the probability related deviation from the
minimum inter-arrival time of tasks. The online algorithm uses
this information to calculate appropriate CPU frequencies that
guarantees non-preemptive task executions while preserving
the overall system schedulability. The online algorithm has a
linear complexity and does not lead to significant implementa-
tion overheads. Our evaluations demonstrate the effectiveness
of the method as well as the possibility of energy-preemption
trade offs. Even though we have considered FPS, our method
can easily be extended to dynamic priority scheduling schemes.

I. INTRODUCTION

Predictable execution of real-time tasks is one of the
major requirements to guarantee the temporal properties of
safety- and mission critical real-time systems. These systems
typically employ the preemptive fixed priority scheduling
(FPS) policy, that, since the pioneering work of Liu and
Leyland [1], has been widely used in industrial real-time
applications mainly due to its simple run-time scheduling
mechanisms and low overhead, as well as its ability to
handle even task sets with incomplete attribute specifica-
tions. However, preemptions are one of the major causes
for the unpredictability in, e.g., the execution times of real-
time tasks in such systems, thus potentially jeopardizing
the system schedulability. Preemptions incur additional costs
e.g., cache related preemption delays and context switch
overheads, which negatively impact the temporal behavior
of the system. These costs are difficult to bound given that
they vary with the point of preemption and even possibly
with the state of the system at the time of preemption [2].
The preemption related costs are difficult to be accounted in
the schedulability analysis, which is typically done offline.
On the other hand, too pessimistic assumptions regarding the

This work was partially supported by the Swedish Research Council
project CONTESSE (2010-4276).

preemption related costs may lead to inefficient utilization
of the resources.

Preemption reduction, besides reducing preemption re-
lated costs, can also be beneficial in systems with low power
consumption requirements. Preemptions can increase the
accesses to off-chip memory, thereby increasing the power
consumption in the system. This is because, some of the
cache lines are evicted during a preemption and when the
preempted task resumes its execution, the evicted cache lines
have to be restored, increasing the off-chip access. It has
been shown that [3], an off-chip memory access is typically
more expensive than an on-chip cache access in terms of
energy consumption. Preemption reduction, hence, reduce
these additional energy requirements that occurs due to an
increased cache pollution. Preemptions can also potentially
accelerate the wear and tear of the hardware that the real-
time system is controlling. A non-preemptive FPS, on the
other hand, may be an attractive alternative due to its
lower runtime overhead. A major drawback in using non-
preemptive scheduling, however, is that, due to the blocking
of the higher priority tasks by the lower priority tasks, a
portion of the processor time is typically wasted. This loss of
utilization [4] cannot be bounded and hence non-preemptive
scheduling can prove to be infeasible even for arbitrarily low
utilizations. This loss of utilization makes non-preemptive
scheduling unfavorable for most practical applications.

On the other hand, the need for energy efficient systems
necessitates the use of adequate energy management tech-
niques. One of the methods adopted to reduce the energy
consumption is to utilize the possibility of Dynamic Voltage
and Frequency Scaling (DVS) to reduce the CPU frequency
and voltage whenever possible, without jeopardizing the
temporal guarantees of the real-time system. Reducing the
CPU frequency reduces the performance and increases the
execution times of the real-time tasks in the system, increas-
ing the processor utilization. The increase in CPU utilization,
in its turn, increases the number of preemptions in the
system [5]. The ability to scale up/down the CPU frequency
to change task execution times provides the designer the
possibility of using energy manipulation to influence the
execution behaviour of real-time tasks, in order to achieve
specified requirements. Traditionally, DVS has been used in
real-time systems mainly to conserve energy, while meet-



ing the temporal requirements [6][7]. On the other hand,
increasing the CPU frequency leads to shorter task execution
times, and, implicitly, less preempting opportunities. We use
the possibility of using frequency scaling to influence the
tasks’ execution times in order to control the number of
preemptions.

In real-time systems, the physical events occurring in
the system are mapped to a set of real-time tasks. The
events are sampled at a minimum or an exact frequency
that is sufficient to meet the physical requirements of the
system. A sporadic task model is adopted to represent events
where no two events can occur more frequently than a
certain known frequency. In such systems, the task arrival
rates are assumed at a maximum frequency to analyze its
worst case behavior in a predictable manner. However, in
many cases the probabilities of the event occurrences can
be found, thus enabling the use of a probabilistic analysis.
Probabilistic approaches reduce pessimism by considering
the probabilistic distribution of the task attributes such as
minimum inter-arrival times or WCETs [8].

