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Abstract 
The use of state-of-the-art real-time techniques in 

industry remains infrequent. The reason for this, we believe, 

is three-fold: (1) the lack of commercially available tools, 

(2) the lack of methodologies based on real-time theory 

throughout the complete development process, and (3) the 

lack of competence in real-time theory among industrial 

practitioners.  

In this paper we present a case study of the introduction 

of state-of-the-art real-time techniques in industry. The case 

study was performed as a collaboration between 

Mälardalen University and the industrial partners Volvo 

Construction Equipment Components AB (VCE) and 

TietoEnator ArosTech AB. VCE develops computer control 

systems for construction equipment vehicles, such as wheel 

loaders, graders, and articulated haulers. TietoEnator 

ArosTech is a firm of consultants with recognized 

competence in the field of embedded real-time systems. 

The contribution of this paper consists of the findings 

from the introduction of a method and real-time techniques 

into an industrial project. The main result reported can be 

summarized as “people, not papers, transfer technology”.  

 

1 Introduction 

Development of complex embedded systems is an 

expanding field, i.e., more and more applications are being 

based on the use of embedded computers. Examples include 

highly complex systems such as medical control equipment, 

mobile phones, and vehicle control systems.  

Most of such embedded systems can also be characterized 

as real-time systems. “Real-time systems are defined as 

those systems in which the correctness of the system 

depends not only on the logical result of the computation, 

but also on the time when the results are produced” [Sta88]. 

The increased complexity of these systems leads to 

increasing demands with respect to requirements 

engineering, high level design, early error detection, 

productivity, integration, verification, and maintenance. 

This calls for methods, models, and tools which permit a 

controlled and structured working procedure during the 

complete life cycle of the system [Kal88].    

Many methods such as UML-RT and HRT-HOOD are 

available for designing real-time systems. These methods, 

however, tend to concentrate on logical and structural 

decomposition, providing limited support for expressing and 

analyzing the temporal behavior of the system. Furthermore, 

the tools currently available provide limited support for 

automatic mapping from the design to a resource structure, 

especially with respect to temporal attributes. This often 

leads to discrepancy between the design and the 

implementation, and consequently the system will be 

difficult to maintain.  

As an alternative we have developed a model and method 

focused on the real-time properties of a system. The 

objective of the model and method is to support the 

development of a high level design, including specification 

of properties such as temporal constraints, communication 

and synchronization. Furthermore, the model and method 

support formal verification of these properties, and early 

system integration, and permit regression testing.  

The aim of this paper is to present our findings from the 

introduction of this model and method in an industrial 

project, performed as a cooperation between Mälardalen 

University, Volvo Construction Equipment AB (VCE), and 

TietoEnator ArosTech AB in Sweden. The validity of these 

findings is based on a single but extensive case study of one 

industrial project. Some of our findings are confirmed by 

similar results from other industrial projects utilizing state-

of-the-art real-time techniques [Cas98, Mel98].  

VCE has used onboard electronics in their products since 

1981 for specific functionality. More and more functionality 

can be provided by the computer control system and this has 

led to an increasing number of people being involved in the 



 

development of each product, and thus a need for uniform 

development methods and tools.   

This was the motivation for the co-operation. Since a new 

architecture was to be developed, we were given the 

opportunity to introduce new techniques and methods. 

The outline of the paper is as follows: Section 2 briefly 

presents the application characteristics. The development 

method and model are presented in Section 3. In Section 4 

we present our findings, categorized into findings related to 

methodological aspects, technology transfer, and technical 

issues. Finally, Section 5 contains certain of our 

conclusions.  

2 Application characteristics  

The application concerned is a vehicle control system 

with high demands on safety, reliability, and accurate 

timing. The system hardware consists of two nodes 

connected via redundant buses. The application consists of 

80 tasks, running with different periods, which collaborate 

to perform certain control functions. These tasks have hard 

real-time requirements, are scheduled off-line and execute 

according to a dispatch table on-line. Each node is very I/O 

intensive, the complete system incorporating 150 I/O 

channels. 

The execution times of the tasks in the application range 

from 10 µs to 1 millisecond. The application is interrupt 

intensive, due to the construction of the hardware and the 

effect of these interrupts cannot be neglected when 

scheduling the hard real-time tasks. The hardware could not 

be modified as it had been designed and certified before 

development of the software was begun. 

The worst case utilization of the processors, for the 

critical part, is approximately 80%, divided into 35% for 

interrupts and 45% for hard real-time tasks. The remaining 

spare capacity is used by on-line scheduled soft real-time 

tasks. During run-time, the spare capacity will exceed the 

remaining 20% if the load generated by hard tasks and 

interrupts is less than the worst case. 

