
Configuration Management for Component-based Systems
 Magnus Larsson Ivica Crnkovic
 Development and Research Department of Computer Science
 ABB Automation Products AB Mälardalen University
 721 59 Västerås, Sweden 721 23 Västerås, Sweden
 +46 21 342666 +46 21 103183
 Magnus.Larsson@mdh.se Ivica.Crnkovic@mdh.se
 http://www.idt.mdh.se/personal/mlo http://www.idt.mdh.se/personal/icc

ABSTRACT
One of the basic problems when developing
component-based systems is that it is difficult to
keep track of components and their
interrelationships. This problem emerges already in
the requirement phase, in which we want to identify
and select the most appropriate components. Later,
during the assembly and deployment process, or
when upgrading components, the problem of
components identification and dependency
management becomes even more important. One
way to maintain control over upgrades is to use
component identification and dependency analysis.
These are well known techniques for managing
system configurations during development, but are
rarely applied in managing run-time dependencies.
Knowledge of the possible impacts of an update is
important, since it can be used to limit the scope of
testing and be a basis for evaluating the potential
damage of the update. In this paper we analyse
different types of dependencies and discuss how to
identify and specify them, in analogy with
Makefiles. The dependencies can be showed in a
form of a dependency graph. The dependency graphs
can also be used to facilitate maintenance by
identifying differences between configurations, e.g.,
making it possible to recognise any deviations from
a functioning reference configuration.
Keywords
Component-based development, Configuration
Management, CBSE, Component Specification.

1 INTRODUCTION
Historically, software configuration management is
about managing evolution [4] of systems, but
implicitly assumed evolution of systems specified at
development phase, i.e. the source code and all other
parts involved in the development process. The basic
SCM support includes version management,
configuration and selection management, build
support and then support for the development

process. The version and configuration management
(selection and baselining) occur before the building
process. After selecting and extracting particular
versions, the items are used in the build procedure.
They are then typically managed by Make or its
different variants. Make can also include a special
install rule which is in most cases limited to copying
the items created in the build procedure to a specific
destination. At that stage the core functionality of
SCM finishes, although there may exist many
additional steps such as packaging, delivery,
installation, etc.
The paradigm of software development is changing.
The source code management and build (compile)
procedures are becoming less significant part of the
development in favor of assembly and deployment
processes. The important functions of these
processes are selection and dependency management
and they are not localized as one-shot events, but can
be spread out to the system execution time.
The process of component identification starts
already at design phase, where the system
architecture is being defined. As components
identified may already exist they can be precisely
specified. The architecture will evolve during the
development phase and then the configuration
mechanisms to identify the changes introduced in the
system[5,6]. The components are described by
identity, connection and interface type, where a
version specification is a part of the component
identity.
There are many different definitions of components
but in this paper we use Szyperski’s definition [13]
of a component. A software component is a unit of
composition with contractually specified interfaces
and explicit context dependencies only. A software
component can be deployed independently and is
subject to composition by a third party.
Even at the system execution time we can update the
system. Cook has done research on how components
can be selected in run-time with respect to the

problem domain [1]. In this case, each component
must have an input domain explicitly described and
a version identifier. The execution environment then
determines which version to use at run-time. The
disadvantage of this model is that the arbiter must be
integrated in the environment and that all
components must be simple enough to have a
specified input domain.
More related work is presented by Kramer and
Magee who outlines how dynamic change to a
distributed architecture should be performed to
preserve the behaviour of the configuration [7].
SCM deals with complexity of software. As the
complexity, as architecture, is visible at development
time and disappears at execution time, SCM has
been focused on development phase. With
introduction of components and possibility of
dynamic deployment of components, a management
of architecture, structuring and complexity become
important at system execution time.
The question is if it is possible to apply the SCM
principles and methods developed for managing
development phase to the execution phase. In this
paper we are concentrated on configuration
management, i.e. management of system structures
and component dependencies.

