

Experiences from Introducing State-of-the-art

Real-Time Techniques in the Automotive Industry

Christer Norström, Mikael Gustafsson*, Kristian Sandström,

Jukka Mäki-Turja and Nils-Erik Bånkestad**

Mälardalen Real-Time Research Centre, Department of Computer Engineering

Mälardalen University, Västerås, Sweden

*TietoEnator ArosTech AB, Västerås, Sweden

** Volvo Construction Equipment Components AB, Eskilstuna, Sweden

 www.mrtc.mdh.se

Abstract
The use of state-of-the-art real-time techniques in

industry remains infrequent. The reason for this, we believe,

is three-fold: (1) the lack of commercially available tools,

(2) the lack of methodologies based on real-time theory

throughout the complete development process, and (3) the

lack of competence in real-time theory among industrial

practitioners.

In this paper we present a case study of the introduction

of state-of-the-art real-time techniques in industry. The case

study was performed as a collaboration between

Mälardalen University and the industrial partners Volvo

Construction Equipment Components AB (VCE) and

TietoEnator ArosTech AB. VCE develops computer control

systems for construction equipment vehicles, such as wheel

loaders, graders, and articulated haulers. TietoEnator

ArosTech is a firm of consultants with recognized

competence in the field of embedded real-time systems.

The contribution of this paper consists of the findings

from the introduction of a method and real-time techniques

into an industrial project. The main result reported can be

summarized as “people, not papers, transfer technology”.

1 Introduction

Development of complex embedded systems is an

expanding field, i.e., more and more applications are being

based on the use of embedded computers. Examples include

highly complex systems such as medical control equipment,

mobile phones, and vehicle control systems.

Most of such embedded systems can also be characterized

as real-time systems. “Real-time systems are defined as

those systems in which the correctness of the system

depends not only on the logical result of the computation,

but also on the time when the results are produced” [Sta88].

The increased complexity of these systems leads to

increasing demands with respect to requirements

engineering, high level design, early error detection,

productivity, integration, verification, and maintenance.

This calls for methods, models, and tools which permit a

controlled and structured working procedure during the

complete life cycle of the system [Kal88].

Many methods such as UML-RT and HRT-HOOD are

available for designing real-time systems. These methods,

however, tend to concentrate on logical and structural

decomposition, providing limited support for expressing and

analyzing the temporal behavior of the system. Furthermore,

the tools currently available provide limited support for

automatic mapping from the design to a resource structure,

especially with respect to temporal attributes. This often

leads to discrepancy between the design and the

implementation, and consequently the system will be

difficult to maintain.

As an alternative we have developed a model and method

focused on the real-time properties of a system. The

objective of the model and method is to support the

development of a high level design, including specification

of properties such as temporal constraints, communication

and synchronization. Furthermore, the model and method

support formal verification of these properties, and early

system integration, and permit regression testing.

The aim of this paper is to present our findings from the

introduction of this model and method in an industrial

project, performed as a cooperation between Mälardalen

University, Volvo Construction Equipment AB (VCE), and

TietoEnator ArosTech AB in Sweden. The validity of these

findings is based on a single but extensive case study of one

industrial project. Some of our findings are confirmed by

similar results from other industrial projects utilizing state-

of-the-art real-time techniques [Cas98, Mel98].

VCE has used onboard electronics in their products since

1981 for specific functionality. More and more functionality

can be provided by the computer control system and this has

led to an increasing number of people being involved in the

development of each product, and thus a need for uniform

development methods and tools.

This was the motivation for the co-operation. Since a new

architecture was to be developed, we were given the

opportunity to introduce new techniques and methods.

The outline of the paper is as follows: Section 2 briefly

presents the application characteristics. The development

method and model are presented in Section 3. In Section 4

we present our findings, categorized into findings related to

methodological aspects, technology transfer, and technical

issues. Finally, Section 5 contains certain of our

conclusions.

2 Application characteristics

The application concerned is a vehicle control system

with high demands on safety, reliability, and accurate

timing. The system hardware consists of two nodes

connected via redundant buses. The application consists of

80 tasks, running with different periods, which collaborate

to perform certain control functions. These tasks have hard

real-time requirements, are scheduled off-line and execute

according to a dispatch table on-line. Each node is very I/O

intensive, the complete system incorporating 150 I/O

channels.

