Monitoring Capabilities of Schedulers in
Model-Driven Development of Real-Time Systems

Mehrdad Saadatmand, Mikael Sjodin
Milardalen Real-Time Research Centre (MRTC)
Milardalen University, Visteras, Sweden
{mehrdad.saadatmand, mikael.sjodin} @mdh.se

Abstract—Model-driven development has the potential to
reduce the design complexity of real-time embedded systems
by increasing the abstraction level, enabling analysis at earlier
phases of development, and automatic generation of code from
the models. In this context, capabilities of schedulers as part
of the underlying platform play an important role. They can
affect the complexity of code generators and how the model
is implemented on the platform. Also, the way a scheduler
monitors the timing behaviors of tasks and schedules them can
facilitate the extraction of runtime information. This information
can then be used as feedback to the original model in order
to identify parts of the model that may need to be re-designed
and modified. This is especially important in order to achieve
round-trip support for model-driven development of real-time
systems. In this paper, we describe our work in providing such
monitoring features by introducing a second layer scheduler on
top of the OSE real-time operating system’s scheduler. The goal
is to extend the monitoring capabilities of the scheduler without
modifying the kernel. The approach can also contribute to the
predictability of applications by bringing more awareness to
the scheduler about the type of real-time tasks (i.e., periodic,
sporadic, and aperiodic) that are to be scheduled and the
information that should be monitored and logged for each type.

I. INTRODUCTION

Model-Driven Development (MDD) is a promising ap-
proach to cope with the design complexity of real-time and
embedded systems. It helps to raise the abstraction level
and also perform analysis at earlier phases of development.
Therefore, problems in the design of a system can be identified
before the implementation phase [/1]].

Automatic code generation is also one of the end goals in
model-driven development. In the context of real-time sys-
tems, this includes generating the implementation of periodic,
sporadic and aperiodic tasks. However, most (industrial) Real-
Time Operating Systems (RTOS) such as VxWorks, RTEMS,
RT-Linux, Windows CE, OSE, and also others such as FreeR-
TOS only allow specification of priority for a real-time task.
The definition of different types of real-time tasks (i.e., pe-
riodic, sporadic, and aperiodic) and specification of timing
properties for them including period, deadline, Worst-Case
Execution Time (WCET), etc. are not explicitly supported in
these RTOSes. While in theory, a real-time task is simply
specified by its timing parameters, in practice and when it
comes to implementation, these parameters are introduced in
the system in different ways. For example, a periodic task

Naveed Ul Mustafa

School for Information and Communication Technology (ICT)
Royal Institute of Technology (KTH), Stockholm, Sweden

{naveedum} @kth.se

may be implemented in the form of an interrupt while its
period is actually set by having a timer to trigger the interrupt
periodically. For code generation, this means that for every
model element defined as periodic, what is actually generated
is an interrupt handler that behaves in a periodic way. The
issue is that when we look at these systems at runtime, no
tangible and single runnable entity as a real-time periodic
task is actually observable and identifiable. In other words,
the semantic mapping of a periodic task at model level and
such an entity at runtime becomes weak.

Moreover, other parameters of a real-time task such as
deadline are lost and not present at the implementation level
or are defined in arbitrary and different ways in each imple-
mentation. This is because among all these parameters, what
is usually supported explicitly by most real-time operating
systems, is to specify only priority for a task. Other parameters
are left to be defined and implemented by system designers
in arbitrary ways, such as using timer interrupts and delays to
enforce periodicity or Minimum Inter-Arrival Time (MIAT).
The problem becomes even more evident when it comes to
runtime monitoring of real-time systems and where a system
needs to detect events such as deadline misses, execution time
overruns, etc.

To cope with these problems, we propose a second layer
scheduler which takes as input the specification and imple-
mentation of real-time tasks including all of their temporal
parameters, and schedules and executes them using the un-
derlying scheduler of the operating system. With this design,
the code generators can then generate tangible real-time tasks
according to a well-defined specification (e.g., definition of
a task as: task(task type, period, deadline, execution time)),
regardless of whether, for instance, they are going to be
actually implemented as a timer interrupt or some other
mechanism. This way, an actual real-time task along with its
parameters will be present and identifiable at the code level.
The system can then be easily queried, for example, for the
number of periodic or sporadic tasks and their specified timing
parameters such as deadline. The top-level scheduler schedules
a task and uses its parameters to manage and report events
such as deadline misses or execution time overruns. In this
approach, even if the underlying platform changes and the
implementation of real-time tasks (e.g., as timer interrupt) are
modified, it will not require any changes in the code generators

and also the specification of real-time tasks. This may also
improve the portability of the generated code and especially
transformation engines, making them as platform-independent
[2] as possible.

The issue is that for most commercial or closed-source
RTOSes, it may not be possible or economical to modify the
kernel and scheduler to add the above mentioned features. In
such scenarios these features can be provided through an added
layer on top of the core scheduler. In this work, by highlighting
the role of schedulers in model-driven development of real-
time systems and to provide round-trip support, we describe
the suggested second layer scheduler built for OSE real-time
operating system [3] and demonstrate how it improves the
monitoring of the timing behaviors of tasks at runtime and
detecting events such as deadline misses which are critical in
real-time systems.

The remainder of the paper is as follows. In Section |lIL we
discuss the background context and motivation of the work.
Section describes the proposed approach along with its
design and implementation details. In Section an example
is demonstrated and the implementation and behavior of the
suggested approach is evaluated. In Section [V| we have a look
at the related work, and finally in Section |VI, we summarize
the work and describe its future extensions and directions.

II. BACKGROUND AND MOTIVATION
A. CHESS Project

This work has been done in the context of CHESS Eu-
ropean project [4]. This project is about model-driven and
component based development of real-time embedded sys-
tems for telecommunication, space, railway, and automotive
domains which focuses on preservation and guarantee of extra-
functional properties [5]]. This is done by performing static
analysis on design models and monitoring the behavior of
the generated system at runtime. The idea is to back-annotate
monitored results back to the model to inform the designer
which modeled features have led to the violation of specified
requirements and may need to be modified. The general
structure of the approach is shown in Figure [1}

As can be seen from the above figure, different types of
analysis are done at different abstraction levels (marked as B,
F, and H), and the results are propagated back to the model
(D). MAST [6] is one of the analysis tools that is used in
CHESS to perform schedulability analysis on the model. The
system model which is defined in the modeling language called
CHESS ML, is transformed into an appropriate model as input
for the MAST analysis tool.

