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Abstract—In the context of Switched Ethernet, the Flexible
Time-Triggered Switched Ethernet protocol (FTT-SE) was pro-
posed to overcome the limitations and related problems of using
COTS switches in real-time networks, such as overflow of switch
queues due to uncontrolled arrival of packets. Although the
FTT-SE protocol has been validated by several experiments on
real applications, evaluation of different architectures as well
as evaluation of large scale networks is not straightforward.
Therefore, a simulator to evaluate different network architectures
based on the FTT-SE protocol is useful. In this paper we
present such a simulator. We address the extended FTT-SE
protocol using multiple switches and we present a modular
simulator based on Simulink/Matlab that allows us to visualize
message transmissions and to evaluate end-to-end delay bounds
of messages.

I. INTRODUCTION

Recently, there has been a growing interest in using the
Switched Ethernet technology even for hard real-time dis-
tributed systems as it provides means to improve global
throughput compared with other technologies. Moreover,
Switched Ethernet also provides traffic isolation and it elimi-
nates the impact of the non-determinism due to CSMA/CD
arbitration that the original Ethernet was suffering from.
Among several different switch types that have been proposed
to support real-time traffic communication, Commercial Off
The Shelf (COTS) technologies are becoming more attractive
as they reduce the development costs and simplify the main-
tenance process compared with solutions that use dedicated
switches. However, using COTS switches in real-time appli-
cations is challenging due to the following limitations; the size
of the memory of COTS Ethernet switches is limited, hence
it may not be possible to buffer unsynchronized simultaneous
traffic from different sources which may cause packet drops
that in turn affects the timeliness behavior of the network. In
addition, the COTS Ethernet switches have a limited number
of priorities to schedule the traffic inside switches.

One solution for the mentioned problem with respect to the
COTS switch is to use a master/slave approach where one
certain node will be responsible for control over the traffic
communication across the network and thereby guaranteeing
the real-time requirements of the traffic. In this paper, we
focus on the FTT-SE protocol [1] that uses the master/slave
approach to enforce global coordination among streams by
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using a dedicated node called the master, thus controlling
the load submitted to the switch at each instant in time
and thereby avoiding the potential queue overflow problem.
Moreover, the FTT-SE protocol handles different traffic types
including real-time periodic, real-time aperiodic and non-real-
time messages by defining a specific bandwidth for each type
of message. This protocol was investigated and validated by
several experimental results in [1]. Moreover, a method is
proposed in [2] to deal with the scalability of the protocol,
using multiple switches along with multiple master nodes.

In this paper, we focus on the design and implementation
of a modular simulator that can be used to simulate different
design options of the FTT-SE protocol for both small and large
scale networks. This simulator is based on Simulink/Matlab
which makes it modular and allows us to create several models
according to arbitrary architectures based on the protocol.

The rest of the paper is organized in the following manner.
The next section discusses some related work on modeling
and simulation of protocols, Section III describes the FTT-SE
protocol and the extended solution. Then, Section IV presents
the simulator design while Section V validate the simulator
using some experiments. Finally, Section VI concludes the
paper and presents the future work.

II. RELATED WORK

Several techniques have been proposed to model and sim-
ulate the Ethernet protocol using different tools and modeling
algorithms. In [3], models are proposed for nodes, switches
and traffic according to the Switched Ethernet protocol. More-
over, an evaluation is performed to validate the performance
of the modeling method by comparing the simulation results
with the collected data from a specific network application.

In the area of embedded avionics networks, a simulation
model considering the Avionics Full Duplex Switched Ethernet
(AFDX) is proposed in [4]. The end systems (nodes), switch,
different queues for switch and end systems, and the mea-
surement unit were modeled. Moreover, the validation of the
modeling algorithm is performed for the specific architecture
and the performance of that is compared with the results
supplemented by Network Calculus. However, the simulator
was developed only for a particular application and it is not
implemented as a general simulator.

Furthermore, a simulation algorithm was proposed in [5] to
evaluate the end-to-end upper bound delay in AFDX networks.
Finding an upper bound end-to-end delay for each message



using simulation requires us to investigate a huge number of
possible scenarios. Thus, an approach to reduce the number
of possible scenarios was proposed in [5].

In addition, different network simulation systems were
designed based on available simulation tools. For instance, a
network simulator system for AFDX networks was designed
and implemented in [6], in which Network Simulation (NS2)
as a tool to simulate TCP, routing over wired and wireless
networks, was considered for the main platform, however, NS2
supports limited protocols.

