
Real-Time Component Integration using
Runnable Virtual Nodes*

Rafia Inam, Jukka Mäki-Turja, Mikael Sjödin, Jiřı́ Kunčar
Mälardalen Real-Time Research Centre, Västerås, Sweden

Email: {rafia.inam, jukka.maki-turja, mikael.sjodin}@mdh.se, jiri.kuncar@gmail.com

Abstract—We present the concept of runnable virtual nodes
(RVNs) as means to achieve predictable integration and tem-
poral error-containment of real-time software components. An
RVN exploits the latest techniques for hierarchical scheduling
and is intended as a coarse-grained component for single-node
deployment, that provides functional and temporal isolations with
respect to its environment. It uses a two-level deployment process;
i.e. deploying functional entities to RVNs and then deploying
RVNs to physical nodes. The two-level deployment process not
only gives development benefits with respect to composability,
system integration, testing, validation and certification but also
leverages the hierarchical scheduling to preserve the validity of
an RVN’s internal temporal behaviour when integrated with
other components. We have applied our approach to a simple
case study, implemented in the ProCom component-technology
executing on top of FreeRTOS-based hierarchical scheduling and
present our initial results as a proof-of-concept.

Index Terms—real-time software components; component in-
tegration; hierarchical scheduling

I. INTRODUCTION

In this paper we target development of the large class
of embedded systems which is required to perform multiple
simultaneous control-functions, potentially having real-time
requirements. From the development point of view, it often
makes sense to develop different control-functions as separate
software-components [1]. Typically, these components are first
developed and tested in isolation, and later integrated to form
the final software for the system. Furthermore, many industrial
systems are developed in an evolutionary fashion, reusing
components from previous versions or from related products.
It means that the reused components are re-integrated into new
environments.

We address the challenges of preserving real-time properties
within the components, in order to make the integration of real-
time components predictable. To solve this problem, we pro-
pose the concept of a runnable virtual node (RVN), which is an
execution-platform concept that preserves temporal properties
of the software executed within it. It introduces an intermediate
level between the functional entities and the physical nodes.
Thereby, it leads to a two-level deployment process instead
of a single big-stepped deployment; i.e. deploying functional
entities to the virtual nodes and then deploying virtual nodes
to the physical nodes.

We introduce the RVN, which includes the executable
representation of components, a real-time scheduler to be

* This work is supported by the Swedish Foundation for Strategic Research
(SSF), via the research programme PROGRESS.

executed within a server in the HSF, and a resource allocation
for the server. The server executes with a guaranteed temporal
behavior, using its allocated CPU bandwidth, regardless of
any other execution on the physical node. Thus, once a
server has been configured for the RVN, its non-functional
(timing) properties will be preserved along with its functional
properties when the RVN is integrated with other RVNs on a
physical node.

The main contributions of this paper are:
• We realize the concept of runnable virtual nodes for

the ProCom component technology [2] by exploiting the
HSF implementation [3], [4] for the FreeRTOS real-time
operating system [5].

• We introduce a two-level deployment process; i.e. deploy-
ing functional entities to RVNs in a first step (during
which, e.g., the timing properties of RVNs are validated),
and then, deploying RVNs to the physical nodes in a
second step (integrating RVNs along with their preserved
timing properties). The two-level process gives devel-
opment benefits with respect to composability, system
integration, testing, validation, certification.

• We demonstrate the runnable virtual node’s properties
with respect to temporal isolations, and fault-containment
through a case study.

Outline: Section II gives an overview about the ProCom
component model and the HSF implementation. In Section III,
we describe the RVN and in Section IV, we discuss how
the two-level deployment helps in preserving the real-time
properties within RVN. Section V presents a case-study and
the results. Finally, Section VI concludes the article.

II. BACKGROUND

This section presents the background technologies on which
our work is based on.

A. The ProCom Component Model

Component-Based Software Engineering (CBSE) and
Model-Based Engineering (MBE) are two emerging ap-
proaches to develop embedded control systems like software
used in trains, airplanes, cars, industrial robots, etc. The Pro-
Com component technology combines both CBSE and MBE
techniques for the development of systems and subsystems,
hence also exploits the advantages of both [2].

The ProCom component model can be described in two
distinct realms: the modeling and the executable realms as



Fig. 1. An overview of the modeling formalisms and synthesis artefacts.

shown in Figure 1. In the Modeling realm, the models are
made using CBSE and MBE while in the executable realm, the
synthesis of runnable entities is done from the model entities.