To ensure that the assumptions based on which the analyses
were done hold true, the system’s execution is monitored
and runtime information are collected. For example, the dif-
ference between the characteristics of the (ideal) execution
environment of the system taken into account for analysis
and the actual one when the system is implemented may lead
to the violation of the assumptions that are used to perform
analysis [7]. Therefore, monitoring the behavior of the system
at runtime is important in preservation of system properties.

(A)

Platform Independent (D)
Model (PIM) in

™ cess Modeling
Language

(B) Different Analysis (C)
Tools (e.g., MAST)

\ platform F
(E) Specific Model ()
(Psiv)

)

\ Generated

(G) Code

E

Operating (1
System

Hardware
Platform

Fig. 1. CHESS methodology

Timing properties are of utmost importance in real-time
embedded systems. In order to extract and collect information
about runtime timing behaviors for back-annotation to the
model, the platform should be able to provide this information.
Among the most important timing data for back-annotation
that are of interest are deadline misses, actual response time,
and execution time overruns. However, such a feature is not
present explicitly in many commercial real-time operating
systems today and needs to be implemented in different ways
by system developers. In the scope of this work, we narrow
our focus on Part I of Figure [I]

B. OSE Real-Time Operating System

OSE is a real-time operating system developed by Enea
[8]. It has been designed from the ground up for use in
fault-tolerant distributed systems that are commonly found in
telecommunication domain, ranging from mobile phones to
radio base stations and is embedded in millions of devices
around the world [3]]. It provides preemptive priority-based
scheduling of tasks. OSE offers the concept of direct and
asynchronous message passing for communication and syn-
chronization between tasks, and OSE’s natural programming
model is based on this concept. Linx, which is the Interprocess
Communication Protocol (IPC) in OSE, allows tasks to run
on different processors or cores, utilizing the same message-
based communication model as on a single processor. This
programing model provides the advantage of not needing to
use shared memory among tasks.

The runnable real-time entity equivalent to a task is called
process in OSE, and the messages that are passed between
processes are referred to as signals (thus, the terms process
and task in this paper can be considered interchangeable).
Processes can be created statically at system start-up, or
dynamically at runtime by other processes. Static processes
last for the whole life time of the system and cannot be
terminated. Types of processes that can be created in OSE

are: interrupt process, prioritized process, background process,
and phantom process. One interesting feature of OSE is that
the same programming model is used regardless of the type of
process. Of the timing properties that we have been discussing
so far, only priority can be assigned for prioritized processes.
Periodic behavior can be implemented by using timer interrupt
processes. Information such as task completion time, deadline
misses and such, is not reported by default and it needs to
be implemented using system level APIs for events such as
process swap_in and swap_out which are triggered when a
process starts and stops running (i.e., context switches).

C. Goal

Figure [2| shows the target system that is built in the scope
of this work. As discussed before, most real-time operating
systems, such as OSE, only allow specification of priority
for real-time tasks. In other words, semantically, there is
no parameter or kernel level value that represents deadline,
execution time, or period of a task. Similarly, the monitoring
information and logs that are generated by the system do not
contain information about deadline misses, or execution time
overruns, because these concepts are not actually understood
by the kernel and have no meaning for it. Therefore, it is the
job of a programmer to implement such features and collect
information by also implementing event handlers that monitor
when a task gets CPU time and when it is preempted, and then
calculate deadline misses or execution time overruns through
this information.

Platform Independent
Model (PIM] in
CHESS Modeling

Language

T

I

1

Gensra‘te Code

TASK(release time, period/MIAT, execution,
time, relative deadline, task type)

¥
TASK{priority)

Core QSE
Scheduler

Menitoring information incl. : deadline miss,

execution time overrun

]
]
I
]
I
]
I
]
I
]
I
|
i v
]
I
]
I
]
I
]
I
]
I
]
I
]
I

Fig. 2. Interfaces between different parts in the suggested approach

The proposed solution that is shown in Figure [2] solves this
situation by introducing a second layer scheduler. The interface
to this scheduler layer representing the specification of a real-
time task is in the form of: Task(release time, period/MIAT,
execution time, relative deadline, task type). Considering these
parameters, the second layer scheduler then schedules the tasks
using the priority-based scheduling mechanism of the core
scheduler.

The code generator on the other hand, generates real-time
tasks (from the model) according to this specification, and
need not care how such a task is actually implemented on the
core scheduler, hence more portability and re-usability of the
analyzed model and generated code are obtained.

From the monitoring perspective, since the second layer
scheduler is responsible for scheduling tasks according to the
described specification, it is aware of concepts such as dead-
line, and can therefore, produce log information representing
events such as deadline misses. This generated log information
from the second layer scheduler can then be used to propagate
necessary information back to the model.

We believe that the suggested added layer in our approach
can also help with decreasing the gap between theoretical as-
pects of real-time systems and their actual implementations by
providing more semantics to parameters and specifications of
real-time tasks at implementation level and thus increasing the
applicability of theoretical knowledge such as schedulability
analysis techniques.

III. SCHEDULER DESIGN AND IMPLEMENTATION

In this section, the internal mechanism and design details
of the second layer scheduler are described.

The second layer scheduler developed on top of OSE,
schedules a given set of tasks (S) by releasing tasks to OSE
core scheduler according to a selected scheduling policy. .S can
contain three kinds of tasks: Periodic, Sporadic, and Aperiodic
tasks. Task parameters such as period and execution time are
generated for the second layer scheduler from the model as
input parameter files with .prm extension.