Furthermore, there are many tools which have been de-
veloped for network simulation, such as TrueTime [7], OM-
NET++ [8] and OPNET [9]. TrueTime is a toolbox developed
for Simulink/ Matlab. The switched Ethernet protocol as a
network block has been supported by the TrueTime toolbox.
However, adding new protocols such as FTT-SE need a lot of
modifications and changes on the kernel of the tool which is
not easy. Moreover, the output results that can be generated
from the TrueTime blocks are limited and they need to
be modified to allow for calculation of response times of
messages. Another tool called OPNET is used to evaluate
the performance of a network, specially for evaluation of
Internet, however, this tool is a commercial tool. OMNET++
is another component-based and modular simulator which
is mainly used for sensor networks, internet protocols and
performance modeling. As a result, neither of them can be
used directly to include the FTT-SE protocol.

III. FTT-SE BASICS

The FTT-SE protocol [1] is a real-time communication
protocol that combines the master/slave technique with the
Flexible Time-Triggered (FTT) paradigm. A dedicated node,
called the master node is used to control the traffic in the
network by broadcasting a specific message called the Trigger
Message (TM). The master node schedules the ready messages
according to an on-line scheduling policy, and encodes the
scheduled messages into the TM. The scheduling is performed
every predefined time interval called an Elementary Cycle
(EC), in which the master broadcasts the TM to all slave
nodes at the beginning of each EC. Then, the slave nodes
receive the TM, encode it and send the scheduled messages
for transmission in the current EC.

According to the FTT-SE protocol, the data transmission
bandwidth in each EC is divided into two sub-bandwidths
(windows) to handle synchronous (periodic) traffic within
the Synchronous Window (SW) and asynchronous (aperiodic)
traffic, within the Asynchronous Window (AW), as depicted in
Figure 1. The time that the slave nodes need to decode the TM
is called the turn around time. Moreover, the input and output
ports of the switches are called the uplinks and the downlinks
respectively.

Furthermore, to handle the asynchronous traffic, each slave
node sends a request message, which is called signaling
message (SIG), to the master node whenever an asynchronous
message is activated. The master node then schedules the
asynchronous traffic for upcoming ECs [10]. As illustrated
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Fig. 1. The FTT-SE Elementary Cycle

in Figure 1, A, B and C are the aperiodic requests from the
slave nodes. Moreover, aperiodic messages can be activated at
any time during the EC. The worst case scenario occurs when
an aperiodic message is activated exactly after a request has
been sent to the master node. In such a scenario, the aperiodic
signaling request will be sent to the master in the next EC
and the master node will schedule that request at earliest in
the following EC, i.e. within three ECs.

The scalability of the FTT-SE protocol using multiple
switches was investigated in [11] and [2] based on two
approaches. In both solutions, multiple switches are connected
together directly forming a tree shaped topology.

In the first solution, a single master node is used to coor-
dinate the traffic transmission in the network. The bandwidth
assigned for synchronous and asynchronous traffic is similar
to the single switch FTT-SE protocol as depicted in Figure 1.
Moreover, the TM is generated and broadcasted to all nodes in
the network. Also, to deal with asynchronous messages, slave
nodes send the request messages to the master node.

In the second approach, a network architecture consisting of
multiple switches with a master node connected to each switch
is considered. An example of such an architecture is depicted
in Figure 2, where the switch SW1, the master node M1 and
nodes A and B are grouped into one sub-network (SN1). The
sub-network SN1 is a parent sub-network for SN2 and SN3.
Moreover, a cluster is defined such that it contains all sub-
networks with the same parent sub-network. For instance, in
Figure 2, SN4 and SN5 are grouped as one cluster for which
SN2 is the parent sub-network.
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To handle the traffic in such a network, two categories of
traffic are defined as local and global. The traffic which is
transmitted between the nodes inside one sub-network is called
local, otherwise the traffic is called global. To handle the
synchronous and asynchronous traffic, the data transmission
within an EC is divided among the traffic types as depicted in
Figure 3, where SW is the synchronous window and AW is
the asynchronous window. The local synchronous and asyn-
chronous traffic handling is carried out similar to the single
switch FTT-SE protocol within their specified bandwidth.
However, all master nodes schedule all global messages in the
network in parallel, based on the allocated bandwidth for such
types of traffic. To schedule the global asynchronous messages,
the global asynchronous window is divided per cluster and the
parent master node of the cluster is responsible to schedule the
global aperiodic messages inside that cluster.

