
Component-Based Software Engineering – New Paradigm of Software
Development

Ivica Crnkovic, Magnus Larsson
Department of Computer Engineering

Mälardalen University
Box 883, 721 23 Västerås, Sweden

Telefon: +46 21 10 31 83 E-mail: ivica.crnkovic@mdh.se, magnus.larsson@mdh.se

Abstract: Component-based software development is a
new trend in software development. The main idea is to
reuse already completed components instead of developing
everything from the very beginning each time. Use of
component-based development brings many advantages:
faster development, lower costs of the development, better
usability, etc. Component-based development is however
still not mature process and there still exist many problems.
For example, when you buy a component you do not know
exactly its behavior, you do not have control over its
maintenance, and so on. To be able to successfully develop
component-based products, the organizations must introduce
new development methods.
This seminar gives a short introduction to component-based
development, and component-based software engineering
methods, both form technological and marketing point of
view. An overview of existing component models will be
presented. Finally some successful examples of component-
based development are shown: OPC - a standard set of
interfaces, properties, and methods for use in process-
control and manufacturing-automation applications , and ABB
Industrial IT, a new generation of automation systems.

I. INTRODUCTION

Software systems are becoming increasingly complex
and providing more functionality. To be able to produce
such systems cost-effectively, suppliers often use
component-based technologies instead of developing all
the parts of the system from scratch. The motivation
behind the use of components was initially to reduce the
cost of development, but it later became more important
to reduce the time to market, to meet rapidly emerging
consumer demands. At present, the use of components is
more often motivated by possible reductions in
development costs. By using components it is possible to
produce more functionality with the same investment of
time and money. When components are introduced in a
system, new issues must be dealt with e.g. dynamic
configurations, variant explosion and scalability. Some of
these issues are addressed with the discipline Component-
Based Software Engineering (CBSE).

CBSE provides methods, models and guidelines for the
developers of component-based systems. Component-
based development (CBD) denotes the development of
systems making considerable use of components.

Although very promising, CBSE is a new discipline and
there are many associated problems which remain
unsolved. Many solutions can be arrived at, by using
principles and methods from other engineering
disciplines, such as configuration management. This
report describes some of these disciplines, presents

proposals and analyses possibilities of applying different
methods in CBSE.

II. A History of Component-Based Development

The Component-based development is close related to
reuse. The idea about reusing pieces of software
originates from early sixties when the term Software
Crises was mention first time. The basic idea is simple:
When developing new systems use components that are
already developed. When you develop specific functions
you need in your system, develop it in that way that this
function can be used by other systems in the future.
Although the principle is simple, it has been shown that
the implementation is quite hard. Process of improving
reuse has been long and laborious.

One of the earliest cases of successful reuse is the
development of different libraries, for example
mathematical libraries. These libraries include functions
(for example mathematical functions such as sine, cosine,
matrix operations, etc.), which are referred to in the
source code and then linked together with the proprietary
code.

The success of this type of reusable entities lies in
several facts:

• There exists well-defined theory about these types
of functions.

• The communication between the application and
these functions is simple. It is of procedural type.
The application invokes the functions sending to it
input parameters, and the library responds by the
execution of the function and returning the output
parameters.

• The inputs and outputs are precisely defined
• Relative good error handling – If the inputs are

erroneous, the output will usually return a specific
value denoting an error.

A disadvantage and limitation of these types of
components is the inflexibility. For a new version of the
library, the application must be rebuilt. This problem has
partially been solved by introduction of dynamic or shard
library which can be loaded separately form the
application. Another type of inflexibility is the limitations
of types of input and output parameters. When changing
types of parameters (for example using text elements
instead of numbers in a sort function), a new library
function must be used.

Another type of reusable entities we can find in
application implementation in a form of client/server
separation. The application (client) sends requests to the
server, which provides a service to the application. Typical
examples are databases or Graphical User Interfaces

(GUI), such as X-windows. To make servers reusable a
standard protocols in form of API (Application
Programmable Interface) of the communication is
defined. For relational databases there exists a language
SQL. Different database providers use the same standard
and in this way make it possible that different databases
can be used by the same application without rewriting
their code. In the X-Windows case, there exists a
standardized API which is highly adaptable. The adaptation
feature is very important for components because it
enables many variations of its use. However it also
introduces additional complexity, since a lot of
parameters must be defined. For this reason additional
API-s have been defined for different purposes and GUI
styles.

From the business point of view, the companies are
interested in developing the functions that will give the
added value for the customers. They are not interested in
developing general-purpose supporting functions or an
infrastructure that makes possible execution of the “core-
business” functions. A typical example of infrastructure is
Operating System, and it is not strange that Operating
Systems are typical reusable “components”. The problem
with operating systems in the past was that they were very
expensive and big, so in many cases the entire system had
to include a lot of parts that never have been used but
required resources which increased the costs. For these
reasons many companies developed their own operating
systems which were adjusted to requirements of the
system.

In order to enable reusability the first step in the
development is to divide the system in well-defined
parts/components. These components can be developed
internally. The next step in the evolution is to outsource
the development, or to buy those parts that are not of the
primary interest for the company and if possible, replaced
by standard components developed. Figure 1 shows an
example of the system evolution.

Fig. 1. System reusability evolution
In eighties the systems were monolith, always

developed from the very beginning, including the hardware
development, the basic software development, such as
operating systems and even development of the
development environment itself, including compilers,
debuggers, etc. In nineties the hardware part become more
standardized and it was possible to buy it (for example
PCs, or Unix workstations). The general-purpose
operating systems have been used more and more as they
became cheaper. Nowadays, typically, standard hardware
and infrastructure software is used, as well as standard
user interface. Only those parts that are directly related to
the customer requirements are internally developed. This

evolution has some important consequences. The
development time is being decreased significantly, and the
development costs have been reduced. However, another
factors for the successful business become important:
Many components must be bought and in this way the
frame for the profit decreases. Also, the quality control
on the system becomes more difficult, since the system
includes parts from other providers.

