

Data Distribution Service for Industrial Automation1

Jinsong Yang, Kristian Sandström
Industrial Software Systems

ABB Corporate Research
Forskargränd 7

Västerås, Sweden
jyg10001@student.mdh.se

kristian.sandstrom@se.abb.com

Thomas Nolte, Moris Behnam
Mälardalen University

Högskoleplan 1
Västerås, Sweden

thomas.nolte@mdh.se
moris.behnam@mdh.se

Abstract1

The IEC 61499 is an open standard for the next
generation of distributed control and automation. Data
Distribution Service for Real-Time Systems (DDS) is a
specification of a publish/subscribe middleware for
distributed systems, created by the Object Management
Group (OMG) to standardize a data-centric publish-
subscribe programming model for distributed systems.

This paper evaluates the DDS communication
performance based on a model built within the IEC
61499 standard and compares it with the traditional
socket based solution for communication. According to
the test results, the DDS communication has the potential
to reduce the complexity and is suggested as a suitable
solution for some classes of industrial control systems.

1. Introduction

In industrial distributed control systems a substantial
number of controllers can be connected through an
Ethernet-based control network. The controllers may
share control data and also interact with nodes higher in
the network hierarchy, like operator stations. In a large
system these inter-dependencies will potentially create a
complex architecture, especially if explicit point-to-point
data connections have to be engineered. Moreover,
redundancy schemes, such as hot standby, where software
components are duplicated on different controllers,
further increase complexity. If real-time performance can
be achieved, publish-subscribe models provide some
appealing properties that can reduce some of the visible
complexity in the software systems and thereby provide
more robust industrial automation systems that are easier
to engineer and maintain.

When considering new communication strategies for
industrial distributed control systems it is justified to

1 This work is supported by Industrial Software Systems at

ABB Corporate Research, Mälardalen University and The
Knowledge Foundation (KKS).

consider their applicability to one or several of the
standardized programming models, e.g., IEC 61131 or
IEC 61499. In this work the focus is on IEC 61499.

The IEC 61499 standard defines an open architecture
for the next generation of distributed control and
automation. It has now been 10 years since the adoption
of the standard, and there are already quite a few 61499-
compliant products and tools available on the market
from different vendors. IEC 61499 provide a component
model where function blocks with well-defined input and
output event and data interfaces can be defined. Further,
an application can be assembled by connecting the input
and output of function blocks. For distributed systems,
specific Service Interface Function Blocks (SIFBs) can be
used to define communication [1].

DDS is a new enabling technology for the real-time
publish-subscribe model that has become more and more
popular in applications such as, radar processors, air
traffic control and management. Besides commercial
usage, it is also used by some key administrations, such
as the US Navy, the EuroControl, etc.

In this paper we look at applying DDS in the context
of IEC 61499. The contributions presented in the paper
are twofold: 1) we present a mapping of node-to-node
communication in IEC 61499 to the DDS real-time
publish-subscribe model. This also includes mapping of
timing requirements to QoS attributes of the publish-
subscribe model. 2) Moreover, we evaluate the
performance of the publish-subscribe communication and
we compare it with the more traditionally used socket-
based Ethernet communication.

The outline of this paper is as follows: Section 2
presents the related work on DDS. Section 3 and 4
provide background of IEC 61499 and DDS respectively.
Section 5 describes the mapping of IEC 61499
communication to DDS as well as the QoS. Section 6
presents the test setups while the performance evaluation
results and analysis are given in Section 7. Finally, in
Section 8 the conclusion and future work will be
presented.

2. Related Work

Douglas C. Schmidt and Hans van’t Hag described the
key feature of OMG DDS standard and how the standard
could handle the challenges of data distribution and
management of the next-generation distributed control
systems. They also addressed how the OpenSplice DDS
was implemented within this standard [2].

Guesmi et al. present an implementation of a publish-
subscribe messaging middleware for real-time
networking based on the DDS specifications [3]. They
introduce an efficient approach of data temporal
consistency and use DDS QoS-policies to schedule the
network traffic by introducing a real-time network-
scheduler. A local scheduling component (EDF
scheduler) is used to schedule the access to resources
within the node, which is adapted with soft real-time
systems using CAN. Rekik and Hasnaoui present a
detailed application of CAN BUS transport for a DDS
Middleware [4].