In this paper, we present a method to control the pre-
empting behavior in sporadic task systems with probabilistic
release times, using CPU frequency scaling. The task release
time probabilities are considered to find deviations in the
inter-arrival times. This deviation is derived from the task
release time probabilities such that the probability of a
task release is greater than a known threshold e.g., the
time instant where the probability of preemption is the
highest. This information is used by an online algorithm
to control the preemptions online. Considering probabilities
while performing preemption control using CPU frequency
scaling provides the designer the possibility of trade-off
between preemption costs and energy-consumption. Simu-
lation results clearly indicate that considering task release
probabilities can provide energy preemption trade-offs. Our
algorithm has a linear complexity and does not add any
significant runtime overhead.

The paper is organized as follows. In section II, we discuss
the related work. Section III details the system model and
the various notations used throughout this paper. In Section
IV, we present our methodology followed by an example in
Section V. We conclude in Section VII.

II. RELATED WORK

Preemptions are widely known to increase costs in the sys-
tem and the need for reducing the preemptions in a real-time
system is widely recognized in the literature [9][10][11][2].
The main preemption related costs are composed of the
direct costs to perform the context-switches [11], the costs to
manipulate the task queues [10][11], as well as the generally
unpredictable cost of cache-related preemption delays [2]. It
has been observed by Bui et. al in [9] that cache related
preemption delays can increase the task execution times by

33% as the overhead due to cache related preemption delays
can be as high as 655µS for a single preemption.

Since the work of Liu and Layland [1], preemptive
FPS has been widely studied and several extensions were
proposed for different task models. Preemptive FPS has
also found widespread acceptance in the industry and is
used in a large number of applications, mainly due to its
flexibility and simple run-time overhead. However in reality,
due to the overheads involved during a preemption, the use
of preemptive FPS might not be ideal [10][12][2]. Buttazzo
[5], for example, showed that the rate monotonic algorithm
(RM), a widely used preemptive FPS technique, introduces
a higher number of preemptions than earliest deadline first
algorithm (EDF). He also observed that the number of
preemption constantly increases with the task utilization.

Due to the widespread recognition for the need for pre-
emption reduction, several methods have been proposed to
reduce the number of preemptions in real-time scheduling.
Preemption Threshold Scheduling (PTS) for FPS, first intro-
duced in the ThreadX operating system [13], later formalized
by Wang and Saksena [14], improves schedulability and
reduces the number of preemptions and the number of
threads in the system. The main disadvantage of this method
is the need for a dual priority system which may not be
directly suitable for, e.g., legacy systems, where scheduler
modifications may not be possible. Baruah [4] studied the
feasibility of limited preemption techniques and calculated
the length of the longest possible non-preemptive execution
of a task in a sporadic task system. Yao et. al. [15], evaluated
and compared the various limited preemption methods using
experiments. Earlier they had extended [4] to FPS, finding
an upper bound on the length of the largest possible non-
preemptive execution of tasks under FPS [16]. Bertogna
et. al. [17], presented a method to place preemption points
within task code assuming a fixed preemption overhead.

DVS techniques, traditionally, were used for reducing
energy consumption by slowing down tasks’ executions
[6][7]. It was observed [6][7] that the energy consumption
increases linearly with frequency and quadratically with the
applied voltage. One of the disadvantages of using DVS is
the increase in the number of preemptions due to an increase
in task execution times. In [18], the authors observed a less
than 140µS of time for a frequency switch. Another work
by Lu et. al. [19] reported 2µS on an Intel StrongARM
processor for the same. This cost is not significant compared
to the overhead incurred due to preemptions, making CPU
frequency scaling a promising approach towards controlling
preemption behavior in real-time systems. Also, since this
is a technology dependent cost, with the advances in tech-
nology, this overhead is expected to come down.

