
Handling Sporadic Tasks in Real-time
Systems

- Combined Offline and Online Approach -

Damir Isović
Department of Computer Engineering

Mälardalen University, Sweden
damir.isovic@mdh.se

ZA MOJE RODITELJE
(to my parents)

Abstract

Many industrial applications with real-time demands are composed of mixed
sets of tasks with a variety of requirements. These can be in the form of stan-
dard timing constraints, such as period and deadline, or complex, e.g., to ex-
press application specific or non temporal constraints, reliability, performance,
etc. Arrival patterns determine whether tasks will be treated as periodic, spo-
radic, or aperiodic. As many algorithms focus on specific sets of task types and
constraints only, system design has to focus on those supported by a particular
algorithm, at the expense of the rest.

In this work, we present a set of algorithms to deal with a combination of
mixed sets of tasks and constraints: periodic tasks with complex and simple
constraints, soft and firm aperiodic, and in particular sporadic tasks. Instead of
providing algorithms tailored for a specific set of constraints, we propose an
EDF based runtime algorithm, and the use of an offline scheduler for complex-
ity reduction to transform complex constraints into the EDF model. At runtime,
an extension to EDF, two level EDF, ensures feasible execution of tasks with
complex constraints in the presence of additional tasks or overloads.

We present a combined offline and online approach for handling sporadic
tasks. First, the sporadic tasks are guaranteed offline, during design time,
which allows rescheduling or redesign in the case of failure. Since we do not
know the arrival time of sporadics we need to perform the worst-case offline
guarantee. Second, we try online to reduce the pessimism intoduced by worst-
case assumption. An online algorithm keeps track of arrivals of instances of
sporadic tasks to reduce pessimism about future sporadic arrivals and improve
response times and acceptance of firm aperiodic tasks.

A simulation study underlines the effectiveness of the proposed approach.

Acknowledgements

Without support of some people, this work would not have been possible. I
am grateful to them all, not only for their technical support, but also good time
I have shared with them.

I would like first to thank my supervisor Gerhard Fohler (if I put the title
professor before his name, I’m afraid he will freak out so I won’t :) Thank you
Gerhard for beliving in me and taking me as your student. I know that I need to
be “pushed” sometimes and you certainly know how to do that, always pointing
me into the right direction. Thank you for not only being my supervisor, but
also my friend. Prost!

I would like to express my gratitude to Radu Dobrin and Tomas Lenvall
for useful discussions and reviews of my work. I also want to thank my col-
leagues at the Department of Computer Engineering at Mälardalen University,
specially the members of the System Design Lab.

I am grateful to my parents and family for always encouraging me to pursue
my ideas and desires and for their unfailing support and love throughout my
entire education. Lastly, my greatest thanks go to my beloved fiancé Emina for
her love and support during the long night hours when completing this thesis.

Västerȧs, May 2001
Damir Isović

Contents

1 Introduction 10
1.1 What are real-time systems? 10
1.2 Dealing with time . 11
1.3 Real-time scheduling policies 11

1.3.1 Offline vs Online . 12
1.3.2 Resource sufficient vs resource insufficient 12
1.3.3 Event-trigged vs Time-trigged 12

1.4 Task model . 13
1.4.1 Periodic Tasks . 13
1.4.2 Dynamic Arrivals . 13
1.4.3 Simple and Complex Constraints 14

1.5 This thesis . 16
1.5.1 Motivation and Approach 16
1.5.2 Combined Offline and Online Approach 17
1.5.3 Handling sporadic tasks 18
1.5.4 Conclusions . 19

1.6 Results . 19
1.6.1 Paper A . 20
1.6.2 Paper B . 20
1.6.3 Paper C . 21
1.6.4 Paper D . 22

2 Paper A: Handling Sporadic Tasks in Offline Scheduled Distributed
Real-Time Systems 26
2.1 Introduction . 28
2.2 System description and task model 29

2.2.1 Time model . 29

4 CONTENTS

2.2.2 Off-line periodic schedule 30
2.2.3 Task model . 30

2.3 Integrated off-line and on-line Scheduling 30
2.3.1 Off-line preparations 31
2.3.2 On-Line mechanisms 32

2.4 Acceptance test for a set of sporadic tasks 32
2.4.1 Sporadic set . 33
2.4.2 Critical slots . 33
2.4.3 Off-line feasibility test for sporadic tasks 37

2.5 On-line mechanism . 38
2.5.1 Maintenance of spare capacities 39

2.6 Example . 40
2.7 Conclusion . 44

3 Paper B: Online Handling of Firm Aperiodic Tasks in Time Trig-
gered Systems 47
3.1 Introduction . 49
3.2 Slot Shifting: Flexibility for Time Triggered Systems 50
3.3 Motivation and Approach . 51

3.3.1 Shortcommings of Previous Version 52
3.3.2 Basic Idea . 52

3.4 Algorithm Description . 53
3.4.1 Acceptance Test for a Set of Aperiodic and Offline

Scheduled Tasks . 54
3.4.2 Pseudo Code . 55
3.4.3 Resource Reservation 57
3.4.4 Rejection Strategies and Overload Handling 57
3.4.5 Resource Reclaiming 58

3.5 Example . 58
3.6 Summary and Outlook . 60

4 Paper C: Efficient Scheduling of Sporadic, Aperiodic, and Periodic
Tasks with Complex Constraints 63
4.1 Introduction . 65
4.2 Task and System Assumptions 67

4.2.1 Complex constraints 67
4.2.2 Task types . 68
4.2.3 System assumptions 69
4.2.4 Task handling - overview 69

CONTENTS 5

4.3 Periodic Tasks - Offline Complexity Reduction 70
4.3.1 Offline complexity reduction 70
4.3.2 Runtime guarantee of complex constraints 71

4.4 Aperiodic Tasks . 73
4.4.1 Acceptance test . 73
4.4.2 Algorithm . 74

4.5 Sporadic Tasks . 75
4.5.1 Handling sporadic tasks 76
4.5.2 Interference window 76
4.5.3 Algorithm description 80

4.6 Simulation Analysis . 82
4.7 Summary and Outlook . 83
4.8 Acknowledgements . 84

5 Paper D – Simulation Analysis of Sporadic and Aperiodic Task
Handling 88
5.1 Introduction . 90
5.2 Simulation environment . 90
5.3 Experiment 1: Firm aperiodic guarantee 90

5.3.1 Experimental setup 90
5.3.2 Results . 91

5.4 Experiment 2: Firm aperiodic guarantee with sporadics 94
5.4.1 Experimental setup 94
5.4.2 Results . 95

5.5 Summary . 98

List of Figures

2.1 Example of a critical slot. 34
2.2 Sporadic arival after critical slot. 35
2.3 Sporadic arrival shifted to the right. 35
2.4 Sporadic arrival before critical slot. 36
2.5 Sporadic arrival shifted to the left. 36
2.6 Example offline sporadic guarantee – periodic tasks and offline

schedule. 40
2.7 Example offline sporadic guarantee – schedule with intervals. . 41
2.8 Example offline sporadic guarantee – steps in guarantee algo-

rithm. 41
2.9 Example offline sporadic guarantee – offline schedule after re-

design. 42
2.10 Example offline sporadic guarantee – guaranteeing after redesign. 43
2.11 Example offline sporadic guarantee – online execution. 43

3.1 Online acceptance test for firm aperiodic tasks – algorithm
complexity . 57

3.2 Example online firm aperiodic guarantee– static schedule . . . 58
3.3 Example online firm aperiodic guarantee – execution without

new task. 59

4.1 A sporadic task. 77
4.2 Guarantee Ratio for Firm Aperiodic Tasks 83

5.1 Guarantee ratio for aperiodic tasks – Background 91
5.2 Guarantee ratio for aperiodic tasks – SSE 92
5.3 Guarantee ratio for aperiodic tasks, dl=MAXT – SSE vs Back-

ground . 93

5.4 Guarantee ratio for aperiodic tasks, dl=2*MAXT – SSE vs Bgr 93
5.5 Guarantee ratio for aperiodic tasks, dl=3*MAXT – SSE vs Bgr 94
5.6 Guarantee ratio for aperiodic tasks with sporadics, dl=MAX:

load variation . 96
5.7 Guarantee ratio for aperiodic tasks with sporadics, dl=2*MAXT:

load variation . 96
5.8 Guarantee ratio for aperiodic tasks with sporadics, dl=MAXT:

variation of MINT . 97
5.9 Guarantee ratio for aperiodic tasks with sporadics, dl=2*MAXT:

variation of MINT . 97
5.10 Guarantee ratio for aperiodic tasks with sporadics - Final results 98

List of Publications

The following articles are included in this licentiate1 thesis:

A Handling Sporadic Tasks in Off-line Scheduled Distributed Real-Time Sys-
tems, Damir Isovic and Gerhard Fohler, In Proceedings of 11th EU-
ROMICRO Conference on Real-Time Systems York, England , July
1999.

B Online Handling of Firm Aperiodic Tasks in Time Triggered Systems, Damir
Isovic and Gerhard Fohler, In WiP proceedings of 12th EUROMICRO
Conference on Real-Time Systems, Stockholm, Sweden , June 2000.

C Efficient Scheduling of Sporadic, Aperiodic, and Periodic Tasks with Com-
plex Constraints, Damir Isovic and Gerhard Fohler, In Proceedings of
the 21st IEEE Real-Time Systems Symposium, Walt Disney World, Or-
lando, Florida, USA , November 2000.

D Simulation Analysis of Sporadic and Aperiodic Task Handling, Damir Isovic
and Gerhard Fohler, Technical Report , Mälardalen Real-Time Research
Centre, Mälardalen University, May 2001.

Besides the above articles, I have written and published the following scientific
papers:

I System Development with Real-Time Components, Damir Isovic, Markus
Lindgren and Ivica Crnkovic, In Proc. of ECOOP2000 Workshop 22
- Pervasive Compont Sophia Antipolis and Cannes, France , June 2000.

1A licenciate degree is a Swedish graduate degree halfway between MSc and PhD.

LIST OF FIGURES 9

II Real-Time Components, Damir Isovic and Markus Lindgren, Technical Re-
port , Mälardalen Real-Time Research Centre, Mälardalen University,
March 2000.

III Fault Containment in Hive OS, Damir Isovic and Magnus Sundin, Tech-
nical Report , Mälardalen Real-Time Research Centre, Mälardalen Uni-
versity, January 1999.

IV Kompendium i Distribuerade System Damir Isovic, Technical Report , Mälardalen
Real-Time Research Centre, Mälardalen University, (110 pages), March
2001.

V On Handling Multimedia Tasks Damir Isovic, Technical Report , Mälardalen
Real-Time Research Centre, Mälardalen University, April 2001.

Chapter 1

Introduction

1.1 What are real-time systems?

Real-time systems are computing systems in which meeting timing constraints
is essential to correctness. Usually, real-time systems are used to control or
interact with a physical system, where timing constraints are imposed by the
environment. As a consequence, the correct behaviour of these systems de-
pends not only on the result of the computation but also at which time the
results are produced [1]. If the system delivers the correct answer, but after a
certain deadline, it could be regarded as having failed.

Many application are inherently of real-time nature; examples include air-
craft and car control systems, chemical plants, automated factories, medical
intensive care devices and numerous others. Most of these systems interact
directly or indirectly with electronical and mechanical devices. Sensors pro-
vide information to the system about the state of its external environment. For
example, medical monitoring devices, such as ECG, use sensors to monitor
patient and machine status. Air speed, attitude and altitude sensors provide
aircraft information for proper execution of flight control plans etc.

The design of safety-critical real-time systems has to put focus on demands
on predictability, flexibility, and reliability. If we have an application with
completely known characteristics, we can achieve predictable behaviour of the
system, e.g., linear and angular position sensors that read a robot’s arm position
every 20 ms and adjust it via stepper motors. On the other hand, many external
events are not predictable, for example, an external stimulus such as pressing a
button. Systems must react to these sporadic events when they occur rather than

Dealing with time 11

when it might be convinient. By taking care of them we introduce flexibility to
the systems.

In this work, we provide mechanisms to handle unpredictable sporadic
events together with predictable ones.

1.2 Dealing with time

Design of real-time systems must make sure that the system reacts to external
events in a timely way. The reaction may be a simple state change, such as
switching from red to green light, or a complicated controll loop controling
many actuators simultaneously.

Real-time systems can be constructed out of sequential programs, but are
typically built of concurrent programs, called tasks. A typical timing constraint
on a real-time task is the deadline, i.e., the maximum time interval within which
the task must complete its execution. Depending on the consequences that may
occur due to a missed deadline, real-time systems are distinguished into two
classes, hard and soft. In hard real-time systems all task deadlines must be
met, while in soft real-time systems the deadlines are desirable but not neces-
sary. In hard real-time systems, late data is bad data. Soft real-time systems are
constrained only by average time constraints, e.g. handling input data from the
keyboard. In these systems, late data is still good data. Many systems consist
of both hard and soft real-time subsystems, and from now on we will refer to
them as mixed real-time systems.

Real-time systems span a large part of computer industry. So far most of
the real-time systems research has been mostly confined to single node systems
and mainly for processor scheduling. This needs to be extended for multiple
resources and distributed nodes. In our work, we consider a distributed system,
i.e., one that consist of several processing and communication nodes [2].

1.3 Real-time scheduling policies

When a processor has to execute a set of concurrent tasks, the CPU has to be as-
signed to the various tasks according to a predefined criterion, called a schedul-
ing policy. There is a great variety of algorithms proposed for scheduling of
real-time systems today. In this subsection we will give a brief introduction to
some most common classifications, which have been adopted in our research.

12 Real-time scheduling policies

1.3.1 Offline vs Online

Real-time scheduling algorithms fall into two categories [3]: offline and online
scheduling. In offline scheduling, the scheduler has complete knowledge of the
task set and its constraints, such as deadlines, computation times, precedence
constaints etc. Scheduling decisions are based on fixed parameters, assigned
to tasks before their activation. The offline guaranteed schedule is stored and
dispached later during runtime of the system. Offline scheduling is also refered
as static or pre-runtime scheduling.

On the other hand, online scheduling algorithms make their scheduling de-
cisions at runtime. Online schedulers are flexible and adaptive, but they can
incur significant overheads because of runtime processing. Besides, online
scheduling algorithms do not need to have the complete knowledge of the task
set or its timing constraints. For example, an external event that arrives at the
runtime of the system: we need to deal with it upon its arrival. Scheduling de-
cisions are based on dynamic parameters that may change during system evo-
lution. Online scheduling is often refered to as dynamic or runtime scheduling.

1.3.2 Resource sufficient vs resource insufficient

Online scheduling can be further divided into scheduling algorithms that work
in resource sufficient and those that work into resource insufficient environ-
ments [4], i.e., in overload situations. In resource sufficient environments,
even though tasks arrive dynamically, at any given time all tasks are schedu-
lable. Earliest Deadline First (EDF) [5] is proven to be optimal dynamic
scheduling policy in resource sufficient environments.

1.3.3 Event-trigged vs Time-trigged

There are two fundamentally different principles of how to control the activity
of a real-time system, event-trigged and time-trigged. In event-trigged systems
all activities are carried out in response to relevant events external to the sys-
tem. When a significant event in the outside world happens, it is detected by
some sensor, which then causes the attached device (CPU) to get an interrupt.
For soft real-time systems with lots of computing power to spare, this approach
is simple, and works well. The main problem with event-trigged systems is that
they can fail under conditions of heavy load, i.e., when many events are hap-
pening at once. As an example of an event-trigged system we can mention the

Task model 13

SPRING system [6], which applies an online guarantee algorithm with com-
plex task models in distributed environments.

In a time-trigged system, all activities are carried out at certain points in
time known a priori. Accordingly, all nodes in time-trigged systems have a
common notion of time, based on approximately synchronized clocks. One
of the most important advantages of time-trigged control are predictable tem-
poral behaviour of the system, which eases system validation and verification
considerably. An example of a time-trigged system is the MARS system [7].

In summary, event-triggered designs give faster response at low load but
more overhead and chance of failure at high load. This approach is most suit-
able for dynamic environments, where dynamic activites can arrive at any time.
Time triggered systems have the opposite properties and are suitable in rel-
atively static environment in which a great deal is known about the system
behaviour in advance.

We will show in this work how event-triggered methods can be combined
with time-triggered systems to provide for efficient inclusion of dynamic ac-
tivities, in particular sporadic ones.

1.4 Task model

Our methods deal with mixed sets of tasks and constraints.

1.4.1 Periodic Tasks

There are several definitions of periodic tasks. The most common one, that has
also been adopted in our work, is that a periodic tasks consist of an infinite
sequence of identical activities, called instances, that are invoked within reg-
ular time periods. Periodic tasks are commonly found in applications such as
avionics and process control accurate control requires continual sampling and
processing data. Periodic tasks have usually explicit deadlines that must be
met, i.e., they are usaually hard. We also refer to the periodic tasks as static,
which indicates their exclusive treatment by the offline scheduler.

1.4.2 Dynamic Arrivals

A dynamic task is a sequential program that is invoked by the occurrence of an
event. An event is a stimulus that may be generated by processes external to the
system (e.g., an interrupt from a device) or by processes internal to the system

14 Task model

(e.g., the arrival of a message). Dynamically arriving tasks can be categorised
on their criticality and knowledge about their occurence times.

Aperiodic Tasks usually arise from asynchronous events outside the system,
such as operator request. Those events have specified response times associated
with them. In general, aperiodic tasks are viewed as being activated randomly,
following a certain statistical distribution (for example, a Poisson distribution).
Aperiodic tasks cannot be fitted into a fixed periodic framework, i.e., their
handling has to be prepared explicitly for unknown arrival times.

Furthermore, aperiodic tasks can be hard, soft and firm. Hard aperiodic
tasks have stringent timing constraint that must be met, while soft aperiodic
do not have deadlines at all. A firm aperiodic task has a deadline that must be
met once the task is guaranteed online. The difference between firm and hard
aperiodic tasks is that hard tasks are guaranteed offline, while firm tasks are
guaranteed online, upon their arrival. Methods presented in this work provide
for inclusion of both firm and soft aperiodic tasks. Firm tasks must be guaran-
teed while the soft ones do nor require any acceptance test: they are executed
if there are no ready scheduled or guaranteed tasks.

