
ON REAL-TIME CONTROL TASKS SCHEDULABILITY

P. Marti*, R. Villa*, J.M. Fuertes*, G. Fohler†

* Dep. of Automatic Control, Universitat Politècnica de Catalunya
Pau Gargallo 5, 08028 Barcelona, SPAIN

Ph.: 34-3-4011679, Fax: 34-3-4017045, Email: {pmarti,villa,pepf}@esaii.upc.es

† Dept. of Computer Engineering, Mälardalen Högskola
PO Box 883, SE-721 23 Västerås, SWEDEN

Ph: +46 21 103158, Fax: +46 21 10 31 10, Email: gerhard.fohler@mdh.se

Keywords: Algorithms and Software for Real-time
Control, Scheduling, Sampled Data Systems, Time
Varying and Periodic Systems

Abstract

In general, characteristics of classical control theory and
properties of real-time scheduling algorithms may cause
unexpected control system responses in the implementation
of real-time computer-controlled systems. Revising real-
time scheduling properties, we analyse which are the main
timing problems that current scheduling algorithms may
introduce in the execution of control loops. Next, we
categorise those timing problems, that is, jitters on task-
instances executions, in a control context. Afterwards, we
show, by simulations, different types of control system
performance degradation that these jitters may cause.
Finally, we propose possible solutions that solves this
degradation, based on irregular sampling discrete-time
system models with varying time delays.

1 Introduction

Many control applications constitute real-time systems due
to their strict timing constraints. Therefore, when
implementing real-time computer controlled systems, we
need to integrate control and real-time disciplines.
Nevertheless, [13] has pointed out that there is a gap
between the above disciplines due to their different
theoretical and practical backgrounds when dealing with
real-time control systems

The usual way of building a real-time computer-controlled
system differentiates two separate stages: first, control
design and then, its computer implementation. This staged
procedure can lead to implementations that don’t fulfil the
stringent timing constraints that control applications
require. On one hand, it is known that control theory
assumes a highly deterministic timing of an

implementation [5]. On the other hand, real-time
scheduling algorithms introduce jitters in task-instance
execution. This contradictory situation, jitters on task-
instances execution vs. deterministic timing needs of an
implementation, leads to final implementations that can
suffer degradation in the control system performance and
even lead to instability in the system.

A starting point for studying computer-controlled systems
and for trying to overcome the gap between control and
real-time disciplines is analysing the effects of real-time
scheduling methods on control systems performance when
real-time tasks are executing control loops. To do that, we
firstly revise which are the time requirements imposed by
control theory that control applications should meet. Then,
we examine real-time scheduling properties to underline
the main types of jitter that can appear in task- instances
executions. Afterwards, by executing control loops through
real-time tasks, we categorise these jitters in a control
scenario. Next, we show by simulations, the degrading
effects of these jitters have in the control performance of
real-time computer-controlled systems.

In the final part of this paper, we propose control-based
solutions that solve the control degradation introduced by
jitters. We present a method based on accepting these
jitters in the control design, using irregular sampling
discrete time systems models with varying time delays.

This paper is structured as follows: in section 2, we revise
relevant antecedents related to our work. In section 3, we
give an overview on control loop timing analysis. Section 4
examines which real-time scheduling properties can
introduce jitter on task-instance execution and section 5
characterises these jitters in a control scenario. Section 6
shows, using two examples, the effects of the applicability
of real-time scheduling methods on the computer-
controlled system performance and presents control-based
solutions that solve the control degradation caused by
jitters. Finally, we present conclusions and future work in
section 7.

2 Related work
Control theory and real-time scheduling theory have been
relatively independent research areas. Recently, work has
been presented in literature, which addresses important
issues in real-time control systems. [10] discusses some
problems that can be found in real-time control, [3] gives
an state-of-the-art on control systems, and scheduling and
[13] revises fundamental aspects for implementing real-
time control applications in distributed control systems,
and studies mono-rate and multi-rate control systems and
scheduling issues. [9] outlines the requirements of a real-
time scheduling method to be applied in computer-
controlled systems.