Dobrin and Fohler [20], proposed a method to minimize
the number of preemptions by re-assigning task attributes,
such as priorities, periods and offsets, without affecting the
schedulability of the taskset. Later in [21], we proposed an



offline method to control the preemption behavior of peri-
odic real-time tasks scheduled by FPS using CPU frequency
scaling, by finding job level frequencies that guarantee
preemption control. Later in [22] and [23], we extended this
to the sporadic task model. However, the algorithm presented
was a minimal algorithm and it did not make use of the task
release probabilities, while determining the earliest point
of preemption. In [22], for instance, only the preempting
job was speed-ed up to avoid the preemption before the
preemption point determined by the minimum inter-arrival
time of the higher priority tasks. In [23], this was extended to
speed-up the busy period before the preemption to gain more
slack and thus require a lower speed-up. In this paper, we
extend our previous works [22] and [23] to propose a method
to control the preemption behavior of a sporadic task system
scheduled by FPS by making use of task release probabilities
to obtain better energy savings. We use the probabilities of
task releases in order to derive probabilistic guarantees on
the preemption behavior of the schedule while saving on the
energy consumption. The use of probabilities to determine
the earliest probable preemption point is shown to provide
energy preemption trade offs.

III. SYSTEM MODEL

In this section, we describe the system model and the
notations used in this paper.

A. Processor Model

We assume a processor model that supports
a set of discrete operating modes denoted by
M = {m1,m2,m3, ...mp}, where each mq is characterized
by mq = (Fq,Wq). Each Fq denotes the processor
frequency associated with mode mq , and Wq is the
set Wq = {w1

q , w
2
q , .., w

r
q}, that represents the power

consumption per clock cycle by the r resources used
by the tasks in mode mq . We assume that a known
upper-bounded frequency-switch overhead exists. Fmax and
Fmin respectively represents the maximum and minimum
frequency supported by the processor. The task set is
initially assumed to be executing at a default processor
frequency X ≥ Fsched, where Fsched denotes the minimum
frequency that guarantees the system schedulability.

B. Task model

We consider a set of sporadic tasks [24] [25] denoted
by Γ= {τ1, τ2, ...τn}, where each τi has a minimum inter-
arrival time Ti, a worst case execution requirement Ci, a
unique priority Pi and a deadline Di, relative to its release.
Moreover, we assume that Ci, which is given by the largest
number of clock cycles required for the execution of task
τi, is independent of the clock frequency and is a constant
[26]. Additionally, let hp(i) represent the set of tasks with
higher priorities than τi i.e., Pj > Pi, ∀j ∈ hp(i) and LCM
represents the Least Common Multiple of the minimum

inter-arrival times of all the tasks in the taskset. We define
the outstanding computations at a time instant t as the set of
remaining clock cycles required to complete the execution of
all tasks in the ready queue. The ready queue is denoted as
readyQ. We define Crj (t) as the time required to complete
the outstanding computations of τj at any time t, at the
default frequency, X . Moreover, we define relj(t) as the
earliest release time of the next job of τj at the time instant
t and is easily obtained by adding Ti to the release time of
its latest job that has been released before time t.

In addition to the above task parameters, we associate
a probability mass function fi(t), t ∈ Z with every task
τi. fi(t) gives the probability that a job of the task τi is
actually released at time t, relative to the its earliest release
time. Thus, the probability that a job of τi is released at a
time relj(t) + t1 is given by fi(t1)[8].

C. Energy Model
We represent the total energy consumption required by all

task executions until time t by:

Et =

n∑
i=1

k∑
l=1

ei,l (1)

where k is given by the smallest integer satisfying:

(k + 1)Ti +

k∑
d=1

φi,d ≥ t

and e by:

ei,l =

Ci∑
b=1

{
r∑
a=1

waq

}
In the above equation, mq is the execution mode of the
processor during the bth clock cycle of τi,l and φi,d is the
offset in the release of the job τi,d since the end of the inter-
arrival time of τi,d−1. Hence, ei,l is the sum of the actual
power consumption of all the clock cycles, which gives the
total energy used for the execution of the job τi,l.

D. Execution Time Model
We assume a linear relationship between frequency and

execution time of a job i.e., the execution time of a job τi,j ,
denoted by Ci,j , is inversely proportional to the processor
frequency. Note that Ci represents the execution requirement
of τi and Ci,j represents the execution time of its job τi,j
at the default processor frequency, X . Consequently, the
frequency required for scaling Ci,j to C ′i,j is given by the
equation [21]:

X ′ =
Ci,j
C ′i,j
×X (2)

The above equation gives the maximum frequency that guar-
antees a required worst case execution time for a particular
job. Also note that, if Ci,j represents the initial execution
time of τi,j ,

Ci,j

C′
i,j

also denotes the speed at which the
processor must execute to complete τi,j in C ′i,j time units.