By emerge of the Internet and by establishing few
operating systems, a requirement for running applications
distributed over the network becomes important.
Similarly, a new requirement of application compatibility
between different operating systems becomes significant.
The third requirement that is essential today is the ability
of replacement of a component without re-building the
application. These requirements, and the demands on the
collaboration between applications independent of the
operating system requirement lead to new paradigm of the
software development: Component-based Software
Development.

An example of integration of components at run-time
can be seen in the Microsoft Office package. An MS
Excel document can be a part of an MS Word document,
and the opposite. Similarly, we can develop an application
and used in it MS Excel “component” as a part of our
application. The main advantage of this approach is the
possibility of updating MS office, and getting new
features in our applications, without rebuilding them.

Fig. 2. Integration of Microsoft Office applications

III. Software Architecture

The structure of software is traditionally not seen at
system run-time. The structure is something that is
defined during the design phase and it is used for easier
development by dividing complex part in several relatively
independent parts.

With the component-based development and
recognition of parts of the system even at run-time, the
structure design, also called architecture design, becomes
one of the most important parts of the development
process.

A component-based system is typically defined as n-
tier structure, where n can be two, mostly three, or even
four, five, etc. A tier, or a layer is a part of the application
which provides a specific functionality (also called
business logic) and has a well-defined interface to other
layers. Figure 3 shows an example of a three-tiers
architecture. The lowest level consists of a data
repository, for example a relational database. The middle
level presents the business logic, i.e. the functional and
computational part of the application, where data accessed
from data base are manipulated. The top tier presents a
user interface, for getting input data and displaying results.
Dividing the applications in these levels it is possible to
make them independent of each other as much as possible.

User interface

Business
Logic

Infrastructure

Hardware

Time 80s 90s 2000

User interface

Business
Logic

Infrastructure

Hardware

User interface

Business
Logic

Infrastructure

Hardware

 Word document

Excel document

 My_application

Excel document
Component

Application
A1

Application
 A2

This in turn enables more flexibility for reusing standard
components, or updating parts of the application. For
example, the business logic part of the application does
not need to be changed when we replace a database, or add
a new graphical interface. It enables to use different
interfaces applied on the same business logic part.

Fig. 3. Three-tiers architecture

IV. Component Definitions

What are components? Can they be uniquely specified,
identified and processed? There have been a lot of
discussions what a component actually is. “Components
are for composition. Nomen est omen”. This is a quote
that most people agree upon when discussing about what
components are. But to come up with a precise and well-
understood definition of a component, which everybody
agrees upon, is not an easy task. The mean of the term has
been changed during time and often has been related to the
technology used in time.

Many have tried, but the result is a flora of different
definitions that are slightly different. This phenomenon is
very common when many different persons with varied
backgrounds have used the word for different problem
domains. Following are a variety of definitions specified
in literature today:.
1. A component is a non-trivial, nearly independent, and

replaceable part of a system that fulfills a clear
function in the context of a well-defined
architecture. A component conforms to and provides
the physical realization of a set of interfaces.

2. A run-time software component is a dynamically
bindable package of one or more programs managed
as a unit and accessed through documented
interfaces that can be discovered at run-time.

3. A software component is a unit of composition with
contractually specified interfaces and explicit
context dependencies only. A software component
can be deployed independently and is subject to
composition by third party.

4. A Business component represents the software
implementation of an "autonomous" business
concept or business process. It consists of all the
software artifacts necessary to express, implement
and deploy the concept as a reusable element of a
larger business system.

We present all these different definitions to point out
that it is not easy to make a unified definition. Before a
component-based system is designed, a definition of
component has to be agreed upon to set the context.

The software component definition is widely accepted
today, which says that a component is a part of software in
a binary form (i.e. it is not necessary to rebuilt it), with
contractually specified interfaces (i.e. defined API and all
assumptions in which the component can work), A
component can be deployed independently (i.e. it can be
dynamically loaded into the system, or dynamically
replaced). It is a subject to composition by third party (i.e
a component must have a mechanism which makes it
possible to integrated it in the system without modifying
and rebuilding it).

V. Interacting with Components

Components express themselves through interfaces. An
interface is the connection to the user that will interact
with a component. If an interface is changed the user
needs to know that it has changed and how to use the new
version of it.

Functions that are exposed to the user are usually called
Application Programmable Interface (API). If there is a
change to the API, the user has to recompile his code as
well. This is not the case in interpretative languages like
Smalltalk or Java, but for compiled languages such as
C/C++.

In an object-oriented world, an interface is a set of the
public methods defined for an object.

Usually the object can be manipulated only through its
interface. In C++ the user has to recompile the code only
when an interface, referred from the code, is changed.
There is also a drawback that the user of the class must
use the same programming language throughout the whole
development.

Separating the interface from the implementation is a
way to avoid this tight coupling. This kind of separation is
made with binary interfaces as done in CORBA and COM,
the component models described in the next section.
Binary interfaces are defined in an interface definition
language (IDL) and an IDL compiler, which generates
stubs and proxies, makes the applications location
transparent.

An example of using the same interface but different
implementations is shown in Figure 4:

Fig. 4. The possible combinations between old and new
clients and their components.