The execution times of the tasks in the application range

from 10 µs to 1 millisecond. The application is interrupt

intensive, due to the construction of the hardware and the

effect of these interrupts cannot be neglected when

scheduling the hard real-time tasks. The hardware could not

be modified as it had been designed and certified before

development of the software was begun.

The worst case utilization of the processors, for the

critical part, is approximately 80%, divided into 35% for

interrupts and 45% for hard real-time tasks. The remaining

spare capacity is used by on-line scheduled soft real-time

tasks. During run-time, the spare capacity will exceed the

remaining 20% if the load generated by hard tasks and

interrupts is less than the worst case.

3 Development method and model

In this section we will present the method and the model

used in developing the application.

The development method defines the workflow when

developing an application. The method employed in this

project is iterative and quite traditional. The emphasis in the

method is to derive a high level design which enables early

analysis of timing, communication, and synchronization

properties. To facilitate this it is necessary for

synchronization, communication, and temporal attributes to

be defined early in the design process and for this we need a

suitable design language to describe the model of the

application.

The objective of this model is two-fold. First, the model

should enable easy representation of the application and its

requirements. Second, the model should be described using

a language which enables formal analysis and automatic

code generation (in our case analysis of timing,

communication, and synchronization properties). There is,

however, a tradeoff between these two objectives. Analysis

and automatic code generation, from a formal and precise

design description, is often straightforward. However, such

descriptions tend to be difficult to write and difficult for

industrial practitioners to understand. On the other hand, a

specification in, for example, plain language is easy to

understand but difficult to analyze. We have tried to balance

these two objectives when designing the language.

We will describe the method for developing an

application as illustrated in Figure 1. In each step we briefly

introduce the model and its language elements.

I. Requirements engineering. The customer ordering

the system specifies the requirements.

II. Requirements analysis. In this stage the high level

functions of the application are identified from the

requirements specification. It is also important here to

determine temporal constraints for these functions.

III. High-level system decomposition. In this stage the

different operational modes of the application are

identified together with valid transitions between them.

A mode describes specific functionality in a system

state. If the functionality differs substantially from one

state to another, these should be separated into

different modes. An example is the control system in a

vehicle, which can have different functionality

depending on the status of the vehicle, such as

operating, reduced, failed, and init.

IV. Function decomposition and structuring. The

functions, for each mode, are decomposed into

transactions. Transactions in turn are decomposed into

smaller units called tasks. Tasks are defined by their

low-level functions together with the data flow

between them. Each task is provided with a set of

typed in-ports and out-ports. The execution semantics

of a task are: to read its in-ports on activation, then to

perform the function and, before termination, to write

the result to its out-ports. This construction implies

that each task can be designed without knowledge of

where input data was produced, or where the output

data produced will be used.

Function decomposition

and structuring

IV

High level system

decomposition

III

Mapping temporal

constraints to attributes of the

task modelV

Definition of

execution time budgets

VI

Feasibility check and

automatic implementation

VII

Implementation and

module testing

VIII

System integration and

verification

IX

Requirements analysis

II

Requirements engineering

I

Design

Figure 1: The design method

Example 1: A multirate controller. The transaction

consists of two sampling tasks, S1 and S2, a controller

task C, and an actuator task A. The data-flow of the

transaction can be seen in Figure 2. ❏

S1

S2

C A

Figure 2: Data-flow between tasks.

Functionality having high responsiveness

requirements or which occurs frequently but with short

execution times cannot be implemented as a periodic

task as the overhead would be too high. Such low-level

functions are therefore implemented as interrupts.

V. Mapping temporal constraints to attributes of the

task model. In the previous stage high level functions

were decomposed into tasks and structured according

to the interaction between them. In this step we break

down the high level temporal requirements into

temporal attributes for tasks and the synchronization

between them.

Synchronization can be defined by precedence

relationships between tasks or by mutual exclusion of

tasks sharing a common resource. The temporal

attributes are period, the Worst Case Execution Time

(WCET), the release time, and the deadline of a task.