Furthermore, the ECs of all master nodes are time synchro-
nized using a particular message which is called the Global
Trigger Message (GTM). The root master sends the GTM to
all master nodes and they will wait to receive this message
before broadcasting their local TM.
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IV. SIMULATOR DESIGN

Using Simulink/Matlab we have developed a simulator to
evaluate the timing behavior of the messages in a network
based on the FTT-SE protocol for small and large scale
networks. We have used Simulink/Matlab due to its modular
features along with custom blocks and graphical interfaces.
The core of the simulator is a cycle-based which starts by
sending TM to the slaves, i.e. the simulator is designed in
several states such that each state is allowed to execute only
after finishing of the previous state. However, the master block
keeps track of the EC duration as well. We have developed
three basic models using the S-Function block in Simulink
to simulate the functionality of the master node, slave nodes
and switch models respectively. These blocks are stored in
a Simulink library file. To simulate the parallel execution of
blocks in a model, we have divided each EC into 100 time
slots and in each of them all the functions are executed. The
number of time slots shows the resolution of simulation which
is not fixed and can be changed in the configuration of the
simulator. However, by increasing the number of time slots, the
simulation time will increase due to the number of functions
that need to be execute in each time slot. On the other hand,
decreasing the time slots number can affect on the accuracy of
the results. Therefore, we have chosen 100 time slots in this
trade-off as an engineering experiment. Note that, the function
of blocks in Simulink executes in sequential order which is
automatically specified by Matlab in advance. Therefore, the
input data of each block is guaranteed to be available before
the execution of that block.

A. Ready Queues Management

For the case of multiple master nodes, each master contains
four ready queues to support local and global periodic as well
as local and global aperiodic messages. Scheduling of global
messages is performed in parallel in all master nodes at the
same time. The ready queues are sorted based on the priority of
messages in which the highest priority messages are inserted
at the head of the queues, we used the Fixed Priority/Highest
Priority First Scheduling Policy for on-line scheduling in the
simulator. Messages with the same priority are sorted in the
queues based on the First Come First Serve (FCFS) policy
for local messages, whereas for global messages, messages
having the same priority are sorted based on the id number of
messages.

For management of the ready queues, we have developed
three functions to handle queue updating before scheduling
the messages by master nodes. These functions, which are
implemented in Matlab m-files, are the following:

Get head message. This function returns the first message
in the ready queue which is always the highest priority mes-
sage among all messages in the ready queue in this simulation.

Remove a message. If the scheduler checks a message and
it selects that message to be transmitted in the current EC, the
message should be removed from the ready queue. Therefore,
this function removes a message defined by its id together with
the ready queue in which the message is residing. The output
of this function is the updated ready queue sorted according
to the priorities of all messages in the queue.

Insert a message and sort in ascending format. Whenever
a message becomes ready, it should be inserted in the correct
ready queue, which is performed by this function. This func-
tion inserts a message in a queue according to its priority and
it re-sorts the queue according to the priorities of messages in
which the highest priority message is assigned at the head of
the queue.

For the single master case, two queues are used to schedule
both synchronous and asynchronous messages, one specific
for each type of messages. Therefore, the queue management
functions are applicable for these two ready queues.

B. Master Block Design

The master block is divided into two sub-blocks dealing
with sender and receiver functions. We have defined an array
structure for the master node to store its variables and param-
eters. In the solution with multiple master nodes, each master
node in the network may have different parameters depending
on its local configuration such as local message numbers and
local slave node properties. All master blocks in the model are
connected to a single m-file function which is distinguished
with a mask block parameter number.

For each master input (receiver) and output (sender) blocks
two separate functions are implemented, however the master
function is developed based on a state flow that each of them
should run in order. The master function has three states which
are depicted in Figure 4. Each state, is allowed to run when the
previous state has executed only. The first state is broadcasting



the TM to all slaves. The next state is receiving aperiodic
requests from the slave nodes during the TM window. The
last state is performing the scheduling function for all kind
of messages, including local and global aperiodic messages
and generating a TM for the upcoming EC. State 1 and 3
are executed in the master sender function, whereas state 2 is
executed in the receiver function. For input and output signals,
we implemented separate scope output functions due to the
flexibility of the graphical interface.
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Fig. 4. Master function state flow

In state 2 of the master function, which is executed in
the master receiver sub-block, the master polls the aperiodic
requests from the slave nodes. This state finishes and moves
to the next state when all signal messages are received. The
aperiodic requests which are received during this state are from
local slave nodes or from children slaves for global aperiodic
requests. In both cases, the requests are stored and the master
schedules them for the next EC. The local aperiodic sched-
uled messages are encoded inside the TM along with other
periodic messages, however the global scheduled aperiodic
messages are encoded in a different trigger message called
the asynchTM, which is sent to children slave nodes directly.