Sporadic Tasks handle events that arrive at the system at arbitrary points in
time, but with defined maximum frequency. They are invoked repeatedly with
a (non-zero) lower bound on the duration between consecutive occurrences
of the same event. Therefore, each sporadic task will be invoked repeatedly
with a lower bound on the interval between consecutive invocations i.e., min-
imum inter-arrival time between two consecutive invocations. For example, a
sporadic task with a minimum inter-arrival time of 50 ms will not invoke its
instances more often than each 50 ms. In reality, it may arrive much less fre-
quent than once every 50 ms, but if we want to schedule such a task we need
to assume that it will invoke its instances with minimum inter-arrival time, i.e.,
maximum frequency.

1.4.3 Simple and Complex Constraints

In this work, we distinguish between simple constraints, i.e., period, start-time,
and deadline, for the earliest deadline first scheduling model, and complex con-
straints. We refer to such relations or attributes of tasks as complex constraints,
which cannot be expressed directly in the earliest deadline first scheduling
model using period, start-time, and deadline. In most of the cases, offline
transformations are needed to schedule these at runtime (some can be resolved

Task model 15

online at the cost of the higher overhead). Here are some examples of complex
constraints:

Synchronization – Many execution sequences require a precedence order of
task executions. An algoritm for the transformation of precedence constraints
on single processor to suit the EDF scheduling model has been presented in
[8]. However, many industrial applications require allocation of tasks with
precedence constraints on different nodes, i.e., a distributed system with in-
ternode communication. The transformation of precedence constraints with an
end-to-end deadline in this case requires subtask deadline assignment to create
execution windows on the individual nodes so that precedence is fulfilled, e.g.,
[9]. A schedulability analysis for pairs of tasks communicating via a network
instead of decomposition has been presented in [10].

Non-periodic execution – Constraints such as some forms of jitter, e.g., for
feedback loop delay in control systems [11], require instances of tasks to be
separated by non-constant length intervals. In order to fit these constraints into
the periodic task model, it can easily happen that we end up with an over-
constrained specification.

Non-temporal constraints – Usually come from the system demands, e.g.,
not to allocate two tasks to the same node, or to have minimum separation
times etc.

Jitter – The execution start or end of a certain task is constrained by max-
imum variations. Strictly periodic execution can solve some instances of this
problem, but over-constrains the specification. Algorithms are computationaly
expensive [12].

Application specific constraints – Come from application demands, e.g.
dupplicated messages on a bus may need to follow a certain pattern. They
are usually imposed by engineering practice: an enginer may want to improve
schedules, creating new constraints that reflect his/her practical experience.

Our method uses a general technique, capable of incorporating various types
of constraints and their combinations. Those are resolved in the offline part of
the method, without degrading the system performance under runtime.

16 This thesis

1.5 This thesis

Dynamically arriving tasks cannot be fitted into a fixed periodic framework,
i.e., their handling has to be prepared explicitly for unknown occurence times.
Offline schedules will generally not be tight, i.e., there will be times where
resources are unused. In this work we try to efficiently reclaim those resources,
and use it for dynamic arrivals, i.e., aperiodic and sporadic tasks.

1.5.1 Motivation and Approach

A variety of algorithms have been presented to handle periodic and aperiodic
tasks, e.g., [13], [14], [15]. An online algorithm for scheduling sporadic tasks
with shared resources in hard real-time systems has been presented in [16].
Scheduling of sporadic requests with periodic tasks on an earliest-deadline-
first (EDF) basis has been presented in [17]. An offline guarantee algorithm
for sporadic tasks based on bandwidth reservation has been presented in [18]
for single processor systems. Handling of firm aperiodic requests using a Total
Bandwidth Server has been presented in [13]. Online guarantees of aperiodic
tasks in firm periodic environments, where tasks can skip some instances, have
been described in [19].

The slot shifting algorithm to combine offline and online scheduling was
presented in [20]. It focuses on inserting aperiodic tasks into offline schedules
by modifying the runtime representation of available resources. While appro-
priate for including sequences of aperiodic tasks, the overhead for sporadic
task handling becomes too high. The use of information about amount and dis-
tribution of unused resources for non periodic activities is similar to the basic
idea of slack stealing [15], [21] which applies to fixed priority scheduling. The
work presented in this thesis is based on slot shifting.

These methods can generally be classified as latest start time methods,
since they all share the characteristic of postponing the execution of hard tasks
in order to give more resources to the soft tasks. Normally, as long as all
guaranteed tasks meet their deadlines, it doesn’t matter if they complete their
execution in advance of their deadline or just before it.

However, the methods described above concentrate most on particular types
of constraints. As mentione before, a real-time system might need to fullfill
some complex constraints, in addition to basic temporal constraints of tasks,
such as periods, start-times and deadlines. Those complex constraints can not
be expressed as generally as the simple ones. Adding complex constraints to a
chosen scheduling strategy increases scheduling overhead [22] or requires new,

This thesis 17

specific schedulability tests which may have to be developed.
Besides, most of the existing methods for handling sporadic tasks perform

only an online acceptance test, which introduces extra overhead to the system.
When a set of sporadic tasks arrives at runtime, a scheduler performs an accep-
tance test. The test succeeds if each sporadic task in the set can be scheduled
to meet its deadline, without causing any previously guaranteed tasks to miss
its deadline, else it is rejected. A disadvantage with this approach is that if the
set has been rejected, it is too late for countermeasures.

Our method provides an offline schedulability test for sporadic tasks, based
on slot shifting. It constructs a worst case scenario for the arrival of the spo-
radic task set and tries to guarantee it on the top of the offline schedule. The
guarantee algorithm is applied at selected slots only. At runtime, it uses the
slot shifting mechanisms to feasibly schedule sporadic tasks in union with the
offline scheduled periodic tasks, while allowing resources to be reclaimed for
aperiodic tasks. Since the major part of preparations is performed offline, the
involved online mechanisms are simple. Furthermore, the reuse of resources
allows for high resource utilization.

1.5.2 Combined Offline and Online Approach

Offline scheduling methods can accomodate many specific constraints but at
the expense of runtime flexibility, in particular inability to handle dynamic
activities such as aperiodic and sporadic tasks. On the other hand, if we only
use online scheduling, then we might introduce high overhead for resolving
complex constraints, or, in the worst case, we cannot resolve them at all.

Our method is a combined offline and online approach: it integrates of-
fline, time-trigged scheduling and dynamic, event-trigged scheduling. We use
slot shifting to eliminate all types of complex constraints before the runtime of
the system. They are transformed into a simple EDF model, i.e., periodic tasks
with start times and deadlines. Dynamic activities are incorporated into offline
schedule by making use of the unused resources and leeways in the schedule.
We assume a resurce insufficient environment, where dynamic activities have
to be guaranteed to fit into the offline schedule, without affecting any of pre-
viously scheduled or guaranteed activities. We provide both offline and online
mechanisms for dealing with such a priori unknown activities.

The method requires a small runtime data structure, simple runtime mech-
anisms, going through a list with increments and decrements, provides ����
acceptance tests and facilitates changes in the set of tasks, for example to han-
dle overloads. Furthermore, our method provides for handling of slack of non

18 This thesis

periodic tasks as well, e.g., instances of tasks can be separated by intervals
other than periods.

As a final result of this work, we provide an algorithms to deal with a
combination of mixed sets of tasks and constraints: periodic tasks with com-
plex and simple constraints, soft and firm aperiodic, and in particular sporadic
tasks. Instead of providing algorithms tailored for a specific set of constraints,
we propose an EDF based runtime algorithm, and the use of an offline sched-
uler for complexity reduction to transform complex constraints into the EDF
model. At runtime, an extension to EDF, two level EDF, ensures feasible exe-
cution of tasks with complex constraints in the presence of additional tasks or
overloads.

1.5.3 Handling sporadic tasks

Offline scheduling is not suitable for handling sporadic tasks due to the un-
known arrival times. One approach could be to transform sporadic tasks into
equvalent pseudo-periodic tasks [23] offline, which can be scheduled simply
at runtime. However, this may lead to significant under-utilization of the pro-
cessor time, especially when the deadline of the pseudo-periodic task is small
compared to the minimum inter-arrival time of sporadic task. That because
a great amount of time has to be reserved offline, before the runtime of the
system, for servicing dynamic request from sporadic tasks. In extreme cases,
a task handling an event which is rare, but has a tight deadline, may require
reservation of all resources.

We present a combined offline and online approach for handling sporadic
tasks. The offline transformation determines resource usage and distribution
as well, which we use to handle sporadic tasks. Offline we assume the worst
case scenario for arrival patterns for sporadic tasks, and online we try to reduce
this pessimism by using the current information about the system. Dynamic
activites are accomodated without affecting the feasible execution of statically
scheduled tasks.

Offline part – The offline transformation determines resource usage and dis-
tribution as well, which we use to handle sporadic tasks. The sporadic tasks are
guaranteed offline, during design time, which allows rescheduling or redesign
in the case of failure. An offline test determines and allocates resources for
sporadic tasks such that worst case arrivals can be accommodated at any time.

Results 19

Online part – Since we do not know when sporadic tasks will arrive at the
system, we need to assume the worst case schenario when guaranteeing them
offline, i.e., we need to assume that sporadic tasks will invoke their instances
at the maximum frequency. This is a too pesimistic but neccessary assumption
and we try online to reduce this pesimism. At runtime, an online algorithm
keeps track of arrivals of instances of sporadic tasks to reduce pessimism about
future sporadic arrivals and improve response times and acceptance of firm
aperiodic tasks. If a sporadic tasks invokes its instances with less frequency
than the wors case one, then we can easily reclaim its reserved resources for
other dynamic activities, i.e., firm and soft aperiodic tasks. When a sporadic
task arrives, we do not need to account for the invocation of its next instance
at least for the period of its minimum inter-arrival time and reuse its allocated
resources for aperiodic tasks.

1.5.4 Conclusions

We present a method for integrated offline and online scheduling of mixed
sets of tasks and constraints. A complete offline schedule can be constructed,
transformed into EDF tasks, and scheduled at runtime together with other EDF
tasks. The transformation is performed to maximize flexibility of task execu-
tions.

During offline analysis our algorithm determines the amount and location
of unused resources, which we use to include dynamic activities during the
runtime of the system. In particular, we presented an efficient method to handle
sporadic tasks, providing for ���� online acceptance test for firm aperiodic
tasks.

The sporadic tasks are guaranteed during design time, allowing reschedul-
ing or redesign in the case of failure. At runtime, resources reserved for spo-
radic tasks can be reclaimed and used for efficient aperiodic task handling.

Thus, our method combines handling of complex constraints, efficient and
flexible runtime scheduling, as well as offline and online scheduling, providing
a basis for predictably flexible real-time systems

1.6 Results

This section sumarizes the main contribution of each paper in the thesis.

20 Results

1.6.1 Paper A

Damir Isovic and Gerhard Fohler, Handling Sporadic Tasks in Offline Sched-
uled Distributed Real-Time Systems, In Proceedings of 11th EUROMICRO
Conference on Real-Time Systems York, England , July 1999.

Summary In this paper, we presented an algorithm to handle event-triggered
sporadic tasks, i.e., with unknown arrival times, but known maximum arrival
frequencies, in the context of time-triggered, distributed schedules with general
constraints. The sporadic tasks are guaranteed during design time, allowing
rescheduling or redesign in the case of failure. At runtime, resources reserved
for sporadic tasks can be reclaimed and used for efficient aperiodic task han-
dling.

Our algorithm is based on the slot shifting method, which provides for the
combination of time-triggered offline schedule construction and online schedul-
ing of aperiodic activities. It analyzes constructed schedules for unused re-
sources and leeway in task executions first. The runtime scheduler uses this
information to include aperiodic tasks, shifting other task executions (”slots”)
to reduce response times without affecting feasibility. It can also be used to
perform online guarantees.

We provided an offline schedulability test for sporadic tasks based on slot
shifting. It constructs a worst case scenario for the arrival of the sporadic task
set and tries to guarantee it in the offline schedule. The guarantee algorithm is
applied at selected slots only. At runtime, it uses the slot shifting mechanisms
to feasibly schedule sporadic tasks in union with the offline scheduled periodic
tasks, while allowing resources to be reclaimed for aperiodic tasks.

Since the major part of preparations is performed offline, the involved on-
line mechanisms are simple. Furthermore, the reuse of resources allows for
high resource utilization.

1.6.2 Paper B

Damir Isovic and Gerhard Fohler, Online Handling of Firm Aperiodic Tasks in
Time Triggered Systems, In WiP proceedings of 12th EUROMICRO Confer-
ence on Real-Time Systems, Stockholm, Sweden , June 2000.

Summary In this paper we presented an algorithm for the flexible handling
of firm aperiodic tasks in offline scheduled systems. It is based on slot shifting,
a method to combine offline and online scheduling methods.

Results 21

First, a standard offline scheduler constructs a schedule, resolving com-
plex task constraints such as precedence, distribution, and end-to-end dead-
lines. This is then analyzed for unused resources and leeway in task execu-
tions. The runtime scheduler uses this information to handle aperiodic tasks,
shifting other task executions (”slots”) to reduce response times without af-
fecting feasibility. We provided an ���� acceptance test for a set of aperiodic
tasks on the offline schedule and guarantee tasks without explicit reservation
of resources. Our method supports flexible, value based selections of tasks to
reject or remove in overload situations, and simple resource reclaiming.

While the current algorithm enables the rejection and removal of tasks, it
does not address the issue of selection. We are investigating into providing a
number of overload handling strategies, e.g., [24], [25].

In a previous paper [26], we presented an offline test for sporadic tasks
based on worst case arrival assumptions. It cannot utilize less frequent arrivals
for firm aperiodic tasks since the runtime overheads to reflect the continuous
changes in resource availability are prohibitively high. We are looking into
applying the algorithm presented here to handle sporadic tasks at runtime.

1.6.3 Paper C

Damir Isovic and Gerhard Fohler, Efficient Scheduling of Sporadic, Aperiodic,
and Periodic Tasks with Complex Constraints, In Proceedings of the 21st IEEE
Real-Time Systems Symposium, Walt Disney World, Orlando, Florida, USA ,
November 2000.

Summary In this paper we have presented methods to schedule sets of mixed
types of tasks with complex constraints, by using earliest deadline first schedul-
ing and offline complexity reduction. In particular, we have proposed an algo-
rithm to handle sporadic tasks to improve response times and acceptance of
firm aperiodic tasks.

We have presented the use of an offline scheduler to transform complex
constraints of tasks into starttimes and deadlines of tasks for simple EDF run-
time scheduling. We provided an extension to EDF, two level EDF, to ensure
feasible execution of these tasks in the presence of additional tasks or over-
loads. During offline analysis our algorithm determines the amount and loca-
tion of unused resources, which we use to provide ���� online acceptance
tests for firm aperiodic tasks. We presented an algorithm for handling offline
guaranteed sporadic tasks, which keeps track of arrivals of instances of spo-
radic tasks at runtime. It uses this updated information to reduce pessimism

22 Results

about future sporadic arrivals and improve response times and acceptance of
firm aperiodic tasks. Results of simulation study show the effectiveness of the
algorithms.

Future research will deal with extending the algorithm to include interrupts,
overload handling, and aperiodic and sporadic tasks with complex constraints
as well. We are studying the inclusion of server algorithms, e.g., [27] into
our scheduling model by including bandwidth as additional requirement in the
offline transformation.

1.6.4 Paper D

Damir Isovic and Gerhard Fohler, Efficient Scheduling of Sporadic, Aperiodic,
and Periodic Tasks with Complex Constraints – Simulation Analysis, Technical
Report , Mälardalen Real-Time Research Centre, Mälardalen University, May
2001.

Summary In this paper we present the simulation results for proposed al-
gorithms to handle mixed sets of tasks and sonstraints: periodic tasks with
complex and simple constraints, soft and firm aperiodics, and sporadic tasks.

In particular, we simulated the algorithms to efficently handle sporadic
tasks in order to increase acceptance ratio for online arriving firm aperiodic
tasks. We have simulated the proposed guarantee algorithms and the results
underlines the effectiveness of the proposed approach.

Bibliography

[1] John Stankovic and Krithi Ramamritham. Tutorial on hard real-time sys-
tems. IEEE Computer Society Press, 1988.

[2] J.A. Stankovic, K. Ramamritham, and C.-S. Cheng. Evaluation of a
flexible task scheduling algorithm for distributed hard real-time systems.
IEEE Trans. on comp., 34(12), Dec 1995.

[3] J.A. Stankovic et. al. Implications of classical scheduling results for real-
time systems. IEEE Computer, Vol. 28, No. 6, pp. 16-25, June 1995.

[4] J.A. Stankovic, C. Lu, and S.H. Son. The case for feedback control in
real-time scheduling. In Proc. 11th IEEE Euromicro Conference on Real-
Time, York, England, 1998.

[5] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming
in hard real-time environment. Journ. of the ACM, 20, 1, Jan. 1973.

[6] J. A. Stankovic and K. Ramamritham. The Spring kernel: A new
paradigm for real-time operating systems. IEEE Software, pages 62–72,
May 1991.

[7] A. Damm, J. Reisinger, W. Schwabl, and H. Kopetz. The real-time op-
erating system of MARS. ACM Operating Systems Review, SIGOPS,
23(3):141–157, 1989.

[8] H. Chetto, M. Silly, and T. Bouchentouf. Dynamic scheduling of real-
time tasks under precedence constraints. Real-Time Systems Journal,
2(3):181–194, Sept. 1990.

[9] M. DiNatale and J.A. Stankovic. Applicability of simulated annealing
methods to real-time scheduling and jitter control. In Proceedings of
Real-Time Systems Symposium, Dec. 1995.

24 BIBLIOGRAPHY

[10] K. Tindell and J. Clark. Holistic schedulability analysis for distributed
hard real-time systems. Microprocessing and Microprogramming, 50(2-
3), 1994.

[11] M. Törngren. Fundamentals of implementing real-time control applica-
tions in distributed computer systems. Real-Time Systems, 1997.

