
Classification and survey of component models

MRTC report ISSN 1404-3041
ISRN MDH-MRTC-242/2009-1-SE

MRTC PROGRESS project provides a part of funding for DICES project.
DICES (Distributed Component-based Embedded Software Systems) project has a goal to advance
development of distributed embedded software systems, particularly with emphasis on software
reusability and predictability of software quality. By adopting a component-based approach to
engineering of embedded software systems, DICES aims to advance theories and methods for
prediction of certain system properties (such as resource utilization, and performance), as well as to
provide tools that will help in reusability of software components, and assure performance
efficiency of systems.
PROGRESS and DICES project have many interests in common. Except for interest in the same
systems domain (embedded systems), both projects are focusing on adaptation and extension of
component-based development into a mature engineering discipline for efficient development of
embedded software.

2009-02-20 Classification and survey of component
models Page 1 / 61

DICES technical report

Classification and survey of component models

Project name: DICES
Contract number: No. 03/07
Author(s): Juraj Feljan, Luka Lednicki, Josip Maras, Ana Petričić, Ivica Crnković

2009-02-20 Classification and survey of component
models Page 2 / 61

Executive summary
As component-based software engineering is growing and its usage expanding, more and more
component models are developed. In this report we present a survey of software component models
in which models are described and classified respecting the classification framework for component
models proposed by Crnković et. al. [1]. This framework specifies several groups of important
principles and characteristics of component models: lifecycle, constructs, specification and
management of extra-functional properties, and application domain. This report analyzes a
considerable amount of component models, including widely used industrial models, as well as
research models.

2009-02-20 Classification and survey of component
models Page 3 / 61

Table of Contents
1 Introduction ...4
2 Overview of selected component models ..15

2.1 AUTOSAR ...15
2.2 BIP ...16
2.3 BlueArX ...18
2.4 COM ..19
2.5 COMDES-II ...22
2.6 CompoNETS ..23
2.7 Corba Component Model (CCM) ..24
2.8 EJB ...25

2.8.1 Constructs ...25
2.8.2 Life cycle ..28
2.8.3 Extra-functional properties ..28
2.8.4 Benefits of Enterprise Beans ..28

2.9 Fractal ..29
2.9.1 Constructs ...29
2.9.2 Extra-functional properties ..33

2.10 IEC 61499 ..33
2.11 JavaBeans ...34
2.12 Koala ..37
2.13 KobrA ...40
2.14 OpenCOM ..41
2.15 Palladio Component Model ...43
2.16 Pecos ..46
2.17 Pin ..47
2.18 ProCom ..48
2.19 Robocop ...49
2.20 Rubus Component Model ..51
2.21 SaveCCM ...52
2.22 Sofa ..54

2009-02-20 Classification and survey of component
models Page 4 / 61

1 Introduction
Component models are a paramount concept in component-based software engineering, as they
define how components are specified and connected. A large number of component models have
been developed to date, but mostly having substantial differences in their approaches, meaning that
a comparison between them by simply listing their properties is not achievable. Therefore,
developing a systematic classification framework for component models is worthwhile.

In this technical report we use a classification framework proposed by Crnković et. al. [1] to
classify a number of component models. In [1] these component models are given brief general
overviews with their classification against the framework given only in tables. We expand this by
providing a somewhat more detailed textual description of each model's classification, while also
covering key properties of every model.

In Figure 1 we give a graphical representation of the classification framework. We also give tables
of the classification. The figure and the tables are taken from [1] and are repeated here for the sake
of completeness, and easier comprehension and readability. For details on the framework we refer
the reader to the referenced article.

2009-02-20 Classification and survey of component
models Page 5 / 61

2009-02-20 Classification and survey of component
models Page 6 / 61

Figure 1: The classification framework visualized

Table 1: Lifecycle

Component
models Modeling Implementation Packaging Deployment

AUTOSAR use of virtual
functional bus C

non-formal
specification of

container
at compilation

BIP
a three-layered
representation:

behavior, interaction
and priority

BIP language and
C++ N/A at compilation

BlueArX ASCET-MD C packages at compilation

CCM N/A language
independent

deployment unit
archive (DLLs,

JARs)
at run-time

COM N/A
language

independent to
some extent

DLL files, EXE files at compilation, at
run-time

COMDES II ADL-like language C N/A at compilation

CompoNETS behavior modeling
(Petri Nets)

language
independent

deployment unit
archive (DLLs,

JARs)
at run-time

EJB N/A Java EJB-Jar files at run-time

Fractal

ADL-like language
(Fractal ADL,
Fractal IDL),
Annotations

(Fractlet)

Java (in Julia,
Aokell)

C/C++ (in Think)
.Net lang. (in

FracNet)

file system based
repository at run-time

IEC 61499 function block
diagram

language
independent N/A at compilation

JavaBeans N/A Java JAR files at compilation

Koala CDL, IDL, DDL C

component file
based repository,

interface file based
repository

at compilation

KobrA UML language
independent

file system based
repository at compilation

OpenCOM N/A language
independent N/A at run-time

Palladio
domain-specific

language for each
role

Java N/A at run-time

PECOS ADL-like language
(CoCo) C++ and Java

deployment unit
archive (DLLs,

JARs)
at compilation

Pin ADL-like language C DLL at compilation

2009-02-20 Classification and survey of component
models Page 7 / 61

(CCL)

ProCom ADL-like language,
timed automata C file system based

repository
at compilation

ROBOCOP
ADL-like language,

resource
management model

C and C++ structures in zip files
at compilation and

run-time

Rubus Rubus Design
Language C file system based

repository
at compilation

SaveCCM

SaveCCM graphical
language, XML
adhering to the
SaveCCM DTD,

timed automata with
tasks

C, Java file system based
repository, JAR files

at compilation

SOFA 2.0
meta-model based

specification
language

Java repository
at run-time

2009-02-20 Classification and survey of component
models Page 8 / 61

Table 2: Constructs - interface specification

Component
models Interface type

Distinction of
provides and

requires
Distinctive

features
Interface
language Interface levels

AUTOSAR operation-based,
port-based yes AUTOSAR

Interface C header files syntactic

BIP port-based no N/A BIP language
syntactic,
semantic,
behavioral

BlueArX port-based,
operation-based yes

Configuration
Interface,
Analytic
Interface

XML adhering to
the MSRSW

DTD
syntactic

CCM operation-based
port-based yes

facets and
receptacles,

event sinks and
event sources

CORBA IDL,
CIDL syntactic

COM operation-based no ability to extend
interface MIDL syntactic

COMDES II port-based yes N/A
C header files,

state chart
diagrams

syntactic,
behavior

CompoNETS operation-based,
port-based yes

facets and
receptacles,

event sinks and
event sources

CoORBA IDL,
CIDL, Petri nets

syntacic,
behavior

EJB operation-based no N/A Java +
annotations syntactic

Fractal operation-based yes
Component
Interface,

Control Interface

IDL, Fractal
ADL, or

Java or C,
Behavioural

Protocol

syntactic,
behaviour

IEC 61499 port-based yes

event input and
event output,

data input and
data output

XML syntactic

JavaBeans operation-based yes N/A Java syntactic

Koala operation-based yes

diversity
interface,
optional
interface

IDL syntactic

KobrA operation-based no N/A UML
syntactic,
semantic,
behavioral

OpenCOM operation-based yes N/A OMG IDL syntactic

2009-02-20 Classification and survey of component
models Page 9 / 61

Palladio operation-based yes
inheritance,
RDSEFFs,
protocols

OMG IDL based syntactic,
semantic,
behavior

PECOS port-based yes
ability to extend

interface
CoCo language,

Prolog query,
Petri nets

syntactic,
semantic,
behavior

Pin port-based yes N/A

Component
Composition

Language
(CCL), UML
statechart

syntactic,
behavior

ProCom port-based yes data- and trigger
ports

XML based,
timed automata

syntactic,
behavioral

ROBOCOP port-based yes

ability to extend
different types of
interface/annotat

ions

Robocop IDL
(RIDL), protocol

specification

syntactic,
behavior

Rubus port-based yes data- and trigger
ports C header files syntactic

SaveCCM port-based yes
data-, trigger-
and combined

ports

XML adhering to
the SaveCCM

DTD

syntactic

SOFA 2.0 operation-based yes

Utility Interface,
possibility to

annotate
interface and to
control evolution

Java,
SPC algebra

syntactic,
behaviour

2009-02-20 Classification and survey of component
models Page 10 / 61

Table 3: Constructs - interaction

Component
models Interaction styles Communication

type
Binding type

Exogenous Hierarchical

AUTOSAR request-response,
message passing

synchronous,
asynchronous no delegation

BIP
triggering

rendezvous,
broadcast

synchronous,
asynchronous no delegation

BlueArX sender-receiver,
request-response

asynchronous,
synchronous no delegation

CCM request-response,
triggering

synchronous,
asynchronous no no

COM request-response,
events

synchronous,
asynchronous no delegation,

aggregation

COMDES II pipe-and-filter synchronous no no

CompoNETS request-response synchronous,
asynchronous no no

EJB request-response synchronous,
asynchronous no no

Fractal multiple interaction
styles

synchronous,
asynchronous yes delegation,

aggregation

IEC 61499 event-driven, pipe-
and-filter synchronous no delegation

JavaBeans request-response,
events synchronous no no

Koala request-response synchronous no delegation,
aggregation

KobrA request-response synchronous no delegation,
aggregation

OpenCOM request-response synchronous yes no

Palladio request-response synchronous yes delegation

PECOS pipe&filter synchronous no delegation

Pin
request-response,
message passing,

triggering

synchronous,
asynchronous no no

ProCom pipe-and-filter,
message passing

synchronous,
asynchronous yes delegation

ROBOCOP request-response synchronous,
asynchronous no no

Rubus pipe-and-filter synchronous no delegation

SaveCCM pipe-and-filter synchronous no delegation

SOFA 2.0 multiple interaction synchronous, yes delegation

2009-02-20 Classification and survey of component
models Page 11 / 61

styles asynchronous

2009-02-20 Classification and survey of component
models Page 12 / 61

Table 4: EFPs

Component
models Management of EFPs Properties specification Composition and analysis

support

AUTOSAR endogenous per
collaboration (A) N/A N/A

BIP endogenous systemwide (B) timing properties behavior composition

BlueArX endogenous systemwide (B) resource usage, timing
properties Reasoning Frameworks

CCM exogenous systemwide (D) N/A N/A

COM endogenous per
collaboration (A) N/A N/A

COMDES II endogenous systemwide (B) timing properties N/A

CompoNETS endogenous per
collaboration (A) N/A N/A

EJB exogenous systemwide (D) N/A N/A

Fractal exogenous per collaboration
(C)

ability to add properties (by
adding

“property” controllers)
N/A

IEC 61499 endogenous per
collaboration (A) N/A N/A

JavaBeans endogenous per
collaboration (A) N/A N/A

Koala endogenous systemwide (B) resource usage compile-time checks of
resources

KobrA endogenous per
collaboration (A) N/A N/A

OpenCOM endogenous per
collaboration (A) N/A N/A

Palladio endogenous systemwide (B) performance properties
specification

performance properties at
design-time

PECOS endogenous systemwide (B)
timing properties, generic

specification of other
properties

N/A

Pin exogenous systemwide (D) analytic interface, timing
properties

different EFP composition
theories, example latency

ProCom endogenous systemwide (B) timing and resources timing and resources at
design- and compile-time

ROBOCOP endogenous systemwide (B)
memory consumption, timing
properties, reliability, ability

to add other properties

memory consumption and
timing properties at

deployment

Rubus endogenous systemwide (B) timing properties timing properties at design-
time

SaveCCM endogenous systemwide (B) timing properties, generic timing properties at design-

2009-02-20 Classification and survey of component
models Page 13 / 61

specification of other
properties

time

SOFA 2.0 endogenous systemwide (B) behavioral (protocols) composition at design

2009-02-20 Classification and survey of component
models Page 14 / 61

Table 5: Domains

Component
models Domain

AUTOSAR specialized

BIP specialized

BlueArX specialized

CCM general-purpose

COM general-purpose

COMDES II specialized

CompoNETS general-purpose

EJB general-purpose

Fractal general-purpose, generative

IEC 61499 specialized

JavaBeans general-purpose

Koala specialized

KobrA general-purpose

OpenCOM general-purpose

Palladio specialized

PECOS Specialized

Pin general-purpose

ProCom specialized

ROBOCOP specialized, generative

Rubus specialized

SaveCCM specialized

SOFA 2.0 general-purpose, generative

2009-02-20 Classification and survey of component
models Page 15 / 61

2 Overview of selected component models

2.1 AUTOSAR
AUTOSAR is a new standardized architecture created by a partnership of a number of automotive
manufacturers and suppliers. The goal of AUTOSAR is to provide a way for managing increasing
complexity of vehicular embedded systems, enable detection of errors in early design phases and
improve flexibility, scalability, quality and reliability of such systems [2].

AUTOSAR defines a layered software architecture consisting of five layers. First three layers,
Microcotroller Abstraction Layer, ECU Abstraction Layer and Service Layer sit on top of hardware
and provide a standardized and hardware-independent interface to the AUTOSAR Runtime
Environment. This Runtime Environment then supports the Application Layer, the AUTOSAR
Component Model.

The main goal of AUTOSAR is to provide a standard for location independence and portability of
software components for the automotive industry. Thus, the component model itself is not very
advanced and does not fully reflect the capabilities of current state-of-the-art models [3].

During the development process, AUTOSAR provides some levels of system modeling by giving us
the ability to interconnect components using a Virtual Functional Bus (VFB). The VFB provides an
abstract level of viewing all communication mechanisms provided by AUTOSAR. In this way
AUTOSAR enables early system integration that is independent of the physical allocation of
components. At the time of deployment, the VFB is replaced by the AUTOSAR Runtime
Environment that provides implementation for selected communication mechanisms.

During deployment of a system, AUTOSAR Software Components are compiled and linked into
ECU specific executable. Although this provides a more efficient systems, ti also means losing the
benefits of the component-based approach during run-time.

AUTOSAR Software Component package consist of implementation and component description.
Implementation of a component can be either object code, or C source code. Component description
consists of operations and data that the component provides and requires, requirements that the
component has on the infrastructure, resources needed by the component and information about
specific implementation of the component. Because of the hardware abstraction layer provided by
AUTOSAR Runtime Environment the component's implementation is independent from the
hardware infrastructure, e.g. type of microcontroller or ECU.