The WCET is the estimated execution time for the

task. The release time is the earliest time at which the

task can be activated, relative to its period start. The

deadline is the latest time at which a task is permitted

to terminate, relative to its period start. Further, the

temporal behavior for each interrupt is defined by an

inter-arrival time and an execution time.

Example 1 (continued): The temporal attributes,

derived by the control engineer for the multirate-

transaction example are as follows (note that we have

no knowledge of the execution times of the tasks as

yet, hence the question marks):

• Tasks S1 and S2 have period, release time,

deadline, worst case execution time in

µs = (1000, 0, 1000, ?).

• Task C = (5000, 4000, 5000, ?).

• Task A = (5000, 4000, 5000, ?).

To enforce order between the controller and actuator

task, we specify a precedence relation between C and

A, i.e., task C precedes task A. ❏

VI. Defining Execution Time Budget. Traditionally

WCET is obtained by either measurement or by

statically analyzing the code produced for each task. In

this approach, however, execution time budgets are

estimated, being used later in step VIII as

implementation requirements. The reason for this is

that a feasibility test for the system, and a possible re-

engineering, can then be performed at an early stage,

thus permitting early detection of design errors related

to resource utilization, communication and

synchronization.

Example 1 (continued): The question marks are

replaced by estimated time budgets. Since this is a

delicate issue, it requires highly skilled engineers with

long experience. ❏

VII. Feasibility check and automatic implementation.

The formally described design can be checked for

temporal correctness, with a tool designated

Configuration Compiler (CC), even if no actual (low-

level) implementation has been produced. The CC

maps the design description to a resource structure.

The CC is a pre-run-time scheduler which generates

dispatch tables for running the tasks and the

communication infrastructure for each mode. This

constitutes an application skeleton for the running and

communication of the tasks. In addition to the mapping

of the model, CC also supports specification of

architecture-specific attributes such as HW-

performance, resolution of the run-time dispatcher,

communication times, and the number of nested pre-

emptions permitted. The implementation of the CC is

based on a heuristic tree search strategy, similar to the

one presented in [Ram90]. The major difference is that

this scheduler takes into account interrupts [San98]

and architecture-specific attributes. The current

version of CC is adapted to the real-time operating

system Rubus (both commercial products, see

www.arcticus.se).

VIII. Implementation and module testing. The tasks are

simply implemented by traditional programming

(coding). In addition to the traditional functional

specification, the programmer also has the execution

time budget as an implementation requirement, i.e., the

programmer must implement the specified function

without exceeding the budget. The module testing

includes both verification of functional behavior and

checks that time budgets are not exceeded. If a time

budget cannot be met, a redesign is required.

IX. System integration and verification. The integration

phase is usually performed quickly and without

problems since the actual integration was performed

during the design phase. The major task is the

integration testing.

4 Findings

In this section we will describe our findings from the

introduction of the method and model. The findings are

categorized as those related to development method,

technology transfer, and technical issues respectively. The

development method covers the findings based on the use of

the design language and method. The technology transfer

section describes issues regarding the transfer and

introduction of new techniques and especially real-time

techniques into an organization. The technical issue section

presents new or relevant technical challenges encountered

during this work.

4.1 Development method

Finding 1: The design language (1) provides the means for

concurrent implementation and (2) facilitates efficient

integration of new personnel into the project.

Motivation:

(1) The task model stipulates tasks, which have no

synchronisation or communication within the code. Observe

that each task uses a computational model based on input -

calculation - output. As a result each task can be

implemented and tested in parallel since each task is only

dependent on its own state and the values at its in-ports to

make a calculation. Module testing is thus very simple,

values are fed to the in-ports and out-ports are monitored.

This model facilitates regression testing of modules in a

straightforward way.

(2) A small group of people with knowledge of the system

and a feeling for future demands on the system develops the

design. The design they produce must be stable, that is,

major changes required after the implementation phase are

to be few. It is then easy to introduce new personnel into the

implementation phase since each new employee or

consultant need only to understand the design language and

follow the specified interface to be able to begin to

implement and test. The introduction of the design language

has decreased the introduction time for new employees and

consultants substantially.

Finding 2: The design language provides sufficient details

for analysis and code generation.

Motivation:

Using the design language provides three major benefits:

• It gives the application skeleton, which can be analyzed

without needing a single line of code.