As shown in Figure (3] the system consists of a few other
components besides the second layer scheduler process. At
system startup, first process creator is started. Process creator
creates an OSE process for each of the tasks that are specified
as a set of input files. Initially, all these processes will be
in the waiting mode (to receive a signal from the second
layer scheduler process). From this point on, the second layer
scheduler process, which has the highest priority in the system,
controls the system. Based on a specified scheduling policy
(e.g., EDF), the second layer scheduler selects an appropriate
task from the queue of waiting tasks, and sends a start signal to
it. It then enters a waiting state itself using OSE receive_w_tmo
(receive with timeout) system call. This system call makes
the caller process wait until it either receives a signal or
the specified timeout expires. We make a specific use of this
system call in our design by setting its timeout value equal to
the time interval available before arrival of a new instance of
a higher priority periodic task. Also, whenever a task finishes
execution, it sends a completion signal back to the second layer
scheduler process. Therefore, if the running task finishes its job
before arrival of the next instance of a higher priority periodic
task, the second layer scheduler will receive a completion
signal (at the receive_w_tmo system call), and continues its job
(scheduling next tasks). Otherwise, if the running task takes
too much time, the timeout which is set in the receive_w_tmo
command in the second layer scheduler will expire, and since

the second layer scheduler process has the highest priority in
the system, it preempts the running task, takes the CPU, checks
the list of waiting tasks again, and selects the next appropriate
task to run.

Right after receiving the completion signal by the second
layer scheduler process, it generates log information about
the behavior of the task which has just completed. Since the
second layer scheduler has access to (and thus is aware of)
all the real-time parameters of each task (e.g., periodic/MIAT,
deadline, execution time), it can gracefully detect deadline
misses, execution time overruns, and events of this kind, mark
them in the log information and report them. This way, all this
critical log information about the behavior of the system are
also centralized, which can then be easily queried. This is an
important feature which is absent in many real-time operating
systems today.

Creation of monitoring log files and persistence of the
collected information are done by the monitor process us-
ing the information that is sent to it by the second layer
scheduler process in the form of signals. In this design, two
separate log files are actually created: scheduling log file, and
monitoring log file. Scheduling log file contains listing of
schedules generated by the second layer scheduler by stating
the time points at which a task in the task set is scheduled,
completed or preempted. This log file is generated by the
second layer scheduler. Events related to task deadlines can
be investigated by examining the monitoring log file generated
by the scheduler. Monitoring log file is updated with new
information only when an instance of a task is completed, and
scheduling log file is updated whenever a task is scheduled,
preempted, resumed or completed.

The scheduling policy that the second layer scheduler uses
for periodic tasks is selectable and not fixed. Same is the case
with the scheduling mechanism for aperiodic and sporadic
tasks. The selected policy is read as a configuration value at
system startup. This makes the suggested approach flexible.
Currently Rate Monotonic Scheduling (RMS) and Earliest
Deadline First (EDF) policies are supported for periodic tasks
while aperiodic and sporadic tasks can be scheduled using
background [9]] or polling server [9], [10] schemes. Other
policies can also be added to design.

In the following sections, the role of different components
in our design are described in detail.

A. System Components

1) Process Creator: Each task in a task set is specified by
two files.

o Parameter File: A file with .prm extension provides
task parameters including release time, period/MIAT,
execution time, relative deadline and type of the task.

Type of task can have four valid values: O for Periodic, 1

for Sporadic, 2 for Aperiodic, and 3 for Polling Server.
« Body File: A file with .c extension contains the body of

the task. In other words, .prm file of a task contains its

Set of input files from Platform Independent

Model (PIM) in CHESS modeling Language

Task body files

(.c) provided by
user

(.prm) for user

Parameters files
defined tasks

Process
Creator

Consider
constraints Release
for.scheduling/ Core OSE | _ Selectad. _
and Scheduler Jprocess to OSi
Monitoring Scheduler
of processes

User’s
Processes [«
Pool

Monitor
Process

Aperiodic
ueue Holding=—
Process

Sporadic
Queue Holdingwt
Process

Set of processes
in system

Set of output files to Platform Independent
Model (PIM) in CHESS modeling Language

Log file for Log file for
scheduling monitoring
Fig. 3. Components of Design

timing non-functional specification while .c file contains
its functional implementation.

Process creator reads the parameters for each task from
its .prm file into a data structure, called “constraints”, and
creates a prioritized OSE process against each user defined
task. Moreover, It also creates following four OSE prioritized
processes:

o Second layer scheduler process
o Sporadic queue holding process
o Aperiodic queue holding process
« Monitor process

None of the created OSE processes is started by process
creator except the second layer scheduler process. Task pa-
rameters and Process Identifiers (PIDs) for all processes are
then passed to the second layer scheduler in the form of
“constraints” data structure.

2) Second Layer Scheduler: After receiving “constraints”
structure and PIDs of all OSE processes created by process
creator, the second layer scheduler schedules the tasks by
releasing them to core OSE scheduler according to selected
scheduling algorithm. The design provides options to select
between RMS or EDF algorithm.

To schedule sporadic and aperiodic tasks, the second layer
scheduler supports background scheduling and polling server
for scheduling sporadic and aperiodic tasks.

3) Sporadic Queue Holder: Task set can contain periodic,
aperiodic and sporadic tasks. Sporadic queue holder is a
prioritized OSE process which maintains a list of sporadic
tasks waiting for scheduling, by using a queue. Each element
of queue contains two parameters for a sporadic task: PID
corresponding to the given task, and release time of sporadic
task.

To release a sporadic task, its PID and release time is to be
placed in queue. An interrupt process (in case of hardware
driven sporadic tasks) or a prioritized process (in case of
software driven sporadic tasks) may initiate this placement by
sending a signal to sporadic queue holder.

Upon receiving this signal, sporadic queue holder extracts
the PID and release time of sporadic task from signal and
updates the queue with extracted information.

The second layer scheduler checks if there is a sporadic task
to be scheduled by making a query to sporadic queue holder
process.