The AUTOSAR Software Components are defined as applications which run on the AUTOSAR
infrastructure. These components are atomic, meaning that one component cannot be distributed
over several AUTOSAR ECUs. An exception to this is composition, a logical interconnection of
components packaged as a new component. The components inside the composition can be
distributed over several ECUs.

A special type of AUTOSAR software components are sensor/actuator components. These
components encapsulate dependencies on specific sensor or actuator hardware. They are dependent
on a specific sensor or actuator, but independent of the ECU.

AUTOSAR Software Components interact with each other through their well-defined ports.

2009-02-20 Classification and survey of component
models Page 16 / 61

Services or data that a port provides or requires are defined by AUTOSAR Interfaces (which,
accordingly, a port can provide or require). AUTOSAR Interfaces are described by C header files
and cover only syntactical information.

Communication between components can follow either Client-Server (Request-Response) or
Sender-Receiver (message passing) pattern. In case of Client-Server communication pattern
providing port (server) implements operations defined by the interface, while the port that requires
the interface (client) can invoke those operations. This type of communication can be either
synchronous (if the client blocks its execution until the server returns a response) or asynchronous
(in case the client does not block after the operation request is initiated). The Sender-Receiver
pattern allows only asynchronous transfer of data. In this pattern the providing port (sender)
generates the data and requiring port (receiver) has the ability to read this data. After the sender
generates the data it doesn't wait or expect any response from the receiver. Type of communication
is defined by the AUTOSAR interface that a port provides or requires.

Binding of AUTOSAR components is endogenous, having no separate connector entities. The
connection between ports is managed by the ports themselves.

AUTOSAR allows use of compositions for sub-system abstraction. However, they are only used to
group existing software components to manage complexity when designing logical system
architecture [4]. They do not add any new functionality to that already defined by the components
inside the composition, and do not have any binary footprint when deployed to ECU. Surface ports
of a composite exposes can by explicitly defined by delegating ports of the aggregated components.

Although AUTOSAR Software Component descriptions have the ability to specify some extra
functional properties, like resource (memory, CPU-time, etc.) that a software component requires,
there is a lack of the capability to express the multitude of non-functional constraints, insufficient
expressiveness of the interfaces [3]. In AUTOSAR, there is also a lack of ability to analyze
properties of component composition, e.g. ability to guarantee that component's properties are
preserved across integration, or that requirements of global properties of composed objects are
meet.

2.2 BIP
BIP (Behavior, Interaction, Priority) [5] is a framework developed at Verimag used for modeling
heterogeneous real-time components. In BIP the heterogeneity can refer to either: synchronous or
asynchronous (or one of the variety of intermediate and hybrid models); and timed or untimed
components.
Each BIP component is a superposition of three layers: Behavior layer which specifies a set of
transitions; Interaction layer which uses a set of connectors that describe the interactions between
the transitions of behavior and Priority layer which is used to define interaction priorities.

BIP components are defined with: a set of ports used for synchronization with other components
which can also be used for data transfer; a set of control states defining internal component states; a
set of variables used to store data and a set of transitions representing steps from one control state to
the other while carrying an internal computation if a certain condition (so called guard) holds and
synchronization happens on the specified port. Interfaces of BIP components are port-based and are
defined on the syntactical, semantical and behavioral level.

2009-02-20 Classification and survey of component
models Page 17 / 61

For defining components BIP uses a mix of custom BIP syntax and C/C++ code.

Main BIP constructs are:

• atomic components whose behavior is specified with a set of transitions, but which have
empty interaction and priority layers.

• connectors which are sets of ports of atomic components which can be involved in an
interaction. Non-trivial interactions (interactions with at least two ports) denote a
synchronization between included ports. BIP differentiates two basic synchronization
modes:

◦ Rendezvous or strong synchronization which includes all ports contained in a connector.

◦ Broadcast or weak synchronization when all feasible interactions of a connector contain
a particular port which initiates the broadcast.

• Priority relations are used for prioritizing interactions.

Compound components are composed from either atomic components or other compound
components by creating their instances with the addition of specifying connectors between them
and priorities of their interactions. BIP is a hierarchical component model.

The process of system construction can be viewed as a series of formal transformations of the three

2009-02-20 Classification and survey of component
models Page 18 / 61

Example 1: Defining atomic BIP
component

Example 2: Connector definition

layers (Behavior, Interaction, Priority) where corresponding layers are separately composed.

BIP execution platform is partially implemented in the IF tool-set and the PROMETHEUS tool and
also includes a front-end for parsing BIP and generating C++ code which can be executed and
analyzed.

2.3 BlueArX
BlueArX1 [6] is a domain-specific component model developed and used by Bosch for real-time
embedded automotive applications, for example in engine control systems or chassis systems. These
are closed control loop systems, meaning that they receive physical values from sensors, perform
computations and then control actuators with new physical values.

BlueArX provides support in all stages of the lifecycle. Modeling is usually done using ASCET-
MD2 models. Implementation is done in C. Components are delivered as so called packages, and
are both exchanged between Bosch teams and shipped to customers in this format. Each component
consists of the specification, documentation and implementation. Deployment is done at
compilation. BlueArX focuses on design-time (see signal flows below) and does not impose
additional run-time overhead.

BlueArX supports two types of components: atomic and structural. An atomic component is a unit
of specification that has an implementation (as stated earlier – in C), while a structural component is
a unit of specification that has a decomposition (i.e. it is composed from several atomic and/or
structural components). A structural component can export a subset of subcomponents' interfaces, in
other words BlueArX provides support for hierarchical binding through delegation. The binding
type is endogenous.

BlueArX divides interfaces into two types: import and export. An import interface specifies
variables, messages, services calibration parameters, etc. required by a component to execute, while
an export interface specifies the same types of elements that a component provides. Interface
specification is done in XML adhering to the MSRSW (Manufacturer Supplier Relationship
Software) DTD3, and it includes computation methods, calibration parameters (maps, curves),
physical units etc. The interface contractualization level is syntactic, but some semantic consistency
checks are also preformed (e.g. unit consistency, value range). The interface type is both port-based
(via messages) and operation-based (via service calls).

As distinctive features BlueArX has two additional types of interfaces: Configuration and Analytic.
A Configuration Interface4 specifies the variability of a software component, as it contains and
describes all variant points and the dependencies between these variant points. For example, a
component C supports either a turbo charger, or a compressor, or neither of them. This is expressed
by the component having two variant points (TURBO_CHARGER (boolean) and COMPRESSOR

1 We thank Martin Herrmann from Bosch for providing additional information on BlueArX, and for his comments and
review of this BlueArX overview.

2 A software modeling tool developed by the ETAS group,
http://www.etas.com/en/products/ascet_md_modeling_design.php

3 Available at www.msr-wg.de/medoc/download/msrsw/v110/msrsw_v110-eadoc-en/msrsw-eadoc-en.pdf. MSR is a
consortium of car manufacturers and suppliers that aims to enable process synchronization and proper information
exchange based on XML

4 A concept still under development.

2009-02-20 Classification and survey of component
models Page 19 / 61

http://www.etas.com/en/products/ascet_md_modeling_design.php
http://www.msr-wg.de/medoc/download/msrsw/v110/msrsw_v110-eadoc-en/msrsw-eadoc-en.pdf

(boolean)), with three legal (01, 10, 00) and one illegal combination (11) between them.

An Analytic Interface is used to store components' EFPs. EFP values are specified in XML
conforming to the MSRSW DTD. Since EPF values have dependencies to the hardware platform,
compiler, software context etc., the context has to be specified. Analytic Interfaces in BlueArX
systems are connected to Reasoning Frameworks, which are used for various EFP consistency
checks. Thus, management of EFPs is endogenous systemwide.

Components communicate using messages (global variables) and service calls (function calls).
Thus, the communication type is both asynchronous (when using messages) and synchronous (when
using service calls). The interaction styles are sender-receiver (messages) and request-response
(service calls).

BlueArX puts a special focus on the concept of signal flows. The idea is to use signal flow
visualization to provide crucial behavior information on the component level, and get an explicit
functional view from implicit component specifications. There are three types of signal flows:

• component internal flow,

• flow between components, and

• end-to-end flow (originates at a sensor, propagates through various components and ends at
an actuator).

In many cases signal flows through a system depend on the mode of operation, meaning that the
flow of information may change its path depending on the mode in which the system is operating.
BlueArX provides support for mode dependent signal flows, which enables more precise flow
analysis. Mode dependent signal flows manage the complexity of flow visualization by highlighting
only those flows that are relevant for a particular mode.

2.4 COM
Component Object Model (COM) [7], [8] is a platform independent5, distributed, object-oriented
software architecture for creating and connecting binary software components, developed by
Microsoft. It is a general-purpose component model, one of the most commonly used component
models for desktop- and server side applications. Microsoft is applying COM to address specific
areas such as controls, compound documents, automation, data transfer, storage, naming and so on
[9].

The COM technology represents one of the earliest attempts (introduced in 1993) to increase
program independence and allow programming language heterogeneity [10]. COM has its origins in
OLE (Object Linking and Embedding), a technology that enables compound documents by
maintaining active links between documents or even embedding one type of document within
another. In 1996 COM was extended to support distribution, which resulted in DCOM (Distributed
COM), Microsoft's answer to CORBA. In the same year, some parts of OLE were renamed to
ActiveX. ActiveX components are used for creating distributed applications that work over the
Internet through Microsoft's Internet Explorer browser. With Windows 2000, COM+ was released.
COM+ added support for enterprise-level features (distributed transactions, resource pooling,

5 COM is mostly used in the Windows family of operating systems, however Unix implementations exist, and
Microsoft provides an implementation for Macintosh systems.

2009-02-20 Classification and survey of component
models Page 20 / 61

disconnected applications, event publication and subscription, better thread management etc.) to
COM. Today under the COM name the DCOM and COM+ technologies are included, and COM is
used as the underlying architecture for OLE and ActiveX.

The COM platform has been superseded by .NET, and to some extent COM is now deprecated in
favor of .NET, as Microsoft recommends that developers use .NET rather than COM for new
development. However, COM is used in core parts of Windows and Microsoft Office, and continues
to be supported as part of Windows.

COM provides support in the implementation, packaging and deployment stages of the lifecycle,
while the modeling stage is not supported. COM is a binary standard, it applies after a component
object6 has been translated to binary machine code. Any language that produces binary compatible
code, in a sense that the language can create structures of pointers and support method calling
through pointers, can create and use component objects. These are for instance C, C++, Smalltalk,
Ada, Pascal etc. This makes COM language independent to some extent. Component objects can be
packaged either as EXE files or as dynamic-link libraries (DLL files). Deployment can be done
either at compilation or at run time. The emphasis is on the former. This is enabled through the use
of the QueryInterface method (details follow later).

One of the key principles of COM is that interfaces are specified separately from both the
component objects that implement them and component objects that use them. An interface cannot
be instantiated, a component object has to implement the interface and that component object is to
be instantiated. Different component objects may implement the same interface differently. Thus,
polymorphism fully applies to COM. A component object can, and typically does, implement more
than one interface.

A client has access to a component object through a pointer to the object's interface. This interface
pointer hides all aspects of the internal implementation of the component object, the object's data
cannot be accessed, only interface methods can be called. Therefore, encapsulation also fully
applies to COM.

Component objects are identified by class IDs (CLSIDs), while interfaces are identified by interface
IDs (IIDs). Both CLSIDs and IIDs are globally unique, which eliminates any chance of collision
that would occur with human-readable names and result in run-time failure. CLSIDs and IIDs are
128-bit integers.

COM interfaces are never versioned, which means that version conflicts between new and old
component objects are avoided. A new version of an interface, created by adding more methods or
changing existing ones, is an entirely new interface and is assigned a new IID. Therefore, a new
interface does not conflict with an old interface even if all that changed is the semantics (but not
even the syntax) of an existing method [9]. That way other component objects that rely on a
particular interface can continue to work. New functionality is added to component objects by
adding support for new interfaces. Since interfaces remain constant, their implementation can be
altered without breaking component objects that use these interfaces.

Since component objects communicate through method calls, the interface type is operation-based.
There if no distinction between the provides- and requires part of the interface. A distinctive feature
of COM is the ability to extend interfaces. As the interface specification language a dialect of

6 COM's term for component, not to be confused with object-oriented source code objects, class instances.

2009-02-20 Classification and survey of component
models Page 21 / 61

Object Management Group's Interface Definition Language (OMG IDL) is used, the Microsoft
Interface Definition Language (MIDL). The contractualization level of interfaces is syntactic.

The interaction style is request-response, this is determined by method calling. Also, DCOM and
COM+ enable the event interaction style. The communication type is synchronous in the former
case and asynchronous in the latter. Exogenous binding is not supported. There is support for
hierarchical binding, through two techniques – delegation and aggregation. With delegation the
composite object component "contains" the object subcomponent, and when the composite object
component wishes to use the services of the object subcomponent, the composite object component
simply delegates implementation to the object subcomponent, by delegating the method call to the
object subcomponent's interface. In other words, the composite object component uses the object
subcomponent's services to implement some of its own functionality (or possibly all of its own
functionality). With aggregation the composite object component exposes interfaces of the object
subcomponent as if they were implemented on the composite object component itself [9].

The binary standard enables COM to perform method calls transparently – all component objects,
in-process, cross-process or remote, are available to clients in a uniform and transparent way.

All component objects implement the standard IUnknown interface, otherwise they are not
component objects. All COM interfaces are derived from IUnknown. This interface defines three
methods, QueryInterface, AddRef and Release.

AddRef and Release are used for reference counting. AddRef is called when a client is using
an interface. Release is called when the client no longer requires use of the interface. When the
reference count falls to zero, the component object can safely unload itself from the memory.

The QueryInterface method provides the mechanism for dynamic (run-time) discovery of
capabilities of a specific component object. In other words, the method is used to find out whether
or not an interface is supported by a component object. At the same time, QueryInterface is
the mechanism that a client uses to get an interface pointer from a component object. When an
application wants to use some function of a component object, it calls the object's
QueryInterface method. If the component object supports the desired interface, it will return
the appropriate interface pointer and a success code. Otherwise, it will return an error value. The
application will then examine the return code – if successful, it will use the interface pointer to
access the desired method [9]. The combination of immutable interfaces and QueryInterface
allows development of applications in which component objects can be dynamically updated,
without the need to update other component objects or recompile the application.