• The analysis leads to early detection of errors in

communication, synchronization, and timing.

• Simplified system integration.

Currently, we can analyze communication,

synchronization, and timing requirements. Three different

aspects of communication are analyzed. Firstly, the types of

connected ports are checked to ensure that the proper data

types are passed to the tasks. Secondly, the analysis will

reject a design in which the amount and rate of data passing

through the system makes it impossible to fulfill the

temporal requirements. Thirdly, data consistency is checked.

In this case also, if there is no way of fulfilling all timing

requirements with guaranteed data consistency, the design is

rejected.

The analysis of the synchronization ensures that all

precedence and mutual exclusion relationships between

tasks can be guaranteed in conjunction with guaranteed

timing requirements.

Finally the analysis of the timing requirements reveals if a

schedule for the given design and execution time budgets

which fulfills these timing requirements is possible. If it is

impossible to fulfill the timing requirements the design will

again be rejected.

The analysis presented above leads to early detection of

design errors of the properties analyzed. Such errors are

otherwise often found in the integration phase of the project

and then cost time and effort to correct.

System integration is also simplified by the early analysis.

If the implementation for each task complies with the

interface given by the design, i.e., retrieving data only from

the in-ports, performing the desired function within the

given execution time budget, and producing data only to the

out-ports, the integrated system will fulfil the design and

thus satisfy the requirements. Thus, one step in the

development process, which is often quite troublesome and

leads to costly delays, is greatly simplified.

Note that all that need be added to implement the design

is the task code, everything else is generated automatically.

Finding 3:Use of the method increases the time spent in the

design phase but shortens the implementation time.

Motivation:

The time to complete the design has increased in

comparison with similar projects in which traditional

informal techniques (such as structured analysis and design)

have been used. This is not surprising since the development

of a formal and detailed design requires more effort,

compared with a design written in plain language only.

However, the precise design has resulted in shorter time

being spent in implementation, testing, and integration due

to reasons described earlier. Aware of the difficulty of

providing formal evidence for this claim, we remain

confident that it is valid. Further, we believe that the time

spent in implementation and testing will be reduced even

more in future projects, when engineers become more

familiar with the new approach.

 We also believe that it will be much easier to maintain a

system based on a precise design as compared with a

traditional system. This is mainly due to two factors:

1. Normally, the implementation and the design tend to

diverge which makes it difficult to foresee the impact of

changes or added functionality. One way to avoid this

divergence is to use tools which enforce consistency by

automatically, producing verified functionality from the

design description.

2. Even if there is a close match between the design

documents and the implementation it is not easy to

foresee the impact of changes or added functionality.

Performing the changes in a consistent and formal

design, several properties can be analyzed. Thus

changes or add-ons which do not comply with the

functionality already implemented will be detected at an

early stage.

Finding 4: Using execution time budgets to facilitate early

schedulability analysis proved to be a feasible approach.

Motivation:

To be able to make an early capacity analysis of system

resources such as processors and buses, each task must have

an execution time budget. This budget states the amount of

the processor capacity the task is permitted to utilize.

Specifying this budget, i.e., relating functional requirements

to the execution time of a task, can sometimes be difficult.

In this project we were surprised that the budget

estimations were so accurate. The reason for this, we

believe, was that the engineers who specified these budgets

had many years of experience in control system design and

hardware-close programming.

To verify that the implementation fulfils the requirements,

the execution time for each task was measured and, in some

cases calculated.

4.2 Technology transfer

Finding 5: Tools, education (courses, tutorials), carriers,

and adapters are required to facilitate a successful transfer

of real-time technology to industry.

Motivation:

Tools:

When transferring a theory to industry, unless very simple

[Bat99], it is necessary that the theory be encapsulated in a

tool, demonstrating its practical use [Sch96]. A good

example of a tool, which encapsulates advanced technology,

is the traditional compiler.

The first version of the tool, CC, was written in a high

level language which was easy to adapt to new

requirements. The handling of these up-coming

requirements in an efficient way is important for success in

the transfer, an operation in which the carrier, described

below, plays a significant role. CC was later ported to a low-

level language resulting in an efficient implementation.