IV. METHODOLOGY

Our solution consists of a joined offline - online approach:
1) an offline phase which calculates the deviation between
the most probable inter-arrival time and the minimum inter-
arrival time and 2) an online algorithm that determines the
earliest possible preemption point for each task, using the
values derived in the offline analysis, and calculates the
optimum CPU frequencies that guarantees the preemption
avoidance.

In the offline phase, the task release probabilities are
considered to calculate the deviation between the most
probable inter-arrival time and the minimum inter-arrival
time such that the probability that a higher priority task is
released does not exceed a certain pre-determined threshold.
Later, in the online phase, while calculating a particular ear-
liest preemption point we obtain a probabilistic preemption
guarantee, which is less pessimistic than the probability of
preemption occurrence based on the minimum inter-arrival
time of the preempting task. By less pessimistic we mean
that the preemption point determined by our algorithm will
be farther in time than in the case when the actual inter-
arrival times of the preempting tasks are considered. This
is beneficial from an energy usage point of view, since
the speed up required to avoid the preemption is less than
the case when the actual minimum inter-arrival times are
considered. In the following, we discuss the details of our
method.

A. Offline Phase

Every sporadic task τi has a minimum inter-arrival time
Ti and a task release probability fi(t) from the point of its
earliest release time. For instance, if a job of τi was released
at time tk, the earliest release time of the next job is tk+Ti
and fi(t) gives the probability of its release at time tk+Ti+t,
t ∈ Z. Consequently, the next job of τi will be released at
at a time

tk + Ti + tk+1 s.t. fi(tk+1) = li

where li represents the threshold probability for release of
a job of τi.

Thus the deviation between the most probable inter-arrival
time and the minimum inter-arrival time can be calculated
using the task release probabilities. Let Ri be the deviation
from the minimum inter-arrival time to the most probable
inter-arrival time of the task τi i.e., fi(Ri) = li. At any
time instant t, the next job of a task τi will be released at

reli(t) +Ri

The most probable time instant for a task release at a time
t is:

reli(t) +Ri s.t. fi(Ri) = max(fi(t)) ∀ t ∈ Z

B. Online Preemption Control Algorithm

In a sporadic task system, since the inter-arrival times of
the tasks are bounded by a lower bound, it is impossible to
know the time at which a job of the task will be actually
released. Consequently, preemptions on lower priority tasks
cannot be predicted because of the indeterminism in the
higher priority task releases after their minimum inter-arrival
times. However, the minimum time interval during which
the next job of a particular task will not be released can
be determined during runtime. Hence, for a lower priority
task, it is possible to find the maximum time for which a
higher priority task will not be released i.e., it gives the
maximum time for which the task can be guaranteed a non-
preemption. This gives the maximum time within which
the set of outstanding computations must be executed, in
order to guarantee its non-preemptiveness considering the
minimum time interval during which a higher priority job
will not be released.

In our task model, every job of τi is released with a
probability fi(t), t time units after its earliest release time.
It is quite evident that higher the value of fi(t), higher
the probability that the task is released. We use these task
release probabilities to provide a probabilistic guarantee
for removing the preemption by executing the outstanding
computations before the probable point in time at which
higher priority task is released.

In our previous work [23], we used the earliest release
time of a job as the earliest possible preemption point. How-
ever, when considering the task release probabilities, we can
relax the above assumption by exploiting the probabilities of
the higher priority task releases in future, thereby deriving
probabilistic preemption points. We can make use of these
probabilistic preemption points to derive processor speeds
such that we are able to provide probabilistic guarantees on
the preemption behavior of the schedule. Algorithm 1, finds
the lowest priority task (τu) in the ready queue whenever
a job of a task τi starts its execution. It finds the earliest
time in the future at which a job having a priority higher
than τu can be possibly released with a known threshold
probability. This gives the earliest time at which at least
the lowest priority job from among the jobs in the ready
queue can be preempted by the higher priority task with
a probability equal to the threshold. It then computes the
minimum frequency at which the processor must execute
the outstanding computations to avoid a preemption at this
point.

