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Abstract1 

The IEC 61499 is an open standard for the next 
generation of distributed control and automation. Data 
Distribution Service for Real-Time Systems (DDS) is a 
specification of a publish/subscribe middleware for 
distributed systems, created by the Object Management 
Group (OMG) to standardize a data-centric publish-
subscribe programming model for distributed systems. 

This paper evaluates the DDS communication 
performance based on a model built within the IEC 
61499 standard and compares it with the traditional 
socket based solution for communication. According to 
the test results, the DDS communication has the potential 
to reduce the complexity and is suggested as a suitable 
solution for some classes of industrial control systems. 

1. Introduction 

In industrial distributed control systems a substantial 
number of controllers can be connected through an 
Ethernet-based control network. The controllers may 
share control data and also interact with nodes higher in 
the network hierarchy, like operator stations. In a large 
system these inter-dependencies will potentially create a 
complex architecture, especially if explicit point-to-point 
data connections have to be engineered. Moreover, 
redundancy schemes, such as hot standby, where software 
components are duplicated on different controllers, 
further increase complexity. If real-time performance can 
be achieved, publish-subscribe models provide some 
appealing properties that can reduce some of the visible 
complexity in the software systems and thereby provide 
more robust industrial automation systems that are easier 
to engineer and maintain. 

When considering new communication strategies for 
industrial distributed control systems it is justified to 
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consider their applicability to one or several of the 
standardized programming models, e.g., IEC 61131 or 
IEC 61499. In this work the focus is on IEC 61499. 

The IEC 61499 standard defines an open architecture 
for the next generation of distributed control and 
automation. It has now been 10 years since the adoption 
of the standard, and there are already quite a few 61499-
compliant products and tools available on the market 
from different vendors. IEC 61499 provide a component 
model where function blocks with well-defined input and 
output event and data interfaces can be defined. Further, 
an application can be assembled by connecting the input 
and output of function blocks. For distributed systems, 
specific Service Interface Function Blocks (SIFBs) can be 
used to define communication [1]. 

DDS is a new enabling technology for the real-time 
publish-subscribe model that has become more and more 
popular in applications such as, radar processors, air 
traffic control and management. Besides commercial 
usage, it is also used by some key administrations, such 
as the US Navy, the EuroControl, etc.  

In this paper we look at applying DDS in the context 
of IEC 61499. The contributions presented in the paper 
are twofold: 1) we present a mapping of node-to-node 
communication in IEC 61499 to the DDS real-time 
publish-subscribe model. This also includes mapping of 
timing requirements to QoS attributes of the publish-
subscribe model. 2) Moreover, we evaluate the 
performance of the publish-subscribe communication and 
we compare it with the more traditionally used socket-
based Ethernet communication. 

The outline of this paper is as follows: Section 2 
presents the related work on DDS. Section 3 and 4 
provide background of IEC 61499 and DDS respectively. 
Section 5 describes the mapping of IEC 61499 
communication to DDS as well as the QoS. Section 6 
presents the test setups while the performance evaluation 
results and analysis are given in Section 7. Finally, in 
Section 8 the conclusion and future work will be 
presented. 



 
 
 
 

2. Related Work 

Douglas C. Schmidt and Hans van’t Hag described the 
key feature of OMG DDS standard and how the standard 
could handle the challenges of data distribution and 
management of the next-generation distributed control 
systems. They also addressed how the OpenSplice DDS 
was implemented within this standard [2]. 

Guesmi et al. present an implementation of a publish-
subscribe messaging middleware for real-time 
networking based on the DDS specifications [3]. They 
introduce an efficient approach of data temporal 
consistency and use DDS QoS-policies to schedule the 
network traffic by introducing a real-time network-
scheduler. A local scheduling component (EDF 
scheduler) is used to schedule the access to resources 
within the node, which is adapted with soft real-time 
systems using CAN. Rekik and Hasnaoui present a 
detailed application of CAN BUS transport for a DDS 
Middleware [4].  