Courses:

We learned that an engineer requires at least two days of

training to understand sufficient basic real-time theory and

associated methods to be able to work in the design of new

systems. In reality it will take an experienced engineer about

a week including the training course to be productive, when

using the model and methodology.

Carrier:

The success of this project has been mainly due to one

member of the research group beginning to work as a

consultant for TietoEnator ArosTech at VCE. Regardless of

how many excellent reports are written, people are needed

to carry the results [Dal94]. A related example is the

development of the control system for Volvo S80 for which

Ken Tindell and others carried the response time analysis

for the CAN bus into a tool and implanted that tool in the

Volvo Car Cooperation organization [Cas98, Mel98].

Citation: "Tech transfer is a contact sport. People, not

papers, transfer technology" [Fol96].

Adapters:

Even if we have carriers we need early adapters at the

company to take the technology into the company and its

organization. These people need to be authoritative to be

able to sell the new technology in the organization. There is

always a healthy conservatism in all organizations.

Therefore one must find people ready to invest enough time

and energy to determine if or not the technology is

applicable and gives an added value to the development of

their products [Ben96].

Finding 6: The major problem when introducing real-time

techniques in an organization is to change the requirements

elicitation process to include temporal requirements.

Motivation:

Several independent sources confirm this finding (Volvo

Car and Volvo Construction Equipment). All the

engineering disciplines within a company must change their

way of specifying electronics requirements at the same time.

The main problem is that when a timing requirement for a

high-level function has been accepted, it is not easy to

reconsider it. Timing requirements become more firmly

established the longer the timing constraint remains in force.

This becomes apparent when a new function is added,

resulting in a negative schedulability test. To add such a

function, either execution time budgets that are too generous

or timing requirements that are too strict need to be

reconsidered. Assuming that the overestimation of execution

times is negligible, the temporal requirements must be

reconsidered. To be able to determine which temporal

requirement to relax, there must exist a notion of confidence

in the timing requirements. As an example, consider, in an

application, the time until a lamp illuminates after operating

the lamp switch. Assume that as a requirement, this time is

specified as 200 ms. If it is subsequently found that the

system cannot be scheduled, it must be decided which

requirements can be relaxed to provide a feasible schedule.

If confidence in the time specified, 200 ms, is low, relaxing

of this requirement could be considered.

The results from the requirements elicitation process must

therefore be clearly expressed and well motivated since they

will be used during the complete life cycle of the system.

4.3 Technical issues

Finding 7: The task model used (described in Section 2) is

in some cases too restricted when handling control jitter for

simple controllers and especially for multirate controllers.

Motivation

The limited expressiveness in the task model is related to the

jitter problem and the multirate communication problem.

Specifying release times and deadlines for the tasks

involved in the computation can be used to satisfy, for

example, jitter requirements. However, this is a problem

since the engineer ends up with the burden of distributing

the release times and deadlines to avoid overloading a

specific time-window. This means that the engineer must act

as a pre-scheduler, an inefficient procedure. The possibility

of specifying relative timing constraints would be a

preferable property of the task model. For example, a

sampling task is required to run with a certain period with a

specified tolerance (Period ± tolerance). Relative timing

constraints could also be used for specifying latency

constraints, e.g., the time between sampling and actuation.

Furthermore, when a controller consists of several entities

which run with different periods, i.e., multirate control, the

possibility of specifying latency constraints would be

desirable. A task model supporting this would simplify the

specification of a system. Extending the task model is an

easy task but developing automated tools scheduling such a

system is not an easy task.

Finding 8: Task model and scheduling techniques reported

in literature must be extended to take real-world

requirements into consideration.

Motivation:

In developing the scheduling tool, CC, for this task model,

we had to take several important aspects into account to

obtain efficient use of the target system. The two aspects we

will cover here are schedule representation and the taking of

interrupt overhead into account.

Schedule representation. A common representation of a

static schedule is a vector, one position in the vector

representing a discrete point in time at which the execution

of a task can begin. The resolution of time is determined by

the frequency of the periodic clock which drives the task-

dispatcher. If the execution time of a task is less than this

resolution, or if it exceeds a multiple of the resolution by a

small fraction, the utilization of the CPU resource will

decrease. This is because there will be time intervals which

cannot be used to execute tasks. An apparent solution to this

is to increase the frequency of the periodic clock. However,

with a higher clock frequency, the dispatcher will use more

of the CPU resources, since it will execute more often.