The Component Object Library is a part of the operating system which provides the mechanics of
COM. It encapsulates the work associated with launching component objects and establishing
connections between them. When an application wants to use a component object, it passes the
CLSID of the component object to the Component Object Library. The Component Object Library
uses that CLSID to look up the associated component object code in the registration database. The
library then returns the object's class factory to the application. The class factory is used to
instantiate the component object. Upon instantiation the class factory returns a pointer to the
requested interface back to the calling application. The application neither knows nor cares where
the component object is run, it simply uses the returned interface pointer to communicate with the
object. The Component Object Library is implemented in the COMPOBJ.DLL file for newer

2009-02-20 Classification and survey of component
models Page 22 / 61

versions of Windows.

COM has no support for EFP specification or composition and analysis. Management of EFPs is
endogenous per collaboration. This is rather understandable, as in COM's primary domains EFPs
are not of great relevance.

To sum up, basic COM concepts include [9]:

• A binary standard for method calling between component objects.

• A provision for strongly-typed groupings of methods into interfaces.

• A base IUnknown interface providing:

◦ A way for component objects to dynamically discover the interfaces implemented by
other component objects (QueryInterface method).

◦ Reference counting to allow component objects to track their own lifetime and delete
themselves when appropriate (AddRef and Release methods).

• A mechanism to uniquely identify component objects and their interfaces (CLSIDs and
IIDs).

• A "component loader" to set up component object interactions (Component Object Library).

2.5 COMDES-II
COMDES-II (COMponent-based design of software for Distributed Embedded Systems, version II)
is a component-based software framework aimed for efficient development of reliable distributed
embedded control systems with hard real-rime requirements [11], and gives solutions for this
specific domain.

The methodology that COMDES-II defines provides the ability to model both architectural and
behavioral aspects of systems. The goal of this modeling is to provide the ability to analyze and
verify system behavior at high abstraction level, and enable automatic code generation which would
reduce the effort of implementing the systems and minimize the errors introduced by manual
coding. As a consequence of this code generation, components are deployed at compilation time.

COMDES-II defines a two-layer component model. Components in the first layer are called actors.
Actors are active software artifacts consisting of multiple I/O drivers, which define their port-based
interface, and a single actor task. I/O drivers can be either communication drivers, used for
communication over network, or physical drivers, used for sensing or actuating from/to physical
units. There is a distinction between input and output I/O drivers. Actors interact with each other by
exchanging labeled messages. This interaction is asynchronous and follows a producer-consumer
protocol known as content-oriented message addressing. There are no connecting entities between
actors, leaving the binding endogenous.

In the second layer of component model, as specification of functional behavior of actor tasks,
COMDES-II uses function block instances, which are instantiations of function block types.
Function blocks are pure functional components implementing concrete computational or control
algorithms, and communicate with each other with their port-like inputs and outputs. Function
block types can be categorized as either basic, modal, state machine or composite. Basic function

2009-02-20 Classification and survey of component
models Page 23 / 61

blocks are elementary function blocks, from which more sophisticated kinds of function blocks can
be constructed. Composite function enable for hierarchical composition of functional behavior.
Their functionality is represented using function block diagrams consisting of interconnected
function block instances. The connections between function blocks employ a synchronous data flow
model of computation. State machine and modal function blocks are used together to specify
sequential system behavior. State machine function blocks consist an event-driven state machine
model, binary inputs that are used as events/guards for the state machine, and two outputs which
signal the current state of the state machine and notify environment about changes of that state. To
eliminate non-deterministic behavior transitions of the state machine are ordered using a number
indicating the importance of a transition. State machines can also be historical. Output of state
machine function blocks can be directed to one or more modal function blocks, changing the mode
of operation of these modal function blocks and allowing for the change of functionality of the
system depending on the state of a state machine function block. Modal function blocks are
hierarchical in their nature; different modes of operation of a modal function are specified using
function block diagrams.

At the actor level, systems demonstrate a distributed timed multitasking operation model. This
allows for a system-wide specification and reasoning about timing extra-functional property.
Verification of such properties using UPPAAL timed automata has been explored [12].

2.6 CompoNETS
CompoNETS is a simple general-purpose component model designed in an effort to combine
component-based software engineering and high-level Petri nets, with the goal to provide a formal
semantic framework for software components [13]. Benefits of this would be the ability to describe
internal behavior of concurrent and distributed components, a formal, unambiguous semantics for
features as event multicasting, and in the end having means to reason about compositions of
components designed with this approach.

The component model itself is inspired by CORBA Component Model (CCM). However, it is more
simple and precise, and focuses on behavioral semantics, thus more adequate for research. These
simplifications allow for mapping between component model constructs and Petri net elements,
thus providing the ability to model behavior of components and compositions of components.

Although the current implementation of CompoNETS is in Java, the model is not tied to any Java
specifics, leaving the possibility of implementation in any programming language.

Interfaces of CompoNETS components are defined by ports that that either provide or require
operations (facets and receptacles), act as an provide or require event data (event sources and event
sinks), or provide access to configurable properties. These types of ports are chosen to cover
interaction styles seen in many component-based technologies used in industry: multicast
asynchronous event-based communication, synchronous method invocation, and design-time
configuration. Ports are defined using Java interfaces.

CompoNETS allows for hierarchical structure by providing ability to view assemblies of
components as new components by hiding, promoting or renaming lower lever features at the upper
level.

There is no support for extra-functional properties in CompoNETS.

2009-02-20 Classification and survey of component
models Page 24 / 61

2.7 Corba Component Model (CCM)
CORBA Component Model is a part of the CORBA 3 standard defined by Object Management
Group (OMG). Its purpose is to reduce the effort of developing and deploying CORBA applications
[14]. By using CORBA middleware as a base for component model, the CCM technology
inherently provides a good method for defining software components and connecting such
components into distributed systems. The CCM standard is focused on implementation of
applications and doesn't provide any modeling capabilities.

Components in the CCM can be implemented in any programming language and on any platform as
long as they use the CORBA middleware. A component package in the CCM consists of compiled
program code (e.g. library file for C++ or class file for JAVA), and a CORBA component descriptor.
Component descriptor is an XML file that contains information about the interfaces and services
that the component supports.

The CCM components are deployed at run-time into CCM framework elements called containers.
The deployment is done using assembly archives, which contain component archives, component
property files and a component assembly descriptor. During run-time the container provides a
framework for components that hides any specifics of the underlying platform. services like
component life-cycle management, naming, transactions and security to the components it hosts,
relieving component developers and application builders of the burden of implementing these
functionalities. Operations for life-cycle management of components are isolated from the
components themselves and implemented by objects called component homes. Each component
type has to have a component home that is associated with the type. CCM development process also
supports automated code generation using CCM Component Implementation Framework (CIF). For
this purpose CCM also defines a declarative language called Component Implementation Definition
Language (CIDL) for describing components. A CIF compiler reads component descriptions made
using CIDL and generates some parts of component implementation (e.g. introspection, activation,
state management) and CORBA component descriptors used in packaged components.

CCM defines two levels of components: basic level and extended level. Basic components have
operation-based interfaces and provide a way to wrap regular CORBA objects. Components on this
level are also fully compatible with Enterprise JavaBeans (EJB) component model specification,
allowing for easier integration and mapping between these two models [15]. Extended components
provide a much richer set of functionality. Their interfaces are defined by ports. CCM extended
components support five different types of ports:

• Facets, which declare interface implemented by components,

• Receptacles, which explicitly represent which interfaces a component uses,

• Event sources, which enable components to be emitters or publishers of events,

• Event sinks, through which components declare that they accept events from event sources,

• Attributes, exposed named values that are primarily intended for component configuration.

Using these types of ports, component implementer can define that a component provides or
requires data or services using synchronous or asynchronous communication. Interfaces of both
basic and extended components are defined using Interface Definition Language (IDL). IDL
definitions cover only syntactical information. Connection between ports are handled endogenously,

2009-02-20 Classification and survey of component
models Page 25 / 61

by components themselves. CCM does not support hierarchical composition.

CCM defines four common patterns for implementing components called component categories.
These categories are [14]:

• Session. Session components are temporary objects that do some work on the behalf of a
client. They are often created for each client that connects to a server and discarded when
the client disconnects. Session components are stateful.

• Service. Service components are stateless temporary objects that provide services to clients.
One service component can service multiple clients.

• Entity. Entity components have a persistent state managed by the component container.
They are mainly used to represent data stored in a database.

• Process. Process components have, like entity components, persistent state. They are used
for representing business processes where the state of the process needs to be stored
persistently or the process has to participate in a distributed transaction.

CCM does not provide any support for extra functional properties.

2.8 EJB
Enterprise JavaBeans (EJB) is a component model developed by Sun Microsystems with current
version 3.0 [16]. EJB has quite limited scope but despite its limitations, it has been widely used and
popular in Java community. EJB is primarily used for a client – server model of distributed
computing. It envisions the construction of object-oriented and distributed business applications.
The model simplifies the development of middleware by providing server support for a set of
services, such as transactions, security, persistence, concurrency and interoperability.

The EJB component model logically extends the JavaBeans [17] component model to support
server components. Server components are reusable, prepackaged pieces of application
functionality that are designed to run in an application server. They are similar to development
components, but they are generally larger grained and more complete than development
components. EJB components (enterprise beans) cannot be manipulated by a visual Java IDE in the
same way that JavaBeans components can. Instead, they can be assembled and customized at
deployment time using tools provided by an EJB-compliant Java application server.

2.8.1 Constructs
EJB components
An enterprise bean is a reusable, portable J2EE component which consists of methods that
encapsulate business logic, and run inside an EJB Container. EJB components are limited to Java
programming language, but they may be invoked from various other languages e.g. C++, C#, Visual
Basic .NET. The EJB 3.0 bean class can be a pure Java class often referred as POJO and the
interface can be a simple business interface.

EJB specification introduces three kinds of components called beans: Entity beans, Session beans
and Message – driven beans.

2009-02-20 Classification and survey of component
models Page 26 / 61

Entity beans
An entity bean is a complex business entity which represents a business object that exists in the
database. Its purpose is to access to data remotely over network. Each entity bean represents an
object view on one record from the database and is defined by primary key. Entity beans may be
shared between multiple users that use a primary key to access a particular bean. Invocations are
performed synchronously. Entity beans are state full due to permanent storage background.

Entity beans introduced in EJB 3.0 specification are represented by Java Persistence API [18]
entities, and they differentiate from the concept of entity beans that existed in previous EJB
specifications (EJB 1.x, EJB 2.x). The EJB 1.x and 2.x entity beans must conform to a strict
component model. Each bean class must implement a home and a business interface. The EJB 1.x
and 2.x container requires very detail XML configuration files to map the entity beans to tables in
the relational database. All these requirements are the reason why entity beans were obviated by
software developers.. Introducing of entity beans as POJOs, made EJB 3.0 much more eligible an it
simplified enterprise Java development with EJB.

Session beans
Session beans perform a task for a client; optionally they may implement a web service. Contrary to
entity beans, session beans are not permanent and have no primary key since they are not backed by
a database or other form of permanent storage.

Session beans are not shareable, as each session bean represents a single client inside the
application server. To access an application that is deployed on the server, the client invokes the
session bean’s methods. The session bean performs work for its client, shielding the client from
complexity by executing business tasks inside the server. Invocations of session beans are
synchronous.

Session beans may be statefull or stateless. Statefull bean maintains its state across different method
calls through its instance variables which represent the state of a unique client-bean session. As a
consequence, statefull session bean can be used by one remote client at a time. Stateless bean does
not hold its state, when a client invokes the methods of a stateless bean, the bean’s instance
variables may contain a state specific to that client, but only for the duration of the invocation.
Except during method invocation, all instances of a stateless bean are equivalent, therefore stateless
beans may be used by more than one remote client at a time.

Message – driven beans
Message-driven beans act as a listener for a particular messaging type, such as the Java Message
Service (JMS) API. Similar to session beans, message-driven beans do not represent any data
directly, however they may access any data in an underlying database. The most visible difference
between message-driven beans and session beans is that clients do not access message-driven beans
through interfaces. In other words, client components do not locate message-driven beans and
invoke methods directly on them. Instead, a client accesses a message-driven bean through some
messaging service (for example JMS). Message-driven beans are executed when a message from a
client arrives on a server, this means that their invocation in asynchronous. A single message-driven
bean can process messages from multiple clients.

EJB Interfaces

2009-02-20 Classification and survey of component
models Page 27 / 61

An interface of an enterprise bean is specified as a set of methods and attributes, using Java
programming language. Unlike session beans, message-driven and entity beans do not have
interfaces that define client access because they have a different programming model.

A client can access a session bean only through the methods defined in the bean’s business
interface. All other aspects of the bean (method implementations and deployment settings) are
hidden from the client. Session beans can expose one of two kinds of interfaces:

• remote interface: represents provisions of a bean. Provides an access point for a remote
client and defines the business and life cycle methods that are specific to the bean

• local interface: defines the bean’s business and life cycle methods that allow only local
access (a local client must run in the same Java virtual machine (JVM) as the enterprise bean
it accesses)

Each session bean has to implement at least one interface (remote or local). Although it is
uncommon, it is possible for an enterprise bean to allow both remote and local access. Both kinds of
bean interfaces are provided interfaces. EJB does not support required interfaces of a bean.

Message-driven beans and entity beans can also define and implement some interface, but it is not
obligatory.

In addition, bean class can, but is not required to implement interfaces that it defines. However,
implicitly, the interface of an enterprise bean is a set of the methods it implements and its attributes.

In order to additionally specify an enterprise bean, EJB 3.0 uses metadata annotations which are
inspected by service framework. The EJB 3.0 specification itself defines a wide range of
annotations that cover different attributes such as transaction or security settings, object-relational
mapping and injection of environment or resource references. Metadata annotations are also used to
specify the bean or interface and run time properties of enterprise beans. For example, a Session
bean is marked with @Stateless or @Stateful to specify the bean type, message-driven beans are
marked with @MessageDriven annotation.

As an alternative to Java annotations, there are deployment descriptors which were also used in
previous versions of EJB (EJB 1.x, EJB 2.x). Deployment descriptor is an XML file which can be
used to override some annotations, but also for describing application level metadata.

Composition of constructs
It is important to mention that EJB does not support connection-oriented programming, but follows
traditional object-oriented composition (third party can not bind EJBs, but an EJB can specify
dependencies to other components). Binding of enterprise beans is performed at runtime. In
addition the composition specification of EJB components is location-transparent; the run-time
location of components (placed on a local or a remote node) is specified separately from the binding
information. A strength of EJB is automatic composition of component-instances with appropriate
services and resources that component-instances are dependent on. This includes automatic
configuration of necessary implicit middleware services based on needs specified by annotations or
in the deployment-descriptor (transactions, persistence and security)

Communication between beans or between client and a bean is performed using Remote Method
Invocation [19], which is a Java implementation of a Remote Procedure Call. Communication
between enterprise beans is managed by JVM.