By a separation between the interface and the
implementation it is possible to run new clients together
with old server components or vice versa. The word
processor is called the client and the dictionary is called
the server since it provides functionality to the word
processor. It is possible to upgrade to new versions of the

Database

Tier Boundary

Business
Logic

Database
Driver

Business
Logic

Business
Logic

Presentation
Logic

Data Layer

Business Layer

Tier Boundary

Presentation Layer

Database

Tier BoundaryTier Boundary

Business
Logic

Database
Driver

Business
Logic

Business
Logic

Presentation
Logic

Data Layer

Business Layer

Tier BoundaryTier Boundary

Presentation Layer

Word processor
version 1
Word processor
version 1

Word processor
version 2
Word processor
version 2

Dictionary
version 2
Dictionary
version 2

ISpellCheck

Dictionary
version 1
Dictionary
version 1

ISpellCheck
Word processor
version 1
Word processor
version 1

Word processor
version 2
Word processor
version 2

Dictionary
version 2
Dictionary
version 2

ISpellCheck

Dictionary
version 1
Dictionary
version 1

ISpellCheck

Client

Server
Application

Object

COM

Runtime

word processor and dictionary component independent of
each other.

Even if an interface has not been changed, its
implementation can be changed. This increases flexibility
of possible updates, but also introduces a possibility of
having uncontrolled effects. For this reason, it is of
interest to know if the implementation has been changed.

VI. Component Models

The component models define the standards forms and
standard interfaces between the components. They make it
possible to components to being deployed and to
communicate. The communication can be established
between components on the same node (computer) or
between different nodes. For the later we are talkies about
component distribution.

Component models are the most important step to lift
the component software off the ground. If components are
developed independent of each other then it is highly
unlikely that components developed under such conditions
are able to cooperate usefully. The primary goal of
component technology, independent deployment and
assembly of components is not achieved.

A component model supports components by forcing
them to conform to certain standards and allows instances
of these components to cooperate with other components
in this model.

The three major component models are used today with
success. These three are COM, JavaBeans, and CORBA
and all of them have different levels of service for the
application developer. Table. 1 shows the corresponding
technologies for each level of service.

 COM Java CORBA
Basic
component
s

COM
component
s

JavaBeans CORBA objects

Distributio
n

DCOM RMI CORBA IIOP

Enterprise
services

COM+ EJB/J2EE CORBAServices

Table. 1. The different technologies used at different

levels of service
Distribution is provided with a communication protocol

that has been added to the basic component model. COM
uses Distributed COM (DCOM), Java has Remote Method
Invocation (RMI) and CORBA uses Internet Inter-ORB
Protocol (IIOP). Support for business components can be
found in COM+, EJB and CORBA Services.

There is a difference between systems that have their
components tightly coupled together and those that have
loose references between the components. In case of
loose references the components connect to their fellow
components when needed and not in the build phase. For
these kinds of systems, it is much more a challenge to

determine what the system will look like when it is
started. To be able to predict the behavior we need to
know which components will cooperate. All three models
presented in this section are loosely coupled with support
for dynamic invocation and lookup.

Component Object Model (COM)

The Component Object Model provides a model for
designing components that have multiple interfaces with
dynamic binding to other components. COM is an open
standard, which has been implemented on many different
platforms, but the main platform is of course Microsoft
Windows for which it was first developed. Components
expose themselves through interfaces and only interfaces.
The interfaces are binary which makes it possible to
implement the component in a variety of programming
languages such as C++, Visual Basic and Java. A COM
component can implement and expose multiple interfaces.
A client uses COM to locate the server components and
then it queries for the wanted interfaces.

Fig. 5. COM establishes the connection between client and
server.

By defining interfaces as unchangeable units, COM
solves the interface versioning problem. Each time a new
version of the interface is created a new interface will be
added instead of changing the older version. A basic COM
rule is that you cannot change an interface when it has
been released. This makes couplings between COM
components very loose and it is easy to upgrade parts of
the system indifferent from each other.

DCOM is the protocol that is used to make COM
location transparent. A client talks to a proxy, which looks
like the server and manages the real communication with
the server.

COM+ is an extension to COM with technologies that
support among others: transactions, directory service,
load balancing and message queuing. Figure 6 shows how
clients can connect, through an Internet Information
Server (IIS) or DCOM, to the business logic, which is
implemented with COM+. The business logic uses
ActiveX Data Objects (ADOs) to access the data in the
databases. Compare this picture with the EJB technologies
to se the similarities.

EJB
Applications

EJB

HTTP
Listener

DBMS

DBMS

DBMS

JSP
Applications

Browser
Client

Rich
Client

HTTP

RMI/IIOP

Servlets

JDBC

JDBC

JDBC

COM
Applications

COM+

IIS

Windows NT

DBMS

ASP
Applications

HTTP

DCOM
ADO

ADO

DBMS

DBMS

Browser
Client

Rich
Client

Fig. 6. COM+ three tiers architecture

Enterprise Java Beans (EJB)

Enterprise Java Beans is a component architecture for
server-side components used to build distributed systems
with multiple clients and servers. A Java Bean is a reusable
component that support persistency and can inter-operate
across all platforms supported by Java. EJB uses Java
Beans but it is a lot more than a component model. EJB
provides support for transactions and security over a
neutral object communication protocol, which gives the
user the benefit to implement the application on top of a
protocol of choice. EJB is part of the Java 2 Platform
Enterprise Edition (J2EE) which includes many other
technologies remote method invocation (RMI), naming
and directory interface (JNDI), database connectivity
(JDBC), Server Pages (JSPs) and Messaging services
(JMS).

Fig. 7 shows the architectural style of EJB used in a
three-tier application. The clients connect to the server
components through either a web server or directly using
remote method invocation (RMI). The server components
that implement the business logic reside within an EJB
container with the support for transactions and security.
The data is stored in databases, which are managed with

some database management service (DBMS) and is
accessed through the data base connectivity component
(JDBC). Java server pages (JSP) or servlets are used when
the thin web clients access the system through the
Internet..