1) The Modeling Realm: Modeling in ProCom is done by
four discrete but related formalisms (see Figure 1). The first
two formalisms relate to the system functionality modeling
while the later two represent the deployment modeling of the
system. Modeling in ProCom is done by four discrete but
related formalisms as obvious from Figure 1. Functionality of
the system is modeled by the ProSave and ProSys components
at different levels of granularity. The basic functionality (data
and control) of a simple component is captured in the ProSave
component level (passive in nature). At the second formalism
level, many ProSave components are mapped to make a
complete subsystem called ProSys (active in nature) [2]. Many
ProSys components can be mapped together on a virtual
node (many-to-one mapping) together with a resource budget
required by those components. After that, many virtual nodes
could be mapped on a physical node. The relationship is again
many-to-one. This part represents all the physical nodes and
their inter-communication [6].

2) The Executable (or Runnable) Realm: The primitive
ProSave components are represented as a simple C language
source code in runnable form. From this C code, the ProSys
runnables are generated which contain a collection of oper-
ating system tasks. RVNs implement the local scheduler and
contain the tasks in a server. Final binaries are generated by
connecting different RVNs together with a global scheduler
and using a middleware API to provide communications
among RVNs.

B. Hierarchical Scheduling Framework and its Implementa-
tion in FreeRTOS

A two-level Hierarchical Scheduling Framework (HSF) is
used to provide temporal isolation among a set of subsys-
tems [7]. In the hierarchical scheduling, the CPU time is
partitioned among many subsystems (or servers), that are
scheduled by a global (system-level) scheduler. Each server
contains its own internal set of tasks that are scheduled by a
local (subsystem-level) scheduler as shown in Figure 2.

The HSF gives the potential to develop and analyze subsys-
tems in isolation from each other. As each subsystem has its
own local scheduler, after satisfying the temporal constraints,
the temporal properties are saved within each subsystem.
Later, a global scheduler is used to schedule all the subsystems

Hierarchical Scheduling Framework

Global FPS
Scheduler

. . .

Global Shared Resources

SubSystem n

Local FPS
Scheduler 

Task1 Taskn. . .

Local Shared Resources

S
R
P

S
R
P

SubSystem 1

Local FPS
Scheduler 

Task1 Taskn. . .

Local Shared Resources

S
R
P

S
R
P

H
S
R
P

H
S
R
P

Fig. 2. Two-level Hierarchical Scheduling Framework.

together without violating the temporal constraints that are
already analyzed and stored in the subsystems. Accordingly,
we can say that the HSF provides partitioning of the CPU
between different servers. Thus, server-functionality can be
isolated from each other for, e.g., fault containment, composi-
tional verification, validation and certification, and unit testing.

Our RVN implementation is based on a two-level HSF for
the FreeRTOS operating system [3]. FreeRTOS is a portable
open source real-time kernel which is small and scalable,
supports 23 different hardware architectures, and is easy to
extend and maintain [5].

The official release of FreeRTOS only supports a single
level fixed-priority scheduling. We have, however, previously
presented an implementation of two-level HSF for FreeR-
TOS [3] with associated primitives for hard real-time sharing
of resources both within and between servers [4]. The HSF
implementation supports two kinds of servers, idling peri-
odic [8] and deferrable servers [9]. The implementation uses
fixed-priority preemptive scheduling (FPPS) for both global
and local-level scheduling. For local resource-sharing (within
a server) the Stack Resource Policy (SRP) [10] is used, and
for global resource-sharing (between servers) the Hierarchical
Stack Resource Policy (HSRP) has been implemented [4].

III. RUNNABLE VIRTUAL NODE

Here we present the details of the RVN and its implemen-
tation in the ProCom component technology.

A. The RVN in ProCom

In ProCom, a virtual node is an integrated model concept.
It means that the virtual nodes exist both on the modeling
and on the executable levels as shown in Figure 1. At the
modeling level, a virtual node is a container for a set of
integrated ProSys-components plus the execution resources (a
period and budget) required for these ProSys-components. The
input and output ports of those components are inherited by
the virtual node. The priorities of virtual nodes cannot be
assigned at the modeling level. The priorities of a component



are relative to other components in the system (we use fixed-
priority preemptive scheduling); hence components priority
assignment is done during the final step of integrating virtual
nodes to physical nodes. In the executable realm, they are
called runnable virtual nodes.