[12] S. Baruah, G. Buttazzo, S. Gorinsky, and G. Lipari. Scheduling periodic
task systems to minimize output jitter. In Sixth International Conference
on Real-Time Computing Systems and Applications, Dec. 1999.

[13] M. Spuri, Giorgio C. Buttazzo, and F. Sensini. Robust aperiodic schedul-
ing under dynamic priority systems. In Proc. of the IEEE RTSS, Dec.
1995.

[14] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for hard
real-time systems. Real-Time Systems Journal, 1(1):27–60, June 1989.

[15] S. R. Thuel and J.P. Lehoczky. Algorithms for scheduling hard aperiodic
tasks in fixed-priority systems using slack stealing. In Proceddings of the
Real-Time Symposium, pages 22–33, San Juan, Puerto Rico, Dec. 1994.

[16] K. Jeffay. Scheduling sporadic tasks with shared resources in hard real-
time systems. Dept. of Comp. Sci., Univ. of North Carolina at Chapel
Hill, 1992.

[17] T. Tia, W.S. Liu, J. Sun, and R. Ha. A linear-time optimal acceptance
test for scheduling of hard real-time tasks. Dept. of Comp. Sc., Univ. of
Illinois at Urbana-Champaign, 1994.

[18] G.C. Buttazzo, G. Lipari, and L. Abeni. A bandwidth reservation algo-
rithm for multi-application systems. Proc. of the Intl. Conf. on Real-time
Computing Systems and Applications, Japan, 1998.

[19] M. Caccamo and Giorgio C. Buttazzo. Exploiting skips in periodic tasks
for enhancing aperiodic responsiveness. Proc. of the 18th Real-Time Sys-
tems Symposium, USA, Dec. 1997.

[20] G. Fohler. Joint scheduling of distributed complex periodic and hard ape-
riodic tasks in statically scheduled systems. In Proc. 16th Real-time Sys-
tems Symposium, Pisa, Italy, 1995.

BIBLIOGRAPHY 25

[21] R.I. Davis, K.W. Tindell, and A. Burns. Scheduling slack time in fixed
priority pre-emptive systems. In Proceddings of the Real-Time Sympo-
sium, pages 222–231, Dec. 1993.

[22] V. Yodaiken. Rough notes on priority inheritance. Technical report, New
Mexico Institut of Mining, 1998.

[23] A. K. Mok. Fundamental Design Problems of Distributed Systems for
the Hard Real-Time Environment. PhD thesis, MIT, 1983. Report
MIT/LCS/TR-297.

[24] G. Buttazzo and J. Stankovic. Adding Robustness in Dynamic Preemptive
Scheduling. Kluwer Academic Publishers, 1995.

[25] S. A. Aldarmi and A. Burns. Dynamic value-density for scheduling real-
time systems. In Proceedings 11th Euromicro Conference on Real-Time
Systems, Dec 1999.

[26] Damir Isovic and Gerhard Fohler. Handling sporadic tasks in off-line
scheduled distributed hard real-time systems. Proc. of 11th EUROMICRO
conf. on RT systems, York, UK, June 1999.

[27] L. Abeni and G. Buttazzo. Integrating multimedia applications in hard
real-time systems. In Proceedings of Real-Time Systems Symposium, Dec.
1998.

Chapter 2

Paper A: Handling Sporadic
Tasks in Offline Scheduled
Distributed Real-Time
Systems

Damir Isovic and Gerhard Fohler
In Proceedings of 11th EUROMICRO Conference on Real-Time Systems York,
England, July 1999

Abstract

Many industrial applications mandate the use of a time-triggered paradigm
and consequently the use of off-line scheduling for reasons such as predictabil-
ity, certification, cost, or product reuse. The construction of an off-line sched-
ule requires complete knowledge about all temporal aspects of the application.
The acquisition of this information may involve unacceptable cost or be im-
possible. Often, only partial information is available from the controlled envi-
ronment.

In this paper, we present an algorithm to handle event-triggered sporadic
tasks, i.e., with unknown arrival times, but known maximum arrival frequen-
cies, in the context of distributed, off-line scheduled systems. Sporadic tasks
are guaranteed during design time, allowing rescheduling or redesign in the
failure case. At run-time, the sporadic tasks are scheduled dynamically, al-
lowing the reuse of resources reserved for, but not consumed by the sporadic
tasks. We provide an off-line schedulability test for sporadic tasks and apply
the method to perform on-line scheduling on top of off-line schedules. Since
the major part of preparations is performed off-line, the involved on-line mech-
anisms are simple. The on-line reuse of resources allows for high resource
utilization.

28 Introduction

2.1 Introduction

Off-line scheduling is mandated by a number of industrial applications. Pre-
dictability, cost, product reuse, and maintenance are examples for reasons ad-
vocating a time-triggered approach. The off-line construction of schedules,
however, requires complete knowledge about application characteristics be-
fore the run-time of the system. Often, such comprehensive information is
inaccessible due to high cost of acquisition or unavailability. Rather, incom-
plete characteristics are available. One typical, partially known property is the
arrival time of activities. Instead of exact arrival patterns, bounds on the arrival
frequencies are known, e.g., derived from a model of a physical process. One
such limit is the minimum inter-arrival time between subsequent instances of
tasks. Tasks for which it is known are called sporadic tasks [1].

The use of off-line scheduling for sporadic tasks is problematic; they can
be transformed into pseudo-periodic tasks [1], but with potentially prohibitive
overhead.

An on-line algorithm for scheduling sporadic tasks with shared resources
in hard real-time systems has been presented in [2]. Scheduling of sporadic
requests with periodic tasks on an earliest-deadline-first (EDF) basis [3] has
been presented in [4]. Handling of firm aperiodic requests using a Total Band-
width Server has been presented in [5]. On-line guarantees of aperiodic tasks
in firm periodic environments, where tasks can skip some instances, have been
described in [6]. Systems containing hard real-time sporadic tasks have been
analyzed for their worst case behavior in [7].

These algorithms above perform on-line guarantees. When a set of sporadic
tasks arrives at run-time to the system, a scheduler performs an acceptance
test. The test succeeds if each sporadic task in the set can be scheduled to
meet its deadline, without causing any off-line guaranteed periodic tasks or
previously accepted non-periodic tasks to miss its deadline, else it is rejected.
A disadvantage with this approach is that if the set has been rejected, it is too
late for countermeasures.

An off-line guarantee algorithm for sporadic tasks based on bandwidth
reservation has been presented in [8] for single processor systems.

In this paper, we present a method providing an off-line feasibility test
for sporadic tasks on top of an off-line scheduled, distributed periodic task
set with general constraints, e.g., precedence; rescheduling or redesign can be
performed, should the test fail. Given the deadline, maximum frequency and
execution time for each task in the sporadic task set, we can create a worst case
load pattern. Then, we try to guarantee this worst case sporadic demand within

System description and task model 29

the periodic schedule before the system starts its execution. We have to ac-
count for arrivals at any time; it is, however, sufficient to investigate only some
selected points in time. Our method is based on the slot shifting [9] method,
which provides for the combination of off-line and on-line scheduling. After a
static schedule for the distributed periodic tasks has been created off-line in a
first step, the amount and distribution of unused resources and leeways in it is
determined. These are then used to incorporate aperiodic tasks into the sched-
ule by shifting the off-line scheduled tasks’ execution, without violating their
feasibility. An on-line mechanism is used to guarantee and schedule aperiodic
tasks. Using the on-line scheduling algorithm of slot shifting, the resources re-
served for, but not consumed by sporadic tasks can be reused. Should sporadic
tasks arrive at less than their guaranteed maximum frequency, their resources
can be reclaimed, e.g., for aperiodic tasks. Furthermore, the on-line algorithm
of slot shifting has been modified to schedule guaranteed sporadic requests.

The method presented in this paper allows for the handling of distributed
periodic tasks with general constraints, such as precedence, based on the time-
triggered paradigm, together with the event-triggered scheduling of guaranteed
sporadic tasks and online aperiodic tasks, possibly reclaiming resources.

The rest of this paper is organized as follows: First, a description of system
and task model is given in section 2.2, and a brief summary of the slot shifting
method in section 2.3. The off-line guarantee test for the sporadic tasks is
presented in section 2.4, followed by the online mechanisms in section 2.5. An
example in section 2.6 illustrates the discussed mechanisms. Finally, section
2.7 concludes the paper.

2.2 System description and task model

The system is considered to be distributed, i.e., one that consists of several
processing and communication nodes [10].

2.2.1 Time model

We assume a discrete time model [11]. Time ticks are counted globally, by a
synchronized clock with granularity of slot length, and assigned numbers from
0 to �. The time between the start and the end of a slot i is defined by the
interval ����������	 �
� ���������	 � �
 � ���. Slots have uniform length and
start and end at the same time for all nodes in the system. Task periods and
deadlines must be multiples of the slot length.

30 Integrated off-line and on-line Scheduling

2.2.2 Off-line periodic schedule

A schedule is a sequence of n slots. For static schedules the number of slots is
typically equal to the least common multiple (LCM) of all involved periods.

2.2.3 Task model

All tasks in the system are fully preemptive and communicate with the rest
of the system via data read at the beginning and written at the end of their
executions.

Periodic tasks execute their invocations within regular time intervals. A pe-
riodic task �� is characterized by its maximum execution time (���) [12],
period (�) and relative deadline of (��).
The ��� invocation of �� is denoted � �

� and is characterized by its earliest
start time (���) and absolute deadline (��). The absolute deadline of the � ��

invocation of �� is equal to the sum of the earliest start time of its preceding
invocation and the relative deadline.

Aperiodic tasks are invoked only once. Their arrival times are unknown at
design time. A hard aperiodic task �� has the following set of parameters: the
arrival time (�), maximum execution time and relative deadline. Soft aperiodic
tasks have no deadline constraints.

Sporadic tasks arrive to the system at random points in time, but with de-
fined minimum inter-arrival times between two consecutive invocations. We
do not know when they arrive to the system, but we do know their maximum
frequency. A sporadic task �� is characterized by its relative deadline, mini-
mum inter-arrival time (�) and maximum execution time.
The attributes above are known before the run-time of the system. The addi-
tional information that becomes available on-line, upon the arrival time of the
��� invocation is its arrival time and its absolute deadline.

2.3 Integrated off-line and on-line Scheduling

In this section, we briefly describe the slot shifting method which we use as
a basis to combine off-line and on-line scheduling. It provides for the effi-
cient handling and possibly on-line guarantee of aperiodic tasks on top of a

Integrated off-line and on-line Scheduling 31

distributed schedule with general task constraints. Slot shifting extracts infor-
mation about unused resources and leeway in an off-line schedule and uses this
information to add tasks feasibly, i.e., without violating requirements on the
already scheduled tasks. A detailed description can be found in [9].

2.3.1 Off-line preparations

First, an off-line scheduler [13] creates scheduling tables for the periodic tasks.
It allocates tasks to nodes and resolves precedence constraints by ordering task
executions.

Start-times and deadlines The scheduling tables list fixed start- and end
times of task executions, that are less flexible than possible. The only assign-
ments fixed by specification, however, are the initiating and concluding tasks
in the precedence graph, and, as we assume message transmission times to be
fixed here1, tasks sending or receiving inter-node messages. These are the only
fixed start-times and deadlines, all others are calculated recursively, as the ex-
ecution of all other tasks may vary within the precedence order, i.e., they can
be shifted.

Intervals and spare capacities The deadlines of tasks are then sorted for
each node and the schedule is divided into a set of disjoint execution intervals
for each node. Spare capacities are defined for these intervals.

Each deadline calculated for a task defines the end of an interval � �, �������.
Several tasks with the same deadline constitute one interval.

The spare capacities of an interval �� are calculated as given in formula 2.1:

������ � ���� �
�
����

��� �� � ��
����������� �� (2.1)

The length of �� minus the sum of the activities assigned to it is the amount of
idle times in that interval. These have to be decreased by the amount “lent” to
subsequent intervals: Tasks may execute in intervals prior to the one they are
assigned to. Then they “borrow” spare capacity from the “earlier” interval.

1We apply the same mechanisms to the network as well, i.e., shifting messages, as detailed in
[9].

32 Acceptance test for a set of sporadic tasks

2.3.2 On-Line mechanisms

During system operation, the on-line scheduler is invoked after each slot. It
checks whether aperiodic tasks have arrived, performs the guarantee algorithm,
and selects a task for execution. This decision is then used to update the spare
capacities. Finally the scheduling decision is executed in the next slot.

Guarantee Algorithm Assume that an aperiodic task �� is tested for guar-
antee. We identify three parts of the total spare capacities available:

� ����	��, the remaining spare capacity of the current interval,

�
�
������� � �
 � �� �����
� � ������������
��� � ������� ������ �

�, the positive spare capacities of all full intervals between � and ������,
and

� �
������
���� ������ � �������
����, the spare capacity of the last in-
terval, or the execution need of �� before its deadline in this interval,
whichever is smaller.

If the sum of all three is larger than ��� ����, �� can be accommodated,
and therefore guaranteed. Upon guarantee of a task, the spare capacities are
updated to reflect the decrease in available resources. This guarantee algo-
rithm is ����, N being the number of intervals. It is shown in [14], that this
acceptance test has equivalent results – but with simpler run-time handling – as
to the ones presented in [15] and [16], which are optimal for single processors.

On-line scheduling On-line scheduling is performed locally for each node.
If the spare capacities of the current interval ����	� � �, EDF is applied on
the set of ready tasks. ����	� � � indicates that a guaranteed task has to be
executed or else a deadline violation in the task set will occur. Soft aperiodic
tasks, i.e., without deadline, can be executed immediately if ���� 	� � �. Af-
ter each scheduling decision, the spare capacities of the affected intervals are
updated.

2.4 Acceptance test for a set of sporadic tasks

In this section we will introduce an off-line guarantee algorithm for a set of
sporadic tasks. The set is said to be feasible with the already scheduled task set
if it is possible to schedule all tasks in the sporadic set such that no scheduled

Acceptance test for a set of sporadic tasks 33

periodic task misses its deadline.
Firstly, the off-line periodic schedule is created and analyzed for slot shifting.
Secondly, the set of sporadic tasks is tried to fit into the periodic schedule, by
investigating only selected time slots. If the sporadic set is not accepted, it is
up to designer to redesign the system, i.e., reschedule periodic tasks or change
the sporadic set.

2.4.1 Sporadic set

All tasks in the sporadic set are assumed to be invoked with their maximum fre-
quency, creating the worst case scenario for the scheduler. If the deadline of a
sporadic task can be guaranteed for the release with their maximum frequency,
then all subsequent deadlines are guaranteed. Examples of this approach are
given in [17]. The minimum time difference between successive releases of a
sporadic task is its minimum inter-arrival time. It has been shown [7] that a
sporadic task which is released with its maximum frequency behaves exactly
like a periodic task with period equal to its minimum inter-arrival time. Now
we know the deadline, the maximum execution time and the ’period’ of each
sporadic task in the set and we can use that information to try to guarantee the
set for its worst load pattern.

2.4.2 Critical slots

One way of investigating if the sporadic set fits into the periodic schedule is
to investigate if it fits at each time slot of the periodic schedule, but this is
impractical. It is sufficient to investigate only some selected points in time,
called critical slots (�). There is only one critical slot per interval2 , and if the
sporadic set can be guaranteed at the critical slot, it will be guaranteed at every
other slot within the same interval.
The worst case for arrival of the sporadic set to an interval � is the slot where
the execution of the sporadic tasks can be delayed maximally by the execution
of the off-line scheduled tasks. This gives:

Proposition 1 Critical slot �	 for an interval � is calculated as:

�	��� � �������� � �����

2Intervals are calculated as described in section 2.3.

34 Acceptance test for a set of sporadic tasks

start(I) end(I)�	

sc=5

Figure 2.1: Example of a critical slot.

as depicted in figure 2.1. If a sporadic task �� can be guaranteed at the critical
slot, it will be guaranteed at each other slot within the same interval � :

�� � �� �� ���������� �� �	 	 �� ���������� �� �

Proof. Let:

�	��� � �������� � ����� - the critical slot of � .
� � �� �
� �	 - some other slot in � .

Assume the following is correct:

Assumption 1. There is a slot � in interval � such that a sporadic task �� can
be guaranteed at the critical slot �	, but not at �:

�� � �� ��� ���������� �� �	� � �������������� �� ��

Let Æ denote the difference between spare capacities available for �� at �	
and �, i.e., the amount of spare capacity that we may get or lose by shifting the
arrival time of �� from �	 to �. Assumption 1 states that �� can be guaranteed
at �	 but not at �, which means that there is more spare capacity available at � 	
than at � and we lose spare capacity if we shift. This implies that Æ is negative:

Æ � � (2.2)

There are two possibilities for the arrival of the sporadic task �� , � � �����,
before or after the critical slot �	:

Case 1: � � �	, �� arrives after �	, as depicted in figure 2.2.
The requirement for �� to be accepted is that the spare capacity available for
�� at its arrival time has to be greater or equal to the maximum execution time
of ��.
Let � and � denote the change of spare capacity caused by shifting in the arrival
and deadline, resp., interval as depicted in figure 2.3:

Acceptance test for a set of sporadic tasks 35

start(I) end(I)�	 �

scheduled or guaranteed tasks

��

Figure 2.2: Sporadic arival after critical slot.

� � - the difference in spare capacity of the arrival interval caused by shift-
ing the arrival time of �� from �	 to �.

� � - the difference in spare capacity of the deadline interval caused by
shifting the deadline of �� .

This gives:
Æ � �� � (2.3)

Shifting the arrival time of �� from �	 to � means that the deadline of ��
is shifted to the right. In the arrival interval, ������
, slots from �	 to � are
reserved for the execution of the scheduled periodic tasks, giving � � �. In the
deadline interval, �����
���, shifting the deadline of �� may only increase the
portion of available spare capacities in that interval. This gives that � has to be
greater or equal to zero (� �).

������
 �����
���

� �

�	 � ����	������
�	
��	

Figure 2.3: Sporadic arrival shifted to the right.