2009-02-20 Classification and survey of component
models Page 28 / 61

An example of an EJB component system and its interaction with clients is shown on Figure 1..

2.8.2 Life cycle
Packaging
EJB are packaged into an EJB JAR file, the module that stores the enterprise bean. An EJB JAR file
is portable and can be used for different applications. To assemble a Java EE application, one or
more modules (such as EJB JAR files) are packaged into an EAR file, the archive file that holds the
application.

Deployment
EJB beans are deployed in an EJB Container which is in charge of their management at runtime
(start, stop, passivation or activation) and extra-functional properties (such as security, reliability,
performance). The Container can hide to application programmers some of the complexities
inherent in the handling of non-functional aspects in a software system, such as distribution and
fault-tolerance.

2.8.3 Extra-functional properties
EJB is primarily aiming at industrial use and it has been designed to support component developers
at an implementation level, while lacking the sufficient support for specifying or analyzing extra-
functional properties.

2.8.4 Benefits of Enterprise Beans
For several reasons, enterprise beans simplify the development of large, distributed applications.
First, the EJB Container provides system-level services to enterprise beans so the bean developer

2009-02-20 Classification and survey of component
models Page 29 / 61

Figure 2: Client interaction with EJB component system

can concentrate on solving business logic problems. The EJB container, rather than the bean
developer, is responsible for system-level services such as transaction management and security
authorization.

Another benefit is that enterprise beans contain the application’s business logic, therefore the
developer of an enterprise bean client can focus on the presentation of the client. The client
developer does not have to code the routines that implement business rules or access databases. As a
result, the clients are thinner, a benefit that is particularly important for clients that run on small
devices.

Due to the fact that enterprise beans are portable components, the application assembler can build
new applications from existing beans. These applications can run on any compliant Java EE server
provided that they use the standard APIs.

2.9 Fractal
Fractal [20] is a component model developed by France Telecom R&D and INRIA. The main goal
of Fractal is to provide an extensible, open and general component model that can be tailored to fit a
large variety of applications and domains. It tends to cover the whole development life cycle from
design and implementation, up to deployment and maintenance/management (i.e. monitoring and
dynamically reconfiguring) of various complex software systems.

Fractal can be used with any programming language and can be applied to variety of systems and
applications from operating systems, middleware platforms to graphical user interfaces. Fractal
currently provides different instantiations and implementations such as a C-implementation called
Think [21], which targets especially the embedded systems and a reference implementation called
Julia [22] written in Java.

Fractal component model includes several important features, such as:
• nesting components into composite components
• reflectivity – component has introspection capabilities, it can expose its externals and

internals to other components, and it may respectively be created from other components
• component sharing – a given component can be included (shared) by more than one

component
• binding components – component connections are represented by a single abstraction called

bindings which covers any communication style such as synchronous method calls or
remote procedure calls

• execution model independence
• extra-functional properties associated to a component can be customized

2.9.1 Constructs
Fractal components are represented through operation-based interfaces they expose. Every
component, besides its functionality, can include a set of control capabilities. These capabilities are
not fixed in the component model, but can be extended and adapted to fit programmer's constraints
and objectives. Therefore the Fractal component model is defined as an extensible system of
relations between well defined concepts and corresponding APIs that Fractal components may or
may not implement, depending on what they can or want to offer to other components. This set of

2009-02-20 Classification and survey of component
models Page 30 / 61

specifications can be organized as increasing "levels of control":

• At the lowest level, a Fractal component does not provide any control capability and can be
used only by invoking operations provided by the component.

• At the next level which is called the external "introspection" level, a Fractal component can
provide introspection functions to introspect its external features (in other words, to explore
operations and control capabilities that the component provides or requires).

• At the top level of control capability, which can be called the "configuration" level a Fractal
component can provide ways to introspect and reconfigure its content (to manage the set of
its subcomponents, bindings between these components etc.).

It is important to note that in Fractal everything is optional (a component can, but is not required to
provide specific capabilities), also everything in Fractal is extensible and can be customized to fit
specific needs. In Fractal specification, frameworks and features are specified using the interface
declarations (called language interfaces) that a component should implement in order to reach
certain control capabilities. Within this overview, some of these interfaces and their purpose will be
mentioned, for further details see the Fractal specification [23].

The advantage of extreme modularity and extensibility of the Fractal model is that it can be applied
to many situations. The drawback is that two arbitrary Fractal components will generally not be able
to work together, because they may use very different, and potentially incompatible, options or
extensions of the Fractal model.

Interfaces
Fractal defines a component interface as “an access point to a component, i.e., a place where
operation invocations can be emitted or received”. The component interface implements a language
interface which is made of several operation declarations and it represents a type. Fractal
component interfaces can be defined either directly in any programming language (e.g. Java, C), or
indirectly via any IDL. As a consequence, the constraints and costs associated to the use of an IDL
do not have to be paid for, if interoperability between distinct Fractal components is not needed.

When seen as black box, i.e. when its internal organization is not visible, the only visible details of
a Fractal component are access points to this black box, called its external interfaces (see Figure 3).

One may distinguish two kinds of interfaces: a client (or required) interface emits operation
invocations, while a server (or provided) interface receives them. In addition, Fractal distinguishes
between a functional and a control interface. A functional interface is an interface that corresponds

2009-02-20 Classification and survey of component
models Page 31 / 61

Figure 3: External view of a Fractal component

to a provided or required functionality of a component, while a control interface is a server interface
that corresponds to a "non functional aspect", such as introspection, configuration or
reconfiguration, and so on.

Each interface can have a name, in order to distinguish it from the other interfaces of the component
(a component can have several interfaces implementing the same language interface) . To do so,
Fractal offers a framework based on names and naming context. A name identifies a component
interface and is always associated to a naming context. The name is generally invalid outside the
context, for example the naming context of a Java reference is the Java Virtual Machine (JVM) in
which the designated object resides, this name is meaningless outside this context and, in particular,
in another JVM. A name and its context are represented by Name and NamingContext interfaces
which should be implemented by the component in order to use the framework. These interfaces
allow to manage the name of a component (e.g. serialize it) and to create new ones.

Internal component structure
Internally, a Fractal component is formed out of two parts: a controller (also called membrane), and
a content (see Figure 4). The content of a component is composed of (a finite number of) other
components, called sub components, which are under the control of the controller of the enclosing
component. The Fractal model is thus recursive and allows components to be nested (i.e. to appear
in the content of enclosing components) at an arbitrary level.

A component that exposes its content is called a composite component (configuration level). A
component that does not expose its content, but has at least one control interface, is called a
primitive component (external introspection level). A component without any control interface is
called a base component (first level of control).

The controller of a component can have external and internal interfaces. External interfaces are
accessible from outside the component, while internal interfaces are accessible only from the
component's sub components. The controller embodies the control behaviour and in particular it
can:

• Provide an explicit and causally connected representation of the component's sub

2009-02-20 Classification and survey of component
models Page 32 / 61

Figure 4: Internal view of a Fractal component

components.

• Intercept oncoming and outgoing operation invocations targeting or originating from the
component's sub components.

• Superpose a control behavior to the behavior of the component's sub components, including
suspending, check pointing and resuming activities of these sub components.

A Fractal component may appear in the content of (be shared by) several distinct enclosing
components. A component that is shared among two or more components is under the control of
their respective controllers. The resulting configuration (e.g. which control behavior is enacted) is in
general determined by an encompassing component that encloses all the relevant components in the
configuration.

Composition of constructs
A binding in Fractal, is a communication path between component interfaces, whence to access the
interface designated by a name, a binding must be established to this interface. For example, in
order to access a remote interface designated by an CORBA Interoperable Object Reference
(CORBA IOR), a socket must be opened to send an invocation message to the remote interface.
Bindings are created by binders. A binder is represented by the Binder interface, which allows to
create a binding to the interface designated by the given name. By specifying the Binder
interface, Fractal supports all kinds of communication and interaction styles.

The Fractal model distinguishes between primitive bindings and composite bindings. A primitive
binding is a binding between one client interface and one server interface, in the same address
space, which means that the operation invocations emitted by the client interface should be accepted
by the specified server interface.

A composite binding is a communication path between an arbitrary number of component
interfaces, of arbitrary language types. These bindings are represented as a set of primitive bindings
and binding components (stubs, skeletons, adapters etc..). A binding component is a normal Fractal
component, whose role is dedicated to communication. Binding components are also called
connectors.
Component introspection and control
The interfaces of a component can be introspected (external introspection level) with two language
interfaces, Component and Interface: one to get the list of interfaces of a component, and one to
introspect the interfaces themselves. These two interfaces are of course optional, as everything in
the Fractal model.

At the configuration level, a component can offer various controlling features. A component can
implement interfaces such as:

• the ContentController interface to add and remove sub components of this component
• the BindingController interface to bind and unbind its client interfaces to other

components through primitive bindings
• the LifeCycleController interface to help and support changing of a component

(changing an attribute or a binding, or removing a sub component) while it is executing,
since dynamic reconfigurations can cause the inconsistent application state or lost of data.

2009-02-20 Classification and survey of component
models Page 33 / 61

Instantiation
Except for the frameworks to introspect, configure and reconfigure existing component, Fractal
defines a framework to create new components. In the instantiation framework, components are
created by other components called component factories. The Fractal model distinguishes between
generic component factories, which can create several kinds of components, and standard
component factories, which can create only one kind of components, all with the same component
type. In addition Fractal has a special kind of standard factory component that creates components
based on a template.

2.9.2 Extra-functional properties
Extra-functional properties of Fractal components are supported through the notion of an attribute.
As defined in Fractal specification; an attribute is a configurable property of a component. Every
attribute can be read and changed, in order to read and write its attributes from outside the
component, a component can provide an AttributeController interface. Having attribute
compositions and analysis is not considered in the Fractal specification, but due to the extensibility
of Fractal model, it can be supported.

2.10 IEC 61499
IEC 61499 standard has been developed by the International Electrotechnical Commission (IEC) to
support the development of automation and control systems. It has evolved from the IEC 61131-3
standard that is widely used in development of software for Programmable Logic Controllers
(PLCs).

An IEC 61499 systems consist of devices, which in turn consist of resources and interfaces to a
communication network [24]. A resource is an element that independently executes a part of an IEC
61499 application. One application can be distributed, meaning that they can be deployed over
several resources or devices. IEC 61499 supports component-based approach only during design
time as applications are deployed as compiled executables. Implementations of IEC include
languages like Java [25], C++ [26], or other.

IEC 61499 applications are built from reusable software components called Function Blocks (FBs)
by connecting these FBs into Function Block Networks. FBs encapsulate a part of applications
functionality and expose is through their explicit interfaces, leaving no hidden interface.

Interfaces are defined by port-like inputs and outputs. Inputs and output can either handle control
flow (events) or data flow. Definition of inputs and outputs is on the syntactical level. Execution of
the FBs is event driven, while the data is transferred using the pipe-and-filter pattern. All interaction
between FBs is synchronous. Connections between inputs and outputs is handled by the
components themselves.

There are three types of FBs defined by IEC 61499:

• Basic function blocks (BFB). The behavior of a BFB is defined by an event driven state
machine called Execution Control Chart (ECC). Whenever the active state of ECC changes,
an action that is associated with the new state is executed. This action can either be an
algorithm written in any programming language, an output event, or both.

2009-02-20 Classification and survey of component
models Page 34 / 61

• Composite Function Blocks (CFB). The behavior of a CFB is defined by a FB network
that consists of instances of any FB type, parameters and connections between FBs. In this
way a developer can accomplish hierarchical composition of FBs.

• Service Interface Function Blocks (SIFB). SIFBs are a way for encapsulating the
interaction with external elements not defined by IEC 61499. They enable developers to
wrap this external functionality and provide same interface as all other FB types. Although
their functionality is hidden, it can by described using sequence diagrams.

Definitions of FBs, including their interfaces and behavior definitions, are stored in XML files.

IEC 61499 standard does not provide any facilities to specify or reason about extra functional
properties.

2.11 JavaBeans
The JavaBeans technology7 [17] is a portable, platform-independent software component model for
the Java Standard Edition platform. The technology was introduced in 1997 and is developed by
Sun Microsystems. The current version of the specification is 1.01 from year 2002, which includes
some minor changes to the original document. The technology consists of a Java package
(java.beans) and the JavaBeans specification which describes how classes and interfaces from
the package should be used to implement the Java bean8 concept. In simple words, a Java bean is a
Java class that complies with conditions stated in the JavaBeans specification.

JavaBeans is a general-purpose component model, widely accepted and used, mostly in the desktop-
and Web application domains. It focuses on making small lightweight components easy to
implement and use, while making heavyweight components possible. Basic JavaBeans concepts can
be learned very quickly and little effort is needed to start writing and using simple beans.

The specification defines Java beans as reusable software components that can be manipulated
visually in a builder tool. The visual manipulation is one of the strongest aspects of the technology,
as it allows “visual programming” by dragging beans from a palette onto a workspace where they
can be configured and connected to other beans, thus enabling easy and intuitive development of
applications. This is especially suitable for building graphical user interfaces (GUIs), where beans
are most commonly employed. For instance, all GUI components, such as buttons, panels, check
boxes etc., from Swing, the Java SE GUI framework, are beans. Currently, two most used bean
compliant tools are Eclipse [27] and NetBeans [28]. However, although beans are primarily targeted
at builder tools, they are also entirely usable by human programmers, as their use is not dependent
on tools.

Each Java bean has to be able to run in two different environments. First, a bean needs to be capable
of running inside a builder tool, it must be able to provide the builder tool with design information,
so a user is able to configure it. This is referred to as the design environment or design-time. For
this configuration process a lot of extra baggage (metadata, property editors, customizers, icons

7 It is important to differentiate between JavaBeans and Enterprise JavaBeans. Both technologies are software
component models, use a similar name and are implemented in Java. However, their purpose and architecture are
different.

8 The term “JavaBeans” stands for the technology, while the term “Java bean” or simply “bean” signifies a particular
software component that conforms to the JavaBeans component model.

2009-02-20 Classification and survey of component
models Page 35 / 61

etc.) is carried by the bean. In addition, a bean must be able to be used during run-time within a
generated application. During run-time there is much less need for customization of the behavior
and appearance, so a bean carries less baggage than during design-time.