2 DEPENDENCIES
Managing dependencies at development phase
Managing structures and dependencies are the key
points of the configuration management. When
components are to be assembled and managed at
execution time it is important knowing the
dependencies between the components. We start
with an analysis of the dependency management at
the development phase.
In SCM the dependencies are managed by Make.
The purpose of Make is double: To specify the
dependencies between items used in the build
procedure, and then the build procedure itself (Some
of advanced versions of Make support selection,
which improves the change/build cycle). The
dependency specification can be provided manually
or by using certain tools, such as mkmf, which parse
the items and find the dependencies. Those
dependencies explicitly refer to other items that are
involved in the build process, usually managing only
direct relations. If an include file includes other files,
it is up to the developer to explicitly define those
files, there is no mechanism that support the
recursive process for parsing dependencies.

Makefiles can also include dependencies referring to
the tools used in the build process, which trigger the
re-building process if some of the tools have been
changed. Other definitions, such as macros, define
building options and more advanced variants of
Make define these options as dependencies. Note
that dependencies do not manage versioning. It is
assumed that version selection is already done, either
by checkout or a kind of “view to selected versions”
mechanism. Makefiles do not cover all dependencies
since there are many implicit relations and
dependencies that are assumed and which in many
cases lead to problems when building or executing
the modules. Still we can live with it, and in most
cases we can successfully configure and build
systems.
Dependencies at run-time
The question is, if the same, or similar, approach can
be mapped on run-time configurations? Before
analyzing dependencies at run-time, we must
consider why do we need that information. The
dependencies are close related to the component
deployment. Dynamical deployment of components
is one of the most important features of components.
With information about dependencies we can easily
see what can be the impacts of possible component
replacement: Which other components use that
component? Which components are used by that one
and only by that one?
In a system built of components, similarly as for
Make, the dependencies can be selected explicitly
and implicitly. The explicit dependencies are
realized in form of addresses, i.e. pointers to
interfaces of the components. Parsing binary
components it is possible to find out these
dependencies, even if they are not defined explicitly
in a configuration repository which would
correspond to a Makefile. Even more, it is possible
to parse the items recursively. In this way it is
possible to build a graph of the explicit dependencies
[8] between the components. The process can be
somewhat complicated as the references show
interfaces and methods, but what is interesting is to
find the components to which interfaces they belong.
However, the explicit dependencies do not cover all
the dependencies, but also other types must be
considered. An application can contain a set of
components which do not necessary communicate
with each another but are still related. The
connection point can be common data, where one
component prepares data for another component.

Another type of connection can be “logical”, where
only users perceive the logic, not by the systems. For
example, several components together can form a
GUI towards a user who “sees” a common picture of
the components involved. Such a kind of
dependencies is not possible to find by parsing
components, but they must be specified somewhere
else.
Component specification interface and
component configurations
The explicit and a subset of implicit dependencies
can be encapsulated in components themselves
where a specification interface can be used as
proposed in [9]. This interface will be used to gather
dependencies and version information from the
component when it is deployed. If no such interface
is available it is possible to use the embedding
pattern to wrap components and make them provide
version information.
In the case the components provide that interface,
they can provide specifications and in this way it is
possible to build dependency graph showing relation
between the components. When information about
component versions are available, it is possible to
check if the system is consistent, or a situation
occur, where different components require different
versions of other components.
However, a component specification interface does
not cover all dependencies, as components can be
combined in many, unpredictable, ways. The
components can be assembled in packages, or be
expressed in frameworks [3], and finally on the
operating system level. On each level we should
have a possibility to specify the configurations.
Some operating systems, such as Windows NT or
Windows 2000, have stored that information
although not in a consistent way regarding
component configurations.
An example is how Windows 2000 manage services,
each service keep track on what other services it
depends on and also its dependants. This is a good
example on how the dependencies between service
components are used; it is vital importance that no
service shut down other services unintended.
However, there is no version information available,
in the dependency information, for services that can
be used for more accurate component management.
One of the research topics is to find proper model for
component configuration, which crucial part is
dependency specification.