Agirre et al. implement an additional layer based on 
top of the DDS middleware, to build a distributed 
component management platform for QoS enabled 
applications [5]. This additional middleware provides 4 
kinds of application managements, deployment, 
application execution control, QoS parameter dynamic 
reconfiguration and fault tolerance considerations. 
However, the executable code is made manually, which 
may not be suitable for remote node software updating.  

Thramboulidis et al. present the architecture of a field 
device that is compliant with the IEC model, a layered 
approach and a prototype reference implementation [6]. 
In this approach they propose 3 layers: Application 
Layer, Industrial Process-Control Protocol (IPCP) layer 
(CORBA adopted) and Mechanical Process Interface 
Layer. However, modifications are adopted with the 
Management Function Blocks and SIFBs. Also CORBA 
is a distributed object computing platform, while DDS is 
a data-centric real-time publish/subscribe platform. They 
are intended for different purpose and DDS simplifies 
some features of CORBA, for example, no broker is used 
in DDS. 

Calvo et al. present guidelines for how to build 
communication SIFBs based on the OMG DDS 
middleware [7]. By using these DDS-SIFBs within IEC 
61499 code generation tools, the communication with 
DDS can be achieved. However, they did not present any 
performance evaluation of the applicability of the 
technology in industrial control systems.  

Moreover, in this paper we provide a detailed mapping 
between the IEC 61499 component model and the DDS 
data model as well as a mapping of real-time 
requirements to DDS Quality of Service (QoS) attributes. 

3. Background on IEC 61499 

The IEC 61499 standard provides a generic model for 
distributed systems. This standard specifies the models of 
system, device, resource, application, function block, 
distribution, management and operation state.  

Function blocks are the basic units for modeling a 
distributed system. There are two types of function 
blocks, basic function blocks and composite function 
blocks. A composite function block may be composed 
with one or more other function blocks. A network of 
function blocks constitutes an application and 
applications form a distributed system.  

In the function block model, the data flow and event 
flow are separated as every function block has an 
interface for event I/O and data I/O. Each function block 
has algorithms that can be triggered by the event and 
generate data output by calculating the data input. Figure 
1 illustrates the structure of function block. Each event of 
the function block is associated with one or more data. 

 
 
 
 
 
 
 
 

 

Figure 1. Structure of IEC 61499 basic 
function block. 

IEC 61499 also define some special function blocks, 
SIFBs, which contain communication SIFBs and 
management SIFBs. These special function blocks can be 
implemented using platform specific API’s. 

4. Background on Data-Distribution Service 
for Real-Time Systems (DDS) 

Data-Distribution Service for Real-Time Systems 
(DDS) is a specification of a publish/subscribe 
middleware for distributed systems created by the Object 
Management Group (OMG). This specification defines a 
data-centric publish-subscribe programming model for 
distributed systems. As an emerging technology, it has 
been of great interest by distributed real-time and 
embedded systems developers and implemented with 
both commercial and open source versions by different 
vendors. 

The OMG DDS standard is composed by the DDS 
Interoperability Wire Protocol (DDSI V2.1) and DDS 
v1.2 API, which are built on top of the UDP/IP [8]. 
Figure 2 shows the OMG DDS standard structure. 
  



 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 2. OMG DDS standard structure. 

The global view of the DDS infrastructure is shown in 
Figure 3, in which most important DDS entities are 
involved.  

Global Data Space (GDS). The most important 
abstraction of DDS is the fully distributed GDS, as it 
stores all the data published in the domain. With GDS, 
the system can be scalable and avoid single point of 
failure.  

Data writers/readers and publishers/subscribers.  
DDS uses data writer to publish data into the GDS and 
uses data reader to read data from the GDS. A publisher 
is a factory to create and manage data writers while a 
subscriber is a factory to create and manage data readers. 

Topics. A topic contains a unique name, a data type 
and a set of QoS and it connects data writers and data 
readers. The data writer and data reader can only 
communicate if the data reader subscribes to the same 
topic as the data writer has published. The data type is 
usually defined by an OMG Interface Definition 
Language (IDL) structure. 

QoS. DDS provides a rich set of QoS, with which 
users can configure and control the local and end-to-end 
properties of DDS entities to meet the application 
requirements.  