Many beans have a strong visual aspect, but while this is common, it is not required. Beans can be
visual or non-visual (invisible). The GUI representation of beans may be the most obvious and
compelling part of the JavaBeans technology. However, it is possible to implement non-visual beans
that have no GUI representation. These beans are still able to call methods, fire events etc. They are
also represented visually in a builder tool, so they can be configured. They simply have no screen
appearance of their own. In other words, non-visual beans are invisible only at run-time, but are
visible during design-time. Visual beans are visible both during design-time and run-time.

JavaBeans provides support in the implementation, packaging and deployment stages of the
lifecycle, while the modeling stage is not supported. The implementation language is, as expected,
Java. Beans are packaged in JAR (Java Archive) files. These are archive files in ZIP format. One
JAR can contain one or more beans. A JAR containing beans must have a manifest file, which
describes the beans in the JAR. Each JAR holding beans includes the following:

• Class files representing beans. These entries must have names ending in “.class”.

• Optional source code files of beans. These entires have names ending in “.java”.

• Optional serialized prototypes of beans. These entries must have names ending in “.ser”.

• Optional help files in HTML format to provide documentation for the beans.

• Optional internationalization information to be used by beans to localize themselves.

• Other resource files needed by the beans (images, sound, video etc.).

Deployment, i.e. integration of beans into systems is done at compilation time.

Individual Java beans vary in functionality, but have the following typical common features:

• properties,

• events,

• methods,

• customization,

• introspection, and

• persistence.

A bean property is a named attribute of a bean that can affect its behavior or appearance. Examples
of bean properties include color, label, font etc. Properties can have arbitrary types, including both
primitive types and class or interfaces types. Properties are accessed via method calls on the owning
bean.

There are four types of properties defined in the JavaBeans specification:

1. simple,

2. indexed,

2009-02-20 Classification and survey of component
models Page 36 / 61

3. bound and

4. constrained.

A simple property has a single value whose changes are independent from other properties.

Indexed properties support a range of values instead of a single value. It is possible to read or write
a single element or the whole array corresponding to the indexed property.

Sometimes when a bean's property changes, another object might need to be notified of the change
and react to it. These are bound properties. Whenever a bound property changes, a notification of
the change is sent to interested listeners. Bound properties are normally used when a number of
beans want to keep a shared value. For instance, for maintaining a common background color.
When one bean changes its background color, the change is then promoted to all beans registered as
listeners of that property change. That way they can adjust their background colors too.

Constrained properties are similar to bound properties. When a constrained property changes, an
event is generated. However, the change is not necessarily accepted by the listeners, it first needs to
be validated. If the change is not appropriate for a listener, it can be rejected, keeping the old value
of the property.

Beans use the Java Event Model for communication. Events provide a convenient mechanism for
allowing beans to be plugged together in a builder tool. For a bean to be the source of an event, it
must implement methods that add and remove listeners for a particular type of event. For a bean to
receive an event, it must implement an event listener interface9.

The methods of a bean are normal Java methods which can be called from other objects. A bean's
methods represent its interface, through which the bean can be accessed and manipulated. Since the
interface of a bean consists from the bean's methods, the interface type is operation-based. There is
a distinction between the provides- and requires part of the interface. The provides part consists of
the bean's methods., i.e. the bean offers its methods to be called from other beans. In order for a
bean to be the listener of another bean's property changes, the listener has to implement a listener
interface, i.e. implement a particular method. That way the source bean defines which methods it
requires from the listener beans.

There are no distinctive features which bean interfaces introduce and which don't exist in other
component models. The interface language is inherently Java, and the contractualization level is
syntactic. Through methods JavaBeans supports the request-response interaction style. Additionally,
thanks to the event communication model, JavaBeans supports the event interaction style. The
communication type between beans is synchronous. JavaBeans does not support exogenous nor
hierarchical binding.

When a user is composing an application in a builder tool, he needs to be able to configure the
beans he is using. Customization is the process of modifying the appearance and behavior of a bean
within a builder tool, so that the bean meets the user's specific needs. Customization is done at
design-time.

Introspection is the automatic process of analyzing a bean to reveal its properties, events and

9 This is a Java interface. It is not to be confused with the interface of the bean, which consists from the methods of
the bean. These two terms (Java interface and bean interface) overlap but are not entirely the same. When a bean
implements a Java interface by implementing methods proscribed in the Java interface, these methods become part
of the bean interface.

2009-02-20 Classification and survey of component
models Page 37 / 61

methods. Introspection is used by builder tools. By uncovering beans' properties, events and
methods, tools provide support for easy visual manipulation of beans. The simplest way to enable
introspection is to write beans' source code by following particular design patterns, i.e. by using
conventional names and type signatures for methods.

Persistence refers to the characteristic of data to outlive the execution of the program that created it.
The mechanism that makes persistence possible is called serialization. Object serialization means
converting an object into a data stream and writing it to storage. A serialized object can then be
reconstructed by deserialization. All beans are required to support serialization.

JavaBeans has no support for EFP specification or composition and analysis. Management of EFPs
is endogenous per collaboration. Regarding the envisioned domain of JavaBeans (desktop- and Web
applications) the lack of EFP support is understandable.

2.12 Koala
Koala is a specialized component model and architectural description language developed by
Philips. It targets embedded software, more specifically consumer electronics. Philips software
architects and developers use it to develop software for their mid- and high-range TV sets.

Koala is intended to handle the diversity and complexity of embedded software, at an increasing
production speed, by using and reusing software components within an explicit software
architecture [29]. It does not address third-party development or run-time reconfiguration
mechanisms (like for instance OpenCOM), it rather focuses on consumer electronics embedded
software, respecting the requirements from that narrow domain.

Koala tries to achieve a strict separation between component- and configuration development.
Component builders make no assumptions of the configurations in which the components are to be
used. Likewise, configuration designers are not allowed to change the internals of components to
suit their configuration [29]. This means that Koala follows the CBSE principle of separating
component- and system development, and also the principle of using components as black-boxes.

Koala supports all stages of the lifecycle. Modeling is done using ADL like languages (CDL, IDL,
DDL). Implementation is done in C. Packaging is supported through the use of repositories.
Deployment is done at compilation. Particulars about each phase are given throughout this section.

Main entities of Koala are components, interfaces, configurations, modules and switches.
Components are units of encapsulation, design, development and reuse. They communicate with
their environment through interfaces. Components can be basic or compound – Koala has support
for hierarchical binding, both through delegation and aggregation. The binding type is endogenous.

Interfaces are, as in for instance COM or OpenCOM, small sets of semantically related functions.
Through interfaces a component: (i) provides its functionality to the environment, and (ii) requires
functionality from the environment. Therefore, there is a distinction between provides and requires
interfaces. The latter are similar to OpenCOM's receptacles (see Section 2.14). All requires
interfaces must be bound to exactly one provides interface, and each provides interface can be
bound to zero or more requires interfaces. All communication of a component with its context is
routed through requires interfaces. This makes components to a large extent context-independent, as
they rely on services only, rather than on specific servers (implementations of services) [30].

2009-02-20 Classification and survey of component
models Page 38 / 61

A component can have optional interfaces, both requires and provides. There is a function which
tells if an optional requires interface is connected to a non-optional provides interface. A component
must implement a function which tells if it actually implements an optional provides interface.
Optional interfaces are modeled after COM's QueryInterface (see Section 2.4).

Although components should not contain configuration-specific information to be reusable, non
trivial reusable components are allowed to be parametrized over all configuration-specific
information. This is achieved by using requires interfaces – a component can require properties to
be filled in by the configuration. Such interfaces are called diversity interfaces. Koala can express
properties of inner components in terms of properties of outer components. These optional and
diversity interfaces are distinctive features of Koala. The contractualization level of interfaces is
syntactic. Interfaces are immutable, they cannot be changed once published.

A configuration is a set of components connected together to form a product, i.e. a system made
from interconnected components. It is a top-level component with no interfaces on the border. Only
configurations can be compiled and linked into executables [30].

A module is a unit of code, it represents the implementation of a basic component. Modules are also
used to glue interfaces, as interfaces do not always fit perfectly. Modules are implemented in C.
Since components communicate through C function calling, the interface type is operation-based,
the interaction style is request-response, and the communication type is synchronous.

A switch allows to create bindings that depend on values of certain functions, thus enabling run-
time reconfiguration of connections between components. A switch is equivalent to a conditional
expression in a module.

Koala defines three languages:

• component definition language (CDL),

• interface definition language (IDL), and

• datatype definition language (DDL).

CDL describes the boundaries of a components. IDL describes an interface as a list of function
prototypes in C syntax. DDL describes a datatype referring to other datatypes. An example of an
interface definition, a basic component definition and a compound component definition is given in
Table 610.

Table 6: An interface-, basic component- and compound component definition

Interface definition Basic component
definition Compound component definition

interface ITuner
{
void SetFrequency(int f);
int GetFrequency(void);
}

component CTunerDriver
{
provides ITuner ptun;
 IInit pini;
requires II2c ri2c;
}

component CTvPlatform
{
provides IProgram pprg;
requires II2c slow, fast;
contains
 component CFrontEnd cfre;
 component CTunerDriver ctun;
connects
 pprg = cfre.pprg;

10 Code examples from [29].

2009-02-20 Classification and survey of component
models Page 39 / 61

 cfre.rtun = ctun.ptun;
 ctun.ri2c = fast;
}

Koala provides a tool (also named Koala) for component and configuration development. The tool
uses partial evaluation techniques to optimize generated code – for instance unreachable
components are not included, switch conditions that can be evaluated at compile time are turned
into normal function calls.

2009-02-20 Classification and survey of component
models Page 40 / 61

Figure 6: An example of a Koala configuration

Figure 5: Koala's graphical notation

The graphical notation of Koala is given in Figure 5 and a simple Koala configuration in Figure 611.
Components are deliberately made to resemble IC chips and configurations to look like electronic
circuits. Interfaces look like pins of an IC chip. The triangles designate the direction of function
calls.

Koala interfaces and Koala components are stored in an interface and a component repository,
respectively. Changes to the interface repository can be made only after they have been approved by
the interface management team. The following rules apply:

• Existing interface types cannot be changed.

• New interface types can be added.

Each component has a CDL description, a data sheet (a short document describing the component),
and a set of C and header files. Changes to the component repository can only be made after
approval by the architecture team. The following rules apply:

• New components can be added.

• An existing component can be given a new provides interface, but an existing provides
interface cannot be deleted.

• An existing component can be given a new requires interface, but it must then be optional.

• An existing requires interface cannot be deleted, but it can be made optional [29].

In Koala there is a mechanism for specifying static EFPs, concretely resource usage (for instance
static memory [31]). There is also support for compile-time checks of resources. Management of
EFPs is endogenous system wide.

2.13 KobrA
KobrA (KOmponentenBasieRte Anwendungsentwicklung)[32] is a general-purpose software
engineering method for the development of component-based application frameworks. It is also a
hierarchical component model in which every component, regardless of its position in the hierarchy,
is treated using the same set of concepts – a complete system is a component and every component,
if it has appropriate properties, can be considered a system.

Components are described using text and UML models at two levels of abstraction:

• Specification – defines the components externally visible properties and behaviors which
define the contract that the component fulfills.

• Realization – describes how the component fulfills its contract by using contracts with its
sub-components.

Component interfaces are defined with UML models used by the specification of the component.
Interface operations are defined on all three levels:

• Syntactic level – component operations are listed in the UML class diagrams with the
distinction of optional operations.

11 Figure from [29].

2009-02-20 Classification and survey of component
models Page 41 / 61

• Semantic level – for each operation an operation schemata is defined, which shows the
effects of the operation in terms of input parameters, changed variables, output values and
pre- and post conditions.

• Behavior level – UML state-chart diagrams are used to describe how the component reacts
to external stimuli.

Components are synchronously communicating via method calling (request-response).

No support is being provided for extra-functional properties.

KobrA augments the typical “binary-module” view of the component with a UML-based model, in
a way enabling that the analysis and design activities are component-oriented and that the
description of the core structure and behaviors are independent of the chosen component
implementation technology.

KobrA method is composed of the two sets of activities. In the first set of activities the goal is to
generate textual and UML-like component descriptions, and they are the following:

• Framework engineering activity – developing a generic framework that contains all the
functionality of a family of applications which results with framework models that have
certain variabilities due to differences between applications in the family of applications.

• Application engineering activity – all the variabilities in the framework models are resolved
and in that way transforming them to application models.

The goal of the second set of activities is to generate an executable of the application, and they are:

• Implementation activity – maps the instantiated UML models to an executable
representation.

• Build activity – creates binary modules that can be deployed in a target environment.

2.14 OpenCOM
OpenCOM is a component model developed at Lancaster University. OpenCOM v1 was originally
described in [33], but has since then had a number of revisions listed in [34]. Currently OpenCOM
v2 [35], [36] is under development. In this report we give an overview of OpenCOM v2.

OpenCOM v1 was based on a subset of Microsoft's COM, however, OpenCOM v2 removes its
reliance from COM, as it aims to be truly platform independent. It is a general-purpose component
model for construction of low-level systems software, such as embedded systems, operating
systems, communications systems, programmable networking environments or middleware
platforms. The goal of OpenCOM12 is to support the unique requirements of a wide range of target
domains and deployment environments. It tries to address target domain independence, deployment
environment independence and negligible overhead. This is achieved by splitting the programming
model into a simple, efficient and minimal kernel, and then providing on top of the kernel a set of
extension mechanisms that allow the necessary tailoring [36].

12 From now on when saying OpenCOM we mean OpenCOM v2.

2009-02-20 Classification and survey of component
models Page 42 / 61

The OpenCOM architecture is shown in Figure 7. Immediately above the deployment environment
lies the component runtime kernel that supports basic services of loading and binding components.
It is policy free, and its APIs are target system independent and deployment environment
independent. For static systems it is used for initial configuration after which it can be unloaded so
that it does not consume any resources. For dynamic systems it continues to exist at runtime. Above
the kernel is the extensions layer, which enhances the basic kernel's loading and binding
mechanisms in accordance with the target domain and deployment environment needs. One of the
key architectural features of OpenCOM are component frameworks (CFs). A component framework
is a tightly coupled set of components that:

• cooperates to address some focused area of concern,

• provides a well-defined extension protocol that accepts additional “plug-in” components that
modify or extend the CF’s behavior, and

• constrains how these plug-ins may be organized [36].