B. The RVN Implementation

The RVN is intended for coarse-grained components for
single node deployment and with potential internal multitask-
ing. An RVN is implemented as a server within an HFS, and
includes the set of tasks, a resource allocation, and a real-
time scheduler. The task set comes from ProSys runnables
which are mapped to an RVN. The scheduler is local-level,
and schedules the task set according to allocated resources
using a scheduling policy (which in the current implementation
is assumed to be FPPS). The final executables that can be
downloaded and executed on the physical node consists of
a set of RVNs and a top-level real-time scheduler linked
together. The top-level scheduler in the HSF is responsible
for dispatching the RVN-servers according to their bandwidth
reservations.

As long as the allocated budgets to RVN-servers (at the
modeling level) are provided, the timing properties are guar-
anteed at the execution. Thus, with the use of servers in HSF,
the timing properties of RVNs are preserved during integration
and reuse. Further, it reduces the efforts related to testing,
validation and certification.

IV. THE TWO-LEVEL DEPLOYMENT PROCESS

The two-level deployment process is made possible by the
RVN concept; means that we are maintaining the modeling
hierarchy (see Figure 1) also at run-time by executing the
tasks of each virtual node within a server, instead of flattening
the whole system to a single level of tasks. The system is
generated in two steps rather than a single big deployment.

A. The First Step of Deployment

In the modeling realm, a virtual node consists of a set
of ProSys-components with an added resource reservation
〈Q,P 〉. This resource reservation makes it possible to start
reasoning about the timing properties of different components
inside the virtual node (i.e. inside the top-level ProSys-
components). In the executable realm, the RVN is constructed
by mapping the set of tasks that have been synthesized from
the integrated ProSys-components to a server and assigning
scheduling parameters (which in the current implementation
means assignment of task-priorities). Internal validity of the
timing-constraints of the RVN can then be assessed using,
e.g., simulation, testing or a local scheduling-analysis provided
in [4]. In this manner, after configuration the server preserves
its timing properties with it.

B. The Second Step of Deployment

In the modeling realm, a set of virtual nodes is mapped to
model a physical system. This means that one or more virtual
nodes are allocated to each hardware node in the system. In

the executable realm, we create the final binary for a hardware
node by mapping a set of RVNs to that node along with a top-
level scheduler in HSF, resolving local-RVN communications
(communication among RVNs mapped on the same hard-
ware node), and mapping distributed-RVN communications
(communication among RVNs mapped on different hardware
nodes) with remote RVNs to the communications media. At
this point it is also necessary to assign scheduling parameters
in terms of server-priorities. To access that a feasible priority
assignment has been made, a global scheduling-analysis [4]
is performed.

V. CASE STUDY

The PRIDE tool [11] supports development of systems using
ProCom component models and we have used it for developing
an example of cruise controller (CC) for automotive applica-
tions. Our motivating case study is simple, but exercises the
execution-time properties and evaluates the integration and the
timing fault-containment of the run-time components. The CC
system is realized and exercised to test the temporal isolations
among run-time components. Its basic functionality is to keep
the vehicle at a constant speed.

A. System design

The CC system is designed using two ProSys components,
Cruise Controller (CC) and Vehicle Controller (VC), which
are modeled and deployed on two different virtual nodes (see
Figure 3). Virtual nodes communicate with each other through
the middleware using input and output message ports.

Fig. 3. Deploying ProSys components on virtual nodes.

The detailed design of the ProSys components is shown in
Figures 4(a), and 4(b). These ProSys components are mapped
to the virtual nodes. The CC ProSys component is mapped
to the Virtual Node1 and the VC ProSys component is
mapped to the Virtual Node2 as clear from Figure 3. Each
virtual node is assigned an execution budget and a period
〈Q,P 〉 to be executed in a local server within a two-level
HSF at the modeling level in the PRIDE tool.

B. Synthesis

The PRIDE tool automatically synthesizes the code from
the ProCom models at different stages. It takes the models as
input, and generates all low-level platform independent code.

