Value Based Overload Handling of Aperiodic Tasks in Offline
Scheduled Real-Time Systems

Jan Carlson, Tomas Lennvall and Gerhard Fohler
Department of Computer Engineering,
Malardalen University, Sweden
{jen,tlv,gfr}@mdh.se

1 Introduction

This paper describes a runtime scheduling method
for a mix of off-line scheduled and value based dynamic
tasks with a focus on overload situations. We present
a formulation of overload handling as a general binary
optimisation problem and give an algorithm for solv-
ing it. Our method is based on slot shifting [4] to pro-
vide for the integration of offline and online schedul-
ing. Dynamic tasks are scheduled according to basic
EDF, extended with an algorithm for overload detec-
tion and resolution. We include a penalty value for
tasks which have been guaranteed but missed their
deadline, e.g., due to rejection under overload.

The mixed taskset enables designers to choose a
tradeoff between predictability and flexibility for each
activity in the system individually and to guarantee
predictable execution of offline tasks even under over-
load situations. The algorithm ensures that overload
situations are handled efficiently with respect to the
values of the dynamic tasks.

[3], [2], [8], and [7] discuss overload handling based
on earliest deadline first scheduling. [1] presents
scheduling scheme calculating priorities dynamically
based on value and deadlines. These focus on on-
line scheduling. Our method handles overload situ-
ations while guaranteeing the feasible execution of of-
fline scheduled tasks.

Assumptions We assume that the periodic tasks
have been scheduled by some standard offline sched-
uler. Aperiodic tasks have a value (V') associated,
indicating the benefit to the system if completed in
time. A penalty value (PV) is used to express loss if
the task has been accepted, and possibly started, but
not completed in time. This way we can include tasks
which provide, little value upon completion, but harm
the system if aborted during execution. Unimportant
tasks with critical sections, database access with locks,

or actuating tasks, for example, demand this notion.

Additionally, an aperiodic task is characterized by
its remaining, worst case, execution time (C) and
deadline (D). The arrival times of aperiodic tasks are
unknown at design time.

The system is considered to be distributed, i.e., one
that consists of several processing and communication
nodes [9]. The overload algorithm is performed locally,
but the distributed system influences the design of the
algorithm.

We assume a discrete time model [6]. Time ticks are
counted globally, by synchronized clocks with granu-
larity of slot length. Slots have uniform length, and
task periods and deadlines must be multiples of the
slot length.

2 Task Scheduling and Objectives

At run time, scheduling is performed via the slot
shifting scheme as detailed in [4] allowing the execu-
tion of aperiodic tasks only if this does not cause an
off-line task to miss its deadline.

Upon arrival, aperiodic tasks are inserted into the
ready queue of dynamic tasks according to EDF,
ensuring optimal performance in non-overload situa-
tions. There are two basic requirements that we want
to meet. We want to maximise the accumulated value
of tasks that meet their deadlines, minus the penalty
value of tasks that are accepted but miss their dead-
line. Also, we want the ability to remove tasks early,
rather than simply allowing them to miss their dead-
lines, since it might be possible to route them to an-
other node in the system.

Our algorithm ensures that the EDF queue is al-
ways free from overload. When a new task arrives, the
algorithm tests if it causes overload, and if so, which
tasks to reject in order to resolve this.

2.1 Value and Penalty Handling

When comparing the value of a new task against
that of tasks already in the queue, the difference has
to be considered. Since the previously added tasks
have been accepted, aborting them would not only
cause a loss of value, but also an increased penalty.
Rejecting the new task, on the other hand, implies a
loss of value but no extra penalty.

An easy way to handle this is to define V/, the cur-
rent value of task 7;, as V/ = V; if 7, has not been
guaranteed yet, and V/ = V; + PV; otherwise. The
current value denotes the decrease of total value asso-
ciated with the removal of the task, and can be used
to compare tasks fairly.

2.2 The Rejection Problem

We formulate the problem of efficient task rejection
as follows. Given a set of tasks, we want to remove
all overload while minimizing the total current value
of the removed tasks. This can be formulated as a
general binary optimisation problem.