To make a JavaBean an Enterprise bean the JavaBean
has to conform to the specification of EJB by
implementing and expose a few required methods. These
methods allow the EJB container to manage beans in a
uniform way for creation, transactions etc. A client to an
enterprise bean can virtually be anything, for example a
servlet, applet or another enterprise bean. Since enterprise
beans may call each other then a complex bean task might
be divided into smaller tasks and handled by a hierarchy of
beans. This is a powerful way of “divide and conquer”.

There are two different kinds of enterprise beans:
session and entity beans. Session beans live as long as the
client code that calls it. Session beans represent the
business process and are used to implement business
logic, business rules and workflow.

EJB is designed so it can run together with CORBA and
access CORBA objects easily.

Fig. 7. The principal architecture of how EJB is used in a three-tier architecture.

Common Object Request Broker Architecture
(CORBA)

The Common Object Request Broker Architecture
(CORBA) is a standard that has been developed by the
Object Management Group (OMG) in the beginning of the
nineties. The OMG provides industry guidelines and
object management specifications to supply a common
framework for integrating application development.
Primary requirements for these specifications are
reusability, portability and interoperability of object based
software components in a distributed environment.
CORBA is part of the Object Management Architecture
(OMAwhich covers object services, common facilities
and definitions of terms.

Fig. 8. The parts of the Object Management Architecture.

Object services are for instance naming, persistency,
events, transactions and relationships. These can be used
when implementing applications. Common facilities
provide general-purpose services like information, task
and system management. All services and facilities are
specified in IDL. An object request broker (ORB)
provides the basic mechanism for transparently making
requests and receiving responses from objects located
locally or remotely. Requests can be made through the
ORB without regard to the service location or
implementation. Objects publish their interfaces using the
Interface Definition Language (IDL) as defined in the
CORBA specification.

Fig. 9. Clients communicate with RPC transparently with

the server.
Objects are stored in an interface repository where they

can be found and activated on demand from the clients.
The stubs and proxies are generated from the IDL
specification that each object provides for its interfaces.

VII. Commercial Off The Shelf

Commercial Off The Shelf (COTS) is a common way to
gain functionality without having to write everything
ourselves. Components are sometimes wrongly

referenced as COTS, Certainly, components might be
COTS but it does not mean that COTS have to be
components. A vendor sells COTS products as unmodified
units that can be used for development.

When a system is designed with third-party components
then it is common to talk about commercial off the shelf
(COTS) components. Development with COTS has many
advantages:

• Functionality is instantly accessible for the
developer.

• The components may be less costly compared to
in-house development.

• The component vendor may be an expert in the
particular area of the component functionality.

However, along with all the advantages, there are also
several disadvantages:
• A COTS component has often only a brief

description of its functionality.
• The component carries no guarantee of adequate

testing.
• There are no or only a limited description of the

quality of the component.
• The developer does not have access to the source

code of the component.
Knowing all the disadvantages, buying COTS

components is not an easy task. COTS components are
typically “black boxes” with their source code not
available. Developers have to identify certain properties
of COTS components to properly integrate them with a
system under development. A property of a component is
its characteristic that the developer needs to understand to
do the integration. Examples of component properties are
functionality, limitations, correctness, preconditions
robustness and performance. To get to know what the
properties are, extensive testing of the component has to
be carried out. There are various approaches to do this
kind of testing e.g. Random, “black-box” and “white-box”
test generators.

COTS components can be categorized in groups where
the functionality is the same. If there are more than one
vendor of a component it is beneficial to design the
system for component exchangeability. An architecture
that supports the exchange of component with the same
functionality is more stable if the support for a used
component is dropped, since a new one can replace the
obsolete one.

VIII. Outsourcing

One way of getting external components is to buy them
as COTS. Another way is place the development into
another development organization. This process is
designated as outsourcing. There are many similarities
between COST and outsourcing – in both cases software is
developed somewhere else. The main difference is the
possibility to control the development process in the case
of outsourcing.

There are many reasons why it can be profitable for a
company to outsource a part of its development. The two
main factors which motivates the companies to do
outsourcing are: Time to market and reduced costs. By
outsourcing, the development process time will usually
decrease as the development can be done in parallel.

Object Request Broker

Object Services

Application
Objects

Common
Facilities

Application Object

Client

Proxy Stub

RPC

Another strong motive is the cost reduction. If another
company can develop software for significantly less costs
it is profitable for the first company to outsource that
development to that company. Very often the
subcontracting companies are placed in developing
countries where software developer are paid much less,
but have high competence.

The experience has shown that outsourcing is not as
simple as it can be expected. There are numbers of
problems which can raise, and which can have political,
economical and cultural origins. Very often
communication between the partners is not sufficiently
good, or the expectations from both sides are different. In
many cases there are problems in insufficiently defined
requirements or specifications, not enough precisely
defined deliverables, bad calculated costs, hidden costs,
and so on.

For this reason the contract (also called subcontract) is
crucial for the successful outsourcing. The contract must
clearly specify the interface between the partners, the
inputs and outputs from both sides. Even the development
process may be a part of a subcontract.

Outsourcing of development only is not enough. The
improvement, adoption, and in general maintenance should
also be a part of the contract since there exists no
software that does not require maintenance.

IX. Component Based Development Process

This section describes the differences of how to
develop components and how to develop with
components. It is important to do this distinction to make
it clear how to use different methods. The developer of a
component has to think about how to make the component
open for integration with other components and not so
much about how to integrate other components.

Certain advise for the developers and users of
components are given in this section. As a result of
studying different aspects of component-based systems,
we provide a list of advises for this area. This section is
divided into two parts, one for the component developer

and one for the component integrator (the user of
components).

Development Cycle

The development cycle of a component-based system is
different from the traditional ones. For instance the
waterfall, iterative, spiral and prototype based models.