Agirre et al. implement an additional layer based on
top of the DDS middleware, to build a distributed
component management platform for QoS enabled
applications [5]. This additional middleware provides 4
kinds of application managements, deployment,
application execution control, QoS parameter dynamic
reconfiguration and fault tolerance considerations.
However, the executable code is made manually, which
may not be suitable for remote node software updating.

Thramboulidis et al. present the architecture of a field
device that is compliant with the IEC model, a layered
approach and a prototype reference implementation [6].
In this approach they propose 3 layers: Application
Layer, Industrial Process-Control Protocol (IPCP) layer
(CORBA adopted) and Mechanical Process Interface
Layer. However, modifications are adopted with the
Management Function Blocks and SIFBs. Also CORBA
is a distributed object computing platform, while DDS is
a data-centric real-time publish/subscribe platform. They
are intended for different purpose and DDS simplifies
some features of CORBA, for example, no broker is used
in DDS.

Calvo et al. present guidelines for how to build
communication SIFBs based on the OMG DDS
middleware [7]. By using these DDS-SIFBs within IEC
61499 code generation tools, the communication with
DDS can be achieved. However, they did not present any
performance evaluation of the applicability of the
technology in industrial control systems.

Moreover, in this paper we provide a detailed mapping
between the IEC 61499 component model and the DDS
data model as well as a mapping of real-time
requirements to DDS Quality of Service (QoS) attributes.

3. Background on IEC 61499

The IEC 61499 standard provides a generic model for
distributed systems. This standard specifies the models of
system, device, resource, application, function block,
distribution, management and operation state.

Function blocks are the basic units for modeling a
distributed system. There are two types of function
blocks, basic function blocks and composite function
blocks. A composite function block may be composed
with one or more other function blocks. A network of
function blocks constitutes an application and
applications form a distributed system.

In the function block model, the data flow and event
flow are separated as every function block has an
interface for event I/O and data I/O. Each function block
has algorithms that can be triggered by the event and
generate data output by calculating the data input. Figure
1 illustrates the structure of function block. Each event of
the function block is associated with one or more data.

Figure 1. Structure of IEC 61499 basic
function block.

IEC 61499 also define some special function blocks,
SIFBs, which contain communication SIFBs and
management SIFBs. These special function blocks can be
implemented using platform specific API’s.

4. Background on Data-Distribution Service
for Real-Time Systems (DDS)

Data-Distribution Service for Real-Time Systems
(DDS) is a specification of a publish/subscribe
middleware for distributed systems created by the Object
Management Group (OMG). This specification defines a
data-centric publish-subscribe programming model for
distributed systems. As an emerging technology, it has
been of great interest by distributed real-time and
embedded systems developers and implemented with
both commercial and open source versions by different
vendors.

The OMG DDS standard is composed by the DDS
Interoperability Wire Protocol (DDSI V2.1) and DDS
v1.2 API, which are built on top of the UDP/IP [8].
Figure 2 shows the OMG DDS standard structure.

Figure 2. OMG DDS standard structure.

The global view of the DDS infrastructure is shown in
Figure 3, in which most important DDS entities are
involved.

Global Data Space (GDS). The most important
abstraction of DDS is the fully distributed GDS, as it
stores all the data published in the domain. With GDS,
the system can be scalable and avoid single point of
failure.

Data writers/readers and publishers/subscribers.
DDS uses data writer to publish data into the GDS and
uses data reader to read data from the GDS. A publisher
is a factory to create and manage data writers while a
subscriber is a factory to create and manage data readers.

Topics. A topic contains a unique name, a data type
and a set of QoS and it connects data writers and data
readers. The data writer and data reader can only
communicate if the data reader subscribes to the same
topic as the data writer has published. The data type is
usually defined by an OMG Interface Definition
Language (IDL) structure.

QoS. DDS provides a rich set of QoS, with which
users can configure and control the local and end-to-end
properties of DDS entities to meet the application
requirements.

There are quite a few DDS implementations from
different vendors. Among them are Real-Time Innovation
(RTI), PrismTech and Twin Oaks, who have
implemented DDS and used it for commercial purposes.
PrismTech also offers an open source version of their
implementation, OpenSplice DDS Community, which
will be used in the performance evaluation of this paper.