3 CONFIGURATION MODEL
Configuration graphs
We want to have configurations of components
under control and to do that, we represent the
dependencies with a directed graph. Components are
the nodes in the graph and the dependencies the
edges.
When the dependencies have been calculated, it is
possible to create a system structure, as defined in
[2], with different levels of components. On the
lowest level of components are components without
dependencies to other component. This system
structure is used as a model to calculate quality
properties such as complexity and localization
factors. The complexity is proportional to the
number of dependencies between the components.
The localization factor denotes the number of levels
between components.
Configurations can be stored under version control
for later retrieval. In the configurations it is not the
actual component that is stored, it is meta-data which
describes the components and uniquely identifies it
with a key. New installed components can be
compared with a configuration to permit recognition
of the affected components in the system. When new
components are installed, new nodes in the
dependency graph are added. In the same way, nodes
are removed if components are removed.
Broken dependencies are detected when an old
configuration is compared with a new. New versions
of an existing component are identified by the
version part of the unique key which identifies all
components. New versions simply replace the older
in the graph. When comparing graphs, new versions
are detected since the keys will be different. Proper
dependency analysis requires that a component and
its version can be identified.
Nowadays we meet requirements of integration of
heterogeneous systems, real-time systems with non
real-time systems, or safety-critical systems with
general-purpose systems. In these cases it is
important to separate those parts of a system that are
critical for system execution. By using the
dependency graph we have the possibility of
marking selected components as critical to indicate
that they must not be affected by a component
update. A critical component must not be upgraded
or affected by an upgrade of another component,
whether critical or not. Critical paths are therefore
introduced. No component in a critical path may be
upgraded without making an active decision to

accept the change. Hence more than only the critical
components are placed under supervision. On the
other hand, components which depend on critical
components need no special treatment and can be
upgraded without notice.
Dependency browser
Even when the components are missing the
specification interface, it is possible to find out
(some of the) dependencies by simply parsing them.
We have developed a tool, designated the
dependency browser for the evaluation of the
presented configuration model. The main
requirement for the prototype was to be able to parse
a Windows 2000 system for its components and
dependencies. An iterative development model was
used to be able to show results more quickly with a
working prototype. The prototype is able to browse
the dependencies in a system and to store them under
version control. It is also used to gather information
about changes made between two configurations.
Certain measurements such as complexity analysis
are also provided.
There are different levels of dependency between
components in a system; in a Windows system there
are dependencies between shared libraries, as well as
between static and dynamic COM components.
Applications such as Word, Excel or Explorer, are
treated as executables with their dependencies
obtainable from the executable file itself. Since all
Windows executable files comply with the portable
executable format it is fairly easy to track the shared
libraries but not so easy in the case of COM
components. Scanning all shared libraries and
executables in a system creates a basic dependency
graph. Various features of the tool then extend this
graph. The windows registry has been used to gather
information about each component, which is then
added to the dependency graph. Step by step, a
configuration graph is built up for use in
configuration management. Processes can be
supervised and when new components are
dynamically loaded into the memory, the graph is
extended with dynamic dependencies. However, the
creation of a complete dependency graph at the
Windows platform is a tedious task as there are too
many dynamic dependencies difficult to detect
because they have not been activated during periods
of time when the system is supervised. Preliminary
results show that it is difficult to identify all the
components and their dependencies on the Windows
2000 platform. The configuration theory can be

applied when the dependencies are discovered. More
effort and research is needed in the area of gathering
the dynamic dependencies.