Specific scheduling-based solutions focusing on the jitter
problem and its degrading effects can be found in [2,6].
However, in these works, jitters are not completely
eliminated.

Recently, some works have treated deficiencies in the
computer system implementation of the control system
with respect to time-variations and time-restrictions. [15,
16] investigate the effects of time varying delays on control
system stability and performance. It is shown that time
varying delays can cause instability and deteriorate
performance. In [11, 15] an interpretation of time varying
delays as computer induced-disturbances is given.

3 Control loop timing analysis
A control system has basically three main subsystems:
sensory system, controller system and actuator system
(Figure 1). In a distributed control system, each of these
subsystems can be physically divided into separate units.

Figure 1. Conceptual control system

The general functionality of control systems can be
described as follows: firstly, the sensory system collects
data from the process to be controlled. Secondly, the
control system, by means of a control law, processes this
data and derives the needed action. Finally, the actuator
system performs the action on the process. At the design
stage, controllers are designed according to process
dynamics and control performance specified requirements.
Two different design approaches can be used: discrete-time
controller design or discretization of a continuous-time
controller design.

Discrete-time control theory considers the system through
the values of the system inputs and outputs at the sampling
instances. To do this, a sampled version of the continuous
system model, that will be sampling period dependent, is
derived. By doing this, well-known discrete-time system
descriptions are obtained [5] and a wide range of discrete-
time controller design methods can be applied in order to
obtain the desired discrete-time controller.

Discretization of continuous-time design is to design the
controller in the continuous time domain, and then, to
approximate this design by an implementation (computer-
based controller) through fast sampling.

At the end, in both cases, the discrete-time controller is a
control computation algorithm to be executed at every
sampling period h. Moreover, equidistant sampling and
actuation instants are assumed. In addition, the control
computation is commonly assumed to be instantaneous.

It has to be pointed out that the resulting controller is
characterised by several design parameters that are highly
dependent of the sampling period assumed at the design
stage.

In this paper, we will focus on a control loop computer-
based implementation where the sampling, the control
computation and the actuation are performed in the same
digital computer by the same task. Within the computer
then, we will have a set of tasks sharing the CPU. Some of
these tasks are control tasks, performing sampling, control
computation and actuation in a sequential way.

4 Real-time basic properties
Real-time computing has been widely used in many areas,
playing a key role in technology. There are many
definitions of real-time computing, but the main idea [12]
is that in such computing systems, the correctness of the
system depends not only on the logical results of the
computations but also on the time at which the results are
produced.

Since the early work on real-time scheduling presented in
[8], a wide variety of scheduling algorithms has been
presented to schedule real-time tasks. One common feature
of almost all those scheduling algorithms is that they
introduce jitter on task-instances execution.

Real-time scheduling has provided general-purpose
algorithms that mainly use general task models to express
timing requirements. Control systems have specific timing
requirements that should fit into these task models. Real-
time systems usually assume task periods as fixed timing
constraints. A real-time task τi can be characterised by a
fixed period Ti, a deadline D i and a worst-case computation
time Ci. In real-time scheduling, tasks can suffer jitter in
their instance execution due to the following reasons:

Controller
subystem

Actuator
subsystem

Sensory
subystem

Process

• After a task τi has been released, it has to delay its
exection start because other higher priority tasks are
executing.

• After a task τi has started execution, it can be
preempted by other higher priority tasks or can be
blocked when trying to acces shared resources other
than the CPU.

This means that the start time instants of successive
instances of a control task are not equidistant at run time.
Neither are its successive finishing time instants. Notice
that control systems assume equidistant sampling and
actuation instants in a control system implementation.

For real-time computer-controlled systems, as we said in
the previuis section, each control task-instance will
perform the sampling (S) at the beginning of its execution
and it will perform the actuation (A) at the end of its
execution, after executin the control computation (C). The
tasks model can be seen in figure 2.

Figure 2. Task model

5 Jitter characterisation

With the presented task model for control tasks, to have
not equidistant task-instance start times implies to have
irregular sampling. That is, the separation between
consecutive sampling instants is not constant; it varies
form task-instance execution to task-instance execution.
We call this variability in the sampling instants sampling
jitter and denote it by hk. Therefore, hk is the sampling
interval of the k-instance of a given control task.