4.1. Real-Time Publish Subscribe Protocol
 The Real-Time Publish Subscribe (RTPS) protocol

was approved by the IEC as part of the Real-Time
Industrial Ethernet Suite IEC-PAS-62030. It has been
used in thousands of industrial applications [9].

Compared with traditional publish subscribe models,
more real-time timing parameters and properties are
added to this RTPS protocol. RTPS contains two main
communication models: the publish-subscribe protocol
and the Composite State Transfer (CST) protocol, which
are for transferring data and States respectively.

Figure 3. OMG DDS global view.

This protocol is intended for multicasting and
connectionless best-effort transports like UDP/IP. The
main features of the RTPS protocol include:

• Performance and QoS properties. These properties

enable best-effort and reliable publish-subscribe

communications for real-time applications. And the QoS

makes it more flexible for the user to control the

communication according to the requirements.

• Fault tolerance. With this property, the system can be

more reliable and avoid single point of failure.

• Plug-and-play connectivity. As the publish-subscribe

protocol is connectionless, the applications can join and

leave the network at any time.

• Scalability. The system can be scaled to a large network

without degrading the performance of the whole network.

These features make RTPS very suitable for a DDS
wire-protocol.

5. Mapping

In this section we outline existing solutions for
communication in distributed IEC 61499-based systems,
and we present how we map RTPS to the IEC 61499
standard.

5.1. Existing Communication Styles
For distributed systems, the architectural styles vary

according to different applications. Most of them can be
viewed as independent components, using
communication styles such as client-server,
publish/subscribe, peer to peer, or service oriented. In
some cases, shared memory is used, e.g., in blackboard,
whiteboard, and databases [10].

Concerning the communication styles of distributed
control systems, there are lots of options. The interaction
could be based on e.g., procedure/method call, message
passing, streaming, or events.

The IEC 61499 standard defines a model of devices,
resources and applications. The data and event
communication between applications can be achieved via

SIFBs specialized for this purpose. To implement this
SIFB, the communication styles mentioned above can be
utilized.

For applications located on different nodes in a
network, the client/server socket communication style is a
common choice. Associated to an IP address and port
number, socket communication is used in the transport
layer of the internet model and can be implemented based
on either the TCP or the UDP protocol, of which the
difference is that UDP is connectionless.

For applications that are running on the same node of a
network, shared memory communication is a typical
solution. With a relatively low latency and high
bandwidth, shared memory is an efficient means of data
communication between applications.

5.2. Mapping RTPS to IEC 61499
The IEC 61499 standard provides a generic model for

distributed systems. In order to use the Real-Time
Publish/Subscribe protocol in applications based on this
standard, a mapping between the IEC 61499 model and
the RTPS concept is proposed.

IEC 61499 applications are built by networks
of function blocks. The communication between
applications from different nodes can be achieved via
communication SIFBs. A typical IEC 61499 model can
be configured as Figure 4.

Figure 4. Typical IEC 61499 application
model. (BFB: basic function block.)

The Real-Time Publish/Subscribe protocol is proposed
to be implemented within the SIFB of the IEC 61499
standard. In this case, the SIFB in Figure 4 is replaced by
the Real-Time Publish/Subscribe SIFBs and global data
space, as shown in Figure 5.

In the RTPS SIFB, the events are realized by creating
publisher/subscriber, reading/writing message, setting
QoS, etc. The data input is the message that needs to be
sent. The publisher and subscriber are not directly
connected, due to the DDS connectionless feature.

5.3. Mapping the IEC 61499 Interface Declaration to
the DDS Topic Declaration

The IEC 61499 function block inputs are translated to
DDS topic types as illustrated by the example in Figure 5.
Each input event is translated to a DDS topic name and
the data inputs associated with the event are declared as
the topic type (message type). This mapping will transfer

only that data that is needed for each event across the
network.

In Figure 5, data inputs associated to EventA and
EventB are registered as topic types EventA and EventB
respectively. The topic types in DDS are declared as an
OMG Interface Definition Language (IDL) structure.
DInsA and DInsB are the message instances of topic
types EventA and EventB, which during the
communication will be published by Publisher and
subscribed by Subscribers.