3 Development method and model 

In this section we will present the method and the model 

used in developing the application. 

The development method defines the workflow when 

developing an application. The method employed in this 

project is iterative and quite traditional. The emphasis in the 

method is to derive a high level design which enables early 

analysis of timing, communication, and synchronization 

properties. To facilitate this it is necessary for 

synchronization, communication, and temporal attributes to 

be defined early in the design process and for this we need a 

suitable design language to describe the model of the 

application.   

The objective of this model is two-fold. First, the model 

should enable easy representation of the application and its 

requirements. Second, the model should be described using 

a language which enables formal analysis and automatic 

code generation (in our case analysis of timing, 

communication, and synchronization properties). There is, 

however, a tradeoff between these two objectives. Analysis 

and automatic code generation, from a formal and precise 

design description, is often straightforward. However, such 

descriptions tend to be difficult to write and difficult for 

industrial practitioners to understand. On the other hand, a 

specification in, for example, plain language is easy to 

understand but difficult to analyze. We have tried to balance 

these two objectives when designing the language. 

We will describe the method for developing an 

application as illustrated in Figure 1. In each step we briefly 

introduce the model and its language elements. 

 

I. Requirements engineering. The customer ordering 

the system specifies the requirements.  

II. Requirements analysis. In this stage the high level 

functions of the application are identified from the 

requirements specification. It is also important here to 

determine temporal constraints for these functions.  

III. High-level system decomposition. In this stage the 

different operational modes of the application are 

identified together with valid transitions between them. 

A mode describes specific functionality in a system 

state. If the functionality differs substantially from one 

state to another, these should be separated into 

different modes. An example is the control system in a 

vehicle, which can have different functionality 

depending on the status of the vehicle, such as 

operating, reduced, failed, and init.  

IV. Function decomposition and structuring. The 

functions, for each mode, are decomposed into 

transactions. Transactions in turn are decomposed into 

smaller units called tasks. Tasks are defined by their 

low-level functions together with the data flow 

between them. Each task is provided with a set of 

typed in-ports and out-ports. The execution semantics 

of a task are: to read its in-ports on activation, then to 

perform the function and, before termination, to write 

the result to its out-ports. This construction implies 

that each task can be designed without knowledge of 

where input data was produced, or where the output 

data produced will be used. 
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Figure 1: The design method 

Example 1: A multirate controller. The transaction 

consists of two sampling tasks, S1 and S2, a controller 

task C, and an actuator task A. The data-flow of the 

transaction can be seen in Figure 2.  ❏ 
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Figure 2: Data-flow between tasks. 

Functionality having high responsiveness 

requirements or which occurs frequently but with short 

execution times cannot be implemented as a periodic 

task as the overhead would be too high. Such low-level 

functions are therefore implemented as interrupts. 

V. Mapping temporal constraints to attributes of the 

task model. In the previous stage high level functions 

were decomposed into tasks and structured according 

to the interaction between them. In this step we break 

down the high level temporal requirements into 

temporal attributes for tasks and the synchronization 

between them.  

Synchronization can be defined by precedence 

relationships between tasks or by mutual exclusion of 

tasks sharing a common resource. The temporal 

attributes are period, the Worst Case Execution Time 

(WCET), the release time, and the deadline of a task. 

The WCET is the estimated execution time for the 

task. The release time is the earliest time at which the 

task can be activated, relative to its period start. The 

deadline is the latest time at which a task is permitted 

to terminate, relative to its period start. Further, the 

temporal behavior for each interrupt is defined by an 

inter-arrival time and an execution time.  

Example 1 (continued): The temporal attributes, 

derived by the control engineer for the multirate-

transaction example are as follows (note that we have 

no knowledge of the execution times of the tasks as 

yet, hence the question marks): 

• Tasks S1 and S2 have period, release time, 

deadline, worst case execution time in 

µs = (1000, 0, 1000, ?). 

• Task C = (5000, 4000, 5000, ?). 

• Task A = (5000, 4000, 5000, ?).   

To enforce order between the controller and actuator 

task, we specify a precedence relation between C and 

A, i.e., task C precedes task A. ❏ 

VI. Defining Execution Time Budget. Traditionally 

WCET is obtained by either measurement or by 

statically analyzing the code produced for each task. In 

this approach, however, execution time budgets are 

estimated, being used later in step VIII as 

implementation requirements. The reason for this is 

that a feasibility test for the system, and a possible re-

engineering, can then be performed at an early stage, 

thus permitting early detection of design errors related 

to resource utilization, communication and 

synchronization.  