In state 3, the master function looks up the message struc-
ture and checks whether any periodic message becomes ready.
The scheduler inserts all ready messages, including aperiodic
messages, which are requested from the slaves into the related
ready queues. Moreover, the ready time of each message
is stored in the related variable of message. Consequently,
scheduler function checks bandwidth for the ready message
transmission according to their destination and rout. The
scheduled messages are encoded inside the TM to be sent
at the beginning of the next EC.

To support the single master FTT-SE network, the master
block is developed such that it schedules the traffic and
broadcasts the TM to the entire network. Moreover, each slave
node sends the aperiodic request to the master node which is
connected to the top switch.

C. Switch Model Design

Similar to the master block, the switch is modeled with a
Matlab S-Function associated using a particular m-file. Four
kinds of connections are defined for the switch models i) the
master connection identified in port 1, ii) the parent switch
connection is dedicated to port 2, iii) two children connections
for the children sub-networks as port 3 and 4, and finally

switch structure description
port nbr The number of ports for switches.
inBuffer The input buffer for all input ports individually.
outBuffer The output buffer for all output ports individually.

TABLE I
THE SWITCH STRUCTURE

iv) five connections for the slave nodes. Therefore, 9 ports
are assumed for switches in this version of the simulator.
Moreover, for each input and output link a specific buffer is
assigned to store receiving and sending data. The buffers are
sorted according to the First In First Out (FIFO) policy. The
general structure of the switch model is to poll the input data
and to process the destination address of them, and in turn,
to insert into the related output buffer. The switch parameters
including the input and the output buffers are stored in an
array structure which is shown in Table I.

D. Slave Block Design

Similar to the master block, the slave block is divided
into two sub-blocks denoted sender and receiver sub-blocks.
The slave function is executed based on the state flow which
indicates the current state of each slave node. The slave
function composes of four individual states started by the TM
reception. The state flow of the slave function is depicted in
Figure 5.

After receiving the asynchTM and TM messages from the
parent master and the main master respectively, the slave
checks if any local aperiodic messages are ready to be trans-
mitted. The same check is performed for the global aperiodic
messages. For aperiodic messages, the sporadic model is
used to model this type of traffic in which the minimum
inter-arrival time is defined for each message, however in
this simulator a dynamic activation for aperiodic messages
is developed to simulate the unpredictable arrival time of
aperiodic messages. Moreover, the aperiodic message may
become ready at anytime during the EC window. To simulate
this behavior of aperiodic messages, we assume the worst case
in which the message always becomes ready after the TM
broadcasting window.

The third state of the slave function, which is executed in
the sender block, is decoding the TM and transmitting the
messages which are scheduled by master node. This state
includes all local/global periodic and aperiodic messages.
However, the message transmission starts with local and
global periodic messages and continues with local and global
aperiodic messages.

After sending the scheduled messages, the last state is to
wait for message receiving. The slaves read their inputs until
the EC time window is finished. When a message is received
from the slave node, the receiving time is stored in the related
message variable. The time interval between the ready time
and the receiving time of the messages shows the end-to-end
transmission time. For setting the receiving time, the store-and-
forward switch delay and order of messages are considered
to simulate as accurately as possible. Since the bandwidth
capacity was checked in the scheduler, then all scheduled



messages should be received in the current EC without any
deadlines being missed. In case of a deadline miss or a failure
in receiving of message, the output report of the simulator will
show it.
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Fig. 5. Slave function state flow

For generating the scope output signals to cover both
receiving and sending messages, the scope functions store
the messages which are sent and received. The messages are
scoped according to their transmitting time. Each message is
indicated by its identification number which is unique in the
entire network.

E. Settings and Report

In order to set the configuration of network example, such
as the EC size and the bandwidth allocations, a database
which is developed in Matlab m-file is prepared. For each
network model, different configuration can be determined to
assess the performance of the example in different bandwidth
assignments.