Figure 5. Mapping event and data inputs
into DDS topic.

The function block model in Figure 5 can be
structured as:

FUNCTION_BLOCK my_SIFB
EVENT_INPUT
 EventA : EVENT WITH Input1, Input2;
 EventB : EVENT WITH Input3;
END_EVENT
VAR_INPUT
 Input1 : INT;
 Input2 : INT;
 Input3 : BYTE;
END_VAR
The following two OMG IDL structures are mapped

from the model above. If defined the keylist, the topic can
be multiple instances. Different keylists specify different
instances and a specified instance can be modified by the
data writer. If the keylist is not defined, then there can
only be one instance for the topic.

struct EventA {
int tID;
integer Input1;
integer Input2:};
#pragma keylist EventA

struct EventB {
int tID;
char Input3;};
#pragma keylist EventB

5.4. Mapping Temporal Requirements on IEC 61499
Communication to DDS QoS

As an industrial automation standard, systems based
on IEC 61499 usually require real-time performance. The

DDS QoS can be utilized to fulfill these real-time
requirements. With lots of content in the DDS QoS, we
are particularly interested in the transport priority,
deadline and latency budget QoS.

The transport priority in DDS is defined as a long
integer and thus an algorithm can be defined to decide the
transport priorities. We assume that each event, e, that is
transferred between two nodes, have an associated
latency requirement, Latencyୣ. We define a policy as the
smaller the latency, the higher the priority. If we assign
the highest transport priority as the maximum value of a
long integer, we have the following formula to determine
the priority of the underlying transport. TransportPriority	 = MaxPrio − Latencyୣ

Assuming that a long integer is 32-bit and Latencyୣ is
at microsecond level, then, there can be more than 73
million different priorities.

For industrial automation systems, most messages
need to be delivered to a specific node at a specific time,
such as sampling signals of sensors. Therefore the
deadline QoS can be introduced to monitor the delivery
of the messages. If assigned a deadline, the entity could
be notified when deadline is missed.

In order to maximize the throughput and minimize the
resource usage, the latency budget QoS is introduced.
This allows DDS to optimize throughput. In the test we
compare the performance when the latency budget QoS is
set to 0 and a certain value. When the latency budget QoS
is set to zero, it minimizes the latency at the cost of total
throughput. And when it is set to a certain value, it could
relax the budget and improve the throughput.

6. Test Setup

In the test the differences with respect to performance
of socket communication and DDS communication are
evaluated and compared. The main objective of this
evaluation is to measure the latency of the
communication in several different scenarios .

All the tests were done on a network of desktops all
running Ubuntu 11.10. Each of the Ubuntu OS is patched
with real-time package RT-29 to construct real-time
Linux environments. All the Linux nodes are connected
to a switch to realize Ethernet communication. The
Ethernet bandwidth used is 1 Gbps for each machine.

There are quite a few DDS implementations available.
However, in the tests the open-source version OpenSplice
DDS Community 5.4.1 from PrismTech is used.
Although there are a few IEC 61499 compliant IDEs
available, they have not been used due to the lack of
documentation. Instead the function blocks are
implemented with C++ and the GCC compiler is used to
compile the code.

6.1. Network without Extra Network Load
The first scenario is made to evaluate the performance

of the DDS in a network.

Figure 6. Two-node network with switch.

Two desktop machines are connected with a switch.
Figure 6 shows the connection.

For the implementation, we meant to follow the IEC
61499 standard to model a real-time distributed industry
automation system. The communication interface
between the nodes in the system is via the communication
SIFB implemented with DDS. Thus a class named
iec2dds is implemented to represent the DDS
communication SIFB. These public members and
functions of the class are declared as:
Class iec2dds
{Public:

 TopicName topicName;
 TopicQos Qos;

Public:
bool createPublisher(char* topicName, TopicQos tQos);
bool createSubscriber(char* topicName,TopicQos tQos);
bool read(Msg *dataIn);
bool write(Msg dataOut);
}

In order to make less DDS SIFB interfaces, the
methods createPulisher() and createSubscriber() actually
create all the entities needed for DDS as internal variables
and also set the related QoS. To make the QoS of the
topic, publisher and writer consistent, the creatPublisher()
function has the parameter topicName and will set QoS of
publisher and writer. createSubscriber() function did the
same to the Subscriber and reader. Write() and Read()
represent the interfaces to write and read data. An
application here can have both a publisher and a
subscriber. This class implementation follows the
mapping in Section 5.