4) Aperiodic Queue Holder: Aperiodic queue holder has
the same structure and mechanism as the sporadic queue
holder, except that it maintains a list of aperiodic tasks. Also
separate signals are defined for use with aperiodic and sporadic
queue holders.

5) Monitor: Monitor process generates a log file to state

whether specified timing constraints for each task in task
set S are met or not. For example, if the specified MIAT
parameter, in case of a sporadic task, is violated then monitor
records this violation in a monitoring log file.
When a task is released to the core OSE scheduler for
execution, the second layer scheduler observes its timing
parameters. As soon as a task completes its execution,
the second layer scheduler sends a signal to the monitor
process. This signal contains start time, completion time,
desired deadline, desired execution time, desired MIAT, actual
execution time, and actual MIAT of completed task. These
timing values are extracted from .prm file of the task under
monitoring (i.e., desired deadline and execution time) and
measured by the second layer scheduler (i.e., actual deadline
and execution time). Monitor extracts these timing values
from the received signal and saves the relevant monitoring
statements in a monitoring log file.

B. Signals and Communications

To achieve the scheduling of tasks in a reliable way, several
signals are defined and used by system. These signals play two
important roles: carry required data from one component to
another, and ensure synchronous execution of all components.

These signals are described below.

« start_exe_sig: Start execution signal. This signal is sent
by the second layer scheduler to a process to be scheduled
on core OSE scheduler. Target process can start execution
only if it has received start_exe_sig signal.

o comp_sig: Completion signal. This signal is sent as
an acknowledgment to the second layer scheduler upon
completion by a process which is created against a user
defined task.

o aper_update_sig: Update signal for aperiodic queue
holder. To release an aperiodic task, an interrupt process
or prioritized process sends the aper_update_sig signal to
aperiodic queue holder process. This signal contains the
PID and release time of an aperiodic task to be scheduled.
This signal is also used as a response to the second

layer scheduler by aperiodic queue holder on receiving
start_exe_sig from scheduler.

o spor_update_sig: Update signal for sporadic queue
holder. To release a sporadic task, an interrupt process
or prioritized process sends the spor_update_sig signal to
sporadic queue holder process. This signal contains the
PID and release time of sporadic task to be scheduled.
This signal is also used as a response to the second
layer scheduler by sporadic queue holder on receiving
start_exe_sig from scheduler.

o qupdate_confirm_sig: Queue update confirmation sig-
nal. This confirmation signal is sent back to the sender of
an update signal, after receiving aper_update_sig (in case
of aperiodic queue holder) or spor_update_sig (in case
of sporadic queue holder). Confirmation signal informs
sender if queue is updated successfully. In case of failure,
sender can send aper_update_sig again with same content
after waiting for a finite amount of time.

o monitor_info_sig: Monitoring information signal. This
signal is sent by the second layer scheduler to the monitor,
every time a task completes its execution. Monitor uses
the information contained in this signal to determine if a
completed task has met its constraints, such as deadline
and WCET.

C. Priority Assignment

In OSE, there are 32 priority levels. Priority O is considered
the highest while 31 is considered as the lowest priority level.
In our system, process creator creates one OSE process for
each task in the input task set. All such processes are assigned
priority level of 1. Similarly, sporadic queue holder process
and aperiodic queue holder process have priority level of 1.
However, the second layer scheduler process has priority level
of 0 which is the highest possible priority level. The reason
for assigning priority level O to the scheduler is to make it non
preemptable by any other prioritized OSE process.

Monitor behaves as a background OSE process and hence
has the lowest priority level. This ensures that monitoring is
performed only when no task is ready and the scheduler is
idle. This reduces the effect of monitoring on the scheduling
of tasks.

D. Scheduling of Tasks

As described in the previous section, all OSE processes are
created by Process creator but not started by it. Process creator
starts only the second layer scheduler process and passes
“constraints” structure along with PIDs of all OSE processes.

1) Scheduling of Periodic Tasks: The second layer
scheduler examines the “type” parameter of all tasks to
identify periodic tasks among the task set. Tasks are
scheduled by releasing them to core OSE scheduler according
to specified scheduling algorithm, for example RMS.

The second layer scheduler sends start_exe_sig to the the
process representing the user defined task which has highest
priority according to selected scheduling algorithm. Then
scheduler waits for receiving comp_sig back from target OSE

process but with a finite waiting time called “timeout”.

If comp_sig is received before the timeout is expired, it
implies that the target process has completed. Hence the
second layer scheduler releases to the core OSE scheduler
the next ready OSE process representing the user defined
periodic task. If comp_sig is not received within the timeout
duration and a process representing a user defined task with
higher priority is ready, then the former process is preempted
and second layer scheduler releases to core OSE scheduler
the process with higher priority.

2) Scheduling of Sporadic and Aperiodic Tasks: To sched-
ule a sporadic task, it is necessary that its corresponding PID
and release time are placed in the sporadic processes queue
maintained by sporadic queue holder. This can be achieved
by sending a spor_update_sig signal to the sporadic queue
holder containing release time and PID of the OSE process
corresponding to the task. Signal, spor_update_sig, can be sent
to the sporadic queue holder either by an interrupt OSE process
or a prioritized OSE process. In the first case, target sporadic
task becomes interrupt driven while in second case it behaves
as a program driven sporadic task. The above discussion is
valid also for achieving interrupt and program driven behavior
for aperiodic tasks.

Sporadic and aperiodic tasks can be scheduled by using one
of following two approaches:

o Background Scheme: One approach to schedule sporadic
and aperiodic tasks is to use time slots in which no
periodic task is ready to run. In such case, the second
layer scheduler first makes query to sporadic queue holder
by sending start_exe_sig to find if there is any ready
sporadic task. The spor_update_sig signal is sent back
by sporadic queue holder to the second layer scheduler,
indicating availability status of sporadic task.

If there is a ready sporadic task, the second layer sched-
uler releases sporadic task to OSE core scheduler and
waits until either it completes its execution or a periodic
task becomes ready. If sporadic task is completed and no
periodic task is ready to run, second layer scheduler again
makes query to sporadic queue holder to find if there are
any more sporadic tasks waiting in the queue.