Whenever a job starts its execution, if τu is the lowest
priority task in the ready queue, the earliest release time of
a job with a higher priority than τu is given by:

thp rel = min
∀τi∈hp(u)

(reli(t) +Ri)

The maximum time for which the outstanding computa-
tions can execute non-preemptively relative to a time instant



t, is given by:

tavailable = thp rel − t

Hence, in order to guarantee the non-preemptive execution
of the outstanding computations at any time t, its execution
time should be no greater than tavailable.

Algorithm 1: The algorithm is executed at the start time
of a job in order to control the number of frequency switches
required and to also leverage on the potential gains due to
tasks executing for less than their WCET. For instance, we
consider a job of τi starting its execution at a time instant t.
Let the lowest priority task in the ready queue at time t be τu.
The outstanding computations must execute no greater than
tavailable units of time in order to finish execution before
the preemption, where,

tavailable = thp rel − t

The outstanding computations require tout time units to
execute at the default frequency X , where:

tout =
∑

∀τa∈readyQ

Cra(t)

If tavailable ≤ 0, it means that the time instant when

Algorithm 1: Find the minimum processor frequency at
time t for the non-preemptive execution of the outstand-
ing computations.

τu : the lowest priority task active in readyQ
thp rel ← 9999999(a large value)
i← 1
while Pi > Pu do

if thp rel > reli(t) +Ri then
thp rel ← reli(t) +Ri

end if
i← i+ 1

end while
tavailable ← thp rel − t
if tavailable > 0 then
tout =

∑
∀τa∈readyQ

Cra(t)

X ′ ← tout

tavailable
×X

if X ′ > Fmax then
X ′ ← Fmax

end if
if X ′ < Fsched then
X ′ ← Fsched

end if
else
X ′ ← Fmax

end if

the release probability of a higher priority task is equal to
its threshold probability has elapsed, and its job was not

released. Here we could use the same reasoning by using a
secondary threshold. However, to preserve the simplicity of
the method, we execute the processor at the maximum speed
so that the low priority computations complete as early as
possible.

If tavailable > 0, we have three cases,
1) tavailable < tout
2) tavailable = tout
3) tavailable > tout

Consider case 1, tavailable < tout, i.e., the time required
to execute the outstanding computations at time t is greater
than the minimum time to the next preemption. In this case,
if the outstanding computations finish their executions in
tavailable time units, their non-preemptive execution can be
guaranteed. Hence, the new frequency X ′, that guarantees
their non-preemptive execution is given by:

X ′ =
tout

tavailable
×X

If the calculated frequency is higher than Fmax, i.e., the
preemption avoidance cannot be guaranteed due to hard-
ware limitations, the processor frequency is set to Fmax.
If in such a scenario, more complex algorithms are used
online to calculate the probabilistic preemption points on the
outstanding computations, the associated overheads increase.
For example, we could use a secondary threshold probability
to determine the next possible preemption point. However,
to keep the method simple, we set the processor frequency
to Fmax.

In case 2, the above equation becomes X ′ = X , i.e.,
the processor executes at the default frequency. In case 3,
i.e., tavailable > tout, there is a possibility to slow down
the processor to conserve energy. The equation to find the
new frequency is valid for this case as well. It will find a
lower frequency (thus a lower voltage) that guarantees a non-
preemptive execution of the outstanding computations. If
the calculated frequency is lower than Fsched, the processor
executes at Fsched, thus preserving the overall schedulability
of the task set. Even though we have presented our method in
the context of FPS, our methodology can be easily extended
to dynamic priority scheduling e.g., the EDF scheduling.
This can be achieved by considering the task instance
priorities rather than the task priorities in the algorithm.

Computational Complexity : The algorithm 1 has a
linear complexity assuming that the existence of the jobs
in the ready queue is kept track of by, e.g., a simple
associative array. The number of jobs in the ready queue
at any time t cannot exceed the total number of tasks n.
The lowest priority job is the last task in the ready queue,
and finding it does not add any significant complexity to
the approach. The earliest possible preemption point for the
outstanding computations can be found by a simple search in
reli(t),∀i ∈ hp(u). This can also be done in a time linear
in the number of tasks as reli(t) contains a maximum of



Task Ci Ti

X 1 5
Y 3 10
Z 3 20

Table I
EXAMPLE TASKSET

n release times. Also, finding the outstanding computations
can also be done in linear time because the number of jobs
in the ready queue cannot exceed n.