The maximum value of Æ occurs when the deadline of �� does not intersect
with any other activity, that is, execution of some other task. In other words,
� � �� �	 � �. If so, then:

Æ � �� � � �� �� � �� � � �� (2.4)

36 Acceptance test for a set of sporadic tasks

Otherwise, if ������ occurs during the execution of some other task, the worst
case scenario is that we do not get any new resources for �� , that is:

Æ � �� � � �� �� � �� � � �� (2.5)

��� � �	� gives:

Æ �

which is contradictory to �
�, making assumption 1 false.

Case 2: � � �	, �� arrives before �	, as depicted in figure 2.4.

start(I) end(I)�	�

��

Figure 2.4: Sporadic arrival before critical slot.

Now we shift the arrival time of �� to the left, that is before the critical point
�	. This is shown in figure 2.5.

������
 �����
���

� �

�	� ����	������
� �	
��

Figure 2.5: Sporadic arrival shifted to the left.

Let � and � denote the same as in case 1. Shifting the arrival time of ��
results in a positive � that is equal to the difference between �	 and �, i.e.,
� � �	 � � � �. In the deadline interval, the amount of lost spare capacities
caused by shifting can maximally be the same as the amount of gained spare
capacities in the arrival interval, giving ������ � ��. This implies:

Æ � �� � � �� ���� � �� �� � ������� (2.6)

Acceptance test for a set of sporadic tasks 37

In a more optimistic scenario, we can even lose less spare capacities in the
deadline interval than we get in the arrival interval, that is � � �. In that case,
we get:

Æ � �� � � �� ���� � �� (2.7)

��� � ��� implies:
Æ �

which is contradictory to �
�. This implies the assumption 1 doesn’t hold for
case 2.
Assumption 1 doesn’t hold either for case 1 or case 2. Therefore proposition 1
is true. This concludes the proof.

Critical points are calculated off-line for each interval, and only those points
are checked for the feasibility of the sporadic task set.

2.4.3 Off-line feasibility test for sporadic tasks

The feasibility test for the set of sporadic tasks works by creating a worst case
load demand of the sporadic tasks as described in section 2.4.1. We assume that
all sporadic tasks arrive with their maximum frequency and test if the demand
created can be accommodated into the static schedule at all critical slots. Here
follows the off-line guarantee algorithm for a set of sporadic tasks �:

Let:

 = index of ������

� = index of �����
���
��� = available sc for a sporadic task ��

from ����� to ������
 = an array containing slots reserved for

previously guaranteed sporadic tasks

�
� �� = initiates to empty set
����� �!� "� = returns number of reserved slots

between slot ! and slot ".
�����#� ��� �� = reserves � slots as close to � as

possible (as late as possible)

1: ��	
2:
�
� ��
3: ��� � �

38 On-line mechanism

4: �� �
�� $%�

5: �����
�
� ��

����
����� ������

6: ��
��������� ����
�
� �� ����������

7: ������ ���� �
� �� ����

�
� ��

8:
� ������
�
� � ��� �����

9: �	�� �����#� ���� ����� ����
�
� ��

10: ���� abort (set rejected)

Comments:
1: Investigate every critical slot.
2: No slots reserved yet.
3: Guarantee every sporadic task �� in the set.
4: Guarantee every invocation � �

� of �� .
5: Calculate sc available for �� from its arrival until its deadline. It is equal
to the sum of sc for all full intervals between ������
 and the �����
��� of � �

� ,
increased by
6: the remaining sc of the �����
��� available until ���� �

� �, decreased by
7: the amount of sc reserved for other, previously guaranteed sporadics that
intersect with � �

� .
8: If the available sc is greater or equal to the maximum execution time of � � ,
then
9: reserve slots needed for � �

� as close to its dl as possible, and continue.
10: If not enough spare capacity, abort the guarantee algorithm and report that
the guaranteeing failed.

2.5 On-line mechanism

During the system operation, the on-line scheduler is invoked after each slot.
It checks whether new dynamic tasks have arrived during the last slot. When
a set of sporadic tasks arrives to the system, the ready set of slot shifting is
expanded by sporadic tasks that are ready to execute. Soft aperiodic tasks can
be executed if the spare capacity of the current interval is greater than zero, and
there are no ready sporadic tasks.

Let:
� = current time
������ = spare capacity of the current

interval at time �.
���� = the ready set that consists of all periodic

On-line mechanism 39

and guaranteed sporadic tasks that have
earliest start time less or equal to the
current time.

We identify the following cases:

1. ���� � ��: There are no tasks ready to be executed, the CPU remains
idle.

2. ����
� �� � ���� �� soft aperiodic:

(a) ������ � � � ��� � ����� �� sporadic	 execute �� .

(b) ������ � � � ���� � ����	 execute ��.

(c) ������ � �: a periodic task from ready set has to be executed. Zero
spare capacities indicate that adding further activities will result in
a deadline violation of the guaranteed task set.

3. ����
� �� � ����� �� soft aperiodic: The task of ready set with the
shortest deadline is executed.

2.5.1 Maintenance of spare capacities

The decision of the scheduler is now used to update spare capacities, depending
on which type of task was selected for execution:

� Aperiodic execution: one slot of the spare capacities is used to execute a
slot of dynamic task. The spare capacity of the current interval has to be
decremented by one.

� Periodic execution: Executing a static task only swaps spare capacities.
Depending on the interval to which the executed task belongs to, the
current interval ��, or a subsequent one �� � & �
 is affected. The amount
of total spare capacities is unchanged.

� Sporadic execution: The spare capacity of the current interval is decre-
mented by one.

� No execution: One slot of spare capacity is used without dynamic pro-
cessing. Spare capacity has to be decremented by one.

40 Example

2.6 Example

Assume the following periodic tasks with execution times and precedence con-
straints as described in figure 2.6.

Node 0

Node 1

0 1 2 3 4 5 6 7 8 9

�� �� ��

0 1 2 3 4 5 6 7 8 9

�� ��

��

�� ��

�'�

������� � �

��

��

�'�

������� � �

Task MAXT dl
�� 2 5
�� 1 8
�� 1 9
�� 1 9
�� 2 9

Figure 2.6: Example offline sporadic guarantee – periodic tasks and offline
schedule.

We calculate intervals and spare capacities, as described in 2.3.1, and critical
slots as described in 2.4.2:

�����#�� ���� ����� ��� �� �	
�� � � 	
�� � 	 � � �
�� � � � � �
�� � � � � �

Intervals with their assigned tasks and critical slots are depicted in figure 2.7.
Now assume a sporadic set � � �(���� 	�� (��� ���� where the first param-
eter is maximum execution time and the other one the minimum inter-arrival
time at node 0. If we assume that sporadic tasks arrive with their maximum
frequencies, then the deadline of each invocation is equal to the release of the
next invocation. Now we apply the off-line guarantee algorithm on each task
in the sporadic set �. First, we try to guarantee (� and (� at critical slot 3, and
if they can be guaranteed, we proceed with investigation of slot 6. The LCM
of � is 10, which means that (� is invoked twice and (� once before the pat-
tern is repeated. We now illustrate the guarantee test for (� and (�. Numbers

Example 41

Node 0

Node 1

0 1 2 3 4 5 6 7 8 9

�� �� ��

0 1 2 3 4 5 6 7 8 9

�� ��

�� ��

����

Figure 2.7: Example offline sporadic guarantee – schedule with intervals.

above columns represent steps in the guarantee algorithm described in 2.4.3
(see figure 2.8 in parallel):

1 3 4 5 8 9 10

�� �� Inv. ��� �������� �

3 �� 1 1 � �� � �5�
2 3 � �� � �5,11�

�� 1 2 � �� � abort

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

�� �� �� �� �� ����
�

reserve

��
�

reserve
�� �� �� ��

Next sch. instance

))))))))))� �� �
��� ������ �	 ��� ��

Figure 2.8: Example offline sporadic guarantee – steps in guarantee algorithm.

The sporadic set cannot be guaranteed at critical slot 3. What we can do now
is to redesign the system and try again. Since we support distributed systems,
we could reallocate some of the periodic tasks from node 0 to node 1, or allo-
cate some of sporadics on node 1. In this example, we decide to schedule the
periodic task �� on node 1 instead of node 0. The new periodic schedule is
depicted in figure 2.9. Intervals remain the same, spare capacities and critical
slots have to be recalculated for �� and ��:

�� � ������ = 1+1=2 �� � ������ = 1-1=0
�	���� = 5+2=7 �	���� = 6+0=6

42 Example

Node 0

Node 1

0 1 2 3 4 5 6 7 8 9

��

��

��

0 1 2 3 4 5 6 7 8 9

�� ��

�� ��

�� ��

Figure 2.9: Example offline sporadic guarantee – offline schedule after re-
design.

We try to guarantee � on node 0 again, but this time one critical point has
changed; we got 7 instead for 6:

1 3 4 5 8 9

�� Task Inv. ��� � ��� �

3 �� 1 2 � �� � �6�
2 3 � �� � �6,11�

�� 1 3 � �� � �5,6,9,10,11�
7 �� 1 3 � �� � �11�

2 2 � �� � �11,15�
�� 1 3 � �� � �9,10,11,14,15�

The sporadic set is guaranteed at both critical slots and we can accept it.
Next follows the description of on-line execution (as described in section 2.5)
on node 0 for the periodic and sporadic tasks described above, extended with
one soft aperiodic task, ���
�
�, where the first parameter is arrival time, and
the other one is execution time. Assume � arrives at slot 3. ���� containts
tasks that are ready to execute in slot �. The execution trace is depicted in
figure 2.11 (“case” refers to the cases described in 2.5):

Example 43

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

�� �� �� ����
� ��

���
� ��

�

�� �� �� ��

a) Critical slot 3

b) Critical slot 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

�� �� �� ����
� ��

���
� ��

�

�� �� �� ��

Figure 2.10: Example offline sporadic guarantee – guaranteeing after redesign.

� ���� case exe. sc

0 ���� ��� 3 �� unchanged
1 ���� ��� 3 �� unchanged
2 ���� ���, 2b �� ������ decreased
3 ���� (

�
� � (�� ��� 2a (�� ������ decreased

4 ���� (�� ��� 2a (� ������ decreased
5 ���� (�� ��� 2a (� ������ decreased
6 ���� ��� 2b �� ������ decreased
7 ���� 3 �� unchanged
8 ���� (

�
�� 2c �� unchanged

Next sch.
instance

Node 0
0 1 2 3 4 5 6 7 8 9

�� ����
� ���� ��

�� ��

Figure 2.11: Example offline sporadic guarantee – online execution.

44 Conclusion

2.7 Conclusion

In this paper, we presented an algorithm to handle event-triggered sporadic
tasks, i.e., with unknown arrival times, but known maximum arrival frequen-
cies, in the context of time-triggered, distributed schedules with general con-
straints. The sporadic tasks are guaranteed during design time, allowing reschedul-
ing or redesign in the case of failure. At run-time, resources reserved for spo-
radic tasks can be reclaimed and used for efficient aperiodic task handling.

Our algorithm is based on the slot shifting method, which provides for
the combination of time-triggered off-line schedule construction and on-line
scheduling of aperiodic activities. It analyzes constructed schedules for unused
resources and leeway in task executions first. The run-time scheduler uses this
information to include aperiodic tasks, shifting other task executions (”slots”)
to reduce response times without affecting feasibility. It can also be used to
perform online guarantees.

We provided an off-line schedulability test for sporadic tasks based on slot
shifting. It constructs a worst case scenario for the arrival of the sporadic task
set and tries to guarantee it in the off-line schedule. The guarantee algorithm is
applied at selected slots only. At run-time, it uses the slot shifting mechanisms
to feasibly schedule sporadic tasks in union with the off-line scheduled periodic
tasks, while allowing resources to be reclaimed for aperiodic tasks.

Since the major part of preparations is performed off-line, the involved on-
line mechanisms are simple. Furthermore, the reuse of resources allows for
high resoure utilization.

Acknowledgements

The authors wish to thank the reviewers for their fruitful comments which
helped to improve the quality of the paper. Further thanks go to Jukka Mäki-
Turja and Björn Lindberg for their careful reviewing and stimulating discus-
sions.

Bibliography

[1] A.K. Mok. Fundamental Design Problems for the Hard Real-Time Envs.
PhD thesis, MIT, May 1983.

[2] K. Jeffay. Scheduling sporadic tasks with shared resources in hard real-
time systems. Dept. of Comp. Sci., Univ. of North Carolina at Chapel
Hill, 1992.

[3] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming
in hard real-time environment. Journ. of the ACM, 20, 1, Jan. 1973.

[4] T. Tia, W.S. Liu, J. Sun, and R. Ha. A linear-time optimal acceptance
test for scheduling of hard real-time tasks. Dept. of Comp. Sc., Univ. of
Illinois at Urbana-Champaign, 1994.

[5] M. Spuri, Giorgio C. Buttazzo, and F. Sensini. Robust aperiodic schedul-
ing under dynamic priority systems. In Proc. of the IEEE RTSS, Dec.
1995.

[6] M. Caccamo and Giorgio C. Buttazzo. Exploiting skips in periodic tasks
for enhancing aperiodic responsiveness. Proc. of the 18th Real-Time Sys-
tems Symposium, USA, Dec. 1997.

[7] A. Burns, N.C. Audsley, M.F. Richardson, and A.J. Wellings. Hard
real-time scheduling: the deadline monotonic approach. Proc. of the
IFAC/IFIP Workshop, UK, 1992.

[8] G.C. Buttazzo, G. Lipari, and L. Abeni. A bandwidth reservation algo-
rithm for multi-application systems. Proc. of the Intl. Conf. on Real-time
Computing Systems and Applications, Japan, 1998.

46 BIBLIOGRAPHY

[9] G. Fohler. Joint scheduling of distributed complex periodic and hard ape-
riodic tasks in statically scheduled systems. In Proc. 16th Real-time Sys-
tems Symposium, Pisa, Italy, 1995.

[10] J.A. Stankovic, K. Ramamritham, and C.-S. Cheng. Evaluation of a
flexible task scheduling algorithm for distributed hard real-time systems.
IEEE Trans. on comp., 34(12), Dec 1995.

[11] H. Kopetz. Sparse time versus dense time in distributed real time systems.
In Proc. of the Second Int. Workshop on Responsice Comp. Sys., Saitama,
Japan, Oct. 1992.

[12] P. Puschner and C. Koza. Calculating the maximum execution time of
real-time programs. RT Systems Journal, 1989.

[13] Giorgio C. Buttazzo. Hard Real-time Computing Systems: Predictable
Scheduling Algorithms and Applications. Kluwer Academic Publishers,
1997.

[14] G. Fohler. Flexibility in Statically Scheduled Hard Real-Time Systems.
PhD thesis, Technische Universität Wien, Austria, Apr. 1994.

[15] M.R. Garey., D.S. Johnson, B.B. Simons, and R.E. Tarjan. Scheduling
unit-time tasks with arbitrary release times and deadlines. IEEE Trans.
on Soft. Eng., May 1981.

[16] M. Chetto and H. Chetto. Scheduling periodic and sporadic tasks in a
real-time system. Inf. Proc. Letters, Feb. 1989.

[17] N.C. Audsley, A. Burns, M.F. Richardson, and A.J. Wellings. Deadline
monotonic scheduling theory. WRTP’92. Preprints of the IFAC Work-
shop. Pergamon Press, U.K, 1992.

Chapter 3

Paper B: Online Handling of
Firm Aperiodic Tasks in
Time Triggered Systems

Damir Isovic and Gerhard Fohler
In WiP Proceedings of 12th EUROMICRO Conference on Real-Time Systems,
Stockholm, Sweden, June 2000

Abstract

A number of industrial applications advocate the use of time triggered ap-
proaches for reasons of predictability, cost, product reuse, and maintenance.
The rigid offline scheduling schemes used for time triggered systems, how-
ever, do not provide for flexibility. At runtime, aperiodic tasks can only be
included into the unused resources of the offline schedule, supporting neither
guarantees nor fast response times.

In this paper we present an algorithm for flexible hard aperiodic task han-
dling in offline scheduled systems: it provides an O(N) acceptance test to de-
termine if a set of aperiodics can be feasibly included into the offline scheduled
tasks, and does not require runtime handling of resource reservation for guar-
anteed tasks. Thus, it supports flexible schemes for rejection and removal of
aperiodic tasks, overload handling, and simple reclaiming of resources.

As a result, our algorithm provides for a combination of offline scheduling
and online hard aperiodic task handling.

Introduction 49

3.1 Introduction

Time triggered real-time systems have been shown to be appropriate for a va-
riety of critical applications: they provide verifiable timing behavior and allow
for distribution, complex application structures, and general constraints, such
as precedence or end-to-end deadlines. Their benefits are, however, limited for
applications with not completely known characteristics, such as arrival times.
Including such non periodic tasks in the rigid offline schedules, as used for
time triggered systems, can be resource inefficient at best for sporadic tasks,
and impossible for aperiodics, i.e., without knowledge of arrival times.

Real-world applications demand flexible handling of aperiodic tasks: ef-
ficient acceptance tests, resource reservation if a task can be guaranteed, but
also specific rejection strategies for the negative case. Often, aperiodics are
guaranteed on a first-come-first-serve basis, i.e., already guaranteed tasks will
be executed, and only newly arrived ones rejected, implying that earlier arriv-
ing tasks are more important. Instead, the selection of which tasks to reject or
remove should be left to the designer, allowing values and importance assigned
to tasks, not on their arrival times.

In this paper, we present methods for the flexible online handling of firm
aperiodic tasks based on offline constructed schedules for time triggered sys-
tems. It is based on slot shifting, [1], a method to combine offline and online
scheduling by utilizing unused resources. We provide an EDF based accep-
tance test of ���� to determine the feasible inclusion of aperiodic tasks into
the offline scheduled tasks. The algorithm avoids explicit runtime handling
of resource reservations for the guaranteed tasks and their impact on the of-
fline scheduled tasks. Therefore, flexible schemes for rejection and removal of
tasks and aperiodic overload handling can be applied. The resources of tasks
completed earlier can be reclaimed for other aperiodic tasks without further
provisions or explicitly freeing them.