In addition, to have not equidistant task-instance finishing
times implies to have irregular actuation. That is, the
separation between consecutive actuation instants is not
constant, which also implies that the separation between
sampling instants and actuation instants vary form task-
instance execution to task-instance execution. We call this
later variability sampling-actuation delays and we denote
it by τk. Therefore, τk is the sampling-actuation delay of the
k-instance of a given control task.

To illustrate this jitter characterisation, assume a control
task that is scheduled with another task using Rate
Monotonic priority assignment [Liu]. The task set
parameters are described in table 1.

Ti Ci Description
τ2 7 2 Control task
τ1 4 2 Task

Table 1. Task set parameters

The set of tasks complies the RM scheuldabiltiy test:

Suppose that the control task period has been chosen after
the appropriate control analysis (T2=7=h) and its deadline
is supposed to be equal to its period. In addition, its
computation time is 2, which means that sampling-
actuation delays should be constant at run time.

The resulting schedule, over the hyperperiod, can be seen
in Figure 3. Notice that some control task-instances have
sampling periods longer or shorter than 7. For example,
control task-instance starting at t=14 will have a sampling
period of 8 (h3) and control task-instance starting at t=2
will have a period of 5 (h 1). In addition, the sampling-
actuation delay, that is supposed to be 2 for all task-
instances, also varies from control task-instance execution
to control task-instance execution. For example, control
task-instance starting at t=7 will have a sampling-actuation
delay of 4 (τ2).

Figure 3. Schedule with sampling jitter and varying
sampling-actuation delays

6 Schedulability and control
In this section, we will show the possible effects that
sampling jitter and varying sampling-actuation delays can
cause on the control system performance. We will show by
simulations, that the jitter presence in control tasks
instances execution will degrade the performance of
system, even causing a critical failure of the system. We
will also show control-based solutions that solve the
control performance degradation caused by jitters.

To do this, we will use two separate examples, the DC
servo problem, controlled by a discretization of a
continuous-time designed PID controller, and the inverted
pendulum problem, controller by a state feedback
controller obtained using pole placement observer design.

Firstly, we consider the servo problem, where the major
goal is following the command signal. Consider the PID
control of a DC servo described by the following
continuous-time transfer function:

time

S C A

τ2

τ1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

h1 h3

τ1

h2 h4

τ2 τ3 τ4

83.0)12(278.0
7
2

4
2 2/1

2

1

≈−<≈+== ∑
=i i

i

T

C
U

)15.0(

1000
)(

+⋅
=

ss
sG

Following the specified requirements to have a percentage
overshoot less that 15%, the PID parameters are tuned at
the following values Kp = 1.8, Ki = 0.1 and Kd = 0.09.
Once the PID controller has been designed in the
continuous-time domain and with the appropriate sampling
period (h=2ms), we obtained its PID discrete
approximation:

We implement the obtained controller as a PID control
task (with sampling period 2ms and execution time 0.2ms),
which we will schedule.

As a second example we consider the inverted pendulum
problem, where the major goal is to maintain the desired
vertical position of the inverted pendulum. The inverted
pendulum process is given by the following simplified
continuous-time state-space description:

Following the closed loop requirements and with the
appropriate sampling period, we designed a discrete-time
state-feedback control law using pole placement observer
design. We implement the obtained controller as a state
feedback control task, which we will schedule.

In the following, simulations will be done using the real-
time control systems simulator presented in [7].

6.1 Single task schedulability impact in control

In this section, we are going to study the schedulability
effects on control performance if the PID control task or
the state feedback control task are executed in isolation on
a CPU.

In both examples, the respective control task is executing
with equidistant sampling and actuation instants, without
any jitter. Therefore, in this case, no degrading effects
appear in the system response

The square pulse response of the DC servo controller by
the PID task can be seen in figure 4, fulfilling the specified
requirements.