Development with components differs from traditional

development. There is a new development process for
CBSE and it differs from the traditional waterfall model.
Figure 10 shows a comparison between the two different
development processes. Gathering requirements and
design in the waterfall process corresponds to finding and
selecting components. Implementation, test and release
correspond to create, adapt, deploy and replace.

The different steps in the component development

process are:
1. Finding components that may be used in the product.

Here all possible components are listed for further
investigation.

2. Select the components that fit the requirements of
the product.

3. Create a proprietary component that will be used in
the product. We do not have to find these types of
components since we develop them ourselves.

4. Adapt the selected components so that they suit the
existing component model or requirement
specification. Some component needs more
wrapping than others.

5. Compose or deploy the product. This is done with a
framework or infrastructure for components.

6. Replace old versions of the product with new ones.
This is also called maintaining the product. There
might be bugs that have been fixed or new
functionality added.

All the different steps have different technologies to
support the developers.

Fig. 10. The development cycle compared to the waterfall model

1 Find 2 Select 4 Adapt

3 Create

5 Deploy 6 Replace

Requirements Design Implementation Test Release

Developing Components

When developing and designing components, we
recommend the following advises:

• Always document all the features of the
component. Do not restrict the documentation to
functionality and document all other properties as
well. E.g. Performance, resource consumption,
limitations, robustness, etc.

• Provide test-suites with the component so that the
customer can test your component in their
environment. It is extremely important to test an
imported component in the environment it will
operate. Remember the Ariane 5 rocket explosion
that was due to a change in the environment
requirements and not in the software design.

• Provide source code if possible, it might help the
application developer to understand the semantics
of your component.

• Make the components so they easily integrate into
existing component frameworks. Describe what
frameworks the component work with and describe
how to make it work with other frameworks as
well.

• Components need to be carefully generalized to
enable reuse in a variety of contexts. However,
solving a general problem rather than a specific one
takes more work.

Make sure that the application developers can adopt the
component to their requirements. This can be done with
sink interfaces where the user adds its own interface to
the component so that the component can use that
interface to communicate with the user.

Developing with Components

Before acting and taking decisions on how to build
applications from components, we recommend that the
following questions and thoughts be considered:

• The time your product is off the market can be
greater than the time saved getting your product to
market if your component supplier drops the
product. Can you accept this risk?

• The functionality provided by the component may
not remain precisely what you need over time,
forcing you to create wrappers that get around this.
Things are getting even worse if you are not getting
support from the vendor.

• The functionality of the component may be more
than you actually need, requiring you to write
restrictive wrappers for functionality that you do
not want to be used. Use of unintended
functionality may cause problems.

• If you succeed to get the source code from the
component vendor, can you really maintain it if
something goes wrong?

• A malfunction in the component may cause an
error in your product. Are willing to have a
certification strategy for this. Your customer wants
your product to work without having to think about
your internal design. You have to provide the fix of
the problem even though the error is in the third-
party component.

• If you ask the component vendor to customize the
component for you, are you aware that you now are
strongly dependent on the vendor? The vendor can
charge you anything they please.

We have the recommendations to the component
integrator:

• Make a thorough evaluation of the component
suppliers. Are they suitable as a supplier? Do they
have good quality products and support? Check
their economy so they don’t easily bankrupt.

• Put a lot of effort into the legal agreement with the
supplier. This may save you if the supplier goes out
of business or if they refuse to support you.

• Create good and long term relations with the
supplier for better cooperation.

• Limit the number of partners and suppliers. To
many will increase the costs and the dependencies.

• Buy “big” components where the profit is greatest.
The management of to many small components can
consume the profit.

• Adjust the development process to a component-
based process.

• Have key persons that are assigned to supervise the
component market. They shall keep track of new
components and trends.

• Try to get access to the source code.
• Test the components in your environment.
• All these advices do not give a complete solution

to all the problems that have to be dealt with but
they state that developing for and with components
has to be carried out carefully with a second
thought.

X. Example of a standardization of components –
OPC

The OPC Specification is a non-proprietary technical
specification that defines a set of standard interfaces
based upon Microsoft’s OLE/COM technology. OPC
consists of a standard set of interfaces, properties, and
methods for use in process-control and manufacturing-
automation applications. The Active X/COM technologies
define how individual software components can interact
and share data. OPC provides a common interface for
communicating with diverse process-control devices,
regardless of the controlling software or devices in the
process. The application of the OPC standard interface
makes possible interoperability between
automation/control applications, field systems/devices
and business/office applications.

The use of microprocessors has proliferated in
manufacturing plants, and they often do not work together.
Application software should readily communicate with
digital plant-floor devices as well as other applications,
but this is not often the case. Making these systems work
together is the most pressing need of process
manufacturers. The problem has become more acute than
network connectivity, diverse operating systems, and not-
so-open “open systems” that are supposed to facilitate
interoperability. A key reason for this problem is that
interfaces are not standard. Proprietary systems that do
not communicate among each other are fairly common.
Hardware and software choices for process and industrial
manufacturers are sharply reduced because their

application suppliers provide limited connectivity. In the
absence of any standard, vendors have developed
proprietary hardware and software solutions. All process-
control and information systems on the market today have
proprietary techniques, interfaces, and APIs (Application
Programming Interfaces) in order to access the
information that they contain.

Fig. 11. Integration of different devices with different

proprietary software
The cost of integrating the different systems and the

long-term maintenance and support of an integrated
environment can be significant. Custom drivers and
interfaces can be written, but the variety increases rapidly
because of the thousands of different types of control
devices and software packages that need to communicate.

The solution is having a standard that provides real plug-
and-play software technology for process control and
factory automation where every system, every device and
every driver can freely connect and communicate.