Figure 7. DDS Network communication.

Figure 7 explains the setup. The data input from Node
A contains a userID and a message, so they are wrapped
as an OMG IDL structure, which serves as the topic type.
The dashed arrows beginning from Node A form a round
trip of the message. To make things easier, all the Round
Trip Times (RTTs) are measured on Node A, that is, put
time stamp preReadTime before the message write and
postReadTime stamp after the message read function in

the resolution of microsecond. So a RTT is calculated by
the following formula: ܴ݁݉݅ܶ݌݅ݎܶ݀݊ݑ݋ = ܴ݁݉݅ܶ݀ܽ݁ݐݏ݋݌ − ݁݉݅ܶ݁ݐ݅ݎܹ݁ݎ݌

Node B just forwards the received message without
doing anything else, thus the overhead is minimized.

The IDL structure Message is defined as:
struct Message{
 long userID;

long message[LENGTH];}
This IDL structure serves as the topic type and in the

test the publishers and subscribers are associated to
different instances of the topic type. Here the input
message is defined as an array because in the test we
scale the message frame to check if the performance
varies with different message size.

A client-server communication is put up between the
two machines to compare with DDS. The same message
structure as above is used in the socket communication.

For modelling and enforcing real-time requirements,
the DDS QoS is an important feature. DDS provides a
large set of QoS, in the test we only consider the
reliability, latency budget and transport priority QoS.
DDS communication performance is measured for
different QoS configurations.

6.2. Network with Network Load
In Figure 8 two additional nodes (C and D) are added

to generate extra network loads. All these nodes work
with 1 Gbps Ethernet. Node A and B remain the same as
Figure 7 shows, but Node C and D are generating
network traffic between themselves. This setup is
intended to evaluate the scalability and stability of the
DDS system.

Figure 8. Four-node network with switch.

7. Results and Analysis

This section discusses the result of all the tests. During
the experiments the main metrics measured are latency,
jitter and worst case latency. Each of the metrics is given
by average result of 1.000.000 iterations.

Latency is the elapsed time that a message is sent by a
node until it is received by another node. The factors
might affect the transmitting of the messages are the
transmitting protocol, Ethernet bandwidth limitations and
other traffic on the network. There might also be some
overhead related to the implementation of the
communication primitives.

Jitter is the variation in round-trip time between two
consecutive message transfers. In the work presented in
this paper, the average and maximum jitter is measured,
and the distribution is calculated.

The worst case latency is defined to be the largest
latency measured in 1.000.000 samples.

7.1. Result with Two Nodes
Table 1 shows the RTTs and latencies of the message

transfer between the two nodes with socket
communication and DDS communication respectively.
The DDS is configured with reliable QoS setting and
utilizes waitset (a DDS event handling mechanism) to
read messages.

Table 1. Round trip times and latencies of
reliable DDS and socket communication.

Figure 9. Latencies of reliable DDS and
socket communication (Note: lines connect
points are only for illustration).

As described in the setup in Section 6, we measure the
RTT for sending and receiving one message and then we
can calculate the latency of each communication style by
the following simple formula: ݕܿ݊݁ݐܽܮ = ܴ/2

Figure 9 gives the latencies of different message sizes.
The latencies of both DDS and socket communication do
not change much when sending messages in the range of 2ଷ to 2ଵ଴ bytes, since they fit in a single Ethernet frame.
When the messages become larger, the increase in round
trip latency is evident and moreover, DDS is more
sensitive to increased message size than socket
communication is.