There are quite a few DDS implementations from 
different vendors. Among them are Real-Time Innovation 
(RTI), PrismTech and Twin Oaks, who have 
implemented DDS and used it for commercial purposes. 
PrismTech also offers an open source version of their 
implementation, OpenSplice DDS Community, which 
will be used in the performance evaluation of this paper. 

4.1. Real-Time Publish Subscribe Protocol 
  The Real-Time Publish Subscribe (RTPS) protocol 

was approved by the IEC as part of the Real-Time 
Industrial Ethernet Suite IEC-PAS-62030. It has been 
used in thousands of industrial applications [9]. 

Compared with traditional publish subscribe models, 
more real-time timing parameters and properties are 
added to this RTPS protocol. RTPS contains two main 
communication models: the publish-subscribe protocol 
and the Composite State Transfer (CST) protocol, which 
are for transferring data and States respectively.  

 

 
 
 
 
 
 
 
 
 
 
 

Figure 3. OMG DDS global view. 

This protocol is intended for multicasting and 
connectionless best-effort transports like UDP/IP. The 
main features of the RTPS protocol include: 

• Performance and QoS properties. These properties 

enable best-effort and reliable publish-subscribe 

communications for real-time applications. And the QoS 

makes it more flexible for the user to control the 

communication according to the requirements.  

• Fault tolerance. With this property, the system can be 

more reliable and avoid single point of failure. 

• Plug-and-play connectivity. As the publish-subscribe 

protocol is connectionless, the applications can join and 

leave the network at any time. 

• Scalability. The system can be scaled to a large network 

without degrading the performance of the whole network.  

These features make RTPS very suitable for a DDS 
wire-protocol.  

5. Mapping 

In this section we outline existing solutions for 
communication in distributed IEC 61499-based systems, 
and we present how we map RTPS to the IEC 61499 
standard. 

5.1. Existing Communication Styles 
For distributed systems, the architectural styles vary 

according to different applications. Most of them can be 
viewed as independent components, using 
communication styles such as client-server, 
publish/subscribe, peer to peer, or service oriented. In 
some cases, shared memory is used, e.g., in blackboard, 
whiteboard, and databases [10].  

Concerning the communication styles of distributed 
control systems, there are lots of options. The interaction 
could be based on e.g., procedure/method call, message 
passing, streaming, or events.  

The IEC 61499 standard defines a model of devices, 
resources and applications. The data and event 
communication between applications can be achieved via 



 
 
 
 

SIFBs specialized for this purpose. To implement this 
SIFB, the communication styles mentioned above can be 
utilized. 

For applications located on different nodes in a 
network, the client/server socket communication style is a 
common choice. Associated to an IP address and port 
number, socket communication is used in the transport 
layer of the internet model and can be implemented based 
on either the TCP or the UDP protocol, of which the 
difference is that UDP is connectionless.  

For applications that are running on the same node of a 
network, shared memory communication is a typical 
solution. With a relatively low latency and high 
bandwidth, shared memory is an efficient means of data 
communication between applications.  

5.2. Mapping RTPS to IEC 61499 
The IEC 61499 standard provides a generic model for 

distributed systems. In order to use the Real-Time 
Publish/Subscribe protocol in applications based on this 
standard, a mapping between the IEC 61499 model and 
the RTPS concept is proposed. 

IEC 61499 applications are built by networks 
of function blocks. The communication between 
applications from different nodes can be achieved via 
communication SIFBs. A typical IEC 61499 model can 
be configured as Figure 4.  
 

 
 
 
 
 
 

 

Figure 4. Typical IEC 61499 application 
model. (BFB: basic function block.) 

The Real-Time Publish/Subscribe protocol is proposed 
to be implemented within the SIFB of the IEC 61499 
standard. In this case, the SIFB in Figure 4 is replaced by 
the Real-Time Publish/Subscribe SIFBs and global data 
space, as shown in Figure 5. 

In the RTPS SIFB, the events are realized by creating 
publisher/subscriber, reading/writing message, setting 
QoS, etc. The data input is the message that needs to be 
sent. The publisher and subscriber are not directly 
connected, due to the DDS connectionless feature. 