Let {71,...,7} be the current aperiodic task set,
including the new task. Also, let ft; be the finishing
time of 7;, assuming that no tasks are removed and
that no new tasks will arrive during the execution of
the tasks in the set. We represent by x; = 1 the selec-
tion of 7; as a candidate for removal, and x; = 0 means
that 7; is to be kept. Note that ft; is not affected
by changes to these variables. Finally, let as[t1,ts]
represent the amount of slots originally available for
aperiodic tasks in the interval.

A linear method for computing finishing times of
aperiodic tasks with respect to the spare capacities of
the offline schedule is presented in [5], and as[D;, ft;]
can be computed in a similar way.

Now, the rejection problem can be described as fol-
lows:

min =~ Vo + Vize + ...+ V,z,

when Ciaq > as[Dy, ft1]
Cizy + Chxa > as[Da, fto]

Ciz1 + Coza+ ...+ Cray, > as[Dy, ft,]

T1,T2,. .., %, € {0,1}

Intuitively, the right hand side of the ith inequality
represents the number of slots (currently used by ape-
riodic tasks) that must be freed in order for 7; to meet

its deadline. A negative value implies leeway, that
it would be possible to execute the task later with-
out deadline violation. In this case, the inequality is
trivially satisfied. The left hand side states that the
needed slots must be gathered by removing some of
the tasks 7,..., 7.

Example Let the active aperiodic tasks at time 10,
where (D;, C;, V/) represents 7;, be:

71 : (16,2,20)
79 : (18, 3,20)

T3 : (22,4, 60) 75 : (24,6,65)
T4 (23,2,22) 76 : (29,3,60)

75 has just arrived. For simplicity, we assume a simple
offline schedule, with a offline task scheduled to exe-
cute in slot 16 or 17. This gives as[ty,ta] = t2 — t1
for most intervals. The values in brackets indicate the
impact from the offline task on the as values.

min
20x1 + 20x2 + 60x3 + 2224 + 6525 + 6026

when
21 > as[16,12] =4 (0)
221432 > as[18,15] =—2 (1)
2x1+3z2+4a3 > as[22,20] =—2 (1)
2x1+3x2+4x3+224 > as[23, 22] =—1 (1)
201 +3aa+ 43+ 274 + 65 > as[24,28) = 4 (1)
22143z +4x3+224+6x5+3x6 > as[29,31] = 2 (1)

, T € {0, 1}

T1,T2y ...

In this case, adding 75 caused overload. This corre-
sponds to a restriction which is not trivially satisfied,
such as the last two restrictions above.

3 Overload detection and resolution

We assume the restrictions ordered by increasing
length, as in the definition above.

Even under the assumption that as[D;, ft;] < 0 for
1 < i < n, when all restrictions except the last one are
trivially satisfied, the problem is hard to solve. In fact,
it has been reduced to the well known NP-hard binary
knapsack problem and an optimal solution is not likely
to be found. Our algorithm is based on heuristics that
exploit properties of this particular problem.

One such property is that each restriction contains
less variables than the subsequent ones. We also notice
that a good solution to a restriction is quite often a
good solution to all subsequent restrictions. If some
restrictions are not solved by this solution, it is still

a reasonably good partial solution. The reason for
this is that the variables are equally weighted in all
restrictions.

The rejection algorithm traverses the ordered re-
strictions, solving each of them individually. Since
the task set was free from overload before the new
task 7, arrived, the first y — 1 restrictions are trivially
satisfied.

Initially, all z; variables are set to 0, wich means
that no tasks are to be removed. Each restriction is
solved by changing some of the variables to 1, or pos-
sibly leaving them unchanged. Once we have solved a
restriction with x; = 1, this variable is never changed
during the solving of subsequent restrictions.

A single restriction, unless trivially satisfied by the
current variable settings, is solved in two steps. First
from the variables x; = 0 of the left-hand side of the
restriction, such that x; = 1 would solve the restric-
tion, we find the one with lowest V;. Next, we collect
variables from the left-hand side that will not solve
the restriction on their own, but may solve it together.
The collection is based on a greedy approach, starting
with the one with lowest value density (V//C;). Fi-
nally, V/ of the best single choice is compared against
the summed V; values of the collection, to decide what
the final choice should be.

Example For the task set of the previous example,
the algorithm works in the following way.