Moreover, to present the end-to-end delay of messages, after
finishing the simulation, a function is developed to generate the
output reports. These reports provide information including the
network parameters such as number of switches and masters,
EC configuration and end-to-end delays including minimum,
average and maximum that has been measured during the
simulation.

V. EXAMPLES

In this section, we present an example of a network that con-
sists of 5 switches (sub-networks) as depicted in the Simulink
model in Figure 6. This network composes of 16 slave nodes in
which 2-4 nodes are connected to each sub-network. The net-
work parameters for this example are EC = 4ms, T M = 12µs,
SIG = 6µs and the transmission speed of the Ethernet network
is considered as 100Mbps and 40 messages are generated
randomly. The Fixed Priority Scheduling Policy is assumed
in this example and the priority of messages is selected
according to the Rate Monotonic priority assignment. Note
that, the simulator can support higher amount of messages
if all messages are schedulable (meet their deadlines) in the
network architecture. In this example we have experimented
40 messages to present the results considering the space limit.

A. Multiple Masters Network

In the multiple masters architecture, each switch is con-
nected to a single master, i.e., five master nodes are created
in Simulink, for illustration purpose we explain the root
sub-network model in Figure 7. Moreover, the transmission
bandwidth in each EC is divided as follows. The synchronous
local and global scheduling windows are selected to have 1ms
equally, the asynchronous local scheduling window is 800µs
and finally the asynchronous global scheduling window is
700µs. In the example, the network is composed of two clus-
ters and the bandwidth of the asynchronous global scheduling
window is further divided equally among them, i.e., 350µs.
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The simulation for this example is performed for time
duration of 500 ECs of simulation time. To visualize the
message transmission, an ordinary Scope block of Simulink is
attached to the respective scope ports of the master and slave
blocks. For instance, the messages transmitted and received
by slave node 6 in the root sub-network are illustrated in
Figure 8, where the x-axis presents time and y-axis shows the
message id. In this example the messages m21, m23 and m33,
which are transmitted from slave node 6, are periodic with
the priority equal to 4, 4 and 1 respectively (higher numbers
represent higher priority). Also, this slave node receives the
messages m20 and m22 which are periodic as well. The



message id Min. RT Avg. RT Max. RT
20 2 2 2
21 2 2 2
22 2 2 2
23 2 2 2
33 2 2 2

TABLE II
MESSAGE RESPONSE TIMES

transmission time of each message is depicted in the scope
with respect to the declaration of the messages. Moreover, the
end-to-end delay of all messages in the model can be reported
after the simulation time is finished. The minimum, average
and maximum response time, which are measured during the
simulation, for the mentioned messages are shown in Table II
(the unit used is multiples of ECs).

Fig. 8. Scope input/output of slave number 6 in example 1

B. Single Master Network

In this section, we present the results of applying the
approach of a single master on the example presented in
the previous section. The master node is connected to the
Switch 1. The synchronous window and the asynchronous
window are selected to have 2ms and 1.5ms respectively.
Similar to the previous example, the simulator is executed
for 500 ECs of simulation time. Figure 9 shows the message
transmissions in the slave number 7.

VI. CONCLUSION AND FUTURE WORK

In this paper, we addressed the FTT-SE protocol and the
extended FTT-SE protocol to support large scale networks
using multiple switches along with multiple master nodes.
Moreover, we presented the design of a simulator based on
Simulink/Matlab. The simulator contains three basic models
representing master, switch and slaves, all implemented as S-
Function blocks in Simulink to make the simulator modular.

Moreover, two examples consisting of five sub-networks
are created in the simulator to evaluate both the FTT-SE
approaches. Different output scopes of message transmissions
are presented along with end-to-end delay reports using both a
single master as well as multiple masters. We have presented
this tool that allows us to perform detailed analysis of the
protocols in a way that before needed implementation with

Fig. 9. Scope input/output of slave number 7 in example 2

all its complexity. This version of the simulator is designed
and implemented considering some restriction assumptions,
e.g. the switch model is limited to support two children sub-
networks. However, the extension of the simulator is currently
ongoing.

Furthermore, this tool is extensible in the sense that we can
easily accommodate other Ethernet protocols for comparison,
since the core of the simulator is already implemented. More-
over, we are planning on making the tool available for public
as a downloadable plug in to Simulink/Matlab.
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