Implementation Considerations : The online preemption
control algorithm can be easily implemented using tech-
niques similar to the DVS algorithms. The implementation
typically should occur at the operating system level, where
the scheduler is modified to calculate frequencies that can
enable preemption control. Whenever a new task arrives,
the total outstanding computations can be updated with-
out significant overhead, by just adding the computation
requirement of the new task to the current total outstanding
computations. The lowest priority task in the ready queue
is the last task in the queue, thus a search through the
queue can be avoided. In order to find the earliest possible
preemption point on the outstanding computations, the OS
has to maintain a data structure which stores the next earliest
release times of each sporadic task. This is calculated by
adding the inter-arrival time of the task to its latest release
time. The earliest possible preemption point can be found
by a simple search through this data structure.

V. EXAMPLE

We illustrate our proposed method with an example.
Consider a set of sporadic tasks with execution requirements
Ci and minimum inter-arrival times Ti, as given in table I.
Let the time required to execute Ci computations of each
task be Ci time units at speed 1. Let the probability of
task releases from their respective earliest release times be
given by the probability mass function in Figure 1. Note
that the probabilities can be different for different tasks.
In this example, for the purpose of simplicity we assume
the same probability mass function for all the tasks. Due to
the sporadic nature of task releases, one possible runtime
scenario for the task executions is shown in Figure 2 where
there are 2 preemptions when the tasks execute for their
WCET’s, are scheduled using FPS and the priorities are
assigned according to the rate monotonic priority ordering.
Let the ith job of task X be represented by Xi, that of Y

be represented by Yi and of Z by Zi.
In the offline analysis, we assume that the threshold

probability is 0.20. The corresponding deviation from the
minimum inter-arrival time that gives a release probability
equal to the specified threshold probability is 1 time unit.
Thus, the most probable time instant at which a job can be
released is 1 time unit after the its earliest release time.

0 1 2 3 4 5 6 7 8 9 10 

0.04 

0.08 

0.24 

0.20 

0.02 
0.04 0.04 

0.08 0.08 
0.1 

0.08 

threshold probability 

(time) 

Figure 1. Example probability mass function

5 10 15 

5 10 15 

5 10 15 

X 

Y 

Z 

Figure 2. A part of the original FPS schedule of the sporadic task set

When X1 starts its execution at time t1 = 0, the lowest
priority job in the ready queue is Z1. The next possible
release time of a job having a higher priority than Z1 is
by X2 at time t2 = 5. We add the deviation to the inter-
arrival times based on the probability mass function in figure
1. Thus the next probable higher priority task release will
happen at time t′2 = 5 + 1 = 6. Thus the processor has
t′2 − t1 = 6 time units available to execute the outstanding
computations non-preemptively. The outstanding computa-
tions take 1+3+3 = 7 time units to execute. The processor
has to be speed-ed up by a factor of 7

6 such that the
outstanding computations execute non-preemptively. A part
of the sporadic task schedule implementing algorithm 1 is
shown in Figure 3. When Y2 starts its execution at time 12,
the earliest preemption point has already elapsed (at time
instant 11). After adding the deviation of 1 time unit, we
can see that the probable release time of X3 has already
elapsed. Here we could use a secondary threshold value to
determine the earliest preemption point on Y2 by a job of
X . However for the purpose of simplicity, we speed up the
processor such that Y2 completes its execution as early as
possible.

VI. EVALUATION

We evaluated our method on synthetic tasks by generating
1400 task sets, having 3 - 15 tasks per task set with
LCM ≤ 2000, using the UUniFast [27] algorithm. The



5 10 15 

5 10 15 

5 10 15 

X 

Y 

Z 

Figure 3. The sporadic task schedule after preemption control

Processor speed 0 1 2 3 4 5
Power consumption

per clock cycle (mW) 0 20 50 50 200 500

Table II
PROCESSOR MODEL

processor model that we used in our evaluations, which
we adapted from [28], is given in table II. The task sets
were generated such that they are schedulable at speed=1.
In our experiments, for each task τi in Γ, we generated LCM

Ti

number of instances where every task instance was released
after a time t, with a probability as given in Figure 1. We
assumed threshold probabilities of 0.20 and 0.24, to bound
the number of preemptions. Consequently, the deviations
determined in the offline phase are 1 and 3 time units. Each
simulation was run until all the LCM

Ti
jobs of every τi were

executed. We calculated the average number of preemptions
that occurred for the following cases i) normal FPS ii)
algorithm 1 with Ri = 0 iii) algorithm 1 with Ri = 1
and iv) algorithm 1 with Ri = 3. We present our results
in Figures 4 and 5. Figure 4 shows the average number of
preemptions for various task utilizations under the different
cases described previously and figure 5 shows the average
power consumption under the different cases.