Main entities of the OpenCOM programming model at the kernel level are capsules, components
and interaction points. Capsules are containing entities into which components are loaded,
instantiated and composed. Each capsule has a single kernel instance which offers the kernel's run
time API used for dynamic loading and dynamic linking of components. Components are
encapsulated units of functionality which interact with other components in their containing capsule
exclusively through interaction points. Component types are templates from which component
instances can be instantiated at runtime. There are two types of interaction points, interfaces and
receptacles. Interfaces are units of service provision offered by components, and are defined as sets
of operation signatures and associated data types. Receptacles are “required interfaces” that make
explicit the dependencies of a component on other components. Receptacles support third-party
deployment, as one can tell by looking at a components receptacles which other components must
be present to satisfy the component's dependencies [36].

For definition of interfaces, receptacles and component types Object Management Group's Interface
Definition Language (OMG IDL) is used. This programming model at the kernel level has been
realized in C, C++ and Java. An IDL compiler is used to generate language specific representations

2009-02-20 Classification and survey of component
models Page 43 / 61

Figure 7: Overall OpenCOM architecture

of the entities (component types, component instances, interfaces and receptacles) and glue code.

On the extensions level the main entities are caplets, loaders and binders. They are supported by a
CF called the Platform Extensions CF. Caplets are specialized component-support environments
that can be dynamically instantiated within a capsule. There are three main motivations for caplets.
The first is for different caplets to represent different technology domains in the deployment
environment. The second motivation is to use caplets to provide privacy and isolation between
components of different privileges. The final motivation is to support heterogeneous component
styles, i.e. different implementations of the abstract component concept. Loaders are used to load
component types and instantiate component instances into a caplet in some particular manner. For
instance a loader can perform security checks on the component types it loads. Binders are used for
creating bindings between an interface and a receptacle, within and across caplets of a single
capsule, in particular ways [36].

OpenCOM differentiates between two programmer roles:

• deployment environment programmer, and

• target system programmer.

The former creates caplets, loaders and binders for a particular deployment environment using the
environment's native facilities. The latter develops target systems using the kernel's and Platform
Extensions CF's API, together with the palette of caplets, loaders and binders provided by the
deployment environment programmer.

OpenCOM provides support in the implementation and deployment stages of the lifecycle, while
the modeling and packaging stages are not handled. Implementation is language independent.
Deployment is done at run-time.

The following remarks apply only to the kernel level of OpenCOM. Remarks for the extensions
layer cannon be given, as they depend on a particular implementation of caplets, loaders and
binders.

Interface type is operation-based. There is a distinction between the provides- and requires parts,
through OpenCOM's interfaces and receptacles. The contractualization level of interfaces is
syntactic.

The interaction style is request-response, and the communication type is synchronous. The binding
type is exogenous, as the interface of one and receptacle of another component are binded in a third
component. There is no support for hierarchical binding.

There is no support for EFP specification or composition and analysis. Management of EFPs is
endogenous per collaboration.

2.15 Palladio Component Model
Palladio Component Model (PCM) [37], [38], [39] is a domain-specific component model designed
to enable early performance predictions for component-based software architectures of business
information systems. Development of the model started in 2003 at the University of Oldenburg and
is since 2006 continued at the University of Karlsruhe. Currently the model is at version 3.0 and is
used both in industrial and academia projects. It is defined as a meta-model specified in Ecore [40].

2009-02-20 Classification and survey of component
models Page 44 / 61

An integrated modeling environment based on Eclipse RCP [41], called PCM-bench, is currently
being developed, now being in the prototype phase. It enables creating PCM models using graphical
editors, and then deriving performance metrics from these models using analytical techniques and
simulation.

Two key features of PCM are:

• parameterized component quality-of-service (QoS) specification, and

• developer role concept.

The former is a special QoS specification for software components, which is parameterized over
environmental influences that are unknown to component developers during component- design and
implementation. This specification is called resource demanding service effect specifications
(RDSEFF). Regarding the latter, PCM is aligned to different roles involved in component-based
development and as such distinguishes between the following roles:

1. component developer,

2. system architect,

3. system deployer, and

4. domain expert.

RDSEFFs and particular roles are detailed in the following text. First a brief overview of all roles is
presented in the following paragraph, than particulars about each role are given, with emphasis on
the component developer.

A component developer specifies the functional- and extra-functional properties of components,
which results in a repository model. A system architect assembles component specifications to form
an assembly model. A system deployer specifies the resource environment to which the system will
be deployed, providing a resource environment model. The system deployer also models the
allocation of components from the assembly model to different resources of the resource
environment, resulting in an allocation model. A domain expert is familiar with users of the system,
and provides a usage model describing usage scenarios. Each role has its own domain-specific
modeling language. From these partial models13, a model of the complete system can be derived and
then analyzed in terms of performance using multiple analysis methods, such as queuing networks,
stochastic regular expressions or stochastic process algebra.

Regarding the lifecycle, the emphasis is on modeling, as seen above. However, the effort spent on
creating a model of a system should be preserved when implementing it. In that sense a model-to-
text transformation generates code skeletons from PCM models. The implementation uses either
POJOs (Plain Old Java Objects) of EJBs (Enterprise JavaBeans). Deployment is done at run-time,
which is inherent from EJB.

Component developer
In repository models components and interfaces are first class entities. Interfaces contain a list of
service signatures, thus interfaces are operation-based. A signature has a name, a list of parameters,
a return type and a list of exceptions it can raise during its execution. Its syntax is based on Object

13 In this overview we don't go deep into technical aspects of the models. Details can be found in the referenced
literature.

2009-02-20 Classification and survey of component
models Page 45 / 61

Management Group's Interface Definition Language (OMG IDL). Interfaces have optional
protocols and optional RDSEFFs (mentioned above, explained later). Protocols specify the order in
which services are called, and can be modeled with various formalisms (finite state machines,
regular expressions, Petri nets...). Signatures provide the syntactic interface contractualization level,
RDSEFFS provide the semantic level and protocols provide the behavior level. Palladio supports
interface inheritance.

Components either require or provide an interface, and implement services specified in their
provided interfaces by using services specified in their required interfaces. Components can be
either basic or composite. Composite hierarchies can be of arbitrary depth. Inner components are
connected using assembly connectors. An assembly connector binds a provided role of one
component with a required role of another component. Delegation connectors connect
provided/required roles of composite components with provided/required roles of inner
components. Thus, Palladio has support for hierarchical binding through delegation, and the binding
type is exogenous.

The interaction style in Palladio is request-response and the communication type is synchronous.

Management of EFPs is endogenous system-wide. RDSEFFs abstractly model the externally
observable behavior of a component. They specify: how a provided service calls the required
services of a component, resource usage, transition probabilities, loop iteration numbers and
parameter dependencies, all this to allow accurate performance predictions. RDSEFFs can be
considered as a domain-specific modeling language which the component developer uses to specify
performance related information for components. They represent the gray-box view of components.

Software architect
Software architects put components in so called assembly contexts, which are representations of
component instances. Assembly contexts are connected using system assembly connectors. A
system assembly connector binds a required role of a component in a given assembly context with a
provided role of a component in a different assembly context. A set of connected assembly contexts
is called an assembly14, which is part of a system. Every system has exactly one assembly. A system
exposes system provided- and system required roles. System delegation connectors bind system
roles with the roles of the system's inner components. System provided roles are used by domain
experts to model the usage of the system. System required roles model external services, which are
not considered by the system architect to be part of the system.

System deployer
Palladio distinguishes between active-, passive- and linking resources. Active resources (eg. CPU,
hard disk, memory) can execute requests, while passive (eg. threads, semaphores) can only be
acquired and released. System deployers group active- and passive resources in resource containers.
Resource containers are connected by linking resources. Allocation contexts are used to specify that
a resource container executes an assembly context.

Domain expert
Domain experts specify user behavior using control flow constructs such as sequence, alternative
and loop. For alternatives they specify branching probabilities and for loops they specify the

14 An assembly is different from a composite component in its visibility for the system deployer, as he can see the
internals of an assembly, but cannot see the internals of a composite component.

2009-02-20 Classification and survey of component
models Page 46 / 61

number of iterations. Additionally, domain experts can specify the user workload and parameter
values.

2.16 Pecos
The PECOS project [42], [43], [44], [45] provides a component model, a composition language and
tools for development of software for field devices15.

Life cycle
In the PECOS project defined a new language, named CoCo, for describing components and their
compositions. Behavior of such compositions of components can be further modeled using Petri
nets. PECOS currently supports specification of component implementation in C++ and Java
programming languages. Within the project, tools for automatic generation of stub code for
components and application for these two languages have been developed. Once compiled,
components, and their compositions, are packed in Jar or DLL executable files. Inherently, PECOS
components can only be deployed at compile time.

Constructs
The PECOS component model defines three types of components:

• Active components, which have their own thread of execution. They are used for performing
long-term activities. PECOS systems are always modeled as active components whose
behavior is defined by a composition of components.

• Event components. These components components have their own thread of execution, but
do not model an on-going activity. Instead, their functionality is triggered by events. An
example would be components that encapsulate hardware elements that generate periodical
events.

• Passive components that execute synchronously, and their execution is scheduled by their
active parent components.

Interfaces of PECOS components are described by the CoCo language. Interfaces constitute of ports
that can be specified as either input or output, or both. Besides their direction, ports are defined by
their name and data type. Additionally, properties like default values or value ranges for ports can
be defined. Properties definition can include any functional or non-functional properties of
components, ports or connections. Properties can also be grouped into property bundles which can
then be assigned to multiple components or other CoCo architectural elements. Behavior of the
components can be defined using Peri nets.

The CoCo language supports the concept of component inheritance. One component can inherit
interface, or even parts of behavior, of another component, and possibly extend it or make it more
specific. To facilitate this, the notions of abstract component and component roles have been
introduced. An abstract components serves as a template for a system, leaving placeholders named
component roles. Component roles define the interfaces that components need to implement by
actual components that will be used in the implementation of the abstract components. This enables
specification of architectural style for a family components or the entire applications.

15 A field device is an embedded system often used in the area of process control. It uses sensors to continuously
gather data, analyses and reconciles this data, and reacts by controlling actuators [42].

2009-02-20 Classification and survey of component
models Page 47 / 61

Component in a data-flow (i.e. pipe and filter) manner, exchanging data through their ports. Special
semantics is given to the ports of active and event components, because these types of components
execute in their own threads. In these cases, synchronization between data used in different threads
needs to take place for the composition to be predictable. In the C++ and Java implementation,
these connections are realized using shared variables.

PECOS component model supports hierarchical component composition through the notion of
composite components. A composite component consists of instances of components, and
connections between those instances. Moreover, as already stated, all PECOS systems are modeled
as active composite components. Ports of a composite component are defined by delegating some of
the ports from its subcomponents to its outside interface.

Extra functional properties
Extra functional properties for components, their ports and connections can be defined using the
CoCo property elements. Properties can be defined component description, but also as additional
description of component instances when defining composite components.

Tools developed in the PECOS project also enable automatic generation of a Prolog knowledge
base from the CoCo component definitions. This then enables testing of some properties of a
component, or a composition of components, by using Prolog queries.

PECOS composite components are also associated with a scheduling definition for their
subcomponents. Each subcomponent should have a worst-case execution time and the desired cycle
time defined. Scheduling definitions also include order of execution for all subcomponents that a
composite component consists of. PECOS supports both manual definition of scheduling or
generation of scheduling definitions using information about component composition and properties
of components. It is also possible to verify the scheduler using Petri nets.

2.17 Pin
Pin [46] [47] is a simple component technology developed at Carnegie Mellon Software
Engineering Institute. Its purpose is to be used as a basis for prediction-enabled component
technologies (PECTs).

Pin software components consist of prefabricated containers that provide a standardized interface,
and custom code that they implement internally. Pin systems are modeled using ADL-like
construction and composition language (CCL). Their implementation is defined by the C
programming language, and such software components are packaged as .DLL files. Services like
timers, interrupts, input devices, shared resources, process scheduling and intercomponent
communication are provided to the components by the component run-time environment. Pin
systems, called assemblies, are automatically generated and compiled to executable programs from
the CCL specifications. Once compiled, Pin assemblies are fixed and the notion of internal
components is lost.

Interfaces of Pin components are defined by pins. Pin component technology distinguishes between
input pins, sink pins, and output pins, source pins. Sink pins denote incoming events to a
component, and source pins denote outgoing events or procedure calls. Interfaces of components
are specified by CCL. CCL supports specifying the syntax of the interface, but also the behavior of
the component. Behavior of a component is described by reactions, which specify the relations

2009-02-20 Classification and survey of component
models Page 48 / 61

between the stimulus on sink pins and possible responses on output pins.

Software components in Pin component technology can interact only through their sink and source
pins. This interaction can be either synchronous (procedure call) or asynchronous (event-based).
Connections between sink and source pins are realized using connectors. Besides the definition of
interconnection of pins, connectors can also have connection policies. An example policy would be
the size of an input buffer. Units of component composition in Pin are called assemblies. Binding of
the components is endogenous. Pin does not support hierarchical composition of component
assemblies.

Pin components expose their analytical interface by specifying properties for components,
assemblies, pins, reactions and the environment. Properties are n-tuples consisting of a name, value,
and additional property-specific information (e.g. confidence interval of the property value). These
properties can be used by a reasoning framework to predict properties of component compositions.
PECT currently supports three reasoning frameworks for Pin component model: λABA – for
predicting average latency in assemblies with periodic tasks, λSS – for predicting average latency in
stochastic tasks managed by a sporadic server, and ComFoRT – for formal verification of temporal
safety and liveness.

2.18 ProCom
ProCom [48] is a component model for control-intensive distributed embedded systems and is
designed to cover the whole development process in the vehicular-, automation- and
telecommunication domains.

Typically, complex distributed embedded systems from targeted domains have different
characteristics at different levels of granularity. ProCom tackles this problem by using two layers:
ProSys and ProSave.

ProSys is a hierarchical component model which acts as an upper layer that models the system as a
number of active and concurrent subsystems which communicate by asynchronous message
passing.

ProSys subsystems can be: composite subsystems, subsystems realized with ProSave or wrapped
legacy subsystems. Each subsystem is specified by:

• Typed input- and output ports which express what messages the subsystem receives and
sends. Message ports are connected with message channels which support n-to-n
communication.

• Attributes and models related to functionality, reliability, timing and resource usage.

ProSave is the lower layer which models the internal design of a single ProSys subsystem down to
primitive functional components implemented by code.

ProSave components are passive, reusable units of functionality that can either be realized by code
(C functions), or by interconnected sub-components. They use pipe-and-filter communication
paradigm and are typically not distinguishable as individual units in the final executing system.