Considering at the size of 1024 bytes per each
message, the DDS takes 182.5 µs to send one message,

Message (bytes) 8 16 32 64 128 256

DDS
(µs)

RTT 294 302 302 313 315 318

Latency 147 151 151 156.5 157.5 159

Socket
(µs)

RTT 162 162 163 162 164 169

Latency 81 81 81.5 81 82 84.5

Message (bytes) 512 1024 2048 4096 8192 16384

DDS
(µs)

RTT 322 365 411 767 1475 2930

Latency 161 182.5 205.5 383.5 737.5 1465

Socket
(µs)

RTT 170 196 236 290 362 490

Latency 85 98 118 145 181 245

while the socket communication takes 98 µs, only half
time of the DDS. Although considerable slower than
socket based communication, DDS still can send an
average of 5479 messages a second, which will meet the
requirements of some industrial applications.

In the second setup, two sets of QoS are introduced in
the DDS communication. Table 2 shows the different
latencies when reliable QoS and best-effort QoS is set
respectively.

Message size

(bytes)
8 16 32 64 128 256

Reliable QoS
Latency (µs)

147 151 151 156.5 157.5 159

Best-effort
Latency (µs)

140 140.5 142 143.5 147.5 150

Message (bytes) 512 1024 2048 4096 8192 16384

Reliable QoS
Latency (µs)

161 182.5 205.5 383.5 737.5 1465

Best-effort
Latency (µs)

157 175 195.5 377 734 1463

Table 2. Latencies of reliable and best-
effort DDS communication.

Figure 10. DDS latencies of reliable QoS
and best-effort QoS Communication. (Note:
lines connect points are only used for
illustration).

Figure 11. DDS and socket latency samples
distribution.

Figure 10 illustrates the latency comparison when the
two sets of QoS are used. Although not so obvious, we
can still see that the best-effort QoS set has lower latency.
That is because the mechanism of reliable reliability QoS
would cause more overhead.

Figure 11 shows the distribution of measured latency
for DDS and socket communication of 1024-byte
messages based on 1.000.000 samples.

However the Socket communication latency mostly
ranges from 62.5 to 112.5 µs while DDS latency mostly
ranges from 50 to 400 µs.

The standard deviation of the DDS latency is 109 µs,
which is 59.8% of the average latency 183 µs. The socket
latency standard deviation is 10.184 µs, 10.3% of the
average latency 99 µs. Hence, the socket communication
introduces less variation in message transmission times
than DDS.

Table 3 shows the RTT, jitter and standard deviation
of DDS communication with different setting for latency
budget QoS when messages with 1024 bytes are sent. As
from the previous test, the average RTT of sending 1024-
byte message is no more than 400 µs, here we set the
deadline QoS value to 200 µs and the latency budget to
100 µs.

When setting the latency budget to 100 µs, the average
RTT, average jitter and standard deviation of the RTT are
all larger than that of when the latency budget is set to
zero. This is a trade-off between throughput and latency,
smaller message and lower latency budget can improve
the latency, but they also cause low throughput.

Table 3. Round trip time, jitter and standard
deviation of reliable DDS communication
with latency budget 0 and 100 µs.

Figure 13. Publishers and subscribers with
different transport priorities.

Topics TP1=TP2=1 TP1=1, TP2=5

Latency(Topic1) 520 534 -

Latency(Topic2) 519 - 500

Table 4. Latency with different transport
priorities.

Table 4 shows that when two topics in one node are
assigned the same transport priority, the average latencies
for the two topics are almost the same. But when Topic2
is assigned a higher transport priority than Topic1 (as
shown in Figure 13), the average latency of Topic2 would
be smaller than that of Topic1. Transport priority QoS
gives users the flexibility to decide which topic or
messages should be delivered first.

Message
(1024
bytes)

RTT (µs) Jitter (µs) Standard
deviation
(of RTT) Average Worst-case Average Max

Latency
budget=0

365 11983 76.152 11531 202.396

Latency
budget=100

407 11431 87.214 11025 227.337

7.2. Result with Four Nodes
In this experiment, two additional nodes C and D are

introduced into the network to generate network load and
evaluate the scalability of DDS. These two are also with
one Gbps Ethernet and sending the message with the
same size 1024 bytes in both DDS and socket
communication. According to the statistic by the software
IPTraf on Node C, the total extra network load added is
94.242 Mbps for socket and 96.902 Mbps for DDS. Table
5 shows the latency and jitter of DDS and socket
communication transferring 1024-byte messages with and
without extra network load.