Aperiodic task handling has been studied extensively for many scheduling
schemes. Server based algorithms, for example, have been presented for earli-
est deadline, e.g., [2], and fixed priority systems, e.g., [3]. Example algorithms
for the selection of tasks to reject in overload situations have been discussed in
[4], [5],[6], [7]. These algorithms assume control over all tasks in the system
and do not take into account the impact of offline scheduled tasks. The algo-
rithm presented in [1] for guarantees of single firm aperiodic tasks on offline
schedules does not provide for removal of guaranteed tasks.

The rest of the paper is organized as follows: section 3.2 presents slot shift-
ing, the method we use to combine offline and online scheduling. We introduce

50 Slot Shifting: Flexibility for Time Triggered Systems

the motivation and basic idea of our algorithm in section 3.3, and the detailed
description in section 3.4. An example in section 3.5 illustrates the algorithm.
Section 3.6 concludes the paper and gives an outlook for further work.

3.2 Slot Shifting: Flexibility for Time Triggered
Systems

The rigid offline scheduling schemes used for time triggered systems do not
provide for flexibility. Including non periodic tasks in the offline schedule
can be impossible for aperiodics, i.e., without any knowledge or restriction
on arrival times. At runtime, aperiodic tasks can only be included into the
unused resources of the offline schedule, supporting neither guarantees nor
short response times.

In this section, we briefly describe the slot shifting method [1] which we
use as a basis to combine offline and online scheduling. It provides for the effi-
cient handling of aperiodic tasks on top of a distributed schedule with general
task constraints. Slot shifting extracts information about unused resources and
leeway in an offline schedule and uses this information to add tasks feasibly,
i.e., without violating requirements on the already scheduled tasks. A detailed
description can be found in [1].

First, a standard offline scheduler, e.g., [8], or [9] creates scheduling ta-
bles for the periodic tasks. It allocates tasks to nodes and resolves precedence
constraints by ordering task executions.

Start-times and deadlines The scheduling tables list fixed start- and end
times of task executions, eliminating all flexibility. The only assignments fixed
by the specification of the tasks’ feasibility, however, are the initiating and con-
cluding tasks in the precedence graph, and, as we assume message transmission
times to be fixed here1, tasks sending or receiving inter-node messages. These
are the only fixed start-times and deadlines, all others are calculated recursively
during offline preparations. The execution of all other tasks may vary within
the precedence order, i.e., they can be shifted.

Intervals and spare capacities The deadlines of tasks are then sorted for
each node and the schedule is divided into a set of disjoint execution intervals

1We apply the same mechanisms to the network as well, i.e., shifting messages, as detailed in
[1].

Motivation and Approach 51

for each node. Spare capacities are defined for these intervals.
Each deadline calculated for a task defines the end of an interval � �, �������.

Several tasks with the same deadline constitute one interval.
The spare capacities of an interval �� are calculated as given in formula 3.1:

������ � ���� �
�
����

��� �� � ��
����������� �� (3.1)

The length of �� minus the sum of the activities assigned to it is the amount of
idle times in that interval. These have to be decreased by the amount “lent” to
subsequent intervals: Tasks may execute in intervals prior to the one they are
assigned to. Then they “borrow” spare capacity from the “earlier” interval.

After determination of intervals and spare capacities, the offline prepara-
tions are completed and the amount and location of unused resources is avail-
able for online use.

Online scheduling Online scheduling is performed locally for each node. If
the spare capacities of the current interval ����	� � �, EDF is applied on the set
of ready tasks. ����	� � � indicates that a guaranteed task has to be executed
or else a deadline violation in the task set will occur. Soft aperiodic tasks,
i.e., without deadline, can be executed immediately if ���� 	� � �. After each
scheduling decision, the spare capacities of the affected intervals are updated.

3.3 Motivation and Approach

Guaranteeing and handling of firm aperiodic tasks involves three steps:

Acceptance test: Upon arrival of a firm aperiodic task, a test determines
whether there are enough resources available to include it feasibly in the set of
previously guaranteed tasks and if the scheduling strategy will ensure timely
completion.

Reservation of resources: If the task can be accepted, it is guaranteed by
providing a mechanism which ensures that the resources it requires will be
available for its execution. This can be achieved, e.g., by removing these re-
sources from the available ones, or by ensuring that subsequent guarantees will
not remove them. Note that acceptance test and guarantee can be separated.

52 Motivation and Approach

Rejection strategy: A failed acceptance test indicates an overload situation.
The common response, not to guarantee the task under consideration, assumes
that already guaranteed tasks are more important than newly arriving ones.
This is, however, not generally the case. Rather, the importance order of the
tasks is independent of their arrival time. Consequently, a rejection strategy is
required, which determines which task or tasks – out of all guaranteed or newly
arrived tasks – to reject or abort.

3.3.1 Shortcommings of Previous Version

The original version of slot shifting provides an online guarantee algorithm of
���� as well: upon arrival of a firm aperiodic task �, the spare capacities up
to its deadline are summed up and compared to the execution time demand.
If � is accepted, the spare capacities and intervals are recalculated taking into
account that resources needed for � are not available for other tasks. If the
deadline of task � does not overlap with one of offline calculated intervals,
then the interval that contains ����� needs to be split. The details how the
online slot shifting guarantee algorithm works can be found in [1].

However, we want to avoid the creation of new intervals, in order to keep
the online mechanism as simple as possible. While this algorithm guarantees
single aperiodics, it has limited flexibility: only the task currently tested is
possibly rejected; once guaranteed, aperiodics will execute. Changes in the set
of guaranteed tasks require costly deletion of intervals, recalculation of spare
capacities, and new guarantees. Thus, flexible schemes for rejections, removal
of guaranteed tasks, and overload handling induce prohibitively high overhead.

3.3.2 Basic Idea

The new method presented here separates acceptance and guarantee. It elimi-
nates the online modficiation of intervals and spare capacities and thus allows
rejection strategies over the entire aperiodic task set.

The basic idea behind the method is based on standard earliest deadline
first guarantee, but sets it to work on top of the offline schedule: EDF is based
on having full availability of the CPU; we have to consider interference from
offline scheduled tasks and pertain their feasibility.

Assume, at time ��, we have a set of guaranteed aperiodic tasks ��� and an
offline schedule represented by offline tasks, intervals, and spare capacities. At
time ��� �� � �� , a new aperiodic � arrives. Meanwhile, a number of tasks of
��� may have executed; the remanining task set at �� is denoted ��� . We test if

Algorithm Description 53

� � ��� can be accepted, considering offline tasks. If so, we add � to the set
of guaranteed aperiodics. No explicit reservation of resources is done, which
would require changes in the intervals and spare capacities. Rather, resources
are guaranteed by accepting the task only if it can be accepted together with
the previous guaranteed and offline scheduled ones. This enables the efficient
use of rejection strategies.

3.4 Algorithm Description

Let ��� denote a set of guaranteed firm aperiodic tasks at time ��.

��� � �'� � ����'�� � � � �� � ���'�� � ���'�����

where ����'�� denotes the remaining execution time of task ' � at time ��, and
���'�� is its absolute deadline. We keep track of how much each task has
executed, which means we know the remaining execution times of each task
at any time. If a guaranteed task has not yet started to execute, the remaining
execution time is equal to its actual execution time, i.e., � ���'�� � ��'��.
Tasks in ��� are ordered by increasing deadlines, meaning that task ' � has
earlier deadline than task '���. We also know that each task in ��� has a
deadline later than ��.

Now assume a new aperiodic task � arrives at time ��, with the execution
time ���� and absolute deadline �����. From time �� to ��, some tasks in ���
could have executed up to ��, which is reflected as follows:

� �'��)))� '���� – tasks completed by ��:

�'� � ��� � ����'�� � �� � �
 � � � ��

where ����'�� denotes the remaining execution time of ' � at time ��.

� '� – task currently ready to run, according to EDF. It may have executed
partially before, so we need only to consider its remaining execution
time, ����'�� � ��'��.

� �'����)))� '�� – not yet started tasks that need to execute fully:

�'� � ��� � ����'�� � ��'��� � � � �
 � ��

where � is the number of tasks in ��� .

54 Algorithm Description

So, when guaranteeing a new aperiodic task � at time ��, we need not consider
already completed tasks, but only the remaining portion of the current task and
the tasks that have not started yet:

��� � ��� � ��� � �'�� '����)))'��

A new aperiodic task � is accepted if the set � � � ��� � � is feasible, consid-
ering the offline scheduled and guaranteed tasks.

3.4.1 Acceptance Test for a Set of Aperiodic and Offline Sched-
uled Tasks

Spare capacities and intervals of slot shifting make sure that all offline sched-
uled tasks are guaranteed to complete before their deadlines. Those offline
tasks are scheduled to execute as late as possible, but under run-time they can
be executed earlier, i.e., we can shift their execution within their feasibility
window.

Aperiodic tasks use unused resources in the offline schedule. The amount
and location of available resources are represented as intervals and spare ca-
pacities. So, we want to insert aperiodic tasks without violating the feasibility
of offline tasks.

Let � � ���� ���)))� ��� be a set of aperiodic tasks that need to be sched-
uled together with the offline tasks. We accept the aperiodic set if each task in
� is guaranteed to complete before its deadline, i.e., the following must hold:

�
� � �
 � � � ����� �

�
sc[�� ������] ,
 � �
sc[��������� ������] ,
 � �

where � is current time and notation ������ ��� means the spare capacity from
time �� to time ��. Otherwise, we need to reject some task(s).

Note that the spare capacities are not distributed in a uniform way through-
out the schedule. Rather, as described in 3.2, the schedule is divided into inter-
vals, each with an individual value of spare capacity. Consequently, the amount
of spare capacity in a window depends on the position of that window in the
schedule.

The finishing time of a firm aperiodic task �� is calculated with respect to
the finishing time of the previous task, ����. Without any offline tasks, it is
calculated the same as in EDF algorithm:

������ � �������� � �����

Algorithm Description 55

Since we guarantee firm aperiodic tasks on the top of an offline schedule, we
need to consider the feasibility of offline tasks. This extends the formula above
with a new term that reflects the amount of resources reserved for offline tasks:

������ � ������ �

�
�� R[�� ������] ,
 � �
���������R[��������� ������] ,
 � �

where ���� ��� stands for the amount of resources (in slots) reserved for the
execution of offline tasks from time �� to time ��. We can access ���� ��� via
spare capacities and intervals at runtime:

 ���� ��� � ��� � ���� ������ ���

As ������ appears on both sides of the equation, a simple solution is not possi-
ble. Rather, we present an algorithm for computation of finishing times of firm
aperiodic tasks with complexity of ����, which is further discussed in next
subsection.

3.4.2 Pseudo Code

We now present the acceptance test and algorithm for finishing time calculation
in pseudo code. Read the comments below in parallel:

1: ����
 � �� ���'�� � ������
���;

2: �� � ���*� ���!����'��� ��� �����;
3:
���� � �������
4: ����& �
� �� & � �� & ����
5: �� � ���*� ���� ���'���;
6:
���� � ���'���	 not feasible!

�
7:
�����������;

�
8: ���� reject �

9: ���*� ����� ������
10: ��� � �������	� � ����	�� ���;
11: +	
�� ����� � �����

����� ��	� � ��

56 Algorithm Description

���� � ����� ���;
���;
��� � �������	�
��� � ����	�;

�
12: return ���� � �����;

�

Comments:

1. Find the position of the last task in set ��, ('��, that has deadline before
�����.

2. Get the finishing time of� based on the finishing time of its predecessor
'�, and �’s execution demand.

3. If � can be finished before its deadline, then...

4. ...go through all the tasks in �� with deadlines after �����.

5. Get the finishing time of current task, based on the finishing time of its
predecessor.

6. If any of the investigated tasks fails to complete before its deadline, that
means that adding � to �� would result in a set that is not feasible, i.e.,
not all tasks in �� will complete before their deadlines. We can either
reject � or some other task(s) in ��.

7. Otherwise, if all tasks can be finished by their deadlines even if� added,
then insert � into the set of previously guaranteed firm aperiodic tasks
��.

8. ...otherwise, if � cannot be completed before its deadline reject it.

9. Function: Calculates the finishing time of a task based on predecessor
task’s finishing time, and the execution demand of the investigated task.

10. Calculate the remaining spare capacity of the current interval, i.e., the
interval that contains the finishing time of the previous task (the earliest
possible start time for current task).

Algorithm Description 57

11. Without offline tasks, ������ � �������� � �����. In the presence of
offline tasks, however, we do not have all CPU time available, but only
the spare capacities in intervals. This step finds the number of intervals
needed to accommodate the computation time of the task. We “simulate”
the execution of the investigated task by going through intervals and “fill-
ing up free slots”, until the remaining execution time is exhausted.

12. Return the calculated finishing time of the current task.

The complexity of algorithm above is ����, because we go through all tasks
only once, and calculate their finishing times on the way, as depicted in figure
3.1. The for-loop picks a task and start the while-loop, which calculates its
finishing time by going through the intervals. Then we pick another task, and
continue traversing the intervals at the point where we got interrupted by for-
loop, and so on. We do not have any nested loops, and we always continue
forward.

�	� �	��� �	��� �	���

�� ���� ���� ����

while while while

���� ���� ���� ����for

Figure 3.1: Online acceptance test for firm aperiodic tasks – algorithm com-
plexity

3.4.3 Resource Reservation

The method presented here reserves resources implicitly, by only accepting a
new task if it can be guaranteed together with all previously guaranteed ones.
Consequently, removal of guaranteed tasks and changes in the set of tasks can
be handled efficiently.

3.4.4 Rejection Strategies and Overload Handling

Our method allows for easy changes in the set of guaranteed tasks and thus
supports rejection strategies and overload handling mechanisms. It allows a

58 Example

new set of candidates to be submitted to the acceptance test and does not require
modifications to the reserved resources for guaranteed tasks. We are currently
investigating the application of overload handling schemes, such as presented
in [4], [7].

3.4.5 Resource Reclaiming

Should aperiodic tasks use less resources than expressed in worst case param-
eters, our method directly reclaims these without recalculation of available re-
sources. Rather, the next time the acceptance test is performed, the fact that a
task has an earlier finishing time is considered in the calculations.

3.5 Example

Assume an offline schedule with intervals and spare capacities as depicted in
figure 3.2 (the shaded boxes represent offline tasks). Let � � be the set of previ-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

��,sc=3 ��,sc=2 ��,sc=2 ��,sc=3

Figure 3.2: Example online firm aperiodic guarantee– static schedule

ously guaranteed but not completed firm aperiodic tasks at current time � � :

�� � �'��� ���� '��
� ���� '���� ����

where the first parameter is the remaining execution time, the second absolute
deadline. Tasks is �� are ordered by increasing deadlines. At time � �
we have the execution scenario of both offline scheduled tasks and guaranteed
aperiodic tasks from �� as described in figure 3.3. Guaranteed firm aperiodic
tasks will execute in the first available slots, in EDF order.

Now assume a firm aperiodic task���� ��� arrives at run-time at � � . We
perform the online guarantee algorithm to investigate if we can accept �:

1. Task '� has earlier deadline than �, so '�’s position in the set �� re-
mains unchanged, i.e., before�. We do not need to guarantee it again.

Example 59

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

�� �� �� ��

�� ���� ����

Figure 3.3: Example online firm aperiodic guarantee – execution without new
task.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

�� �� �� ��

�� ��

2. Task '� has a deadline after the deadline of �, which means that the �
should execute before '�. We must check if there is enough resources
available for � to complete before its deadline. We calculate the finish-
ing time of � which is slot 15:

��� � ���*� �����
� ����� � �	 � ��

The finishing time is less than the deadline of �, which means that �
could complete in time.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

�� �� �� ��

�� �� � � �

3. Now we must check if accepting task � will cause any of other guaran-
teed firm aperiodic tasks ('�, '�) to miss their deadlines. We calculate
their finishing times:

����
� ���*� ����� ���'��� � �� � ��

����
� ���*� �����

� ���'��� � �� � ��

Both '� and '� can complete before their deadlines, which means that
the new task � can be guaranteed and therefore inserted in the set of
guaranteed firm aperiodic tasks ��.

60 Summary and Outlook

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

�� �� �� ��

�� �� � � � �� ��

3.6 Summary and Outlook

In this paper we presented an algorithm for the flexible handling of firm aperi-
odic tasks in offline scheduled systems. It is based on slot shifting, a method
to combine offline and online scheduling methods.

First, a standard offline scheduler constructs a schedule, resolving com-
plex task constraints such as precedence, distribution, and end-to-end dead-
lines. This is then analyzed for unused resources and leeway in task executions.
The run-time scheduler uses this information to handle aperiodic tasks, shift-
ing other task executions (”slots”) to reduce response times without affecting
feasibility. We provided an ���� acceptance test for a set of aperiodic tasks
on the offline schedule and guarantee tasks without explicit reservation of re-
sources. Our method supports flexible, value based selections of tasks to reject
or remove in overload situations, and simple resource reclaiming.

While the current algorithm enables the rejection and removal of tasks, it
does not address the issue of selection. We are investigating into providing a
number of overload handling strategies, e.g., [4], [7].

In a previous paper [10], we presented an offline test for sporadic tasks
based on worst case arrival assumptions. It cannot utilize less frequent arrivals
for firm aperiodic tasks since the runtime overheads to reflect the continuous
changes in resource availability are prohibitively high. We are looking into
applying the algorithm presented here to handle sporadic tasks at runtime.

Bibliography

[1] G. Fohler. Joint scheduling of distributed complex periodic and hard ape-
riodic tasks in statically scheduled systems. In Proc. 16th Real-time Sys-
tems Symposium, Pisa, Italy, 1995.

[2] M. Spuri and G. Buttazzo. Efficient aperiodic service under earliest dead-
line scheduling. In Proceedings of the Real-Time Systems Symposium,
Dec. 1994.

[3] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for hard-
real-time systems. Real- Time Systems, 1, July 1989.

[4] G. Buttazzo and J. Stankovic. Adding Robustness in Dynamic Preemptive
Scheduling. Kluwer Academic Publishers, 1995.