To generate the ProSys runnables, a task set is generated
for each ProSys component. One task is synthesized for each
clock and given in Table II. For CC example, two tasks are



Control UnitHMI Input

HMI OutputClock Clock

brake

current
speed

mode
desired speed
current speed

current speed

mode
desired speed
current speed

throttle

brake

brake

(a) The Cruise Controller (CC) component

brake

current
speed

brake

Clock

throttle

Clock

Throttle pedal

Brake pedal

Speedometer

Engine 
controller

Brake 
controller

Clock

Calc Max 
Value

Calc Max 
Value

external input

external input

(b) The Vehicle Controller (VC) component
Fig. 4. The detailed design of ProSys components.

generated for the CC ProSys component: CCT1 task including
HMI Input and Control Unit; and CCT2 task including HMI
Output component. Three tasks are generated for the VC
ProSys component: VCT1 task including Throttle pedal, Calc
Max Value, and Engine Controller; VCT2 task including Brake
pedal, Calc Max Value, and Brake Controller; and VCT3 task
including the Speedometer.

In the first step of the final synthesis/deployment process for
the case study, two RVNs are produced for CC system: one
RVN for Virtual Node1 and one for Virtual Node2.
These generated nodes contain tasks definitions in them. In
the second step of the final synthesis/deployment part, the
priorities are assigned to the RVNs (also called servers now)
and to the tasks in them. Four servers are generated for the
example.

A System server is generated to provide communication
among the RVNs. It has the highest priority of all the other
servers, i.e. 7 (there are 8 different server priorities: from
lowest priority 0 to the highest 7). The System server
contains two tasks: a Sender and a Receiver task; whose
functionality is to send and receive the data shared among
RVNs respectively. An Idle server is generated in the system
with the lowest priority of all the other servers, i.e. 0, contain-
ing an idle task in it. All the other servers in the system have
the priority higher than 0.

The CC system contains two more servers in addition to
System and Idle server: a CC server and a VC server
associated with Virtual Node1 and Virtual Node2
respectively. The priorities, periods and budgets for these
servers are given in Table I.

We present results with the idling periodic server. An idle
task per server is generated that has the lowest priority. It runs

Server CC VC SYSTEM
Priority 2 1 7
Period 40 60 20
Budget 10 15 4

TABLE I
SERVERS USED TO TEST THE CC AND ACC SYSTEMS BEHAVIORS.

when its server has the budget remaining but none of its task
is ready to execute. Task properties and their assignments to
the servers are given in Table II.

C. Evaluation and Discussion

We have performed the experimental evaluation of the case
study on an AVR-based EVK1100 board [12]. The 32-bit
AVR32UC3A0512 micro-controller runs at the frequency of
12MHz and its tick interrupt handler at 1ms(milli seconds).
The FreeRTOS operating system with its HSF implementation
is used on the micro-controller using FPPS scheduling policy
at both levels for idling periodic servers. Its tick-handler runs
at the rate of 1ms. The experimental results are presented in
the form of visualization of servers executions in Figures 5(a),
and 5(b).

In these Figures, the horizontal axis represents the execution
time starting from 0. In the task’s visualization, the arrow rep-
resents task arrival and a gray rectangle means task execution.
In the server’s visualization, the numbers along the vertical
axis are the server’s capacity, the diagonal line represents the
server execution while the horizontal line represents either the
waiting time for the next activation (when budget has depleted)
or the waiting for its turn to execute (when some other server
is executing). Since these are idling periodic servers, all the
servers in the system execute until their budget depleted, if no
task is ready then the idle task of that server executes.

1) Testing Temporal Isolation and Predictable Integration:
Figure 5(a) demonstrates the system execution under the nor-
mal load situation. The system’s behavior is also tested during
the overload situation to test the temporal isolation among the
RVNs. For example, if one server (RVN) is overloaded and its
tasks miss deadlines, it should not affect the behavior of other
servers (RVN) in the system.

The same example is executed to perform this test but
with the increased utilization of the CC server as shown in
Figure 5(b). The execution times of tasks CCT1 and CCT2 are
increased by adding busy loops, hence making the CC server’s
utilization greater than 1. Therefore the low priority task CCT2
misses its deadlines at time 54. CCT2 is preempted at time
14 because of the CC server’s budget expiration, and starts
it’s execution again when next time the server is replenished.
Further, the CC is never idling because it is overloaded (the
Idle task of CC server is not executed in Figure 5(b)).