5.3. Mapping the IEC 61499 Interface Declaration to 
the DDS Topic Declaration 

The IEC 61499 function block inputs are translated to 
DDS topic types as illustrated by the example in Figure 5. 
Each input event is translated to a DDS topic name and 
the data inputs associated with the event are declared as 
the topic type (message type). This mapping will transfer 

only that data that is needed for each event across the 
network. 

In Figure 5, data inputs associated to EventA and 
EventB are registered as topic types EventA and EventB 
respectively. The topic types in DDS are declared as an 
OMG Interface Definition Language (IDL) structure. 
DInsA and DInsB are the message instances of topic 
types EventA and EventB, which during the 
communication will be published by Publisher and 
subscribed by Subscribers.  

 

 

 

 

 

 

 

 

 

 

Figure 5. Mapping event and data inputs 
into DDS topic. 

The function block model in Figure 5 can be 
structured as: 

FUNCTION_BLOCK my_SIFB 
EVENT_INPUT 
  EventA : EVENT WITH Input1, Input2; 
  EventB : EVENT WITH Input3; 
END_EVENT 
VAR_INPUT 
  Input1 : INT; 
  Input2 : INT; 
  Input3 : BYTE; 
END_VAR 
The following two OMG IDL structures are mapped 

from the model above. If defined the keylist, the topic can 
be multiple instances. Different keylists specify different 
instances and a specified instance can be modified by the 
data writer. If the keylist is not defined, then there can 
only be one instance for the topic. 

struct EventA { 
int tID; 
integer Input1; 
integer Input2:}; 
#pragma keylist EventA  
 
struct EventB { 
int tID; 
char Input3;}; 
#pragma keylist EventB  

5.4. Mapping Temporal Requirements on IEC 61499 
Communication to DDS QoS 

As an industrial automation standard, systems based 
on IEC 61499 usually require real-time performance. The 



 
 
 
 

DDS QoS can be utilized to fulfill these real-time 
requirements. With lots of content in the DDS QoS, we 
are particularly interested in the transport priority, 
deadline and latency budget QoS. 

The transport priority in DDS is defined as a long 
integer and thus an algorithm can be defined to decide the 
transport priorities. We assume that each event, e, that is 
transferred between two nodes, have an associated 
latency requirement, Latencyୣ. We define a policy as the 
smaller the latency, the higher the priority. If we assign 
the highest transport priority as the maximum value of a 
long integer, we have the following formula to determine 
the priority of the underlying transport.  TransportPriority	 = MaxPrio − Latencyୣ 

Assuming that a long integer is 32-bit and Latencyୣ is 
at microsecond level, then, there can be more than 73 
million different priorities.  

For industrial automation systems, most messages 
need to be delivered to a specific node at a specific time, 
such as sampling signals of sensors. Therefore the 
deadline QoS can be introduced to monitor the delivery 
of the messages. If assigned a deadline, the entity could 
be notified when deadline is missed.  

In order to maximize the throughput and minimize the 
resource usage, the latency budget QoS is introduced. 
This allows DDS to optimize throughput. In the test we 
compare the performance when the latency budget QoS is 
set to 0 and a certain value. When the latency budget QoS 
is set to zero, it minimizes the latency at the cost of total 
throughput. And when it is set to a certain value, it could 
relax the budget and improve the throughput. 

6. Test Setup 

In the test the differences with respect to performance 
of socket communication and DDS communication are 
evaluated and compared. The main objective of this 
evaluation is to measure the latency of the 
communication in several different scenarios . 

All the tests were done on a network of desktops all 
running Ubuntu 11.10. Each of the Ubuntu OS is patched 
with real-time package RT-29 to construct real-time 
Linux environments. All the Linux nodes are connected 
to a switch to realize Ethernet communication. The 
Ethernet bandwidth used is 1 Gbps for each machine.  

There are quite a few DDS implementations available. 
However, in the tests the open-source version OpenSplice 
DDS Community 5.4.1 from PrismTech is used. 
Although there are a few IEC 61499 compliant IDEs 
available, they have not been used due to the lack of 
documentation. Instead the function blocks are 
implemented with C++ and the GCC compiler is used to 
compile the code. 