Fig. 12. Standardized API between applications (clients) and

devices (OPC servers)
Having such a standard makes possible the prospect of

totally seamless, truly open and easy enterprise-wide
communications between systems and devices, from plant
floor to MIS (Management Information System) and
beyond. The name of that standard is OPC.

An OPC Client can connect to OPC Servers provided by
one or more vendors. OPC Servers may be provided by
different vendors. Vendor supplied code determines the
devices and data to which each server has access, the data
names, and the details about how the server physically
accesses that data.

Fig. 13. OPC Client/Server Relationship

At a high level, an OPC DataAccess Server is
comprised of several objects: the server, the group, and
the item. The OPC server object maintains information
about the server and serves as a container for OPC group
objects. The OPC group object maintains information
about itself and provides the mechanism for containing
and logically organizing OPC items.

Fig. 14. Group/Item Relationship

The OPC Groups provide a way for clients to organize
data. There are two types of groups, public and local (or
‘private’). Public is for sharing across multiple clients,
local is local to a client

Within each Group the client can define one or more
OPC Items.

The OPC Items represent connections to data sources
within the server. An OPC Item, from the custom
interface perspective, is not accessible as an object by an
OPC Client. Therefore, there is no external interface
defined for an OPC Item. All access to OPC Items is via
an OPC Group object that “contains” the OPC item, or
simply where the OPC Item is defined.

OPC specifies standard interface supporting typical
automation and control activities:.
• OPC Alarm and Event Handling

These interfaces provide the mechanisms for OPC
Clients to be notified of the occurrence of specified
events and alarm conditions. They also provide
services which allow OPC Clients to determine the
events and conditions supported by an OPC Server,
and to obtain their current status.
Within OPC, an alarm is an abnormal condition and
is thus a special case of a condition. A condition is a
named state of the OPC Event Server, or of one of
its contained objects, which is of interest to its OPC
Clients.
The IOPCEventServer interface provides methods
enabling the OPC Client to:
­ Determine the types of events which the OPC

Server supports.
­ Enter subscriptions to specified events, so that

OPC Clients can receive notifications of their
occurrences. Filters may be used to define a
subset of desired events.

­ Access and manipulate conditions implemented
by the OPC Server.

• OPC Historical Data Access

There are several types of Historian servers. Some
key types supported by this specification are:
­ Simple Trend data servers. These servers

provided little else then simple raw data
storage. (Data would typically be the types of

PC with
software
Package A

PLC with
proprietary
software

DCS with
proprietary
software

Device A Device B Device C

OPC
Client A

OPC
Client B

OPC
Client C

OPC
Server A

OPC
Server B

OPC
Server C

OPC Client 1
OPC Server
Vendor A

OPC Server
Vendor B

OPC Client 2

Group A

Item 1

Item 2

Item 3

data available from an OPC Data Access server,
usually provided in the form of a tuple [Time
Value & Quality])

­ Complex data compression and analysis
servers. These servers provide data
compression as well as raw data storage. They
are capable of providing summary data or data
analysis functions, such as average values,
minimums and maximums etc. They can
support data updates and history of the updates.
They can support storage of annotations along
with the actual historical data storage.

Utilizing OPC

Although OPC is primarily designed for accessing data
from a networked server, OPC interfaces can be used in
many places within an application. At the lowest level they
can get raw data from the physical devices into a SCADA
or DCS, or from the SCADA or DCS system into the
application.. The architecture and design makes it possible
to construct an OPC Server which allows a client
application to access data from many OPC Servers
provided by many different OPC vendors running on
different nodes via a single object.

Fig. 15. OPC Client/Server Relationship

OPC specifications always contain two sets of

interfaces; Custom Interfaces and Automation interfaces.
The OPC Specification specifies COM interfaces (what

the interfaces are), not the implementation (not the how
of the implementation) of those interfaces. It specifies
the behavior that the interfaces are expected to provide to
the client applications that use them.

Included are descriptions of architectures and
interfaces that seemed most appropriate for those
architectures. Like all COM implementations, the
architecture of OPC is a client-server model where the
OPC Server component provides an interface to the OPC
objects and manages them.

There are several unique considerations in
implementing an OPC Server. The main issue is the
frequency of data transfer over non-sharable

communications paths to physical devices or other data
bases. Thus, we expect that OPC Servers will either be a
local or remote EXE which includes code that is
responsible for efficient data collection from a physical
device or a data base.

An OPC client application communicates to an OPC
server through the specified custom and automation
interfaces. OPC servers must implement the custom
interface, and optionally may implement the automation
interface. In some cases the OPC Foundation provides a
standard automation interface wrapper. This
“wrapperDLL” can be used for any vendor-specific
custom-server.

Fig. 16. The OPC Interfaces

Benefits

Benefits to Vendors:
• Time Savings (Eliminate Driver Development) -

OPC server vendors develop one version of their
driver that communicates with all OPC client
applications.

• Increased Connectivity and Interoperability -
Products will plug together more easily. I/O
manufacturers will be able to more readily sell their
hardware (one OPC I/O server will replace the need
for many specific drivers that can talk to various
products)..

• Focus on Value-Added Activities -
Software vendors can focus efforts on adding value
to their core SCADA, HMI, and Batch product
offerings. It also allows third-party application
vendors (such as specialized vertical market
packages, advanced alarm handling, and statistical
analysis) to work more easily with data from other
vendor’s products.

Benefits to Users:
• Time Reduction through Lower System Integration

Costs -
OPC eliminates the need for costly custom software
integration. OPC provides plug-and-play software
and hardware components from a variety of
automation software, device, and system suppliers.
Process and manufacturing companies can easily
integrate applications into corporate-wide
automation and business systems.