If sporadic task queue is empty and no periodic task is
ready to run, the second layer scheduler makes query to
aperiodic queue holder by sending start_exe_sig. Avail-
ability status of aperiodic task is communicated back to
the second layer scheduler by sending aper_update_sig
from aperiodic queue holder. If aperiodic queue is not
empty and aperiodic task at the head of the queue is ready
to run, the second layer scheduler releases that aperiodic
task to core OSE scheduler.

If there is no periodic, sporadic and aperiodic task to ex-
ecute, Monitor process is released to core OSE scheduler
by the second layer scheduler.

« Polling Server Scheme: An alternative approach to sched-
ule sporadic and aperiodic tasks is to use polling server.
Polling server is a periodic task like any other periodic

task. It has a period P, and execution time F,. Execution
time of polling server is known as its budget.

Polling server is scheduled along with all other periodic
tasks according to selected scheduling algorithm. How-
ever, when polling server gets the chance to execute,
the second layer scheduler makes query to sporadic and
aperiodic queue holding processes to find if there is any
ready sporadic or aperiodic task. If sporadic or aperiodic
task is ready to run, the second layer scheduler releases
that task to OSE core scheduler and budget of polling
server keeps declining per unit time.

If sporadic or aperiodic task completes its execution
before budget is expired, the second layer scheduler picks
next ready sporadic or aperiodic task to release to OSE
core scheduler. This sequence continues until either there
is no sporadic or aperiodic task or budget of server is
expired or a higher priority periodic task becomes ready
to execute.

At the start of each period of the polling server, its
budget is set equal to its execution time. If at that time
point, no sporadic or aperiodic task is ready to run
then budget immediately declines to zero. Otherwise the
budget decreases one level per time unit.

E. Monitoring of Tasks

On completion of a task, independent of its type, the second
layer scheduler sends monitor_info_sig signal to Monitor.
Monitor is implemented as a background OSE process. Hence,
it can execute only when there is no periodic, sporadic or
aperiodic task ready to run. Monitor continuously checks
its input message queue for monitor_info_sig signal. This
message carries following information to the monitor process
regarding completed task:

o start time of the task

« completion time of the task

« specified deadline parameter for the task
o specified MIAT parameter for the task

« specified execution time for the task

« actual execution time for task

« actual deadline for task

« actual MIAT for the task

Monitor uses this information to make decision if a completed
task has met its parameters or violated them. In any case,
monitor records the information in a monitoring log file.
Operation of the scheduler is summarized by the sequence
diagram of Figure [In this diagram, the task set consists of
two periodic tasks 77 and 75, one sporadic task 75 and an
aperiodic task 7T,. Timing parameters of the tasks defined in
this task set are listed below using the specification convention:
Task (Release Time, Period, WCET, Relative deadline, Task

type).
Periodic task: 77(0,12,3,8,0)
Periodic task: 75(0,4,1, 3,0)
Sporadic task: T5(0,15,2,6,1
Aperiodic task: 7y4(0,0,1,6,2)

|Scheduler‘ | 11 H T2 H T3 H T4 HMHAQerQHHMonitDr‘
I 1 1 T

T T
1: startfexn_aﬁsig !
|
|

comp_sig

I
I
|
,,,,,,,, e 2: monitor_info_sig
3: start_exe_sig| |
I
I
I
I
I
I
I
I
|
I
I
I

5: monitor_info_sig

c

6: monitor_info_sig

7: start_exe_sig
| I

comp_sig
o

11: monitor_info_sig
! !

1

1

1

1

1

1

1

1

1

T

1

1

1

1

] ! i

1 ! 1

] | 12: start_exe_sig |]

i | | i i

| i | aper_update_sig | |
L A N A S —— [——

| 1 i

1 1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

15: slart_e;&e_sig
I——_i\ T
| |

B N N R N N N

Fig. 4. Sequence diagram to demonstrate operation of the scheduler

This figure shows a valid sequence of execution when RMS
is used as the scheduling policy for periodic tasks, while
sporadic and aperiodic tasks are scheduled using background
scheme. As is evident from the sequence diagram, monitor
gets the chance to execute only when no other process is in
ready state.

IV. EXPERIMENT AND MONITORING RESULTS

The described approach has been implemented and tested
on OSE SoftKernel (SFK) version 5.5.1 [8]]. In this section,
we show an example of a task set which is implemented based
on the specification of the proposed second layer scheduler.
The way the task set is scheduled and the log information that
is generated for the behaviour of tasks are illustrated.

A task set consisting of four tasks is created. Periodic tasks
in the task set are configured to be scheduled using RMS while
aperiodic and sporadic tasks are to be scheduled using polling
server scheme (this can be changed by changing configuration
parameters).

Timing constraints for tasks are given below (last parameter
identifies the type of task):

e 77(0,10,2,5,3) : Polling server with release time=0,
period=10, WCET/Budget=2, Relative Deadline=5, Task
type=3.

e 75(0,5,2,4,0) : Periodic Task with release time=0,
period=5, WCET=2, Relative Deadline=4, Task type=0.

e T5(0,5,2,4,1) : Sporadic Task with release time=0,
MIAT=5, WCET=2, Relative Deadline=4, Task type=1.

Two instances of Sporadic task T3 are released at time 0;

e 74(0,0,2,7,2) : Aperiodic Task with release time=0,
period= 0 (Not Applicable), WCET=2, Relative Dead-
line=7, Task type=2.

As mentioned before, these timing parameters are actually
specified in the .prm file of each task (i.e., tl.prm, ..., t4.prm).
Process creator opens these files and populates “constraints”
data structure with these data.

Using the implemented second layer scheduler to schedule
this task set, the following log files are automatically gener-
ated:

o Scheduling log file: Scheduling log file provides the
time points for each task at which it is scheduled,
preempted/not completed, resumed or completed. Parts
of the scheduling log information generated for the task
set are shown in Listing [T} To make it easier to follow
and understand the information in the log file, the PIDs
that are assigned to each task by the system are also
mentioned below:

PID of process representing 77 = 65595.
PID of process representing 7> = 65596.
PID of process representing 75 = 65597.
PID of process representing T, = 65598.