Our method showed significant reduction in the number
of preemptions as seen from the evaluation results presented
in Figure 4. It is seen that considering probabilities while
calculating the CPU frequency achieves almost an equal
reduction in the number of preemptions as for the case
where probabilities are not considered (i.e., Ri = 0) while
saving energy in the system. The number of preemptions for
the highest utilization range (0.8-0.9) shows a decrease for
Ri = 0 because these task sets where found to have less
number of tasks causing less preemptions. The reduction in
the energy consumption achieved is particularly significant
for tasks with higher utilizations where the number of
preemptions is typically higher.

The task release probabilities can be used to achieve
preemption-energy trade-offs in the system as can be seen
from the two figures. By varying the relaxations permitted
to the probable earliest release times, we observe that

0 

5 

10 

15 

20 

25 

30 

0,2-0,3 0,3-0,4 0,4-0,5 0,5-0,6 0,6-0,7 0,7-0,8 0,8-0,9 

A
ve
ra
ge
	  n
um

be
r	  o

f	  p
re
em

p/
on

s	  

U/liza/on	  

Original Algorithm 1 (Ri=0) Algorithm 1 (Ri=1) Algorithm 1 (Ri=3) 

Figure 4. Average number of preemptions for various threshold probabil-
ities

0 

20 

40 

60 

80 

100 

0,2-0,3 0,3-0,4 0,4-0,5 0,5-0,6 0,6-0,7 0,7-0,8 0,8-0,9 

Av
er
ag
e	  
po

w
er
	  c
on

su
m
p0

on
	  

U0liza0on	  

Original FPS Algorithm 1 (Ri=0) Algorithm 1 (Ri=1) Algorithm 1 (Ri=3) 

Figure 5. Average power consumption for various threshold probabilities

the preemption reduction achieved varied and so did the
energy consumption, demonstrating the possibility of energy
preemption trade-off.

VII. CONCLUSIONS

In this paper we presented a combined offline-online
approach to control the preemptive behaviour of sporadic
task systems with probabilistic inter-arrival times by using
CPU frequency scaling. While an offline analysis derives
the probability related deviation from the minimum inter-
arrival time, an online algorithm uses this information to
provide appropriate CPU frequencies that guarantees the
non-preemptive task executions while preserving the overall
system schedulability. We do so by finding the earliest time
instant at which at least one of the jobs in the busy period
can be preempted with a probability above a certain known
threshold, whenever a task starts its execution. We then
calculate the processor frequency such that the jobs in the
busy period finishes execution before this point so that a
preemption is avoided. The online algorithm has a linear



complexity and does not lead to significant implementation
overheads. Evaluation results show the effectiveness of our
method in reducing the number of preemptions in the
schedule, as well as it also demonstrates the methods’ ability
to provide for trade-offs between the number of preemptions
and overall energy consumption.

Ongoing efforts focus on deriving upper bounds on the
speed-up required for guaranteeing a specified preemption
behaviour and extensions to the multi-processor platform.

REFERENCES

[1] C. L. Liu and J. W. Layland, “Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment,” The Journal
of ACM, 1973.

[2] H. Ramaprasad and F. Mueller, “Tightening the bounds on
feasible preemptions,” in The ACM Transactions on Embed-
ded Computing Systems, 2008.

[3] M. Zhang and K. Asanovic, “Highly-associative caches for
low-power processors,” in In Kool Chips Workshop, Micro-
33, 2000.

[4] S. Baruah, “The limited-preemption uniprocessor scheduling
of sporadic task systems,” in The 17th Euromicro Conference
on Real-Time Systems, 2005.

[5] G. Buttazzo, “Rate monotonic vs. EDF: Judgment day,” in The
3rd ACM International Conference on Embedded Software,
2003.

[6] H. Aydin, R. Melhem, D. Moss, and P. Meja-Alvarez, “Power-
aware scheduling for periodic real-time tasks,” The IEEE
Transactions on Computers, 2004.