4 APPLICATION ON EXISTING MODELS
Interesting work is to see how the theoretical model
presented earlier can be applied to existing
component models, such as, COM [10], .NET [14]
and CCM [12]. Traditionally COM handles multiple
versions of components in a sense that it does not
accept new versions of interfaces and states that all
new versions must be treated as new components
with unique identifiers. This prevents new versions
from interrupting the configuration in an
unpredictable way. Microsoft .NET[11], is the new
runtime environment which supports, among others,
C#, handles coexisting components by introducing
unique identifiers for each component. Private and
shared components are two means of classifying
components in .NET. If a component is private, it is
not possible for other components to use it and this
avoids the versioning problem since no other
component can use it and the number of
dependencies is one. If a component is declared as
shared, many different applications can use it but
with the risk of breaking dependencies when
updating the system.
The use of components will even increase when new
web services are available like any other component.
Each web service will provide one or more
interfaces that can be used by any client around the
world. With the .NET architecture from Microsoft it
is possible to write truly distributed component
based applications. The clients receive information
about what interfaces are available and then they can
use proxies which communicate through the Simple
Object Access Protocol (SOAP). SOAP is an open
standard based on XML and http. Any access to a
remote web service in .NET will look exactly as any
other component access. All components are treated
equal and with the open SOAP protocol it is possible
to communicate over different component models.
With the object orientation we had to stay with one
programming language, and with the first
component technologies the language could be
chosen but the model was one. Now it is not longer
necessary to develop applications for just one
component model, for example CORBA and COM
can now interoperate freely.
With the .NET architecture it is possible to custom
metadata for the components. We think it possible to
use these capabilities to create metadata that contains

version information. This information can then be
used to gather dependencies and valuable
conclusions can be drawn.

5 CONCLUSION
In this paper we claim that the component
identification and specification of dependencies
between them will play an important role, not only
during the development (design) phase but also at
the run-time. All information must be under version
control to make it possible to evolve the systems in
an efficient and controlled way.
The challenges for the future work are to find the
appropriate information about the components
needed in different phases of a software lifecycle:
The components should provide information to be
easily identified and selected as proper candidates
during the requirements and design phases. If the
components do not provide information then it must
be investigated how version information can be
added to the components. The components should be
identified as parts of the system that will be built.
The system should describe its architecture by
referring to the components.
At the run time, the system should be aware of the
components integrated in the system. As information
required in different phases are slightly different, but
at the same time have much in common, it is
interesting to find out the most appropriate format of
information and possibility of exchanging
information.
Another challenge is to define an efficient way of
identifying configurations of component-based
systems and by using this information make it
possible to safely and efficient change the
configurations.

6 REFERENCES

[1] Cook J. E. and Dage J. A., "Highly Reliable
Upgrading of Components", In Proceedings of 21st
International Conference on Software Engineering,
ACM Press, 1999.

[2] Crnkovic I. "Large Scale Software System
Management" Doctoral Thesis Department of
Electrical Engineering, University of Zagreb 1991

[3] Crnkovic I., Küster J. K., Larsson M., and Lau K.-K.,
"Object-Oriented Design Frameworks: Formal
Specification and Some Implementation Issues", In
Proceedings of 4th IEEE International Baltic
Workshop in DB and IS, 2000.

[4] Estublier J., "Software Configuration Management: A
Roadmap", In Proceedings of 22nd International
Conference on Software Engineering, The Future of
Software Engineering, ACM Press, 2000.

[5] Hoek A. v. d., "Capturing Product Line
Architectures", In Proceedings of 4th International
Software Architecture Workshop, ACM Press, 2000.

[6] Hoek, A. v. d., Heimbigner, D., and Wolf, A. L.,
Capturing Architectural Configurability: Variants,
Options, and Evolution, report Technical Report CU-
CS-895-99, 1999.

[7] Kramer J. and Magee J., Analysing dynamic change in
distributed software architectures, IEE Software,
volume 145, issue 5, 1998.

[8] Larsson M. "Applying Configuration Management
Techniques to Component-Based Systems" Licentiate
Thesis Dissertation 2000-007, Deparment of
Information Technology Uppsala University. 2000

[9] Larsson M. and Crnkovic I., "New Challenges for
Configuration Management", In Proceedings of 9th
Symposium on System Configuration Management,
Lecture Notes in Computer Science, nr 1675,
Springer Verlag, 1999.

[10] Microsoft, The Component Object Model
Specification, report v0.99, Microsoft Standards,
Microsoft, 1996.

[11] Microsoft, Microsoft, .NET,
http://www.microsoft.com/net/.

[12] OMG, CORBA Components, report orbos/99-02-01,
OMG, 1998.

[13] Szyperski C., Component Software Beyond Object-
Oriented Programming, Addison-Wesley, 1998.

[14] Wille C., Presenting C#, SAMS Publishing, 2000.