Another way of representing a schedule is as a list of

rows, where each row represents a point in time at which the

dispatcher is to start the execution of a sequence of one or

more tasks. The first task in this sequence, or chain, is

started at the given point in time. All other tasks in the chain

are started as soon as the preceding task in the sequence has

completed its execution, without the need for the clock to

trigger the dispatcher. This representation will allow several

tasks to be executed during an interval less than the period

of the dispatcher clock. Hence, the dispatcher overhead can

be kept low while the utilization of the CPU resources

remains high.

Interrupt overhead. Typically, pre-run-time schedulers

do not take interrupts into account, assuming that their

execution times can be ignored or incorporated into task

execution. In many applications, the interrupts are, however,

not negligible and their inclusion in task execution times is

too conservative and inefficient, as in this case.

Furthermore, as inter-arrival and execution times of

interrupts are shorter than the resolution of the online

dispatcher and the arrival times are unknown, interrupt-

handling routines cannot be modeled as pre-scheduled tasks.

Consequently we had to develop a method for handling

interrupts in an efficient manner. The method developed

combines a tree search algorithm with response time

analysis, see the paper by Sandström et al [San98].

Finding 9: To make a pre-run-time scheduler tool really

useful, the user must be provided with feedback when the

system is not schedulable.

Motivation

When applying scheduling in industrial projects, engineers

are faced with a problem which has only to a very limited

degree been addressed by the real-time research community,

namely how to provide the user with constructive feedback

when a feasible schedule cannot be found.

Specification file Schedules

Happy

designer

Pre run-time

scheduler
feasible

system

unfeasible system

NULLConfused

designer

Figure 3: Pre-run-time scheduling: present situation

This limited feedback problem leads to confused

designers, as illustrated in Figure 3, who more or less at

random must optimize and modify the specification.

However, to help the designer to provide a specification for

which the pre-run-time scheduler can find a feasible

schedule, there is a need for heuristics which analyze the

specification for semantic problems and return constructive

feedback to the user. That is, the user should be provided

with suggested means of solving the problem, i.e., how to

modify the specification to enable the generation of a

feasible schedule.

We have developed a method for providing feedback to

the user by calculating a load function for the system. By

identifying bottlenecks in the system specification we can

guide the designer in modifying the input to the pre-run-time

scheduler. The underlying hypothesis is that there is a

correlation between the points in time when the load

function has a high value, and the locality of the bottlenecks

in the specification which lead to an non-feasible schedule

[All96].

Finding 10: Incremental scheduling is needed to minimize

the verification effort when only minor updates have been

performed on the application.

Motivation

When an application has been tested and used successfully

in a vehicle for some time, the application is accepted and

released. If some new functionality is subsequently added,

as much as possible of the execution sequence in the

application should be retained to avoid major re-verification

efforts.

This is not possible today, because the addition of new

functionality to the application requires the generation of a

completely new schedule. The major drawback of this

approach is that the application verification and validation

must be repeated to guarantee the functionality.

A desirable feature of a scheduler would be the possibility

of adding new tasks incrementally to the application without

affecting the sequence and timing of the tasks already

scheduled to minimize the re-verification effort. A scheduler

which accepts both the updated design specification and the

previously verified schedule as input could solve this

problem. The scheduler could try to find space in the old

schedule for the new tasks or otherwise to minimize the

number of changes necessary.

We believe that it is more important to retain the sequence

than the exact start times of tasks if the timing requirements

are fulfilled. We believe this because there are often margins

in execution windows for tasks while a change of sequence

could have severe impact on, for example multirate

transactions, which are often sensitive to data age.

5 Conclusion and Future research

In the real-time community, which scheduling strategy

should be used is often debated [Xu00]. For embedded

systems there appear to be two schools of thought: the pre-

run-time scheduling school and the Fixed Priority

Scheduling (FPS) school. Our experience indicates that we

could have used FPS instead of pre-run-time scheduling

since the scheduling strategy is only a small part of the

development of a system, see Figure 1. The important

factors are the possibilities of specifying the system on a

high level, of facilitate automated analysis and of automatic

mapping to a resource structure.