Application

OPC Server

OPC I/F

OPC I/F

SCADA system

Physical I/F

Physical I/O

Physical I/F

Pyysical I/O

C++ Application VB Application

OPC Custom I/F

OPC

Server

OPC Automation I/F

Vendor
Specific
logic

• Ease of Connectivity and Interoperability of Custom
Applications -
Customers may develop simple Microsoft Visual
Basic applications to exchange data with any OPC
server or to use their favorite OPC client application
to exchange data with any OPC server. The secondary
benefit is that client applications, with full access to
the plant floor, can be written with little or no
knowledge of the industrial network. Standardization
has provided the stability necessary to encourage
applications from a much wider range of software
vendors and service providers.

• Eliminate Proprietary Lock of Legacy Vendors -
OPC client applications can focus their development
on the application functionality, rather than device
connectivity. Previously, customers were limited to
choosing among the client applications that
supported communication to the devices in their
installation. With OPC, customers are no longer
bound to a single vendor. If a plant has a legacy
installation, End-Users do not need to stick with the
same vendor.

• Freedom of Choice to Pick “Best in Breed
Products”-
With the interoperability OPC provides, End-Users
can choose software or hardware from different
vendors and know that their components will
seamlessly work with one another. In return, vendors
will need to become more competitive to maintain
their customers’ loyalty, benefiting End-Users.

• Access to Data by Anyone in the Automation
Hierarchy -
Another benefit of OPC is access to process-related
data at every level of the enterprise. No longer is this
strategic data restricted to the plant floor. Visual
Basic access via the OPC Data Access Specification
permits plant data to flow upstream to the business
applications.

• Ease of Use — Auto-Configuration of Tags -
Effectively designed OPC components are also very
easy to use, requiring very little configuration. OPC
servers do not require the user to configure tags at
all; the server can automate this configuration,
making an OPC installation a turnkey solution.

• Reduced Troubleshooting and Maintenance -
Cost OPC offers a standard that once learned
minimizes the need to be an expert on every
protocol.

• Add/Delete without System Shutdown -
Items can be added and deleted without shutting
down the server. This is far superior to many
proprietary drivers that require the driver be stopped
before points can be added.

• Synchronous and Asynchronous Device Writes -
One of the benefits of using standard technology like
COM, DCOM, and ActiveX is that current OPC
clients will not be obsolete when new functionality
is added to the server. It’s very easy to extend the
OPC server by adding new COM interfaces while
keeping all the existing COM interfaces backward
compatible.

XI. ABB Industrial IT – an example of
Component-based systems

ABB has a long tradition as a provider of reliable Open
Control System (OCS) solutions. Earlier OCS systems
developed by ABB were good at keeping track of process
objects, such as signals, motors and sensors, but less good
at integrating non-process information. ABB has
developed a new platform based on Microsoft Windows
COM technology, that solves this problem. The platform,
called Industrial IT, is flexible and allows integration of
information from many different sources.
According to ABB, information is an asset. Keeping track
of your information is keeping track of your assets. The
vision is to make useful information available on-line,
“just one mouse click away”. By bundling the technical
KNOW-HOW with Information Technology (IT)
Software, ABB hopes to bridge the gap between the
traditional desktop and the Industrial process. The heart of
this system is Aspect Directory. Aspect directory is an
platform infrastructure that enables integrations of
different types of information. In Aspect Directory, all
information is stored as objects. An object is called
Aspect Object™, and gets its functionality from small
plug-in objects called Aspects. Aspect Directory stores
information in a hierarchical structure. Aspect Directory
is actually Multi-Structure, meaning that an object can
exist in several structures at the same time.
An Aspect object is not exactly the same as a classical
object in OO design, but rather on a higher abstraction
level. It represents an object in the real world, but from
design point of view it is more a framework than an object
as it contains no functionality by itself. The functionality
is added by adding Aspects to the object. The main
purpose of the object is to act as a container for Aspects.
An Aspect Object does not encapsulate Aspects
(functionality) as in traditional OO, it just groups them
together in a logically way.

Fig. 17. Aspect Object Structure
The main feature of Aspect Objects is that Aspects can

be any application or component (Com-based) that
provided specified interface. Standard tools or third party
applications or tools can be integrated as aspects. An
aspect can be an OPC server providing process control
data, or an MS Office document related to the object. In
this way it is possible to integrate and view all aspects
(views) of an object and make them easy accessible.

In Aspect Directory, objects are arranged hierarchal in
one or more structures. An object can be identified using
a “path” but the recommended method that is by using the
OID (Object IDentifier), which is guaranteed to be unique.

Relationships are arranged using Structure Aspects. The
aspects are connected to other aspects of the same
Category in a parent-child relationship. An object can have

Object Aspect 1
Aspect 2
Aspect 3
Aspect 4

several Structure Aspects and therefore exist in multiple
structures at the same time.

Function
Structure

Location
Structure

Fig. 18. Objects can exist in multiple structures at the same
time

By using this concept ABB has a goal to:
• Easy integrate process and office information.
• Easy integrate new parts in the system, both

developed internally or third parts products.
• Easy to improve the functionality of specific

parts without rebuilding or re-integrating the
entire system;

• Achieve a common programming and user
interface

• Improve the quality and added value for the
customers

• Decrease the maintenance costs.

XII. Business Opportunities for Small Countries

The modern component-based technology and the
Internet have changed radically the software development
process. Twenty and even ten years ago, only large
companies could produce large software. The equipment
was expensive, the development environment was
expensive, and software was strictly connected to the
equipment. Large software consisted of monolith large
applications, which were difficult to maintain and
improve. For all these reasons it was very difficult for
smaller companies to compete with large companies. A
similar situation was valid for smaller and economically
weaker countries. It was impossible to compete with
strong countries, simple because the technology was too
expensive.