[5] G. Koren and D. Shasha. Skip-over: Algorithms and complexity for over-
loaded systems that allow skips. In Proceedings of the Real-Time Systems
Symposium, Dec. 1992.

[6] S. Baruah, G. Koren, D. Mao, and B. Mishra. On the competitiveness of
on-line real-time task scheduling. Real- Time Systems, 2(4), June 1992.

[7] S. A. Aldarmi and A. Burns. Dynamic value-density for scheduling real-
time systems. In Proceedings 11th Euromicro Conference on Real-Time
Systems, Dec 1999.

[8] K. Ramamritham. Allocation and scheduling of complex periodic tasks.
In 10th Int. Conf. on Distributed Computing Systems, 1990.

[9] G. Fohler and C. Koza. Heuristic scheduling for distributed real-time sys-
tems. Technical Report 6/98, Institut für Technische Informatik, Technis-
che Universität Wien, April 1989.

62 BIBLIOGRAPHY

[10] Damir Isovic and Gerhard Fohler. Handling sporadic tasks in off-line
scheduled distributed hard real-time systems. Proc. of 11th EUROMICRO
conf. on RT systems, York, UK, June 1999.

Chapter 4

Paper C: Efficient
Scheduling of Sporadic,
Aperiodic, and Periodic
Tasks with Complex
Constraints

Damir Isovic and Gerhard Fohler
In Proceedings of the 21st IEEE Real-Time Systems Symposium, Orlando,
Florida, USA, November 2000

Abstract

Many industrial applications with real-time demands are composed of mixed
sets of tasks with a variety of requirements. These can be in the form of stan-
dard timing constraints, such as period and deadline, or complex, e.g., to ex-
press application specific or non temporal constraints, reliability, performance,
etc. Arrival patterns determine whether tasks will be treated as periodic, spo-
radic, or aperiodic. As many algorithms focus on specific sets of task types and
constraints only, system design has to focus on those supported by a particular
algorithm, at the expense of the rest.

In this paper, we present an algorithm to deal with a combination of mixed
sets of tasks and constraints: periodic tasks with complex and simple con-
straints, soft and firm aperiodic, and sporadic tasks. Instead of providing an
algorithm tailored for a specific set of constraints, we propose an EDF based
runtime algorithm, and the use of an offline scheduler for complexity reduction
to transform complex constraints into the EDF model. At runtime, an exten-
sion to EDF, two level EDF, ensures feasible execution of tasks with complex
constraints in the presence of additional tasks or overloads. We present an
algorithm for handling offline guaranteed sporadic tasks, with minimum in-
terarrival times, in this context which keeps track of arrivals of instances of
sporadic tasks to reduce pessimism about future sporadic arrivals and improve
response times and acceptance of firm aperiodic tasks.

A simulation study underlines the effectiveness of the proposed approach.

Introduction 65

4.1 Introduction

Many industrial applications with real-time demands are composed of tasks of
various types and constraints. Arrival patterns and importance, for example,
determine whether tasks are periodic, aperiodic, sporadic, and soft, firm, or
hard. The controlling real-time system has to provide for a combined set of
such task types. The same holds for the various constraints of tasks. In addi-
tion to basic temporal constraints, such as periods, start-times, deadlines, and
synchronization demands, e.g., precedence, jitter, or mutual exclusion, a sys-
tem has to fulfill complex application demands which cannot be expressed as
generally: Control applications may require constraints on individual instances
[1], rather than periods, reliability demands can enforce allocation and separa-
tion patterns, or engineering practice may require relations between system
activities, all of which cannot be expressed directly with basic constraints.

The choice of scheduling algorithm or paradigm determines the set of types
and constraints on tasks during system design. Earliest deadline first or fixed
priority scheduling, for example, are chosen for simple dispatching and flexi-
bility. Adding constraints, however, increases scheduling overhead [2] or re-
quires new, specific schedulability tests which may have to be developed yet.
Offline scheduling methods can accommodate many specific constraints and
include new ones by adding functions, but at the expense of runtime flexibility,
in particular inability to handle aperiodic and sporadic tasks. Consequently, a
designer given an application composed of mixed tasks and constraints has to
choose which constraints to focus on in the selection of scheduling algorithm;
others have to be accommodated as well as possible.

In this paper we present an algorithm to deal with mixed sets of tasks and
constraints: periodic tasks with complex and simple constraints, soft and firm
aperiodic, and sporadic tasks. Instead of providing an algorithm tailored for a
specific set of constraints only, we propose an EDF based runtime algorithm,
and the use of an offline scheduler for complexity reduction to transform com-
plex constraints into the simple EDF model. So, at runtime, all tasks are con-
strained by start-time and deadline only, which serves as an “interface” be-
tween tasks of mixed constraints. An extension of EDF, two level EDF ensures
the feasible execution of those tasks, whose complex constraints have been
transformed offline, even in the presence of additional runtime activities and
overloads. It serves as a basis for the sporadic task handling presented.

The offline transformation determines resource usage and distribution as
well, which we use to handle sporadic tasks. An offline test determines and
allocates resources for sporadic tasks such that worst case arrivals can be ac-

66 Introduction

commodated at any time. At runtime, however, when a sporadic task arrives,
we do not need to account for its arrival at least for its minimum inter-arrival
time and reuse its allocated resources for aperiodic tasks. Our algorithm keeps
track of sporadic task arrivals to update the “current worst case” and applies it
for an online ���� acceptance test for aperiodic tasks.

Our methods also provides for the integration of offline and online schedul-
ing: A complete offline schedule can be constructed, transformed into EDF
tasks, and scheduled at runtime together with other EDF tasks. Thus, our
method combines handling of complex constraints, efficient and flexible run-
time scheduling, as well as offline and online scheduling.

A variety of algorithms have been presented to handle periodic and ape-
riodic tasks, e.g., [3], [4], [5]. Most concentrate on particular types of con-
straints. An on-line algorithm for scheduling sporadic tasks with shared re-
sources in hard real-time systems has been presented in [6]. Scheduling of
sporadic requests with periodic tasks on an earliest-deadline-first (EDF) basis
[7] has been presented in [8]. The slot shifting algorithm to combine offline
and online scheduling was presented in [9]. It focuses on inserting aperiodic
tasks into offline schedules by modifying the runtime representation of avail-
able resources. While appropriate for including sequences of aperiodic tasks,
the overhead for sporadic task handling becomes too high. An offline test for
sporadic tasks was given in [10]. It does not, however, provide for firm aperi-
odic tasks, only soft ones. The method presented here is based on the offline
transformation of slot shifting but provides a new runtime algorithm, in partic-
ular for efficient sporadic task handling and resource reclaiming at runtime. It
handles firm and soft aperiodic tasks as well.

The use of information about amount and distribution of unused resources
for non periodic activities is similar to the basic idea of slack stealing [5], [11]
which applies to fixed priority scheduling. Our method applies this basic idea
in the context of offline and EDF scheduling. It requires a small runtime data
structure, simple runtime mechanisms, going through a list with increments
and decrements, provides���� acceptance tests and facilitates changes in the
set of tasks, for example to handle overloads. Furthermore, our method pro-
vides for handling of slack of non periodic tasks, as well, e.g., instances of
tasks can be separated by intervals other than periods.

The rest of this paper is organized as follows: The task model is described
in section 4.2. The subsequent sections describe the different types of tasks:
section 4.3 describes handling of periodic tasks, the offline complexity reduc-
tion of constraints, and a description of the extended EDF runtime scheduling
method. Soft and firm aperiodic task handling is discussed in section 4.4. The

Task and System Assumptions 67

algorithm for handling sporadic task together with the other task types is pre-
sented in section 4.5. Simulation results in section 4.6 illustrate the effective-
ness of the algorithm. Finally, section 4.7 concludes the paper.

4.2 Task and System Assumptions

In this paper, we distinguish between simple constraints, i.e., period, start-time,
and deadline, for the earliest deadline first scheduling model, and complex con-
straints.

4.2.1 Complex constraints

We refer to such relations or attributes of tasks as complex constraints, which
cannot be expressed directly in the earliest deadline first scheduling model
using period, start-time, and deadline. Offline transformations are needed to
schedule these at runtime with EDF. For some specific constraints such trans-
formations have been presented, e.g., [12], [13]. Our method uses a general
technique, capable of incorporating various constraints and their combinations.
In the following, we list examples to illustrate and motivate the general ap-
proach.

Synchronization: Execution sequences, such as sampling - computing - ac-
tuating require a precedence order of task execution. An algorithm for the
transformation of precedence constraints on single processors to suit the EDF
model has been presented in [12]. Many industrial applications, however, de-
mand the allocation of tasks, in particular for sensing and actuating to different
processors, necessitating a distributed system with internode communication.
The transformation of precedence constraints with an end-to-end deadline in
this case requires subtask deadline assignment to create execution windows on
the individual nodes so that precedence is fulfilled, e.g., [14]. The analysis
presented in [15] focuses on schedulability analysis for pairs of tasks commu-
nicating via a network rather than the decomposition of the precedence graph.

Jitter: The execution start or end of certain tasks, e.g., sampling or actuating
in control systems, is constrained by maximum variations. Strictly periodic
execution can solve some instances of this problem, but over-constrains the
specification. Algorithms are computationally expensive [16].

68 Task and System Assumptions

Non periodic execution: The commonly used model is periodic, i.e., in-
stances of tasks are released at constant, periodic intervals of time. Non pe-
riodic constraints, such as some forms of jitter, e.g., for feedback loop delay
in control systems [1], which require instances of tasks to be separated by non
constant length intervals cannot be handled in this model, or have to be fitted
into the periodic model at the cost of over constrained specification. Similar
reasoning applies to constraints over more than one instance of a task, e.g., for
iterations, data history or ages. A constraint can be of the type “separate the
execution of instance
 and
�� by no more than��! and no less than�
�”.

Non temporal constraints: Demands for reliability, performance, or other
system parameters impose demands on tasks from a system perspective, e.g.,
to not allocate two tasks to the same node, or to have minimum separation
times, etc.

Application specific constraints - engineering practice: Applications may
have demands specific to their nature. Duplicated messages on a bus in an
automotive environment, for example, may need to follow a certain pattern
due to interferences such as EMI. Wiring can have length limitations, imposing
allocation of certain tasks to nodes according to their geographical positions.
An engineer may want to improve schedules, creating constraints reflecting his
practical experience.

4.2.2 Task types

We assume all tasks in the system to be fully preemptive and to communicate
with the rest of the system via data read at the beginning and written at the end
of their executions.

Periodic tasks execute their invocations within regular time intervals. A pe-
riodic task �� is characterized by its worst case execution time (+���) [17],
period (,) and relative deadline (��).
The ��� invocation of �� is denoted � �

� and is characterized by its earliest start
time (���) and relative deadline (��).

We refer to a periodic task with complex constraints which have been trans-
formed offline as an offline task.

Task and System Assumptions 69

Aperiodic tasks are invoked only once. Their arrival times are unknown at
design time. A firm aperiodic task �� has the following set of parameters:
the arrival time (��), worst case execution time and relative deadline. Soft
aperiodic tasks have no deadline constraints.

Sporadic tasks can arrive at the system at arbitrary points in time, but with
defined minimum inter-arrival times between two consecutive invocations. A
sporadic task �� is characterized by its relative deadline, minimum inter-arrival
time (�) and worst case execution time.
These attributes are known before the run-time of the system. Additional in-
formation available on-line, is its arrival time and its absolute deadline.

4.2.3 System assumptions

Distributed system: We consider a distributed system, i.e., one that consists
of several processing and communication nodes [18]. While we allow for
distributed system and distribution in the complex constraints, we handle those
issues in the offline phase, i.e., at runtime, no task migration takes place.

Time model: We assume a discrete time model [19]. Time ticks are counted
globally, by a synchronized clock with granularity of slotlength, and assigned
numbers from 0 to �. The time between the start and the end of a slot i
is defined by the interval ����������	 �
� ���������	 � �
 � ���. Slots have
uniform length and start and end at the same time for all nodes in the system.
Task periods and deadlines must be multiples of the slot length.

4.2.4 Task handling - overview

The following table gives an overview of when types of tasks are handled by
our method.

soft firm spo- simp. comp.
aper. aper. radic per. per.

offline sched. x x
test x

online sched. x x x x x
test x x

70 Periodic Tasks - Offline Complexity Reduction

4.3 Periodic Tasks - Offline Complexity Reduction

In this section we start describing the handling of various types of tasks, with
periodic tasks with complex constraints. We will present a method for com-
plexity reduction and online scheduling to ensure these transformed constraints.

4.3.1 Offline complexity reduction

Finding optimal solutions to most sets of complex constraints is an NP hard
problem [20]. Consequently algorithms will be heuristic and produce subop-
timal solutions only. Performing the complexity reduction offline, however,
allows for elaborate methods, improvement of results and modifications in the
non-successfull case. The transformation method should be flexible to include
new types of constraints, to accommodate application specific demands and
engineering requirements. A number of general methods for the specification
and satisfaction of constraints can be applied for real-time tasks, e.g., [21] or
[22]. Runtime scheduling has to ensure that tasks execute according to their
constraints, even in the presence of additional tasks or overload situations.

We propose to use the offline transformation and online guarantee of com-
plex constraints of the slot shifting method [9]1. Due to space limitations, we
cannot give a full description here, but confine to salient features relevant to
our new algorithms. More detailed descriptions can be found in [23], [9], [24].
It uses standard offline schedulers, e.g., [25], [23] to create schedules which
are then analyzed to define start-times and deadlines of tasks.

First, the offline scheduler creates scheduling tables for the selected peri-
odic tasks with complex constraints. It allocates tasks to nodes and resolves
complex constraints by constructing sequences of task executions. The re-
sulting offline schedule is a single feasible, likely suboptimal solution. These
sequences consist of subsets of the original task set separated by allocation.
Each task in a sequence is limited by either sending or receiving of internode
messages, predecessor or successor within the sequence, or limits set by the
offline scheduler. Start times and deadline are set directly to the times of in-
ternode messages or offline scheduler limits, or calculated recursively for tasks
constrained only within sequences. A more detailed description can be found
in [9]. The final result is a set of independent tasks on single nodes, with start-
times and deadlines.

The offline scheduling algorithm we use [23] is based on heuristic search
to handle complexity reduction, and provide for straightforward inclusion of

1We do not, however, use its runtime scheduling and handling of non periodic tasks.

Periodic Tasks - Offline Complexity Reduction 71

additional constraints by providing an additional feasibility test. It works with
precedence constraints as basic model, handles jitter constraints, and performs
allocation and subtask deadline assignment. In addition to constraint transfor-
mation, the use of an offline scheduler provides for integration of offline and
online scheduling as well.

4.3.2 Runtime guarantee of complex constraints

In the previous steps we created tasks with start-time and deadline constraints,
which can be scheduled by EDF at runtime. The resulting feasible schedules
represent the original complex constraints. Additional runtime tasks, how-
ever, can create overload situations, resulting in violations of the complex con-
straints. Thus, a mechanism is needed which ensures the feasible execution of
these tasks, even in overload situations.

We propose an extension to EDF, two level EDF for this purpose. The basic
idea is to schedule tasks according to EDF - “normal level”, but give priority
-“priority level” to an offline task when it needs to start at latest, similar to the
basic idea of slack stealing [5] [11] for fixed priority scheduling. Thus, the CPU
is not completely available for runtime tasks, but reduced by the amount allo-
cated for offline tasks. So we need to know amount and location of resources
available after offline tasks are guaranteed. Runtime efficiency demands simple
runtime data structure and runtime maintenance.

Offline preparations After offline scheduling, and calculation of start-times
and deadlines, the deadlines of tasks are sorted for each node. The schedule is
divided into a set of disjoint execution intervals for each node. Spare capacities
to represent the amount of available resources are defined for these intervals.

Each deadline calculated for a task defines the end of an interval � �. Several
tasks with the same deadline constitute one interval. Note that these intervals
differ from execution windows, i.e. start times and deadline: execution win-
dows can overlap, intervals with spare capacities, as defined here, are disjoint.
The deadline of an interval is identical to that of the task. The start, however, is
defined as the maximum of the end of the previous interval or the earliest start
time of the task. The end of the previous interval may be later than the earliest
start time, or earlier (empty interval). Thus it is possible that a task executes
outside its interval, i.e., earlier than the interval start, but not before its earliest
starttime.

72 Periodic Tasks - Offline Complexity Reduction

The spare capacities of an interval �� are calculated as given in formula 4.1:

������ � ���� �
�
����

+����� � ��
����������� �� (4.1)

The length of ��, minus the sum of the activities assigned to it, is the amount of
idle time in that interval. These have to be decreased by the amount “lent” to
subsequent intervals: Tasks may execute in intervals prior to the one they are
assigned to. Then they “borrow” spare capacity from the “earlier” interval.

Obviously, the amount of unused resources in an interval cannot be less
than zero, and for most computational purposes, e.g., summing available re-
sources up to a deadline are they considered zero, as detailed in later sections.
We use negative values in the spare capacity variables to increase runtime ef-
ficiency and flexibility. In order to reclaim resources of a task which executes
less than planned, or not at all, we only need to update the affected intervals
with increments and decrements, instead of a full recalculation. Which in-
tervals to update is derived from the negative spare capacities. The reader is
referred to [23] for details.

Thus, we can represent the information about amount and distribution of
free resources in the system, plus online constraints of the offline tasks with an
array of four numbers per task. The runtime mechanisms of the first version of
slot shifting added tasks by modifying this data structure, creating new inter-
vals, which is not suitable for frequent changes as required by sporadic tasks.
The method described in this paper only modifies spare capacity.

Online execution Runtime scheduling is performed locally for each node. If
the spare capacities of the current interval ����	� � �, EDF is applied on the
set of ready tasks - “normal level”. ����	� � � indicates that a guaranteed task
has to be executed or else a deadline violation in the task set will occur. It
will execute immediately - “priority level”. Since the amount of time spent at
priority level is known and represented in spare capacity, guarantee algorithms
include this information.