We believe that the project presented has been successful

in transferring real-time techniques from a university

research laboratory to an industrial partner. As a result, the

industrial partner has adopted a more systematic and

formalized design process which has shortened the overall

development cycle in comparison with similar previous

projects while achieving the product quality specified.

The use of a formal design language permits early analysis

and error detection. Further, the language used has made it

possible to generate code automatically. The language has

also forced the development team to produce a complete

and verified design which is consistent with the

implementation. The language does not only simplify the

design but also simplifies the maintenance of the

application.

Technology has been transferred in both directions,

industry providing relevant new challenges for academia

such as the interrupt and limited feedback problems.

To implement research results they must be encapsulated

in tools and extended to handle real-world requirements.

Further, there must be early adapters and carriers of the

technology. Let us conclude the paper with the observation

“tech transfer is a contact sport, people, not papers, transfer

technology”!

Acknowledgements: We would like to thank Jack

Stankovic, Hans Hansson, Sasikumar Punnekat, and Ivica

Crnkovic for valuable discussions and for reviewing earlier

versions of this paper. We would also like to thank Krithi

Ramamritham for encouraging us to write this paper. Finally

we would like to thank the anonymous reviewers for

constructive feedback.

Mälardalen Real-Time research Centre (MRTC;

www.mrtc.mdh.se) is a research centre in Västerås, Sweden,

supported by Swedish industry, the Swedish Foundation for

Knowledge and Competence Development (KK-stiftelsen)

and Mälardalen University.

6 References

[Ben96] J. L. Bennett. Building Relationships for Technology

Transfer. Communications of the ACM, Volume 39

Number 9. Sep. 1996.

 [All96] B. Allwin, K. Sandström, and C. Eriksson. Constructive

Feedback Turn Failure into Sucess for Pre-Run_time

Schduled Systems. 11th Euromicro Workshop on real-

time systems.

[San98] K Sandström, C. Eriksson, and G. Fohler. Handling

Interrupts with Static Scheduling in an Automotive

Vehicle Control System. In Proceedings of the fifth

International Conferance on Real-Time Computing

Systems and Applications, pp. 158-165, October 1998.

ISBN 0-8186-9209-X.

[Eri96] Christer Eriksson, Jukka Mäki-Turja, Kjell Post, Mikael

Gustafsson, Jan Gustafsson, Kristian Sandström and

Ellus Brorson. An Overview of RTT: A Design

Framework for Real-Time Systems. Journal of Parallel

and Distributed Computing August 1996.

[Fol96] Jim Foley. Technology Transfer from University to

Industry. Communications of the ACM, Volume 39

Number 9. Sep. 1996.

[Cas98] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg

Volcano a revolution in on-board communications.

Volvo Technology Report. 98-12-10.

[Mel98] K. Melin. Volvo S80: Electrical system of the future

Volvo Technology Report. 98-12-11.

[Kal88] D. Kalinsky and J. Ready. Distinctions between

requirements specification and design of real-time

systems. Conference proceedings on TRI-Ada '88 ,

1988, Pages 426 – 432.

[Dal94] M Dalziel. Effective university-industry technology

transfer. Canadian Conference on Electrical and

Computer Engineering, 1994 , Conference Proceedings,

Page(s): 743-746 vol.2

[Bat99] I Bate and A. Burns. An Approach to Task Attribute

Assignment for Uniprocessor Systems. Proceedings of

the 11th Euromicro Conference on Resal-Time Systems,

York, England, UK, June, 1999

[Sch96] J. Scholtz. Technology Transfer through Prototypes.

Communications of the ACM, Volume 39 Number 9.

Sep. 1996.

[Ram90] K. Ramamritham. Allocation and Scheduling of

Complex Periodic Tasks. In 10th Int. Conf. on

Distributed Computing Systems, pages 108-115, 1990.

[Sta88] J.A Stankovic Misconceptions about real-time

computing: a serious problem for next-generation

systems. Computer , Volume: 21 Issue: 10 , Oct. 1988.

[Xu00] J. Xu and D. L. Parnas. Priority scheduling versus pre-

run-time scheduling. Real-Time Systems Journal, 18(1),

January 2000.