Listi Scheduline log fil
task PID=65596
Scheduled for 5
task PID=65596
Completed at ticks=1117
task PID=65597

ticks at ticks=1115

Scheduled with budget= 2 ticks at ticks=1117
task PID=65597

Not completed at ticks=1119

Remaining Execution Time in ticks=1

task PID=65596

Scheduled for 5 ticks at ticks=1120

task PID=65596

Completed at ticks=1122

task PID=65596

Scheduled for 5 ticks at ticks=1125

task PID=65596

Completed at ticks=1127

task PID=65597

Resumed with budget= 2 ticks at ticks=1127
task PID=65597

Completed at ticks=1128

task PID=65597

Scheduled with budget= 1 ticks at ticks=1128
task PID=65597

Not completed at ticks=1129

Remaining Execution Time in ticks=I

task PID=65596

Scheduled for 5 ticks at ticks=1130

task PID=65596

Completed at ticks=1132

task PID=65596

Scheduled for 5 ticks at ticks=1135

task PID=65596

Completed at ticks=1137

task PID=65597

Resumed with budget= 2 ticks at ticks=1137
task PID=65597

Completed at ticks=1138

task PID=65598

Scheduled with budget= 1 ticks at ticks=1138
task PID=65598

Not completed at ticks=1139

Remaining Execution Time in ticks=1

task PID=65596

Scheduled for 5 ticks at ticks=1140

task PID=65596

Completed at ticks=1142

Monitoring log file: On completion of each instance of a
task, monitoring log file lists type of task, PID of process
representing that task in system, start time of the task,
specified deadline, completion time of the task, specified
WCET for the task, actual execution time consumed by
the task, response time of the task, specified MIAT/period
and actual interval between two consecutive invocations
of the task. Listing [2] shows parts of the monitoring log
information generated for the task set.

Listine 2. Monitorine log fil
PID =65596

Type of task =0

start time in ticks=I1115

specified deadline in ticks=1119

completion time in ticks =1117

specified WCET in ticks=2

actual execution time in ticks=2

Response time in ticks =2

specified Period/MIAT in ticks =5

Interval between two consecutive invocations in ticks=5
PID =65596

Type of task =0

start time in ticks=1120

specified deadline in ticks=1124

completion time in ticks =1122

specified WCET in ticks=2

actual execution time in ticks=2

Response time in ticks =2

specified Period/MIAT in ticks =5

Interval between two consecutive invocations in ticks=5
PID =65596

Type of task =0

start time in ticks=1125

specified deadline in ticks=1129

completion time in ticks =1127

specified WCET in ticks=2

actual execution time in ticks=2

Response time in ticks =2

specified Period /MIAT in ticks =5

Interval between two consecutive invocations in ticks=5
PID =65597

Type of task =1

start time in ticks=1117

specified deadline in ticks=1121

completion time in ticks =1128

specified WCET in ticks=2

actual execution time in ticks=3

Response time in ticks =11

specified Period/MIAT in ticks =5

Interval between two consecutive invocations in ticks=10
PID =65596

Type of task =0

start time in ticks=1130

specified deadline in ticks=1134

completion time in ticks =1132

specified WCET in ticks=2

actual execution time in ticks=2

Response time in ticks =2

specified Period/MIAT in ticks =5

Interval between two consecutive invocations in ticks=5
PID =65596

Type of task =0

start time in ticks=1135

specified deadline in ticks=1139

completion time in ticks =1137

specified WCET in ticks=2

actual execution time in ticks=2

Response time in ticks =2

specified Period/MIAT in ticks =5

Interval between two consecutive invocations in ticks=5
PID =65597

Type of task =1

start time in ticks=1128

specified deadline in ticks=1132

completion time in ticks =1138

specified WCET in ticks=2

actual execution time in ticks=2

Response time in ticks =10

specified Period/MIAT in ticks =5

Interval between two consecutive invocations in ticks=9

The first four lines in the generated scheduling log infor-
mation shown in Listing [T] indicates that the periodic task 75
with PID of 65596, which is started at tick time 1115, has
completed at 1117. The next task which is scheduled is T3
with PID of 65597. The polling server has the capacity of two
time unit at this time instance, therefore, the sporadic task 73
can run until tick time 1119, and at 1120 another instance of
T, arrives which causes the second layer scheduler to preempt
Ts. However, at 1119, T3 has not managed to complete its job,
and therefore, it is marked as ’Not completed’.

On the other hand, the monitoring information in Listing
[l among other things, can be used to check whether any
deadline miss has occurred or not. For example, it shows
that the first two instances of 15 (PID=65596) have met their
deadlines. The first instance has finished its job at 1117 and
finished before its deadline which is 1119. The deadline for the
second instance is at 1124, and it has managed to complete
its job at 1122, and therefore, meet its deadline. However,
the deadline of the sporadic task 73, with PID of 65597, has
been 1121 while it has managed to finish its job at 1128. Its
actual execution time has also been three time units which
is one time unit more than its specified WCET. This shows
that there has been execution time overrun for this task and
there is something wrong with the specified WCET value of it,
and it needs to be re-considered. Such information are hardly
provided by default in any real-time operating system.

Figure 5] visualizes the schedule generated by the sched-
uler. This figure is created (manually) using the information
available in the scheduling log file generated by the scheduler.
The scheduling log file shows that the first task is released at
1115 system ticks. To make this schedule easier to understand
in the figure, subtraction of 1115 ticks is performed at every
time point.

Highesl‘ Priority

.0hnononon

T3

« Instance1 _ _ Instance2 _
of T3 of T3
. 1
Lowest Priority 5 10 15 20 25 30 35

Budget

L\ [[N [
¢ 5 10 15 20 25 30 a5
Fig. 5. Schedule generated by the design using second layer scheduler

As is indicated by a cloud symbol in Figure [3] actual
execution time consumed by first instance of sporadic task

is 3 ticks instead of 2 ticks as specified in timing constraint
of WCET=2. Therefore, it misses its deadline of 5 ticks
and is completed at 13 ticks. Second instance of sporadic
task is scheduled immediately after completion of the first
instance. This is because MIAT of 10 ticks is already elapsed
(10+2=12). The diagram in the lower part of Figure [5indicates
the replenishment and decrease of budget with passage of time
as is defined for the behavior of polling servers.