6.1.  Network without Extra Network Load 
The first scenario is made to evaluate the performance 

of the DDS in a network. 

  
 
 

 

Figure 6. Two-node network with switch. 

Two desktop machines are connected with a switch. 
Figure 6 shows the connection. 

For the implementation, we meant to follow the IEC 
61499 standard to model a real-time distributed industry 
automation system. The communication interface 
between the nodes in the system is via the communication 
SIFB implemented with DDS. Thus a class named 
iec2dds is implemented to represent the DDS 
communication SIFB. These public members and 
functions of the class are declared as:  
Class iec2dds 
{Public: 

 TopicName            topicName; 
 TopicQos            Qos; 

Public: 
bool createPublisher(char* topicName, TopicQos tQos); 
bool createSubscriber(char* topicName,TopicQos tQos); 
bool read(Msg *dataIn); 
bool write(Msg dataOut); 
} 

In order to make less DDS SIFB interfaces, the 
methods createPulisher() and createSubscriber() actually 
create all the entities needed for DDS as internal variables 
and also set the related QoS. To make the QoS of the 
topic, publisher and writer consistent, the creatPublisher() 
function has the parameter topicName and will set QoS of 
publisher and writer. createSubscriber() function did the 
same to the Subscriber and reader. Write() and Read() 
represent the interfaces to write and read data. An 
application here can have both a publisher and a 
subscriber. This class implementation follows the 
mapping in Section 5.  

 
 
 
 
 
 

 
 

Figure 7. DDS Network communication. 

Figure 7 explains the setup. The data input from Node 
A contains a userID and a message, so they are wrapped 
as an OMG IDL structure, which serves as the topic type. 
The dashed arrows beginning from Node A form a round 
trip of the message. To make things easier, all the Round 
Trip Times (RTTs) are measured on Node A, that is, put 
time stamp preReadTime before the message write and 
postReadTime stamp after the message read function in 



 
 
 
 

the resolution of microsecond. So a RTT is calculated by 
the following formula: ܴ݁݉݅ܶ݌݅ݎܶ݀݊ݑ݋ = ܴ݁݉݅ܶ݀ܽ݁ݐݏ݋݌ −  ݁݉݅ܶ݁ݐ݅ݎܹ݁ݎ݌

Node B just forwards the received message without 
doing anything else, thus the overhead is minimized. 

The IDL structure Message is defined as: 
struct Message{ 
 long userID; 

long message[LENGTH];} 
This IDL structure serves as the topic type and in the 

test the publishers and subscribers are associated to 
different instances of the topic type. Here the input 
message is defined as an array because in the test we 
scale the message frame to check if the performance 
varies with different message size.  

A client-server communication is put up between the 
two machines to compare with DDS. The same message 
structure as above is used in the socket communication.  

For modelling and enforcing real-time requirements, 
the DDS QoS is an important feature. DDS provides a 
large set of QoS, in the test we only consider the 
reliability, latency budget and transport priority QoS. 
DDS communication performance is measured for 
different QoS configurations. 

6.2. Network with Network Load 
In Figure 8 two additional nodes (C and D) are added 

to generate extra network loads. All these nodes work 
with 1 Gbps Ethernet. Node A and B remain the same as 
Figure 7 shows, but Node C and D are generating 
network traffic between themselves. This setup is 
intended to evaluate the scalability and stability of the 
DDS system.  
 

 
 
 
 
 

 

Figure 8. Four-node network with switch. 

7. Results and Analysis 

This section discusses the result of all the tests. During 
the experiments the main metrics measured are latency, 
jitter and worst case latency. Each of the metrics is given 
by average result of 1.000.000 iterations. 

Latency is the elapsed time that a message is sent by a 
node until it is received by another node. The factors 
might affect the transmitting of the messages are the 
transmitting protocol, Ethernet bandwidth limitations and 
other traffic on the network. There might also be some 
overhead related to the implementation of the 
communication primitives. 

Jitter is the variation in round-trip time between two 
consecutive message transfers. In the work presented in 
this paper, the average and maximum jitter is measured, 
and the distribution is calculated. 