Since the new task was added at position five, the
fifth restriction is solved first:

2x1 + 3x0 + 43 + 224 + 625 > 4

It is not trivially satisfied, since all variables are 0. To
find the best single candidate, we choose between x3
or x5 and, since V5 < V¢, x3 is chosen. The variables
to consider for the collection, sorted by value density,
are To,r1 and x4. After adding x4 and z; to the collec-
tion, the restriction is satisfied. Comparing V5 = 60
against V§ + V{/ = 40 we finally decide to solve the
fifth restriction by z; = x5 =1

Continuing the traversal of restrictions, we find that
the current variable values solves the sixth restriction
as well. The found solution is:

$1=$2:1, $3:$4:$5:$6=0
meaning that the new task 75 is accepted while 7 and

To is removed. The remaining tasks 73, 74 and 74 are
kept.

4 Discussion and ongoing work

The complexity of computing all ft; and as[D;, ft;]
values is linear. This, and the fact that we can keep
a separate list of references to the tasks, sorted by in-
creasing value density, gives us a complexity in O(n?)
for the whole overload algorithm. From early results,
we conclude that finding (and solving) more than a
few deadline misses when a new task arrives, does not
occur frequently. Thus, we might restrict the number
of deadline misses that are considered in our search
when a new task arrives. If we detect additional over-
load, we simply decide to reject the new task. This
should give us an algorithm in O(n) without any sig-
nificant performance loss.

Another important issue we are studying is what
to do with the rejection candidate tasks. We can keep
them locally in a reject queue as suggested in [3]. Since
the overload detection is based on worst case execu-
tion times, an overload situation might not necessar-
ily cause deadline misses. Tasks in the reject queue
can be considered for execution again if a task finishes
earlier than its worst case execution time implies. But
since we have a distributed system, they can also be
moved to other nodes where they might be accepted.
We experiment with making the reject queues visible
and accessible to all the other nodes in the system,
so that they can try to “steal” the tasks that appear
promising to them. Accepting a stolen task may re-
sult in overload and the removal of other tasks from
the node. In this way we expect some value balancing
in the system, that is the overall value of the system
will go up if some tasks are distributed.

Simulations are carried out to evaluate the linear
version of the algorithm, and to compare the dis-
tributed stealing method against other distributed al-
gorithms.

So far we have always kept the offline tasks, and
never considered them for rejection. We can relax this
constraint by using one of the properties of slot shift-
ing, namely that the offline preparation creates EDF
tasks. Then we can treat some of the offline tasks in
the same way as the aperiodic tasks while still guar-
anteeing the execution of the other offline tasks.

References

[1] S. A. Aldarmi and A. Burns. Dynamic value-
density for scheduling real-time systems. In Pro-
ceedings 11th Euromicro Conference on Real-Time
Systems, Dec 1999.

2]

G. Buttazzo, M. Spuri, and F. Sensini. Value
vs. deadline scheduling in overload conditions. In
Real-Time Systems Symposium, Pisa, Italy, Dec
1995.

G. Buttazzo and J. Stankovic. Red: A robust ear-
liest deadline scheduling algorithm. In Proceed-
ings of 3rd International Workshop on Responsive
Computing Systems, 1993.

G. Fohler. Joint scheduling of distributed com-
plex periodic and hard aperiodic tasks in statically
scheduled systems. In Proc. 16th Real-time Sys-
tems Symposium, Pisa, Italy, 1995.

D. Isovic and G. Fohler. Efficient scheduling of
sporadic, aperiodic, and periodic tasks with com-
plex constraints. In Proceedings of the 21st IEEE
Real-Time Systems Symposium, Orlando, Florida,
USA, Nov. 2000.

H. Kopetz. Sparse time versus dense time in
distributed real time systems. In Proc. of the
Second Int. Workshop on Responsice Comp. Sys.,
Saitama, Japan, Oct. 1992.

G. Koren and D. Shasha. Gilad koren and dennis
shasha. skip-over: Algorithms and complexity for
overloaded systems that allow skips. In Proceedings
Real-Time Systems Symposium, Pisa, Italy, Dec
1995.

S.Baruah and J. Haritsa. Scheduling for overload
in real-time systems. IFEE Transactions on Com-
puters, 46(9), September 1997.

J.A. Stankovic, K. Ramamritham, and C.-S.
Cheng. Evaluation of a flexible task scheduling
algorithm for distributed hard real-time systems.
IEEFE Trans. on comp., 34(12), Dec 1995.