Now that the necessary information about the runtime
behavior of tasks is provided in the log files generated by the
system, a user can easily query them, extract desired parts, and
draw conclusions. For example, it is very easy to find out the
number of deadline misses, execution time overruns, the task
with maximum number of deadline misses, etc. by using the
log files as the data source. Similarly, at any time point, the
number of periodic, sporadic, and aperiodic tasks in the system
can easily be requested from the second layer scheduler; a
simple but important feature which is not provided by default
in many RTOSes today. Also, it is now possible to identify
and report the time period during which maximum number
of deadline misses have occurred, and examine as well how
the system has been behaving in terms of context switches
and preemptions during that period. These are features whose
implementations can be very hard and complex without having
the necessary monitoring information and using the suggested
approach.

V. RELATED WORK

Many of the operating systems and also programming
languages today provide support for measuring the CPU time
a runnable entity (i.e., thread, etc.) consumes to perform its
function. However, the monitoring facilities and event handling
mechanisms provided by these platforms are not usually
integrated with their scheduling facilities [[11]]. As a result, the
platform cannot enforce and monitor real-time properties of
threads such as their allowed execution times and deadlines.
Real-Time Specification for Java (RTSJ) [11]] is introduced
to integrate scheduling of threads with the execution time
monitoring facilities and enforce execution budgets on them in
Java. For Ada applications and particularly the Ada Ravenscar
profile [12]] different kernels such as ORK [13]] have been
introduced to enforce and manage task budgets and handle
critical real-time events. Moreover, the Ada compiler, GNAT,
has defined GNARL as the tasking runtime system of the
compiler which is divided into two layers. The lower layer
of GNARL abstracts the execution platform and provides OS
services via POSIX interfaces.

The implementation of different scheduling algorithms on
top of a fixed priority scheduler has also been used in the
FIRST project [14]]. The main objective in this project has been
to develop a scheduling framework for real-time applications
that have various types of tasks (hard, soft, firm, etc.) and
scheduling paradigms within the same system to achieve a
flexible integrated real-time system. The FRESCOR project
[15] which also relies on the results of the FIRST project,
targets the gap between the real-time theory and the industrial

and practical aspects of real-time systems. In this project a
platform independent scheduler called FRSH has been devel-
oped which provides a set of APIs for the applications. FRSH
implementation is made portable to different operating systems
using the FRSH Operating System Adaptation layer (FOSA)
which encapsulates all native operating system calls and types
used by FRSH into neutral names acceptable by both POSIX
and non-POSIX compliant systems [15]. The main objective
of this project has been to provide a contract-based model and
framework for real-time embedded systems.

The implementation of a new scheduling class called
SCHED _DEADLINE for the Linux kernel that adds EDF
scheduling policy support to Linux is done in [16]. It is
also motivated by acknowledging the fact that due to limited
support for specifying timing constraints for real-time tasks
(e.g., deadline) and lack of control over them, feasibility study
of the system under development and guaranteeing the timing
requirements of tasks are not possible. There are however
several differences between this work and ours. It focuses
only on mechanisms for adding EDF scheduling policy to
the Linux kernel, while we target the problem in a more
general manner and allowing the scheduling policy to be
configurable. Our focus is mainly on improving the monitoring
of real-time events by providing more control over real-
time tasks and providing more knowledge about their timing
constraints to the scheduler regardless of the scheduling policy
and without modifying the core scheduler. Moreover, we try
to provide an abstraction layer around the core scheduler to
hide platform-dependent implementation details from the user
while SCHED_DEADLINE tries to solve a different problem
and is basically added as a separate module to the system.

One concept which also introduces different levels of ab-
straction around a core scheduler is Hierarchical Scheduling
Framework (HSF) [10f], [17]. There are fundamental differ-
ences between what we introduced here and HSF. HSF is a
modular approach in which a system is divided into several
subsystems. The subsystems are scheduled by a global (core)
scheduler, while the tasks in each subsystem are scheduled
by local (sub-system) level schedulers. The structure that we
introduced here does not try to divide a system into different
subsystems where each of these subsystems may be scheduled
differently by a different scheduler.

There are also studies that focus on execution monitoring
of real-time systems. Many of these studies, such as [18]],
try to predict timing violations in the system in different
ways, for example, using statistical models. Our suggested
approach does not to try to predict violations and produces
precise monitoring information for behavior of real-time tasks
and violation of timing constraints. The monitoring part in
our approach is coupled with the scheduler and by bringing
awareness to the scheduler about the type of tasks it is
scheduling, monitoring such information becomes a natural
and straightforward part of the scheduler.

VI. DISCUSSION AND CONCLUSION

In this paper, we introduced the concept of the second layer
scheduler as an approach to bring semantics and awareness
for different types of real-time tasks and their parameters to
the scheduler without modifying it. It was shown how this
awareness improves the monitoring capabilities of the system
to help with the detection of critical events such as deadline
misses, and execution time overruns. While the approach
was motived and described in the context of model-driven
development of real-time systems to enable back-annotation
of data and provide round-trip engineering support, it does not
necessarily need to be used in this context and the concept of
the second layer scheduler is applicable and practical per se.

Considering a larger set of timing parameters for schedul-
ing of tasks and generating detailed log information in the
second layer scheduler can bring along their own overheads.
Measurement of these overheads and evaluation of the price
of these added features are left to be done as a future work.
Especially we plan to perform two overhead measurements:
startup overhead (reading configurations and initializing tasks),
and context switch and scheduling decisions overheads. It
should however be noted that the actual logging is done by the
monitor process in our design which behaves as a background
process. The second layer scheduler only sends out a signal
(including needed information) to the monitor process and
continues its job (asynchronously) without using any critical
section for data sharing by using message passing mechanisms
of OSE. This way, the overhead of creating log information
in the second layer scheduler process is tried to be mitigated.