Figure 4. DC servo discrete-time system response

The closed loop step transient response of the inverted
pendulum controlled by the state feedback control task can
be seen in figure 5, fulfilling the control requirements.

Figure 5. Inverted pendulum discrete-time system response

6.2 Multiple task schedulability impact in control

Now we are going to study the schedulability effects on the
control performance if the PID control task or the state
feedback control task has to share the CPU with other
tasks. We use RM as a scheduling algorithm and before
running the system, we have verified the schedules
feasibility.

Figure 6 shows the effects of multiple task schedulability
on the DC servo system performance.

Figure 6. DC servo response with jitter degradation

)(
1

0
)(

01

10
tutx

dt
dx

⋅

+⋅

=

[])(01)(txty ⋅=

)()(teKtp p=

))()((
2

)()(htete
hK

htiti i −++−=

))()(()(htete
h

K
td d −−=

)()()()(tdtitptu ++=

)()()(tytrte −=

The system response, which was to track the square pulse
input, suffers important degradation, which drives the
system response out of the specified requirements. This
degradation is caused by two reasons. First, control actions
are calculated using the PID algorithm, where the
parameter h is constant (2ms). However, due to sampling
jitter, at run time, sampling intervals for each PID control
task-instance are not constant anymore. They vary from
1.5ms to 2.5 ms. Second, sampling-actuation delays were
supposed to be constant (0.2ms). However, at run time,
they also vary.

Similarly, figure 7 shows the effects of multiple task
schedulability on the inverted pendulum system
performance.

Figure 7. Inverted pendulum response with jitter
degradation

The system response, which was to keep the vertical
position of the inverted pendulum, goes to instability. This
degradation is cause again due to sampling jitter and
sampling-actuation delays.

A preliminary conclusion it that in the implementation of
computer-controlled systems, real-time scheduling
algorithms and classical control theory cannot be
developed separately because unexpected system
performance may occur. Two main solutions can be
adopted: to use specific scheduling-based algorithms to
minimise jitters, or to accept these jitters in the controller
design and to compensate for the degradation they can
introduce. We adopt the later solution, that is, to accept
jitters that the schedule introduces and to compensate for it
at run time with the appropriate control law
implementation, in what we call the compensation
approach.

6.3 Jitter aware control

The main idea behind the compensation approach, that
was suggested in [14,1,4], is to compensate for the
degradation on the control system response due to
variations from sample to sample. What we propose is to
adopt this technique for both jitters, that is, to adjust at
runtime the controller parameters at each control task-
instance execution to account for both sampling jitter and

sampling-actuation delays. Therefore, at run time,
controller parameters must be updated at each control task-
instance execution according to the actual sampling jitter
(h k) and the sampling-actuation delay (τk). To do that, for
state space models, we can use the following irregular
sampling discrete time system models with varying time
delays:

where

Applying this technique to the DC servo problem, we can
see, in figure 8, the system response if the compensation
approach is used in the PID control task. It is clear that in
the system response performance the previous degradation
due to jitters is eliminated. This elimination is due to the
fact that in this case, at each control task-instance
execution, control actions are calculated according to
actual jitters.

Figure 8. DC servo response with jitter compensation

Applying this technique to the inverted pendulum problem,
we can also see (Figure 9) that in the system response, if
the compensation approach is used in the state feedback
control task, the jitter degradation is eliminated.

Fig. 9. Inverted pendulum response with jitter compensation

)(),()(),()()()(1101 −+ Γ+Γ+Φ= kkkkkkkkk huhhuhhxhhx ττ

kAh
k eh =Φ)(

Bdseh
kkh As

kk ∫
−

=Γ
τ

τ
0

0),(

Bdseeh
k

kk AshA
kk ∫−=Γ

τ
ττ

0

)(
1),(

)()()(kkk hDuhCxhy +=

)()()(kkk hxhLhu −=

∑=
k

kk hh
0

As a conclusion, simulations results show the effectiveness
of this approach. However, a deeper control formalisation
of the models we use is needed, as well as a stability
analysis.