After each scheduling decision, the spare capacities of the affected intervals
are updated. If, in the current interval �	, an aperiodic task executes, or the
CPU remains idle for one slot, current spare capacity in �	 is decreased. If
an offline task assigned to �	 executes spare capacity does not change. If an
offline task � assigned to a later interval �� � & � � executes, the spare capacity
of �� is increased - � was supposed to execute there but does not, and that of
�	 decreased. If �� “borrowed” spare capacity, the “lending” interval(s) will

Aperiodic Tasks 73

be updated. This mechanism ensures that negative spare capacity turns zero or
positive at runtime. Current spare capacity is reduced either by aperiodic tasks
or idle execution and will eventually become 0, indicating a guaranteed task
has to be executed. See [9] for more details.

4.4 Aperiodic Tasks

A first verion of slot shifting presented an algorithm to guarantee aperiodic
tasks by inserting them into an offline schedule. Once guaranteed, the re-
sources allocated for the aperiodic were removed by creating a new interval
and adjusting spare capacity. While efficient for guaranteeing sequences of
aperiodic tasks without removal, the runtime overhead for handling sporadic
tasks efficiently is too high. Further, changes in the set of guaranteed tasks
require costly deletion of intervals, recalculation of spare capacities, and new
guarantees. Thus, flexible schemes for rejections, removal of guaranteed tasks,
and overload handling induce prohibitively high overhead.

The new method presented here separates acceptance and guarantee. It
eliminates the online modificiation of intervals and spare capacities and thus
allows rejection strategies over the entire aperiodic task set.

4.4.1 Acceptance test

The basic idea behind our method is based on standard earliest deadline first
guarantee, but sets it to work on top of the offline tasks. EDF is based on having
full availability of the CPU, so we have to consider interference from offline
scheduled tasks and pertain their feasibility.

Assume, at time ��, we have a set of guaranteed aperiodic tasks ��� and an
offline schedule represented by offline tasks, intervals, and spare capacities. At
time ��� �� � �� , a new aperiodic � arrives. Meanwhile, a number of tasks of
��� may have executed; the remaining task set at �� is denoted ��� . We test if
� � ��� can be accepted, considering offline tasks. If so, we add � to the set
of guaranteed aperiodics. No explicit reservation of resources is done, which
would require changes in the intervals and spare capacities. Rather, resources
are guaranteed by accepting the task only if it can be accepted together with
the previous guaranteed and offline scheduled ones. This enables the efficient
use of rejection strategies.

The finishing time of a firm aperiodic task ��, with an execution demand
of �����, is calculated with respect to the finishing time of the previous task,

74 Aperiodic Tasks

����. Without any offline tasks, it is calculated the same way as in the EDF
algorithm:

������ � �������� � �����

Since we guarantee firm aperiodic tasks together with offline tasks, we extend
the formula above with a new term that reflects the amount of resources re-
served for offline tasks:

������������ �

�
�� R[�� ������] ,
 � �
���������R[��������� ������] ,
 � �

where ���� ��� stands for the amount of resources (in slots) reserved for the
execution of offline tasks from time �� to time ��. We can access ���� ��� via
spare capacities and intervals at runtime:

 ���� ��� � ��� � ����
�

���������	

��!�����	�� ��

As ������ appears on both sides of the equation, a simple solution is not possi-
ble. Rather, we present an algorithm for computation of finishing times of hard
aperiodic tasks with complexity of ����.

4.4.2 Algorithm

Let �� be a firm aperiodic task we want to guarantee. Let � denote the set of
previously guaranteed but not yet completed firm aperiodic tasks, such as each
task in � has a deadline later than or equal to �����:

' � ��� �
 � & � �� ���'�� �������

Here is the pseudo code for the acceptance test and algorithm for finishing time
calculation:

�� � ���*
�
�	
���
�����!���������� ��� ������;
/* check if accepting �� causes any of the previously
guaranteed firm aperiodic tasks to miss its deadline */

���� � ��������

����& �
� �� & � �� & ����
�� � ���*
�
�	
���
������ �����'���;

���� � ���'���	 not feasible!

Sporadic Tasks 75

�

����������;

�
���� reject �

���*
�
�	
���
������� ������
/* determine �	 by “filling up”
free slots until the
 is exhausted. */
��� � �������	� � ����	�� ���;
+	
�� ����� � �����

����� ��	� � ��
���� � ����� ���;

���;
��� � �������	�
��� � ����	�;

�
return ���� � �����;

�

———
���� = remaining execution time
��� = the finnishing time of predecessor task

The complexity of algorithm is ����, because we go through all tasks only
once, and calculate their finishing times on the way. More detailed description
of the algorithm can be found in [24].

4.5 Sporadic Tasks

In the previous section we described how firm aperiodic tasks are guaranteed
online assuming no sporadic tasks in the system. Now we will see how sporadic
tasks can be included in the aperiodic guarantee.

We will discuss ways to handle sporadic tasks with periodic tasks with com-
plex constraints. We present a new algorithm which keeps track of sporadic
task arrivals and reduces pessimism about possible future arrivals to improve
guarantees and response times of aperiodic tasks.

76 Sporadic Tasks

4.5.1 Handling sporadic tasks

Pseudo-periodic tasks – Sporadic tasks can be transformed offline into pseudo-
periodic tasks [26] which can be scheduled simply at runtime. The overhead
induced by the method, however, can be very high: in extreme cases, a task
handling an event which is rare, but has a tight deadline may require reserva-
tion of all resources.

Offline test – In an earlier paper [10], we have presented an offline test for
sporadic tasks on offline tasks. It ensured that the spare capacity available was
sufficient for the worst case arrival of sporadic tasks without reflecting it in
the spare capacity. Consequently, firm aperiodic tasks cannot be handled at
runtime.

Offline test and online aperiodic guarantees – A better algorithm will per-
form the offline test and decrease the needed resources from spare capacity.
The resulting pessimism can be reduced by reclaiming a slot upon non arrival
of a sporadic task. Aperiodic guarantee will be possible, but have to consider
worst case arrival patterns of the sporadic tasks at any time.

Offline test and online aperiodic guarantees and reduced pessimism –
The algorithm presented here performs the offline test, but does not change
intervals and spare capacity for runtime efficiency. At runtime, its keeps track
of sporadic arrivals to reduce pessimism, by removing sporadic tasks from the
worst case arrival which are known to not arrive up to a certain point. An
aperiodic task algorithm utilizes this knowledge for short response times.

4.5.2 Interference window

We do not know when a sporadic task (� � �, will invoke its instances, but
once an instance of (� arrives, we do know the minimum time until the arrival
of the next instance — the minimum inter-arrival time of (�. We also know the
worst case execution time of each sporadic task in �. We use this information
for the acceptance test of firm aperiodic tasks.

Assume a sporadic task (� invokes an instance at time � (see figure 4.1). Let
(�� denote current invocation of (�, and (���� the successive one. At time � we
know that (���� will arrive no sooner than ���, where � is the minimum inter-
arrival time of (�. So, when (�� has finished its execution, (� will not influence
any of the firm aperiodic tasks at least until (���

� arrives. This means that,

Sporadic Tasks 77

when calculating the amount of resources available for a firm aperiodic task
with an execution that intersects with (�’s execution window, we do not need
to take into account the interference from (� at least between the finishing time
of its current invocation, (�� , and the start time on the next invocation, (���

� ,
as depicted in figure 4.1.

��

� ����

�

	 	� �

�� ���
���	� �� ���� ��������	 ������ �� �

Figure 4.1: A sporadic task.

Let -. ���� denote the execution window of��, i.e., the interval between
��’s arrival and its deadline:

-. ���� � �������� �������� �-. � � ������� ������

Now we will see how the execution of a previously guaranteed sporadic task
(� � � can influence ��’s guarantee.

Let (�� denote the current invocation of (�, i.e., the last invocation of (�
before �� arrived. Let �.� be the interference window of (�, that is the time
interval in which (� may preempt and interfere with the execution of � �. The
following cases can be identified:

case 1: (�� is unknown, i.e., the sporadic task (� has not started yet to invoke
its instances. (� can arrive any time and we must assume the worst case,
that is (� will start to invoke its instances at �, with maximum frequency.
The interference window is the entire execution window of � �, �.� �
-. .

case 2: (�� is known, i.e., (� has invoked an instance before �. The following
sub-cases can occur:

a) ������(�� � � � � �, i.e., the last invocation completed before � �

arrived, and the next invocation, (���
� , could have arrived but it

has not yet. This means (���� can enter ��’s execution window at
any time, thus the same as in case 1, �.� � -. .

b) ����(�� � � � � ������(�� � � �, i.e., the current invocation (�
� has

completed before �, and the next one has not arrived yet. But now

78 Sporadic Tasks

we know that the next one, (���
� will not arrive until � time slots,

counted from the start time of (�
� .

��

� ����

�

����� ������

���� �� �

This means the interference window can be decreased with the
amount of slots in -. for which we know that (���

� cannot pos-
sibly arrive:

�.� � �������(�� � � �� �������

c) � � ����(�� �, i.e., the current invocation is still executing. In the
worst case, the interference window is entire -. , �.� � -. .

The processor demand approach, [27], can be used to determine the total
processing time needed for all sporadic tasks, ����, which will invoke their
instances within their interference windows:

��(� �

��
���

�
��.��

��(��

�
��(�� (4.2)

Now we will see how the interference window can actually get “shrunk”
when guaranteeing a firm aperiodic task � under runtime. It is usually not
the case that � will start to execute as soon it arrives. This because of the
offline tasks and previously guaranteed firm aperiodic tasks. In section 4.4,
we presented a method for guaranteeing firm aperiodic tasks on top of offline
tasks. The start time of the firm aperiodic task which is currently tested for
acceptance is based on the finishing time of its predecessor, i.e., another firm
aperiodic task with earlier deadline. Hence, in some cases the start of the
interference window �.� is set to the finishing time of �’s predecessor.

Here is an example: assume a firm aperiodic task � to be accepted and a
sporadic task (� as in case 2b above. The interference window is defined as
below:

����

�
����

�
����

�

����� ������

���� �� �

Sporadic Tasks 79

Assume another previously accepted firm aperiodic task ' which will delay
the execution of �:

����

�
����

�
����

�

����� �������	���

���� �� �

We see that the earliest time � can start is set to the finishing time of its
predecessor, ���'�. So, all invocation of (� that occured before ������ are
taken care of when calculating ���'�, and are not concidered when calculating
�����. The start of the interference window is now set to the start time of the
first possible instance of (� that can interfere with �, that is (���� .

Now we calculate the finishing time of � using the algorithm described in
section 4.4. Without sporadic tasks, � would be guaranteed to finish at time
�����. Since � is guaranteed to finish before its deadline, we do not need to
take into consideration the impact from (� after the finishing time of�. Hence,
the end of the interference window �. � is set to �����.

����

�
����

�
����

�

����� �������	��� �	���

���� �� �

So, what actually happens is that only one instance of (� is concidered when
calculating �����.

Now we can formalize what the impact of a sporadic task (� on a firm ape-
riodic task ��: Let ���� be the predecessor of ��, i.e., the last firm aperiodic
task that is guaranteed to execute before � � (task ' in example above). If (�
has not yet started to invoke its instances at the time we start with the accep-
tance test for ��, we must assume the worst case, that is the first instance of (�
will start at the same time as the earliest start time of ��:

����(�� � � ������� � ��!��� ���������

80 Sporadic Tasks

We have max because���� could have completed before the current time �, or
�� has no predecessor at all.

On the other hand, if (� has started to invoke its instances, we can calculate
when the next one after the earliest possible time of � � can occur ((���� in
example above):

����(���� � � ����(�� � �

�
��������� ����(

��

��(��

�
��(��

To conclude, the time interval �.� in which a sporadic task (� may pre-
empt and interfere with the execution of a firm aperiodic task � � is obtained
as:

�.� � �Æ� ������� (4.3)

where Æ is the earliest possible time (� could preempt �� and is calculated as:

Æ �

�
����(���� � if (� known
��!��� ��������� otherwise

(4.4)

The index ��� points out the first possible invocation of (� which has earliest
start time after the finishing time of ��’s predecessor.

4.5.3 Algorithm description

Assume a firm aperiodic task �� that is tested for acceptance upon its arrival
time, current time �. We want to make sure that �� will complete before its
deadline, without causing any of the guaranteed tasks to miss its deadline. A
guaranteed task is either an offline task, a previously guaranteed firm aperiodic
task or a sporadic task. Offline and sporadic tasks are guaranteed before the
run-time of the system, [9], [10], while firm aperiodic tasks are guaranteed
online, upon their arrival. The guarantee algorithm is performed as follows:

step 1: Assume no sporadic tasks and calculate the finishing time of � � based
only on offline tasks and previously guaranteed firm aperiodic tasks (as
described in section 4.4).

step 2: Calculate the impact from all sporadic tasks that could preempt � �

before its finishing time calculated in the previous step (equation 4.2).

Sporadic Tasks 81

step 3: If the impact is greater than zero, the finishing time of � � will be post-
poned (moved forward), because at run-time we need to execute all spo-
radic instances with deadlines2 less than ������. The impact reflects the
amount of �� that is to be executed after the finishing time calculated in
step 1. Now we treat the remaining part of �� as a firm aperiodic task
and repeat the procedure (go to step 1). But this time we start calculat-
ing the sporadic impact at the finishing time of the first part of � �. The
procedure is repeated until there is no impact from sporadic tasks on � �.

Example: assume a firm aperiodic task�which arrives at current time � � ,
with the execution demand ���� � 	 and deadline �� � �
. Also assume
a sporadic task (that has started to invoke its instances before �, in slot 1,
with a minimum inter-arrival time � � and worst case computation time
��(� � �. For simplicity reasons, assume no offline tasks and no previously
guaranteed hard aperiodic tasks. First we calculate the finishing time of �,
without considering the sporadic task (, i.e., ��� � �.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

�� �� �� ��

���� ������	� �	�

The interference window of � is �.� � ��� ��. The impact of (in �.� is
equal to 2 (two instances). Now we take the impact (which tells us how much
� is delayed by () and calculate its finishing time, starting at time �� � ���,
i.e., ��� � ��. We must check if we have any sporadic instances in the new
interference interval �.

�

� � ���� ��� (note that original �.
�

� would be ��� ���,
but we always take the start time of the next instance after the previous finishing
time, in this case ����(�� � ��). The new impact is zero, which means that we
can stop and the last calculated finishing time, ��� � ��, is the finishing time
of �.

Implementation The first part of the algorithm is exactly the same as de-
scribed in 4.4: first we locate the position of hard aperiodic task to be guar-
anteed, calculate its finishing time and check if any of previously guaranteed
hard aperiodic tasks will miss its deadline. The second part, that calculates

2The deadline of a sporadic instance is set to the earliest start time of the next instance

82 Simulation Analysis

the finishing time, is extended to handle the impact from the sporadic tasks as
follows:

���*
�
�	
���
���������� ���
/*determine �� without sporadics by “filling up”
free slots until the � is exhausted.*/
�(� � �

if (� started to invoke
Æ � ����(���� � /*eq (4.4)*/

else
Æ � ��!��� �������

�.� � �Æ� ��� /*eq (4.3)*/

��� � ����
	
�����
����	

��(�� /*eq (4.2)*/

if ���
� �
���*
�
�	
���
������ ����

else
return ��

�

The recursive formulation was chosen for simplicity of explanation: our
implemtentation uses a loop. In the loop, time is increased from current to
finish time, without going back. Thus the complexity remains linear, similar to
the finishing time algorithm in 4.4.

4.6 Simulation Analysis

We have implemented the described mechanisms and have run simulations
with the RTSim simulator [28] for various scenarios. We have tested the accep-
tance ratio for firm aperiodic tasks with the methods to handle sporadic tasks
described in 4.5: no sporadic tasks for reference purposes (“no sporadics”),
worst case arrivals without knowledge about invocations (“no info”), and up-
dated worst case with arrival info (“updated”). We randomly generate offline
tasks, sporadic and aperiodic task loads. The results were obtained for an of-
fline scheduled task load of �)	 and schedule length of ��� slots. We studied the
acceptance ratio � of the randomly arriving aperiodic tasks under randomly
generated arrival patterns for the sporadic tasks. The worst case sporadic load,
i.e., all sporadic tasks arriving with maximum frequency was set to �)
. The
arrival frequencies of sporadic tasks were set according to a factor, * ��	�, such

Summary and Outlook 83

that
�������
#���
�� � �
�
���
�������
#���
�� � *��	�. Deadlines
for firm aperiodic tasks were generated randomly within one schedule length.
The maximum load demanded by the aperiodic tasks is �)��.

Each point represents a sample size of some 1000 tests. 0.95 confidence in-
tervals were smaller than 5%. We can see that our method improves the accep-

1 1.5 2 2.5 3 3.5 4 4.5 5

10

20

30

40

50

60

70

80

90

100

*��	�

� (%)

�

Æ

�

Æ

�

Æ

�

Æ

�

Æ

�

Æ

�

Æ

�

Æ

�

Æ

no sporadics
Æ updated
� no info

Figure 4.2: Guarantee Ratio for Firm Aperiodic Tasks

tance ratio of firm aperiodic tasks. This results from the fact that our methods
reduces pessimism about sporadic arrivals by keeping track of arrivals.

4.7 Summary and Outlook

In this paper we have presented methods to schedule sets of mixed types of
tasks with complex constraints, by using earliest deadline first scheduling and
offline complexity reduction. In particular, we have proposed an algorithm
to handle sporadic tasks to improve response times and acceptance of firm
aperiodic tasks.

84 Acknowledgements

We have presented the use of an offline scheduler to transform complex
constraints of tasks into starttimes and deadlines of tasks for simple EDF run-
time scheduling. We provided an extension to EDF, two level EDF, to ensure
feasible execution of these tasks in the presence of additional tasks or over-
loads. During offline analysis our algorithm determines the amount and loca-
tion of unused resources, which we use to provide ���� online acceptance
tests for firm aperiodic tasks. We presented an algorithm for handling offline
guaranteed sporadic tasks, which keeps track of arrivals of instances of spo-
radic tasks at runtime. It uses this updated information to reduce pessimism
about future sporadic arrivals and improve response times and acceptance of
firm aperiodic tasks. Results of simulation study show the effectiveness of the
algorithms.