The overload in the CC server does not effect the behavior
of any other server in the system as obvious by comparing
Figure 5(b) with Figure 5(a). The VC server has a lower
priority than the CC, but still it receives its allocated resources
and its tasks meet their deadlines. It shows a predictable timing
behaviour of RVNs that further eases their integration. It also
manifests that the temporal errors are contained within the



Tasks CCT1 CCT2 VCT1 VCT2 VCT3 Sender Receiver
Server CC CC V C V C V C System System
Priority 2 1 1 1 2 2 2
Period 40 60 60 60 40 20 20

TABLE II
TASKS IN THE THREE SERVERS.

(a) The CC system during normal load

(b) The CC system during overload situation

Fig. 5. The trace for servers in the CC and ACC systems.

faulty RVN only and their effects are not propagated to other
RVNs in the system as clear from the Figure 5(b).

VI. CONCLUSIONS

We present the concept of runnable virtual nodes (RVNs)
as a means to achieve predictable integration and timing
fault-containment of real-time components to facilitate the
development of complex real-time systems. We use a two-level
deployment process that leverages the hierarchical scheduling
framework (HSF) to preserve timing behavior of RVNs.

We have presented a proof-of-concept case study and our
results demonstrate the temporal error containment within an
RVN without altering their temporal behaviour. Our work is
based on the ProCom component-technology using the HSF
implementation for FreeRTOS and is executed on an AVR-
based EVK1100 board. However, our concept has been de-
signed to be applicable to commercial component technologies
like AADL, AUTOSAR [13].

For future work, we plan to make the RVN an executable
reusable entity.

REFERENCES

[1] I. Crnkovic and M. Larsson, editors. Building Reliable Component-
Based Software Systems. Artech House publisher, 2002. ISBN 1-58053-
327-2.

[2] Séverine Sentilles, Aneta Vulgarakis, Tomáš Bureš, Jan Carlson, and
Ivica Crnković. A Component Model for Control-Intensive Distributed
Embedded Systems. In 11th International Symposium on Component
Based Software Engineering, pages 310–317, October 2008.

[3] Rafia Inam, Jukka Mäki-Turja, Mikael Sjödin, S. M. H. Ashjaei, and
Sara Afshar. Hierarchical Scheduling Framework Implementation in
FreeRTOS. In IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA’ 11).

[4] Rafia Inam, Jukka Mäki-Turja, Mikael Sjödin, and Moris Behnam. Hard
Real-time Support for Hierarchical Scheduling in FreeRTOS. In 7th
Annual Workshop on Operating Systems Platforms for Embedded Real-
Time Applications (OSPERT’ 11), pages 51–60, Porto, Portugal, 2011.

[5] FreeRTOS web-site. http://www.freertos.org/.
[6] Jan Carlson, Juraj Feljan, Jukka Mäki-Turja, and Mikael Sjödin. Deploy-

ment Modelling and Synthesis in a Component Model for Distributed
Embedded Systems. In Proceedings of the 36th Euromicro Confer-
ence on Software Engineering and Advanced Applications (SEAA’ 10),
September 2010.

[7] Z. Deng and J.W.-S. Liu. Scheduling real-time applications in an open
environment. In IEEE Real-Time Systems Symposium(RTSS’97), pages
308–319, 1997.

[8] L. Sha, J.P. Lehoczky, and R. Rajkumar. Solutions for some Practical
problems in Prioritised Preemptive Scheduling. In Proc. IEEE Real-Time
Systems Symposium (RTSS), pages 181–191, 1986.

[9] J.K. Strosnider, J.P. Lehoczky, and L. Sha. The deferrable server
algorithm for Enhanced Aperiodic Responsiveness in Hard Real-time
Environments. IEEE Transactions on Computers, 44(1), 1995.

[10] T. Baker. Stack-based scheduling of real-time processes. Journal of
Real-Time Systems, 3(1):67–99, 1991.

[11] PRIDE Team. PRIDE: the PROGRESS Integrated Development Envi-
ronment, 2010. ”http://www.idt.mdh.se/pride/?id=documentation”.

[12] ATMEL EVK1100 product page. http://www.atmel.com/dyn/Products/tools
card.asp?tool id=4114.

[13] R. Inam, J. Mäki-Turja, J. Carlson, and M. Sjödin. Virtual Node – To
Achieve Temporal Isolation and Predictable Integration of Real-Time
Components. International Journal on Computing (JoC), 1(4), 2012.