The worst case latency is defined to be the largest 
latency measured in 1.000.000 samples. 

7.1. Result with Two Nodes 
Table 1 shows the RTTs and latencies of the message 

transfer between the two nodes with socket 
communication and DDS communication respectively. 
The DDS is configured with reliable QoS setting and 
utilizes waitset (a DDS event handling mechanism) to 
read messages. 

Table 1. Round trip times and latencies of 
reliable DDS and socket communication. 

 

 

 

 

 

 

 

Figure 9. Latencies of reliable DDS and 
socket communication (Note: lines connect 
points are only for illustration). 

As described in the setup in Section 6, we measure the 
RTT for sending and receiving one message and then we 
can calculate the latency of each communication style by 
the following simple formula: ݕܿ݊݁ݐܽܮ = ܴ/2 

Figure 9 gives the latencies of different message sizes. 
The latencies of both DDS and socket communication do 
not change much when sending messages in the range of 2ଷ to 2ଵ଴ bytes, since they fit in a single Ethernet frame. 
When the messages become larger, the increase in round 
trip latency is evident and moreover, DDS is more 
sensitive to increased message size than socket 
communication is. 

Considering at the size of 1024 bytes per each 
message, the DDS takes 182.5 µs to send one message, 

Message (bytes) 8 16 32 64 128 256 

DDS 
(µs) 

RTT  294 302 302 313 315 318 

Latency  147 151 151 156.5 157.5 159 

Socket 
(µs) 

RTT 162 162 163 162 164 169 

Latency 81 81 81.5 81 82 84.5 

Message (bytes) 512 1024 2048 4096 8192 16384 

DDS 
(µs) 

RTT 322 365 411 767 1475 2930 

Latency  161 182.5 205.5 383.5 737.5 1465 

Socket 
(µs) 

RTT 170 196 236 290 362 490 

Latency  85 98 118 145 181 245 



 
 
 
 

while the socket communication takes 98 µs, only half 
time of the DDS. Although considerable slower than 
socket based communication, DDS still can send an 
average of 5479 messages a second, which will meet the 
requirements of some industrial applications. 

In the second setup, two sets of QoS are introduced in 
the DDS communication.  Table 2 shows the different 
latencies when reliable QoS and best-effort QoS is set 
respectively. 

 
Message size 

(bytes) 
8 16 32 64 128 256 

Reliable QoS 
Latency  (µs) 

147 151 151 156.5 157.5 159 

Best-effort 
Latency  (µs) 

140 140.5 142 143.5 147.5 150 

Message (bytes) 512 1024 2048 4096 8192 16384 

Reliable QoS 
Latency  (µs) 

161 182.5 205.5 383.5 737.5 1465 

Best-effort 
Latency  (µs) 

157 175 195.5 377 734 1463 

Table 2. Latencies of reliable and best-
effort DDS communication. 

 

 

 
 
 
 

Figure 10. DDS latencies of reliable QoS 
and best-effort QoS Communication. (Note: 
lines connect points are only used for 
illustration). 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 11. DDS and socket latency samples 
distribution. 

Figure 10 illustrates the latency comparison when the 
two sets of QoS are used. Although not so obvious, we 
can still see that the best-effort QoS set has lower latency. 
That is because the mechanism of reliable reliability QoS 
would cause more overhead. 

Figure 11 shows the distribution of measured latency 
for DDS and socket communication of 1024-byte 
messages based on 1.000.000 samples. 

However the Socket communication latency mostly 
ranges from 62.5 to 112.5 µs while DDS latency mostly 
ranges from 50 to 400 µs. 

The standard deviation of the DDS latency is 109 µs, 
which is 59.8% of the average latency 183 µs. The socket 
latency standard deviation is 10.184 µs, 10.3% of the 
average latency 99 µs. Hence, the socket communication 
introduces less variation in message transmission times 
than DDS. 

Table 3 shows the RTT, jitter and standard deviation 
of DDS communication with different setting for latency 
budget QoS when messages with 1024 bytes are sent. As 
from the previous test, the average RTT of sending 1024-
byte message is no more than 400 µs, here we set the 
deadline QoS value to 200 µs and the latency budget to 
100 µs.  