7 Conclusions
In this paper we have identified a gap between real-time
systems and control systems. To deal with computer-
controlled systems that need real-time computing, an
integrated approach must be done in order to avoid
degraded system performance.

We have characterised the real-time scheduling jitters in a
control scenario. We have seen the degrading effects of
task schedulability in the control system response.
Moreover, we have proposed control-based solutions that
solve this degradation by designing controllers that
readjust its parameters at each execution according to
actual jitters.

Future work will focus on the formalisation of the
compensation approach and stability analysis. In addition,
its full applicability in current real-time scheduling
algorithms has to be analysed in detail.

Acknowledgements

The presented research has received support from Spanish
CICYT project ref. DPI2000-1760-C03-01.

References

[1] P. Albertos and J. Salt. “Digital Regulators Redesign
with Irregular Sampling”, 11th IFAC World Congress
(Preprints), vol 8, pp 157-161 (1990)

[2] P. Albertos, A. Crespo, I. Ripoll, M. Vallés and P.
Balbastre. “RT control scheduling to reduce control
performance degrading”, 39th IEEE Conf. on
Decision and Control. Sydney, Australia, December
(2000)

[3] K-E. Årzen, B. Bernhardsson, J. Eker, A. Cervin, K.
Nilsson, P. Persson and L. Sha. “Integrated Control
and Scheduling”, Research report ISSN 0820-5316.
Dept. Automatic Control, Lund Institute of
Technology (1999)

[4] K.-E. Årzen, A. Cervin, J. Eker and L. Sha. “An
Introduction to Control and Scheduling Co-Design”,
39th IEEE Conference on Decision and Control,
Sydney, Australia, December (2000)

[5] K. J. Åström and B. Wittenmark. Computer-
Controlled Systems. Third edition. Prentice Hall.
(1997)

[6] A. Cervin. “Improved Scheduling of Control Tasks”,
Proceedings of the 11th Euromicro Conference on
Real-Time Systems, York, England, June (1999)

[7] J. Eker and A. Cervin. “A Matlab Toolbox for Real-
Time and Control Systems Co-Design”, in Proc. 6th
Int. Conference on Real-Time Computing Systems
and Applications, Hong Kong, China, December
(1999)

[8] C. Liu and J. Layland. “Scheduling Algorithms for
Multiprogramming in a Hard Real-Time
Environment”, J.ACM, 20, 46-61. (1973)

[9] P. Marti, R. Villa, J.M. Fuertes and G. Fohler. “Real
Time Methods Requirements in Distributed Control
Systems”, Procc. 25th IFAC Workshop on Real-Time
Programming, Spain, 101-108 (2000)

[10] J. Nilsson. “Some Topics in Real-Time Control”.
ACC , June 24-26. Philadelphia. (1998)

[11] K. Shin and X. Cui. “Computing Time Delay and its
Effects on Real-Time Control Systems”, IEEE
Transactions on Control Systems Technology. Vol. 3,
N.2, p.218-224 (1996)

[12] J.A. Stankovic. “Misconceptions About Real-Time
Computing: A Serious Problem for Next Generation
Systems”, IEEE Computer . 21(10):10-19 (1988).

[13] M. Törngren. “Fundamentals of Implementing Real-
time Control Applications in Distributed Computer
Systems”, J. of Real-Time Systems, 14, 219-260,
Kluwer Academic Publishers. (1998)

[14] B. Wittenmark and K.J. Åström. "Simple Self-tuning
Controllers". In Unbehauen, Ed. Methods and
Applications in Adaptive Control, number 24 in
Lecture Notes in Control nd Information Sciences, pp
21-29. Springer-Verlag, Berlin, 1980

[15] B. Wittenmark, J. Nilsson and M. Törngren. “Timing
Problems in Real-Time Control Systems: Problem
Formulation”, Proc. Of the American Control
Conference, Seattle, Washington. (1995)

[16] B. Wittenmark, B. Bastian and J. Nilsson “Analysis
of Time Delays in Sinchronous and Asynchronous
Control Loops”. Proc. Of the 37th Conf. On Decision
and Control, Tampa, FL. US. (1998)