Message

(1024
bytes)

RTT (µs) Jitter (µs) Standard
deviation
(of RTT) Average Worst-case Average Max

DDS
(without

load)

353

11719

58.047

11722

166.836

DDS
(with
load)

348 11641 59.863 11290 167.643

Socket
(without

load)

195

364

12.465

180

16.600

Socket
(with
load)

222 424 16.016 211 24.739

Table 5. RTT, jitter and standard deviation
of reliable DDS and socket communication
with and without extra load.

As can be seen in Table 5 the DDS round-trip time is
largely unaffected by the increased network load. In
contrast, the performance for the socket based
communication is significantly reduced, especially the
average latency and jitter.

Still, the socket based communication performs better
than DDS, but the measurements indicate that the
difference in performance is likely less in a heavily
loaded distributed system.

8. Conclusions and Future Work

Real-time publisher-subscriber mechanisms have the
potential to reduce the complexity of large scale
industrial control systems by removing the need of
engineering explicit point-to-point connections between
large numbers of components. In this paper we show how
a programming model for industrial control systems, IEC
61499, can be mapped on to the DDS publisher-
subscriber model. The mapping considers the interface of
IEC 61499 function blocks, mapping events and input
variables to DDS data topics. Moreover, latency
requirements on the IEC 61499 point-to-point
connections are mapped to DDS QoS attributes for the
specific topic that represent the connection. Finally, an
initial performance evaluation of DDS is presented and
compared with a socket based point-to-point
communication scheme.

Although the DDS communication is slower than the
socket communication, it is of great scalability and can
reduce the complexity of the connections. In addition, the
rich set of QoS can help users better control the
communication. The evaluation presented here indicates
that DDS could be used for a certain class of industrial
control systems or for parts of industrial control systems.

In future work we will apply DDS to a distributed
control systems and check the performance in industrial
applications.

References
[1] International Electro-technical Commission, International

standard IEC 61499-1, first edition, IEC, 2005.
[2] Douglas C. Schmidt and Hans van’t Hag, “Addressing the

Challenges of Mission-Critical Information Management
in Next-Generation Net-Centric Pub/Sub Systems with
OpenSplice DDS”, IEEE International Symposium on
Parallel and Distributed Processing (IPDPS), April 14-
18, 2008, pp. 1-8.

[3] Tarek Guesmi, Rojdi Rekik, Salem Hasnaoui and Houria
Rezig, “Design and Performance of DDS-based
Middleware for Real-Time Control Systems”,
International Journal of Computer Science and Network
Security, Vol.7, No.12, pp. 188-200, December 2007.

[4] Rojdi Rekik and Salem Hasnaoui, “Application of a CAN
BUS transport for DDS Middleware”, 2nd International
Conference on the Application of Digital Information and
Web Technologies (ICADIWT), August 4-6, 2009, pp.
766-771.

[5] Aitor Agirre, Marga Marcos and Elisabet Estévez,
“Distributed component management platform for QoS
enabled applications”, 16th IEEE International
Conference on Emerging Technologies and Factory
Automation (ETFA), September 5-9, 2011, pp. 1 – 4.

[6] Kleanthis C. Thramboulidiset, George S. Doukas and
Tassos G. Psegiannakis, “An IEC-Compliant Field
Device Model for Distributed Control Applications”, 2nd
IEEE International Conference on Industrial Informatics
(INDIN), June 24-26, 2004, pp. 277 – 282.

 [7] Isidro Calvo, Federico Pérez, Ismael Etxeberria and
Guadalupe Morán, “Control communications with DDS
using IEC61499 Service Interface Function Blocks”,
IEEE Conference on Emerging Technologies and Factory
Automation (ETFA), September 13-16, 2010, pp. 1 – 4.

[8] Object Management Group, Data Distribution Service for
Real-time Systems Version 1.2, OMG, 2007.

[9] Object Management Group (OMG), The Real-time
Publish-Subscribe Wire Protocol DDS Interoperability
Wire Protocol Specification, OMG, 2009.

[10] Oliver Vogel, Ingo Arnold, Arif Chughtai and Timo
Kehrer, Software Architecture: A Comprehensive
Framework and Guide for Practitioners, Springer,
2011.