When setting the latency budget to 100 µs, the average 
RTT, average jitter and standard deviation of the RTT are 
all larger than that of when the latency budget is set to 
zero. This is a trade-off between throughput and latency, 
smaller message and lower latency budget can improve 
the latency, but they also cause low throughput.  

Table 3. Round trip time, jitter and standard 
deviation of reliable DDS communication 
with latency budget 0 and 100 µs. 

 
 
 
 
 
 
 

Figure 13. Publishers and subscribers with 
different transport priorities. 

Topics TP1=TP2=1 TP1=1, TP2=5 

Latency(Topic1) 520 534 - 

Latency(Topic2) 519 - 500 

Table 4. Latency with different transport 
priorities. 

Table 4 shows that when two topics in one node are 
assigned the same transport priority, the average latencies 
for the two topics are almost the same.  But when Topic2 
is assigned a higher transport priority than Topic1 (as 
shown in Figure 13), the average latency of Topic2 would 
be smaller than that of Topic1. Transport priority QoS 
gives users the flexibility to decide which topic or 
messages should be delivered first. 

Message 
(1024 
bytes) 

RTT (µs) Jitter (µs) Standard 
deviation 
(of RTT) Average Worst-case Average Max 

Latency 
budget=0 

365 11983 76.152 11531 202.396 

Latency 
budget=100 

407 11431 87.214 11025 227.337 



 
 
 
 

7.2. Result with Four Nodes 
In this experiment, two additional nodes C and D are 

introduced into the network to generate network load and 
evaluate the scalability of DDS. These two are also with 
one Gbps Ethernet and sending the message with the 
same size 1024 bytes in both DDS and socket 
communication. According to the statistic by the software 
IPTraf on Node C, the total extra network load added is 
94.242 Mbps for socket and 96.902 Mbps for DDS. Table 
5 shows the latency and jitter of DDS and socket 
communication transferring 1024-byte messages with and 
without extra network load. 

 
Message 

(1024 
bytes) 

RTT  (µs) Jitter (µs) Standard 
deviation  
(of RTT) Average Worst-case Average Max 

DDS 
(without 

load) 

 
353 

 
11719 

 
58.047 

 
11722 

 
166.836 

DDS 
(with 
load) 

348 11641 59.863 11290 167.643 

Socket 
(without 

load) 

 
195 

 
364 

 
12.465 

 
180 

 
16.600 

Socket 
(with 
load) 

222 424 16.016 211 24.739 

Table 5. RTT, jitter and standard deviation 
of reliable DDS and socket communication 
with and without extra load. 

As can be seen in Table 5 the DDS round-trip time is 
largely unaffected by the increased network load. In 
contrast, the performance for the socket based 
communication is significantly reduced, especially the 
average latency and jitter.  

Still, the socket based communication performs better 
than DDS, but the measurements indicate that the 
difference in performance is likely less in a heavily 
loaded distributed system. 

8. Conclusions and Future Work 

Real-time publisher-subscriber mechanisms have the 
potential to reduce the complexity of large scale 
industrial control systems by removing the need of 
engineering explicit point-to-point connections between 
large numbers of components. In this paper we show how 
a programming model for industrial control systems, IEC 
61499, can be mapped on to the DDS publisher-
subscriber model. The mapping considers the interface of 
IEC 61499 function blocks, mapping events and input 
variables to DDS data topics. Moreover, latency 
requirements on the IEC 61499 point-to-point 
connections are mapped to DDS QoS attributes for the 
specific topic that represent the connection.  Finally, an 
initial performance evaluation of DDS is presented and 
compared with a socket based point-to-point 
communication scheme. 

Although the DDS communication is slower than the 
socket communication, it is of great scalability and can 
reduce the complexity of the connections. In addition, the 
rich set of QoS can help users better control the 
communication. The evaluation presented here indicates 
that DDS could be used for a certain class of industrial 
control systems or for parts of industrial control systems.  

In future work we will apply DDS to a distributed 
control systems and check the performance in industrial 
applications. 
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