Generation of such detailed monitoring information can also
help with the predictability of real-time systems at runtime. For
instance, even in cases where no deadline misses occur in the
system, it becomes possible to observe how close tasks are to
missing their deadlines and whether this gap is decreasing or
increasing. Based on such analysis of monitoring information,
the system can also adapt itself in order to prevent deadline
misses.

One issue that we did not discuss in this paper is the priority
inversion problem. This problem is handled automatically by
OSE for communication among periodic tasks, but for sporadic
and aperiodic tasks, the priority inversion issue should be more
investigated. Also the way the system is designed for the
background scheme, periodic tasks will have higher priority
over sporadic tasks, and the priority of sporadic tasks will be
higher than aperiodic ones. When the polling server scheme
is used, the priority of sporadic tasks will be dependent on
the priority of their periodic server, but still higher than
aperiodic ones. This can also be extended to be configurable
by the user. Moreover, in this work, since the tasks were
assumed to be generated from a model, the task set was
considered to be known and static. We leave the extension
of the implementation to accept new tasks dynamically as a
future work. Also, the possibility to have different numbers
and types of servers for sporadic and aperiodic tasks could be
another future work.

Since the suggested approach is designed to be flexible
in terms of the used scheduling algorithms, it would be
interesting as a future direction of this work to investigate the
possibility to let the system intelligently select an appropri-
ate/optimal scheduling algorithm based on the requirements at
the model level and generate code accordingly especially that
the back-annotation mechanism can also be used as a feedback
loop.

VII. ACKNOWLEDGEMENTS

This work has been partially supported by the CHESS
European Project (ARTEMIS-JU100022) [4] and XDIN AB
[19].

REFERENCES

[1] B. Selic, “The pragmatics of model-driven development,” IEEE Soft-
ware, vol. 20, pp. 19-25, September 2003.

[2] A. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model Driven
Architecture - Practice and Promise, 2003.

[3] Enea, “The architectural advantages of enea ose in telecom applica-
tions,” http://www.enea.com/software/products/rtos/ose/, Last Accessed:
February 2012.

[4] CHESS Project: Composition with Guarantees for High-integrity Em-
bedded Software Components Assembly, http://chess-project.ning.com/,
Last Accessed: April 2012.

[5] L. M. Cysneiros and J. C. S. do Prado Leite, “Non-functional require-

ments: From elicitation to conceptual models,” in IEEE Transactions on

Software Engineering, vol. 30, no. 5, 2004, pp. 328-350.

Modeling and Analysis Suite for Real-Time Applications (MAST), http:

//mast.unican.es/, Last Accessed: February 2012.

[7]1 S. Chodrow, F. Jahanian, and M. Donner, “Run-time monitoring of real-
time systems,” in Real-Time Systems Symposium (RTSS). Proceedings.,
Twelfth, dec 1991, pp. 74 -83.

[8] Enea, http://www.enea.com, Last Accessed: April 2012.

[9] B. Sprunt, “Aperiodic task scheduling for real-time systems,” Ph.D.

thesis, Carnegie Mellon Univ, Tech. Rep., 1990.

R. Davis and A. Burns, “Hierarchical fixed priority pre-emptive schedul-

ing,” in In Proceedings of the 26 th IEEE International Real-Time

Systems Symposium (RTSS’05), 2005, pp. 389-398.

A. J. Wellings, G. Bollella, P. C. Dibble, and D. Holmes, “Cost

enforcement and deadline monitoring in the real-time specification for

java.” in 7th IEEE International Symposium on Object-Oriented Real-

Time Distributed Computing (ISORC). IEEE Computer Society, 12-14

May 2004, pp. 78-85.

E. Mezzetti, M. Panunzio, and T. Vardanega, “Preservation of timing

properties with the ada ravenscar profile,” in Reliable Software Tech-

nologiey Ada-Europe 2010, ser. Lecture Notes in Computer Science,

J. Real and T. Vardanega, Eds. Springer Berlin / Heidelberg, 2010, vol.

6106, pp. 153-166.

[13] J. Zamorano and J. F. Ruiz, “GNAT/ORK: An open cross-development

environment for embedded Ravenscar-ADA software,” in Proceedings

of the 15th IFAC World Congress. Elsevier, 2003.

FIRST Project: Flexible Integrated Real-Time Systems Technology,

http://www.frescor.org/index.php?page=related-projects, Last Accessed:

April 2012.

FRESCOR Project: Framework for Real-time Embedded Systems based

on COntRacts, http://www.frescor.org/index.php, Last Accessed: April

2012.

D. Faggioli, F. Checconi, M. Trimarchi, and C. Scordino, “An EDF

scheduling class for the Linux kernel,” in Proceedings of the Eleventh

Real-Time Linux Workshop, Dresden, Germany, Sep. 2009.

T. Nolte, M. Behnam, M. Asberg, R. J. Bril, and I. Shin, “Hierarchical

scheduling of complex embedded real-time systems,” in Ecole d’Ete

Temps-Réel (ETR’09), August 2009, pp. 129-142.

Y. Yu, S. Ren, and O. Frieder, “Prediction of timing constraint violation

for real-time embedded systems with known transient hardware failure

distribution model,” in Real-Time Systems Symposium, 2006. RTSS ’06.

27th IEEE International, dec. 2006, pp. 454 —466.

XDIN AB, http://ny.xdin.com/om-xdin/enea-experts/, Accessed: June

2012.

[6

[10]

(11]

[12]

[14]

[15]

[16]

[17]

[18]

[19]

http://www.enea.com/software/products/rtos/ose/
http://chess-project.ning.com/
http://mast.unican.es/
http://mast.unican.es/
http://www.enea.com
http://www.frescor.org/index.php?page=related-projects
http://www.frescor.org/index.php
http://ny.xdin.com/om-xdin/enea-experts/