By emerge of PC-technology two factors had crucial
impact to changes in the software production. The
hardware production was separated from the software
development. Hardware became standardized. The barrier
monopoly of software/hardware development has been
broken. With the standardization of hardware the
competition opportunity has dramatically increased, which
had direct impact on the prices. The cheaper hardware has
opened possibilities for competition within the software
development. The result was much cheaper software. Now
a private person can afford the same computer
configuration as in office.

However, the software development remained complex
and it required more and more efforts. The reason for that
is that requirements become more complex and that the

domain of computer use has dramatically increased. Also
the demands on integration of different types of
applications and systems became more important. The
system have turned from closed and dedicated to open,
and dedicated parts integrated with the general-purpose
parts. In a way a paradox has happened – hardware is
getting cheaper, development tools cheaper, but the
software development becomes more expensive. In a
system development that exist of both hardware and
software, the costs for the software development become
dominant (one example, the costs of robots development
at ABB, Sweden is 90% for the software development and
10% for the hardware development. This means that the
intellectual property becomes dominant. The production
becomes less significant and often is placed in countries
with cheaper working power.

The extensive exploitation of Internet has consequences
such as easy access to information and easy access to
software. The competition becomes much harder, but this
time it is the knowledge that matters.

The component-based approach, in combination with
Internet will revolutionary change the software
development process. Everything can be found on the
Internet today. In the component-based approach it is
much easier to use a general-purpose component already
developed by someone else, than develop it itself. At the
same time it is much simpler to advertise the products and
place them on the market. The expensive agents and
advertising, the direct contacts are still important, but not
the only way to succeed on the market. A good and fast
web side is a big advantage.

This new paradigm of software development is still
under the process of change change, there is a chance for
new actors to appear on the scene. Not only new
companies, but also new countries or new regions. To
succeed the following prerequisites must exist (condition
sine qua non):

• Communication and Internet infrastructure
• Knowledge
• Worldwide cultural and economic integration

This is not easy to achieve. The building up of the
infrastructure requires systematic approach and strategic
decisions from the state and the government. Today, this
infrastructure is as important as the classic infrastructure
(such as roads), and those countries which will neglect
this, will severe servility in the nearest future.

Building up knowledge is a much longer process. It

must happen on two levels – high competence of
professionals and a broad general knowledge of “ordinary”
citizens. This means that the education strategy must have
two tracks – the high level education with the research
academy education in focus, and the education systems at
primary and secondary schools.

The integration with high development countries is
possible achieve by opening the borders, participate in the
common projects and any kind of events, and finally the
importance of a knowing English is crucial.

Many smaller countries have today a chance to join the
high development countries, and it is important not to
miss that chance, because it can happen that in the future
there will be no more chances.

Exists in both
structures

XIII. CBSE references

List of CBSE resources:
Component Source

 Technology: Java, EJB, COM, VB, C++
 Business model: commerical offers
 http://www.componentsource.com/

Component Registry
 Technology: mainly Java, some COM
 Business model: commercial and open source
 http://www.componentregistry.com/

Xtras
 Technology: VB, ASP
 Business model: commercial
 http://www.xtras.com/

The Code Project
 Technology: .NET, C#, COM, C++
 Business model: developer code exchange, tutorials,

tips&tricks

 http:/www.codeproject.com
Mabry

 Technology: COM/ActiveX, .NET
 Business model: products of one commercial vendor
 http://www.mabry.com/

Microsoft
 Technologies: COM, ActiveX
 Business model: commercial, 3rd party

msdn.microsoft.com/componentresources/default.asp

Objectools
 Technologies: Java, Corba,
 Business model: commercial, 3rd party
 http://www.objectools.com/

Flashline
 Technologies: J2EE, Java, [COM]
 Business model: "Components by Design"
 http://www.flashline.com

Thunderclap newsletter
 Quarterly newsletter with, among other things,

 technical articles on COM,.NET, and XML
 programming

 http://www.rollthunder.com/newslv3n1.htm

CBDi forum
 Special interest group on CBSE
 free weekly newsletter (free bronze membership)
 http://www.cbdiforum.com

Component-Based Development Headquarter
 Articles on CBSE and related SW engineering issues
 http://www.cbd-hq.com/

Clipcode
Tutorials and samples for programming using
Microsoft technologies
http://www.clipcode.com

Flashline

Structured collection of white papers on CBSE
from other sources

 http://www.flashline.com

Component/reuse conferences

8th Ann. IEEE Int?l Conf. & Workshop on the Eng. of
Computer-Based Systems, ECBS, 2001
Washington, 17-20 Apr;
http://www.dcs.napier.ac.uk/ecbs/ecbs_call_for_papers.ht
m

4th ICSE Workshop on Component-Based Software
Engineering (held as part of the 23rd ICSE, International
Conference on Software Engineering)
 Toronto, Canada, May, 14-15, 2001
http://www.sei.cmu.edu/pacc/workshop_call.html

7th IEEE Int?l Conf. on Eng. of Complex Computer
Systems, Skövde, Sweden, 11-13 June
http://www.elet.polimi.it/iceccs2001.

Fifth IASTED International Conference on Software
Engineering and Applications (SEA 2001)
Anaheim, California, USA, August 21-24, 2001;
submission deadline
http://www.iasted.com/conferences/2001/anaheim/sea.ht
m

EUROMICRO Workshop on Component-Based Software
Engineering (as part of 27th EUROMICRO
CONFERENCE)
Warsaw, Poland, September 4-6, 200; submission
deadline: March 2, 2001
http://www.idt.mdh.se/ecbse/

Third International Conference on Generative and
Component-Based Software Engineering GCSE'2001
Erfurt, Germany; September 9-13, 2001
http://gcse2001.cs.rug.nl

Fourth International Conference on the Unified Modeling
Language, Toronto, Ontario, Canada, October 1-5, 200;
http://www.cs.toronto.edu/uml2001/