[7] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling
for low-power embedded operating systems,” in The 18th
ACM symposium on Operating systems principles, 2001.

[8] L. Cucu and E. Tovar, “A framework for the response time
analysis of fixed-priority tasks with stochastic inter-arrival
times,” SIGBED Rev., 2006.

[9] B. D. Bui, M. Caccamo, L. Sha, and J. Martinez, “Impact
of cache partitioning on multi-tasking real time embedded
systems,” in The 14th IEEE International Conference on Em-
bedded and Real-Time Computing Systems and Applications,
2008.

[10] A. Burns, K. Tindell, and A. Wellings, “Effective analysis
for engineering real-time fixed priority schedulers,” The IEEE
Transactions on Software Engineering, 1995.

[11] D. I. Katcher, H. Arakawa, and J. K. Strosnider, “Engineering
and analysis of fixed priority schedulers,” The IEEE Trans-
actions on Software Engineering, 1993.

[12] K. Ramamritham and J. A. Stankovic, “Scheduling algorithms
and operating systems support for real-time systems,” in The
Proceedings of the IEEE, 1994.

[13] W. Lamie, “Preemption threshold,” Whitepaper, 1997.
[Online]. Available: http://rtos.com/articles/18833

[14] Y. Wang and M. Saksena, “Scheduling fixed-priority tasks
with preemption threshold,” in The 6th International Con-
ference on Real-Time Computing Systems and Applications,
1999.

[15] G. Yao, G. Buttazzo, and M. Bertogna, “Comparitive evalua-
tion of limited preemptive methods,” in The 15th International
Conference on Emerging Technologies and Factory Automa-
tion, 2010.

[16] ——, “Bounding the maximum length of non-preemptive
regions under fixed priority scheduling,” in The 15th IEEE
International Conference on Embedded and Real-Time Com-
puting Systems and Applications, 2009.

[17] M. Bertogna, G. Buttazzo, M. Marinoni, G. Yao, F. Esposito,
and M. Caccamo, “Preemption points placement for sporadic
task sets,” in The 22nd Euromicro Conference on Real-Time
Systems, 2010.

[18] J. Pouwelse, K. Langendoen, and H. Sips, “Dynamic voltage
scaling on a low-power microprocessor,” in The 7th annual
international conference on Mobile computing and network-
ing, 2001.

[19] Y.-H. Lu, L. Benini, and G. D. Micheli, “Dynamic frequency
scaling with buffer insertion for mixed workloads,” IEEE
Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 2002.

[20] R. Dobrin and G. Fohler, “Reducing the number of preemp-
tions in fixed priority scheduling,” in The 16th Euromicro
Conference on Real-time Systems, 2004.

[21] A. Thekkilakattil, A. S. Pillai, R. Dobrin, and S. Punnekkat,
“Reducing the number of preemptions in real-time systems
scheduling by CPU frequency scaling,” in The 18th Interna-
tional Conference on Real-Time and Network Systems, 2010.

[22] A. Thekkilakattil, R. Dobrin, and S. Punnekkat, “Preemption
control using CPU frequency scaling in real-time systems,” in
The 18th International Conference on Control Systsems and
Computer Science, 2011.

[23] ——, “Towards preemption control using CPU frequency
scaling in sporadic task systems,” in Proceedings of the WiP
of The 6th International Symposium on Industrial Embedded
Systems, 2011.

[24] A. K. L. Mok, “Fundamental design problems of distributed
systems for the hard-real-time environment,” Massachusetts
Institute of Technology, PhD thesis, 1983. [Online]. Available:
http://hdl.handle.net/1721.1/15670

[25] S. Baruah, A. Mok, and L. Rosier, “Preemptively scheduling
hard-real-time sporadic tasks on one processor,” in The 11th
Real-Time Systems Symposium, 1990.

[26] R. Melhem, D. Mosse, and E. M. Elnozahy, “The interplay of
power management and fault recovery in real-time systems,”
IEEE Transactions on Computers, 2004.

[27] E. Bini and G. C. Buttazzo, “Measuring the performance of
schedulability tests,” Real-Time Systems, 2005.

[28] E. Bini, G. Buttazzo, and G. Lipari, “Minimizing cpu energy
in real-time systems with discrete speed management,” ACM
Transactions on Embedded Computer Systems, 2009.