Future research will deal with extending the algorithm to include interrupts,
overload handling, and aperiodic and sporadic tasks with complex constraints
as well. We are studying the inclusion of server algorithms, e.g., [29] into
our scheduling model by including bandwidth as additional requirement in the
offline transformation.

4.8 Acknowledgements

The authors wish to express their gratitude to Tomas Lennvall, Radu Dobrin,
and Joachim Nilsson for useful discussions and to the reviewers for their help-
ful comments. The work presented in this paper was partly supported by the
Swedish Science Foundation via ARTES.

Bibliography

[1] M. Törngren. Fundamentals of implementing real-time control applica-
tions in distributed computer systems. Real-Time Systems, 1997.

[2] V. Yodaiken. Rough notes on priority inheritance. Technical report, New
Mexico Institut of Mining, 1998.

[3] M. Spuri, Giorgio C. Buttazzo, and F. Sensini. Robust aperiodic schedul-
ing under dynamic priority systems. In Proc. of the IEEE RTSS, Dec.
1995.

[4] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for hard
real-time systems. Real-Time Systems Journal, 1(1):27–60, June 1989.

[5] S. R. Thuel and J.P. Lehoczky. Algorithms for scheduling hard aperiodic
tasks in fixed-priority systems using slack stealing. In Proceddings of the
Real-Time Symposium, pages 22–33, San Juan, Puerto Rico, Dec. 1994.

[6] K. Jeffay. Scheduling sporadic tasks with shared resources in hard real-
time systems. Dept. of Comp. Sci., Univ. of North Carolina at Chapel
Hill, 1992.

[7] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming
in hard real-time environment. Journ. of the ACM, 20, 1, Jan. 1973.

[8] T. Tia, W.S. Liu, J. Sun, and R. Ha. A linear-time optimal acceptance
test for scheduling of hard real-time tasks. Dept. of Comp. Sc., Univ. of
Illinois at Urbana-Champaign, 1994.

[9] G. Fohler. Joint scheduling of distributed complex periodic and hard ape-
riodic tasks in statically scheduled systems. In Proc. 16th Real-time Sys-
tems Symposium, Pisa, Italy, 1995.

86 BIBLIOGRAPHY

[10] Damir Isovic and Gerhard Fohler. Handling sporadic tasks in off-line
scheduled distributed hard real-time systems. Proc. of 11th EUROMICRO
conf. on RT systems, York, UK, June 1999.

[11] R.I. Davis, K.W. Tindell, and A. Burns. Scheduling slack time in fixed
priority pre-emptive systems. In Proceddings of the Real-Time Sympo-
sium, pages 222–231, Dec. 1993.

[12] H. Chetto, M. Silly, and T. Bouchentouf. Dynamic scheduling of real-
time tasks under precedence constraints. Real-Time Systems Journal,
2(3):181–194, Sept. 1990.

[13] R. Gerber, W. Pugh, and M. Saksena. Parametric dispatching of hard
real-time tasks. IEEE Transactions on Computers, 44(3), March 1995.

[14] M. DiNatale and J.A. Stankovic. Applicability of simulated annealing
methods to real-time scheduling and jitter control. In Proceedings of
Real-Time Systems Symposium, Dec. 1995.

[15] K. Tindell and J. Clark. Holistic schedulability analysis for distributed
hard real-time systems. Microprocessing and Microprogramming, 50(2-
3), 1994.

[16] S. Baruah, G. Buttazzo, S. Gorinsky, and G. Lipari. Scheduling periodic
task systems to minimize output jitter. In Sixth International Conference
on Real-Time Computing Systems and Applications, Dec. 1999.

[17] P. Puschner and C. Koza. Calculating the maximum execution time of
real-time programs. RT Systems Journal, 1989.

[18] J.A. Stankovic, K. Ramamritham, and C.-S. Cheng. Evaluation of a
flexible task scheduling algorithm for distributed hard real-time systems.
IEEE Trans. on comp., 34(12), Dec 1995.

[19] H. Kopetz. Sparse time versus dense time in distributed real time systems.
In Proc. of the Second Int. Workshop on Responsice Comp. Sys., Saitama,
Japan, Oct. 1992.

[20] M.R. Garey., D.S. Johnson, B.B. Simons, and R.E. Tarjan. Scheduling
unit-time tasks with arbitrary release times and deadlines. IEEE Trans.
on Soft. Eng., May 1981.

BIBLIOGRAPHY 87

[21] F. Jahanian, R. Lee, and A. Mok. Semantics of modechart in real time
logic. In Proc. of the 21st Hawaii International Conference on Systems
Sciences, pages 479–489, Jan. 1988.

[22] J. Wurtz and K. Schild. Scheduling of time-triggered real-time systems.
Technical report, German Research centre for Artificial Intelligence -
DKFI GmbH, 1997.

[23] G. Fohler. Flexibility in Statically Scheduled Hard Real-Time Systems.
PhD thesis, Technische Universität Wien, Austria, Apr. 1994.

[24] D. Isovic and G. Fohler. Online handling of hard aperiodic tasks in time
triggered systems. In Proceedings of the 11th Euromicro Conference on
Real-Time Systems, June 1999.

[25] K. Ramamritham. Allocation and scheduling of complex periodic tasks.
In 10th Int. Conf. on Distributed Computing Systems, 1990.

[26] A. K. Mok. Fundamental Design Problems of Distributed Systems for
the Hard Real-Time Environment. PhD thesis, MIT, 1983. Report
MIT/LCS/TR-297.

[27] K. Jeffay and D.L. Stone. Accounting for interrupt handling costs in dy-
namic priority task systems. In Proceedings of Real-Time Systems Sym-
posium, pages 212–221, Dec. 1993.

[28] G. Buttazzo, A. Casile, G. Lamastra, and G. Lipari. A scheduling simu-
lator for real-time distributed systems. In Proceedings of the IFAC Work-
shop on Distributed Computer Control Systems (DCCS ’98), 1999.

[29] L. Abeni and G. Buttazzo. Integrating multimedia applications in hard
real-time systems. In Proceedings of Real-Time Systems Symposium, Dec.
1998.

Chapter 5

Paper D – Simulation
Analysis of Sporadic and
Aperiodic Task Handling

Damir Isovic and Gerhard Fohler
Technical Report , Mälardalen Real-Time Research Centre, Mälardalen Uni-
versity, May 2001.

Abstract

In this paper we present the simulation results for proposed algorithms to
handle mixed sets of tasks and sonstraints: periodic tasks with complex and
simple constraints, soft and firm aperiodics, and sporadic tasks.

90 Experiment 1: Firm aperiodic guarantee

5.1 Introduction

We have implemented the algorithms described in [1] and [2] and have run
simulations for various scenarious.

In the first set of exepriments we simulated the online guarantee algorithm
for firm aperiodic tasks, described in [1] (paper B in this thesis). We have
studied the guarantee ratio for aperiodic tasks for different combinations of
total system loads and aperiodic deadlines.

In the second set of exeperiments we have introduced sporadic tasks, as
suggested in [2] (paper C), and have repeated the simulations for different
combinations of periodic, sporadic and aperiodic tasks. We have measured
the guarantee ratio of firm aperiodic tasks, depending on different scenarious
for sporadic tasks. We also investigated how the variations in minimum inter-
arrival times for sporadics influence aperiodic guarantee.

The simulation study underlines the effectiveness of the proposed approach.

5.2 Simulation environment

Simulations refered in previous papers were made with the RTSim simulator
[3]. For the purpose of this thesis, we have developed a new simulator to
provide for detailed analysis of slot shifting.

We also implemented a debuger, which provides for visual monitoring of
the data structures during the simulations.

Simulations were performed in parallell on 5 different PC computers with
the processor speed between 333 and 1500 MHz. Some 800 000 different inter-
actions of sporadic, periodic and aperiodic tasks were simulated. The amount
of data produced was more than 1 GB. The average size of an input file needed
for one graph line was 30 MB. That would produce aproximately 50 MB of
data to be analysed. The total lenght of simultions for both experiments was
about 200 hours.

5.3 Experiment 1: Firm aperiodic guarantee

5.3.1 Experimental setup

For the first experiment series , we randomly generate generated offline and
aperiodic task loads, so that the combined load of both periodic and aperi-
odic tasks was set to 10% - 100%. The deadline for the aperiodic tasks was

Experiment 1: Firm aperiodic guarantee 91

Method: Background

0

10

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Combined offline and aperiodic load

G
u
a
r
a
n
t
e
e

r
a
t
i
o

(
%
)

deadline=3*MAXT

deadline=2*MAXT

deadline=1*MAXT

Figure 5.1: Guarantee ratio for aperiodic tasks – Background

set to their maximum execution time, MAXT, two times MAXT and three
times MAXT. We studied the guarantee ratio of the randomly arriving ape-
riodic tasks.

The simplest method to handle aperiodic tasks in the presence of periodic
tasks is to offline schedule them in background i.e., when there are no periodic
instances ready to execute. The major problem with this technique is that, for
high periodic loads, the response time of aperiodic requests can be too long. We
compared our method to the background scheduling. We refer to our method
as Slot Shifting – Extended, or SSE.

5.3.2 Results

In this subsection we present obtained results. Each point represents a sample
size of 800-3000 simulation runs, with diffrent combinations of periodic and
aperiodic tasks. 0.95 confidence intervals were smaller than 5%.

Figure 5.1 illustrates the performance of background scheduling for three
different deadline settings of aperiodic tasks.

92 Experiment 1: Firm aperiodic guarantee

Method: SSE

0

10

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Combined offline and aperiodic load

G
u
a
r
a
n
t
e
e

r
a
t
i
o

(
%
)

deadline=3*MAXT

deadline=2*MAXT

deadline=1*MAXT

Figure 5.2: Guarantee ratio for aperiodic tasks – SSE

Figure 5.2 depicts the performance of SSE.

In figures 5.3, 5.4 and 5.5 we put both methods together, to see the differ-
ence in performance for different deadline settings.

As expected, backgound scheduling performed poorly in the high load sit-
uations, specially with tight aperiodic deadlines. For this reason, background
scheduling can be adopted only when the aperiodic activities do not have strin-
gent timing constraints and the periodic load is not high.

The graphs show the efficiency of the SSE mechanisms, as guarantee ratios
are very high. As expected, the guarantee ratio for aperiodic tasks with larger
deadlines is higher than for smaller deadlines. Even under very high load,
guarantee ratios stay high.

Experiment 1: Firm aperiodic guarantee 93

Deadline=MAXT

0

10

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Combined offline and aperiodic load

G
u
a
r
a
n
t
e
e

r
a
t
i
o

(
%
)

Background

SSE

Figure 5.3: Guarantee ratio for aperiodic tasks, dl=MAXT – SSE vs Back-
ground

Deadline=2*MAXT

0

10

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Combined offline and aperiodic load

G
u
a
r
a
n
t
e
e

r
a
t
i
o

(
%
)

Background

SSE

Figure 5.4: Guarantee ratio for aperiodic tasks, dl=2*MAXT – SSE vs Bgr

94 Experiment 2: Firm aperiodic guarantee with sporadics

Deadline=3*MAXT

0

10

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Combined offline and aperiodic load

G
u
a
r
a
n
t
e
e

r
a
t
i
o

(
%
)

Background

SSE

Figure 5.5: Guarantee ratio for aperiodic tasks, dl=3*MAXT – SSE vs Bgr

5.4 Experiment 2: Firm aperiodic guarantee with
sporadics

In the second experiment, we have tested the acceptance ratio for firm aperiodic
tasks with the methods to handle sporadic tasks described in in [2]: worst
case arrivals without knowledge about invocations (refered as “no info”), and
updated worst case with arrival info (“updated”).

5.4.1 Experimental setup

We studied the guarantee ratio of randomly arriving aperiodic tasks under ran-
domly generated arrival patterns for the sporadic tasks. First we investigated
the guarantee ratio for firm aperiodic tasks with combined loads 10% - 100%.
The deadline for the aperiodic tasks was set to MAXT and 2*MAXT. The com-
bined load was set to 100%.

In the second part of the experiment we varied the arrival frequencies of
sporadic tasks according to a factor, � , such that the separation between in-

Experiment 2: Firm aperiodic guarantee with sporadics 95

stances �#�������� is equal to �#�������� � � � ��� . This
means that if � � � then the instances are invoked with the maximum fre-
quency, and if � �
, the distance between two consecutive invocations is

 ���� on average.

5.4.2 Results

The results from the first part of the experimet experiment are summarized
in figures 5.6 and 5.7, while the results from the second one are presented in
figures 5.8 and 5.9.

We can see that our method improves the acceptance ratio of firm aperi-
odic tasks. This results from the fact that our methods reduce pesimism about
sporadic arrivals by keeping track of them.

96 Experiment 2: Firm aperiodic guarantee with sporadics

Deadline=MAXT

0

10

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Combined periodic, sporadic and aperiodic load

G
u
a
r
a
n
t
e
e

r
a
t
i
o

(
%
)

updated

no info

Figure 5.6: Guarantee ratio for aperiodic tasks with sporadics, dl=MAX: load
variation

Deadline=2*MAXT

0

10

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Combined periodic, sporadic and aperiodic load

G
u
a
r
a
n
t
e
e

r
a
t
i
o

(
%
)

updated

no info

Figure 5.7: Guarantee ratio for aperiodic tasks with sporadics, dl=2*MAXT:
load variation

Experiment 2: Firm aperiodic guarantee with sporadics 97

Combined load > 1
Deadline=MAXT

0

10

20

30

40

50

60

70

80

90

100

1 2 4 6 8

Minimum inter-arrival factor, f

G
u
a
r
a
n
t
e
e

r
a
t
i
o

(
%
)

no info

updated

Figure 5.8: Guarantee ratio for aperiodic tasks with sporadics, dl=MAXT: vari-
ation of MINT

Combined load > 1
Deadline=2*MAXT

0

10

20

30

40

50

60

70

80

90

100

1 2 4 6 8

Minimum inter-arrival factor, f

G
u
a
r
a
n
t
e
e

r
a
t
i
o

(
%
)

no info

updated

Figure 5.9: Guarantee ratio for aperiodic tasks with sporadics, dl=2*MAXT:
variation of MINT

98 Summary

Deadline=2*MAXT

0

10

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Combined periodic, sporadic and aperiodic load

G
u
a
r
a
n
t
e
e

r
a
t
i
o

f
o
r

a
p
e
r
i
o
d
i
c

t

updated

no info

no sporadics

Figure 5.10: Guarantee ratio for aperiodic tasks with sporadics - Final results

5.5 Summary

In this report we have presented results of our algorithms to schedule sets of
mixed types of tasks with complex constraits, by using earliest deadline first
scheduling and offline complexity reduction. In particular, we presented an
algorithms to efficently handle sporadic tasks in order to increase acceptance
ratio for online arriving firm aperiodic tasks. We have simulated the proposed
guarantee algorithms and the results underlines the effectiveness of the pro-
posed approach. Figure 5.10 summarizes the simulation. We can see that guar-
antee ratio for firm aperiodic tasks is very high, even when we have sporadic
tasks in the system. By keeping track off sporadic arrivals, we can accept firm
tasks that otherwise would be rejected.

Future research will deal with the algorithm to include interrupts, overload
handling, and complex constraints for both firm aperiodic and sporadic tasks.

Bibliography

[1] D. Isovic and G. Fohler. Online handling of hard aperiodic tasks in time
triggered systems. In Proceedings of the 11th Euromicro Conference on
Real-Time Systems, June 1999.

[2] D. Isovic and Gerhard Fohler. Efficient scheduling of sporadic, aperi-
odic, and periodic tasks with complex constraints. In Proceedings of the
21st IEEE Real-Time Systems Symposium, Walt Disney World, Orlando,
Florida, USA, November 2000.

[3] G. Buttazzo, A. Casile, G. Lamastra, and G. Lipari. A scheduling simulator
for real-time distributed systems. In Proceedings of the IFAC Workshop on
Distributed Computer Control Systems (DCCS ’98), 1999.

Index

aperiodic task, 10, 22, 38
acceptance test, 41, 56
guarantee, 39, 41, 56, 57
rejection strategy, 44

complex constraints
application specific, 11
end-to-end deadlines, 10
jitter, 11
non-periodic execution, 11
non-temporal, 11
precedence, 10
synchronization, 10

critical slot, 25

deadline, 7, 8

EDF, 9
event-trigged systems, 9, 12, 38

latest start-time methods, 12

minimum inter-arrival time, 10

periodic task, 9, 22

real-time system
event-trigged, 38
time-trigged, 21, 38

real-time systems, 7
classification, 8

distributed, 8
event-trigged, 9
hard, 8
mixed, 8
soft, 8
time-trigged, 9

schedule
offline, 22

scheduling
algorithm, 8
algorithms

EDF, 9
dynamic, 8
event-trigged, 9
offline, 8
online, 8
policy, 8
pre-runtime, 8
resource insufficient, 8
resource sufficient, 8
runtime, 8
static, 8
time-trigged, 9

slot, 15
critical, 25
definition, 22
granularity, 22
length, 22

slot shifting, 12, 23

INDEX 101

intervals, 23
offline preparations, 23
online mechanism, 23, 29

guarantee algorithm, 24
online scheduling, 24
spare capacity, 23

spare capacity
calculation, 23
maintenance, 29

sporadic
event, 7
minimum inter-arrival time, 21

sporadic set, 24
sporadic task, 10

guarantee, 24
handling, 58
offline test, 28, 58
online algorithm, 62

sporadic tasks, 22

task, 8
aperiodic, 10, 22, 38

acceptance test, 41, 56
guarantee, 39, 41, 56, 57
guarantee algorithm, 42
rejection strategy, 44

constraints
complex, 10
simple, 10

deadline, 23
dynamic, 9
firm, 10
hard, 8, 9
instance, 9
model, 9
periodic, 9, 22
pseudo-periodic, 13, 21, 58
soft, 8
sporadic, 10, 22

frequency, 10
guarantee, 24
handling, 58
minimum inter-arrival time,

10
offline test, 28, 58
online algorithm, 62

start time, 23
static, 9

time model, 22
time-trigged systems, 9, 12, 38