The architectural style is based on a data/control flow model with a separation of data transfer and
control flow, which is manifested with the existence of data- (enable data read, write) and trigger

2009-02-20 Classification and survey of component
models Page 49 / 61

ports (control the activation of components).

Information about a component is represented using structured attributes and its functionality is
made available by a set of services. Attributes define simple or complex types of component
properties such as behavioral models, resource models, dependability measures and documentation.
Each service consists of:

• Input port group – contains a trigger port for activation and a set of data ports for required
data.

• Output port groups – contains a set of data ports and a trigger port which indicates when
new data is available.

Components can be connected using:

• Simple connections that connect two ports and that can be used to transfer data or control.

• Connectors – constructs that may be used to control the data- and control-flow, for example
to fork or join data or trigger connections.

Components and information about them (requirements, behavior models, resource usage) are
stored in a file system based repository.

Connecting ProSave and ProSys
ProSys subsystems can be defined with a collection of interconnected ProSave components,
ProSave connectors, and additional connector types such as:

• Input message port which acts as a ProSave connector with one output trigger port and one
output data port. Whenever a ProSys subsystem receives a message, the message port writes
message data to the output port and activates the output trigger.

• Output message port is similar to the input message port only it has one input trigger and
one input data port. When a trigger is received it sends a message with the data from the
data port.

• Clock is used for generating periodic triggers. It only has one output port which is
periodically triggered.

2.19 Robocop
Robocop [49] [50] is a project that defines an open middleware layer for high volume consumer
electronics. It aims to support definition, modeling and trading of software components, their use in
consumer electronics applications, and run-time upgrades and reconfiguration of such applications.

Life cycle
Robocop defines components as units of trade. A Robocop component is a set of different models
that are related to each other. These models address different aspects of the component that can be
of interest to different stakeholders. An example of such models are interface definition, behavioral
models, resource consumption models, etc. Robocop is open in the way that it does not limit the
number or types of models that a component consists of. A special type of model is the executable
component. Executable component is a binary representation of the component that implements its

2009-02-20 Classification and survey of component
models Page 50 / 61

functionality and can be executed. A Robocop component can contain multiple executable
components that are targeted for different platforms or operating systems.

Robocop architecture defines three frameworks that support different concerns of component's life
cycle.

The Development framework defines how different stakeholders (e.g. component vendors, system
integrators) relate to each other, to the component model and entities like component repositories,
and target devices.

The Run-time framework defines a partial architecture for Robocop devices. It consists of the
Robocop component model and the Robocop Runtime Environment (RRE). To achieve a minimal
resource footprint, standard RRE supports only registration of components and services, and
location and instantiation of services. Robocop component model defines a standardized part of
service interface that, together with RRE, provides mechanisms for run-time binding of components
and reconfiguration of Robocop systems.

The Download framework enables run-time upgrades and extension applications built with Robocop
technology. This is achieved by providing mechanisms for locating new components, testing if they
are suitable for use in a given system, and transfer of new components from repositories to target
devices.

Constructs
The functionality of executable Robocop components is encapsulated in services. To expose that
functionality, services define interfaces they provide. Interfaces are groups of semantically related
named operations. Services also explicitly expose their dependencies on functionality from other
components through their required interfaces.

One service can define that it is compliant with another service. When one service defines that it is
compliant with another, it indicates that it provides at least the same interfaces that the latter service
provides, and that it requires the same interface that the latter service requires.

Concept of interface inheritance is supported. When one (derived) interface inherits another (base)
interface, it indicates that the derived interface supports all operations that the base interface
defines, and that those operations have the same semantics in both interfaces. Only single interface
inheritance is supported, but the depth level of nesting is not limited.

Service and interface definitions are defined using Robocop IDL (RIDL), an interface definition
language derived from Corba IDL. Although RIDL definitions provide only syntactical information,
semantics and behavior of components can be described by other models that the component
consists of.

Robocop services support reflective behavior, in the sense that they can dynamically discover
interfaces that a service supports.

Services interact with each other in a client-server manner, in which a client service calls methods
that the server service provides through its interfaces.

Information about binding between required and provided interfaces of different services is stored
in the services themselves. Standard service management interface that each service must expose
provides mechanisms for interface binding management. This enables dynamic and run-time
configuration of assemblies of components.

2009-02-20 Classification and survey of component
models Page 51 / 61

Robocop does not provide any means for hierarchical composition of components.

Extra functional properties
Extra functional properties of Robocop components can be given in models that the component
consists of. These extra functional models can include timeliness, reliability, safety, security and
resource consumption.

Robocop implements resource management through the Resource management framework. The aim
of this framework is to prevent resource overloads on embedded devices that support dynamic
updates or upgrades. It introduces a notion of resource-aware consumers, which are application
entities that have information about resources needed for its operation. A special type of such
entities are the quality-aware consumers, which consume different amount of resources depending
on the level of quality they provide in a given moment. The consumers can register their resource
needs to the framework, which can then guarantee them requested resources or deny their request.
The framework can also optimize system quality depending on the available resources.

A solution of memory consumption of Robocop applications is given in [51].

2.20 Rubus Component Model
The Rubus concept [52] is a collection of methods and tools from Arcticus Systems for
development of dependable embedded real-time systems. It was introduced for industrial use in
1996, but has since then evolved, in cooperation with various partners of Arcticus Systems, both
from industry and academia. The Rubus concept encompasses (among other) the Rubus Component
Model, the Rubus Integrated Component Environment (an IDE for component-based development
of real-time systems) and Rubus OS (a real-time OS designed for dependable real-time systems).

The Rubus Component Model16 is developed in cooperation with Mälardalen University. It is
currently in version 3 [53], and is intended for development of distributed, resource-constrained,
embedded control systems, with a mix of hard-, soft- and non real-time requirements. Thus it is a
domain-specific component model. It aims at supporting an overall high-level descriptive view of
the system functionality, focusing on three important activities in real-time development – design,
analysis and synthesis. The model supports all stages of the lifecycle. Modeling is done using
Rubus Design Language, a non standard modeling language with an intuitive graphical
representation. Implementation is done in C. Rubus components are packaged in a file system based
repository. Deployment is done at compilation, and Rubus components are executed as tasks of
Rubus OS.

Architectural elements of Rubus are collectively named software items (SWIs). Basic Rubus
components are called software circuits (SWCs). Each SWC is defined by its behavior, internal state
data and interface. An SWC can have multiple behaviors, each one represented by a specific C entry
function. Internal state data is used to preserve data across multiple executions.

Rubus interfaces are port-based. There is a distinction between the provides- and requires part,
through output- and input ports, respectively. Each port has a direction to symbolize in which way
the signal flows. Interfaces are specified as C header files, and the contractualization level is
syntactic. As distinctive features Rubus has data- and trigger ports, which capture data- and control
flow, respectively. The distinction between data- and trigger ports makes data access and
16 From now on when saying Rubus, we mean Rubus Component Model.

2009-02-20 Classification and survey of component
models Page 52 / 61

synchronization explicitly visible from the design. Data ports are typed. Trigger output ports can be
unconditional and conditional. The former always produce a trigger signal after the execution of a
SWC, while the latter may or may not produce a trigger signal after execution, depending on
conditions within the SWC.

The run-cycle of an SWC is the following: idle → ready → copy input → execute → produce
output → terminate → idle. The SWC becomes eligible for execution when it receives a signal at its
trigger input port. Before execution data input port values are read. After execution the SWC
produces data- and trigger signals at its output ports and then returns to idle state.

Assemblies (ASMs) and composites (CMPs) provide the means for hierarchical binding through
delegation. They have sets of input- and output ports whose signals are delegated to ports of internal
SWIs. ASMs and CMPs give structure and abstraction, but provide no semantics and can in that
sense be flattened to contain only SWCs. CMPs can be divided as parts of it can be deployed on
different nodes, whereas an ASMs is undividable and can only be deployed as a whole on a single
node.

The binding type in Rubus is endogenous. The interaction style is pipe-and-filter and the
communication type is synchronous.

A system is a top level hierarchical entity that describes the software logic and the software
architecture (not the hardware architecture showing which SWIs execute on which hardware nodes)
of a complete distributed system. At run-time a system executes in one out of a set of predefined
modes, and can make transitions (mode shifts) from one mode to another. Modes are means to
distinguish different states or conditions of a system – for instance a system executes a certain type
of functionality during start-up, another type during normal operation, and a third type during
errors.

Rubus also defines several SWIs for data and triggering [53]: source items, sink items, named data
items, clock items (generate periodic triggering), interrupt and event items (generate sporadic
triggering), down sampling items and precedence items.

External devices, such as sensors and actuators have no special status in Rubus and are treated as
other components. Sensors are modeled by SWCs without any data input ports and with at least one
trigger input port, while actuators are modeled by SWCs without any data output ports.

Management of EFPs in Rubus is endogenous system wide. Timing properties of SWCs and real-
time requirements on the execution can be specified. Regarding the former, to enable timing
analysis at design time, each SWC is associated with a run-time profile describing its run-time
properties on different platforms. The latter are specified within the context of an ASM/CMP as
bounds on time from the generation of a trigger signal to the generation of another trigger signal.

2.21 SaveCCM
SaveCCM (SaveComp Component Model) [54] is a research, domain-specific component model
developed at Мälardalen University. It is intended for embedded control applications for vehicular
systems, mainly considering the safety-critical subsystems responsible for controlling vehicle
dynamics (such as power-train, steering, braking, etc.). It is a simple component model that limits
the flexibility of modeling to enable analyzability with respect to timing.

2009-02-20 Classification and survey of component
models Page 53 / 61

SaveCCM systems are developed using a custom development environment called Save-IDE [55],
which is implemented in the form of a plugin for the Eclipse platform [27]. SaveCCM provides
support for all stages of the lifecycle. System architecture modeling is done using the SaveCCM
graphical language (Figure 8), which is similar to UML component diagrams [56]. From the
graphical description of a system, Save-IDE can generate its textual representation in XML
adhering to the SaveCCM DTD. Component behavior modeling is done using timed automata
extended with tasks [57]. SaveCCM has two realizations, one by transforming components to real-
time operating system tasks [58] and a realization in JavaBeans [59]. In the former case components
are implemented in C and packaged in a file system based repository, and in the latter case
components are implemented in Java and packaged as JAR packages. In both realizations
deployment is done at compilation.

The main architectural elements of SaveCCM are components, switches and assemblies. The
interface of an architectural element is defined by a set of input- and output ports, thus the interface
type is port-based and there is a distinction between the requires- and provides part. Interfaces are
specified in XML adhering to the SaveCCM DTD. The interface contractualization level is
syntactic. The interaction style is pipe-and-filter and the communication type is synchronous.

As distinctive features SaveCCM has data-, trigger- and combined ports. Data ports capture data
transfer, while trigger ports capture control flow. Data ports are typed and have overwrite semantics,
and only data ports of matching types can be connected. Combined ports have both triggering- and
data functionality, but semantically a combined port is equivalent to one trigger port and one data
port.

In addition to ports, the interface of a component contains a series of quality attributes, for instance
worst case execution times, reliability estimates etc. Each attribute is associated with a value and
possibly a confidence measure. The quality attributes are used for analysis.

Components represent basic units of encapsulated behavior. The functionality of a component is
typically defined by an entry function. These are basic components. However, there are also
composite components, for which the functionality is defined by an internal composition of
subcomponents (and possibly delays and switches, described below). Subcomponents can be basic
components or again composite components (thus creating a hierarchy of arbitrary depth). The

2009-02-20 Classification and survey of component
models Page 54 / 61

Figure 8: SaveCCM graphical notation

hierarchical binding is done by delegation. The binding type is endogenous.

A component is initially idle and remains in that state until all its trigger input ports are activated. At
that point it goes to active state, i.e. it has been triggered. This initiates the read phase, in which the
data input port values are stored internally, to ensure consistent computation. Next is the execute
phase, in which computations are performed. Then comes the write phase, in which data is written
to the data output ports. Finally, the input triggers are deactivated and the output triggers are
activated, before the component returns to idle state. The strict “read-execute-write” semantics
ensures that once a component is triggered, the execution is functionally independent of any
concurrent activity.

There are two additional types of components, clock and delay, which are in charge of manipulating
trigger signals. A clock is a trigger generator, while a delay detains a trigger signal for a certain
amount of time.

Switches enable dynamic modification of the connections between components by providing means
for conditional transfer of data and/or triggering. A switch consists of a number of conditional
mappings between an input- and an output port of the switch (either data or trigger). Each mapping
is guarded by a logical expression. If this expression evaluates to true, the mapping holds, otherwise
it is broken. Data input ports of a switch which are part of such a logical expression are called
setports. Switches are not triggered, they respond immediately to arrival of data- or trigger signals
at their input ports, and relay them according to the current mappings.

Assemblies are encapsulated subsystems. As an assembly can break the “read-execute-write”'
semantics, it should only be viewed as a mechanism for naming a collection of components and
hiding the internal structure, rather than a mechanism for component composition.

External devices, such as sensors and actuators should not be modeled by SaveCCM. Their
presence is seen through the use of external ports. An external port is a port that is not connected
with any other port in the model, but has a label mapping it to some external entity.

The SaveCCM semantics is formally defined by a two step transformation – first from the full
SaveCCM language to a similar but simpler language called SaveCCM Core, and then into timed
automata with tasks. SaveCCM Core is a minimal language consisting of three elements (basic
component, composite component, conditional connection) with which all constructs of the full
SaveCCM can be described.

Management of EFPs in SaveCCM is endogenous system wide. Specification of timing properties
is supported, but aforementioned attributes enable generic specification of EFPs. Timing properties
can be analyzed at design time using the UPPAAL Port model checker [60].

2.22 Sofa
Software Appliances – SOFA is a component model developed within the SOFA academic project
at Charles University in Prague [61]. It encompasses several software domains, such as the
communications middleware, component management, component design and security. Key issues
addressed by SOFA include component transmission protocol, dynamic component downloading
and updating, hierarchical top-down design, distributed deployment and versioning, and support for
component trading and licensing.

2009-02-20 Classification and survey of component
models Page 55 / 61

The SOFA 2.0 [62]component model is an extension of the SOFA component model with several
new services: dynamic reconfiguration, control interfaces and multiple communication styles
between the components.

Components
In SOFA a system is built out of a set of dynamically updateable components. Every SOFA
component is specified by its frame and architecture.

The frame provides a black box view of a component through the provided and required interfaces.
Optionally, a behaviour protocol and component properties can be declared. Behaviour protocol is
used to formally specify communication between SOFA components, while the properties are
intended for parametrizing the component.

SOFA architecture is an implementation of a frame. Every frame can be implemented by more than
one architecture. The architecture may be either composed or primitive. Composed architecture is
built of other components – subcomponents with specified interconnections via interface ties. It
provides a grey-box view of a component, as it describes the structure of a component until the first
level of nesting in the component hierarchy. A primitive architecture contains no subcomponents,
only a code implementing the component's functionality described by the frame.

When defining internal structure of a composed component, its subcomponents are specified by
frames at a design time, At deployment time, architectures that implement the subcomponents are
determined and instantiated. This separation of component's external view (the frame), from
component's internal view (the architecture) is one of big advantages of SOFA component model. It
allows use of component types (frames) at compile time, and specifying implementation of
component functionality at deployment time.

Interfaces
SOFA components and systems are specified by an ADL-like language, Component Description
Language (CDL). CDL descriptions are used to describe provided and required interfaces, frames
and architectures of SOFA components. Interfaces are based on CORBA IDL's interfaces with an
extension to provide means to specify version and behaviour protocol of interfaces.

The resulting CDL is compiled by a SOFA CDL compiler to their implementation in a programming
language C++ or Java, and then is stored in the Type Information Repository (TIR). TIR manages
an evolution of component's description and can store several versions of every element. In the
CDL descriptions, a developer can specify references to a concrete version of previously compiled
types stored in TIR.

Connectors
SOFA components can be composed by connectors. Connectors separate interconnection semantics
and deployment dependant details from an application logic placed in components. In SOFA,
connectors are first-class entities like components. Each type of connector implements semantics of
specific type of interaction, and are similarly to components, specified by connector frame and
connector architecture. Connector frame defines the type of a connector by describing services
provided by a connector. Connector architecture describes connector internals and can be simple
(containing only primitive elements, directly implementing connector frame) or compound
(containing instances of other connectors or components).

2009-02-20 Classification and survey of component
models Page 56 / 61

There are three predefined connectors in SOFA: CSProcCall (for synchronous calls), EventDelivery
(for asynchronous calls) and DataStream (for data streaming).

In addition to connector types, connectors can be distinguished depending on entities they connect:

• bind – connects required interface to provided interface on the same hierarchy level.

• delegate – forwards requests from provided interface of a component to provided interface
of its subcomponent.

• subsume – passes requests from a subcomponent's required interface to a required interface
of a component.

SOFANode
SOFANode is an environment for developing, distributing and running SOFA applications. It
consists of several logical parts:

• Template repository – which contains CDL descriptions as well as implementations of
components

• CDL Compiler, Template Information Repository and Code generator – for application
development

• RUN – the runtime environment for launching component applications

SOFANode can be distributed across a network over several hosts. Several SOFANodes connected
form a SOFANet.

2009-02-20 Classification and survey of component
models Page 57 / 61

References
[1] Ivica Crnković, Séverine Sentilles, Aneta Vulgarakis, Michel Chaudron, A

Classification Framework for Component Models, submitted for IEEE Transactions on
Software Engineering, 2008

[2] AUTOSAR Development Partnership, AUTOSAR - Technical Overview, 2008
[3] Heinecke H., Damm W., Josko B., Metzner A., Kopetz H., Sangiovanni-Vincentelli A.,

Di Natale M., Software Components for Reliable Automotive Systems, Design,
Automation and Test in Europe, 2008

[4] AUTOSAR Development Partnership, AUTOSAR - Software Component Template
v3.0.1, 2008

[5] A. Basu, M. Bozga, J.Sifakis, Modeling Heterogeneous Real-time Components in BIP
[6] Ji Eun Kim, Rahul Kapoor, Martin Herrmann, Jochen Haerdtlein, Franz Grzeschniok,

Peter Lutz, Software Behavior Description of Real-Time Embedded Systems in
Component Based Software Development, ISORC '08: Proceedings of the 2008 11th
IEEE Symposium on Object Oriented Real-Time Distributed Computing, 2008

[7] Microsoft, COM: Component Object Model Technologies,
http://www.microsoft.com/com/default.mspx

[8] Microsoft, MSDN: COM (Component Object Model), http://msdn.microsoft.com/en-us/
library/ms680573.aspx

[9] Sara Willliams, Charlie Kindel, The Component Object Model: A Technical Overview,
http://msdn.microsoft.com/en-us/library/ms809980.aspx, 1994

[10] Ivica Crnković, Magnus Larsson, Building Reliable Component-Based Software
Systems, Artech house, 2002

[11] Ke Xu, Sierszecki Krzysztof, Angelov Christo, COMDES-II: A Component-Based
Framework for Generative Development of Distributed Real-Time Control Systems,
RTCSA '07: Proceedings of the 13th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, 2007

[12] Ke Xu, Pettersson Paul, Sierszecki Krzysztof, Angelov Christo, Verification of
COMDES-II Systems Using UPPAAL with Model Transformation, RTCSA '08:
Proceedings of the 2008 14th IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications, 2008

[13] Rémi Bastide, Eric Barboni, Amélie Schyn, Component-Based BehaviouralModelling
with High-Level Petri Nets, Third Workshop on Modellingof Objects, Components and
Agents (MOCA’04), 2004

[14] Fintan Bolton, Pure CORBA, Sams Publishing, 2001
[15] OMG, CORBA v4.0, 2006
[16] Sun Microsystems Inc., Enterprise Java Beans 3.0, Final Relase, 2006
[17] Sun Microsystems, JavaBeans,

2009-02-20 Classification and survey of component
models Page 58 / 61

http://java.sun.com/javase/technologies/desktop/javabeans/
[18] Sun Microsystems Inc., Java Persistence API,

http://java.sun.com/javaee/technologies/persistence.jsp
[19] Sun Microsystemc Inc., Remote Method Invocation,

http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp
[20] The ObjectWeb Consortium, The Fractal project web pages, http://fractal.ow2.org/,
[21] The ObjectWeb Consortium, Think web pages, http://think.ow2.org/,
[22] The ObjectWeb Consortium, Juila web pages, http://fractal.ow2.org/julia/,
[23] E. Bruneton (France Telecom R&D), T. Coupaye (France Telecom R&D), J.B. Stefani

(INRIA), The Fractal Component Model Specification, 2004
[24] Sünder C., Zoitl A., Christensen J. H., Steininger H., Fritsche J., Considering IEC

61131-3 and IEC 61499 in the context of Component Frameworks, The IEEE
International Conference on Industrial Informatics, 2008

[25] Rockwell Automation, Function Block Development Kit,
http://www.holobloc.com/fbdk/README.htm,

[26] Thramboulids K., Doukas G., Frantzis A., Towards an Implementation Model for
Function Block-Based Reconfigurable Distributed Control Applications, IEEE
International Symposium on Object-Oriented Real-Time Distributed Computing, 2004

[27] Eclipse, http://www.eclipse.org/
[28] Sun Microsystems, NetBeans, http://www.netbeans.org/
[29] Rob van Ommering, Frank van der Linden, Jeff Kramer, Jeff Magee, The Koala

Component Model for Consumer Electronics Software, IEEE Computer, 2000
[30] Rob van Ommering, Building product populations with software components,

Proceedings of the 24th international Conference on Software Engineering, 2002
[31] A.V. Fioukov, E.M. Eskenazi, D.K. Hammer, M.R.V. Chaudron, Evaluation of static

properties for component-based architectures, Proceedings of 28th EUROMICRO
conference, 2002

[32] C. Atkinson, J. Bayer, D. Muthig, Component-Based Product Line Development: The
KobrA Approach,

[33] Michael Clarke, Gordon S. Blair, Geoff Coulson, Nikos Parlavantzas, An Efficient
Component Model for the Construction of Adaptive Middleware, Proceedings IFIP
Middleware, 2001

[34] Lancaster University, Overview of OpenCOM,
http://www.comp.lancs.ac.uk/computing/research/mpg/reflection/opencom.php

[35] Geoff Coulson, Gordon Blair, Paul Grace, Ackbar Joolia, Kevin Lee, Jo Ueyama, A
Component Model for Building Systems Software, In Proceedings IASTED Software
Engineering and Applications SEA’04, 2004

[36] Geoff Coulson, Gordon Blair, Paul Grace, Francois Taiani, Ackbar Joolia, Kevin Lee,

2009-02-20 Classification and survey of component
models Page 59 / 61

Jo Ueyama, Thirunavukkarasu Sivaharan, A Generic Component Model for Building
Systems Software, ACM Transactions on Computer Systems (TOCS), 2008

[37] University of Karlsruhe, The Palladio Component Model,
http://sdqweb.ipd.uka.de/wiki/Palladio_Component_Model

[38] Ralf Reussner, Steffen Becker, Jens Happe, Heiko Koziolek, Klaus Krogmann, Michael
Kuperberg, The Palladio Component Model, Technical report, University of Karlsruhe,
2007

[39] Steffen Becker, Heiko Koziolek, Ralf Reussner, Model-Based Performance Prediction
with the Palladio Component Model, Proceedings of the 6th International Workshop on
Software and Performance, 2007

[40] Eclipse Modeling framework, http://www.eclipse.org/modeling/emf/?project=emf
[41] Eclipse RCP, http://wiki.eclipse.org/index.php/Rich_Client_Platform/
[42] Tomas Genssler, Alexander Christoph, Benedikt Schutz, Michael Winter, Chris M.

Stich, Christian Zeidler, Peter Müller, Andreas Stelter, Oscar Nierstrasz, Stéphane
Ducasse, Gabriela Arévalo, Roel Wuyts, Peng Liang, Bastiaan Schönhage, Reinier van
der Born, PECOS in a Nutshell, 2002

[43] Oscar Nierstrasz, Gabriela Arévalo, Stéphane Ducasse, Roel Wuyts, Andrew P. Black,
Peter O. Müller, Christian Zeidler, Thomas Genssler, Reinier van den Born, A
Component Model for Field Devices, Lecture Notes in Computer Science, 2002

[44] Michael Winter, Thomas Genßler, Alexander Christoph, Oscar Nierstrasz, Stéphane
Ducasse, Roel Wuyts, Gabriela Arévalo, Peter Müller, Chris Stich, Bastiaan Schönhage,
Components for Embedded Software - The PECOS Approach, The Second International
Workshop on Composition Languages, in conjunction with the 16th ECOOP, 2002

[45] R. Wuyts, S. Ducasse, Non-Functional Requirements in a Component Model for
Embedded Systems, International Workshop on Specification and Verification of
Component-Based Systems, OOPSLA

[46] Scott Hissam, James Ivers, Daniel Plakosh, Kurt C. Wallnau, Pin Component
Technology (V1.0) and Its C Interface, CARNEGIE-MELLON UNIV PITTSBURGH
PA SOFTWARE ENGINEERING INST, 2005

[47] Kurt C. Walnau, Volume II: A Technology for Predictable Assembly from Certifiable
Components, CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE
ENGINEERING INST, 2003

[48] T. Bureš, J. Carlson, S. Sentilles, A. Vulgarakis, ProCom - A Component Model for
Distributed Embedded Systems

[49] H. Maaskant, A Robust Component Model for Consumer Electronic Products, Philips
Research Book Series Volume 3

[50] J. Muskens, M.R. V Chaudron, J.J. Lukkien, A Component Framework fror Consumer
Electronics Middleware, Lecture Notes in Computer Science, 2005

[51] M. de Jonge, J. Muskens, and M. Chaudron, Scenario-based prediction of run-time
resource consumption in component-based software systems, In Proceedings: 6th ICSE

2009-02-20 Classification and survey of component
models Page 60 / 61

Workshop on Component Based Software Engineering: Automated Reasoning and
Prediction, 2003

[52] Arcticus Systems, http://www.arcticus-systems.com/
[53] Kaj Hänninen, Jukka Mäki-Turja, Mikael Nolin, Mats Lindberg, John Lundbäck, Kurt-

Lennart Lundbäck, The Rubus Component Model for Resource Constrained Real-Time
Systems, 3rd IEEE International Symposium on Industrial Embedded Systems, 2008

[54] Mikael Åkerholm, Jan Carlson, John Håkansson, Hans Hansson, Mikael Nolin, Thomas
Nolte, Paul Pettersson, The SaveCCM Language Reference Manual, Technical report,
Mälardalen University, 2007

[55] Séverine Sentilles, John Håkansson, Paul Pettersson, Ivica Crnković, Save-IDE – An
Integrated development environment for building predictable component-based
embedded systems, Proceedings of the 23rd IEEE/ACM International Conference on
Automated Software Engineering (ASE 2008), 2008

[56] Object Management Group, Unified Modeling Language, http://www.uml.org/
[57] Amnell, T., E. Fersman, L. Mokrushin, P. Pettersson and W. Yi, Times: a Tool for

schedulability analysis and code generation of real-time systems, Proceedings of the 1st
International Workshop on Formal Modeling and Analysis of Timed Systems, LNCS
(2003), 2003

[58] Kathrin Dannmann, Synthesizing Real-Time Components to Run-Time Tasks, Master's
Thesis, University of Oldenburg, 2009

[59] Juraj Feljan, Using JavaBeans to Realize a Domain Specific Component Model,
submitted to Software Engineering and Advanced Applications (SEAA09), 2009

[60] Uppsala University, Aalborg University, UPPAAL Port, http://www.uppaal.com/port/
[61] SOFA 1 web page, http://sofa.ow2.org/sofa1/, 2009
[62] SOFA 2 web page, http://sofa.ow2.org/, 2009

2009-02-20 Classification and survey of component
models Page 61 / 61

	1 Introduction
	2 Overview of selected component models
	2.1 AUTOSAR
	2.2 BIP
	2.3 BlueArX
	2.4 COM
	2.5 COMDES-II
	2.6 CompoNETS
	2.7 Corba Component Model (CCM)
	2.8 EJB
	2.8.1 Constructs
	2.8.2 Life cycle
	2.8.3 Extra-functional properties
	2.8.4 Benefits of Enterprise Beans

	2.9 Fractal
	2.9.1 Constructs
	2.9.2 Extra-functional properties

	2.10 IEC 61499
	2.11 JavaBeans
	2.12 Koala
	2.13 KobrA
	2.14 OpenCOM
	2.15 Palladio Component Model
	2.16 Pecos
	2.17 Pin
	2.18 ProCom
	2.19 Robocop
	2.20 Rubus Component Model
	2.21 SaveCCM
	2.22 Sofa