Example 1 (continued): The question marks are 

replaced by estimated time budgets. Since this is a 

delicate issue, it requires highly skilled engineers with 

long experience. ❏ 

VII. Feasibility check and automatic implementation. 

The formally described design can be checked for 

temporal correctness, with a tool designated 

Configuration Compiler (CC), even if no actual (low-



 

level) implementation has been produced. The CC 

maps the design description to a resource structure. 

The CC is a pre-run-time scheduler which generates 

dispatch tables for running the tasks and the 

communication infrastructure for each mode. This 

constitutes an application skeleton for the running and 

communication of the tasks. In addition to the mapping 

of the model, CC also supports specification of 

architecture-specific attributes such as HW-

performance, resolution of the run-time dispatcher, 

communication times, and the number of nested pre-

emptions permitted. The implementation of the CC is 

based on a heuristic tree search strategy, similar to the 

one presented in [Ram90]. The major difference is that 

this scheduler takes into account interrupts [San98] 

and architecture-specific attributes. The current 

version of CC is adapted to the real-time operating 

system Rubus (both commercial products, see 

www.arcticus.se).  

VIII. Implementation and module testing. The tasks are 

simply implemented by traditional programming 

(coding). In addition to the traditional functional 

specification, the programmer also has the execution 

time budget as an implementation requirement, i.e., the 

programmer must implement the specified function 

without exceeding the budget. The module testing 

includes both verification of functional behavior and 

checks that time budgets are not exceeded. If a time 

budget cannot be met, a redesign is required. 

IX. System integration and verification. The integration 

phase is usually performed quickly and without 

problems since the actual integration was performed 

during the design phase. The major task is the 

integration testing.  

4 Findings 

In this section we will describe our findings from the 

introduction of the method and model. The findings are 

categorized as those related to development method, 

technology transfer, and technical issues respectively. The 

development method covers the findings based on the use of 

the design language and method. The technology transfer 

section describes issues regarding the transfer and 

introduction of new techniques and especially real-time 

techniques into an organization. The technical issue section 

presents new or relevant technical challenges encountered 

during this work.  

4.1 Development method 

Finding 1: The design language (1) provides the means for 

concurrent implementation and (2) facilitates efficient 

integration of new personnel into the project. 

Motivation: 

(1) The task model stipulates tasks, which have no 

synchronisation or communication within the code. Observe 

that each task uses a computational model based on input - 

calculation - output. As a result each task can be 

implemented and tested in parallel since each task is only 

dependent on its own state and the values at its in-ports to 

make a calculation. Module testing is thus very simple, 

values are fed to the in-ports and out-ports are monitored. 

This model facilitates regression testing of modules in a 

straightforward way. 

(2) A small group of people with knowledge of the system 

and a feeling for future demands on the system develops the 

design. The design they produce must be stable, that is, 

major changes required after the implementation phase are 

to be few. It is then easy to introduce new personnel into the 

implementation phase since each new employee or 

consultant need only to understand the design language and 

follow the specified interface to be able to begin to 

implement and test. The introduction of the design language 

has decreased the introduction time for new employees and 

consultants substantially.  

Finding 2: The design language provides sufficient details 

for analysis and code generation.  

Motivation: 

Using the design language provides three major benefits: 

• It gives the application skeleton, which can be analyzed 

without needing a single line of code.  

• The analysis leads to early detection of errors in 

communication, synchronization, and timing. 

• Simplified system integration. 

Currently, we can analyze communication, 

synchronization, and timing requirements. Three different 

aspects of communication are analyzed.  Firstly, the types of 

connected ports are checked to ensure that the proper data 

types are passed to the tasks. Secondly, the analysis will 

reject a design in which the amount and rate of data passing 

through the system makes it impossible to fulfill the 

temporal requirements. Thirdly, data consistency is checked. 

In this case also, if there is no way of fulfilling all timing 

requirements with guaranteed data consistency, the design is 

rejected. 

The analysis of the synchronization ensures that all 

precedence and mutual exclusion relationships between 

tasks can be guaranteed in conjunction with guaranteed 

timing requirements. 

Finally the analysis of the timing requirements reveals if a 

schedule for the given design and execution time budgets 

which fulfills these timing requirements is possible. If it is 

impossible to fulfill the timing requirements the design will 

again be rejected. 

The analysis presented above leads to early detection of 

design errors of the properties analyzed. Such errors are 



 

otherwise often found in the integration phase of the project 

and then cost time and effort to correct.  

System integration is also simplified by the early analysis. 

If the implementation for each task complies with the 

interface given by the design, i.e., retrieving data only from 

the in-ports, performing the desired function within the 

given execution time budget, and producing data only to the 

out-ports, the integrated system will fulfil the design and 

thus satisfy the requirements. Thus, one step in the 

development process, which is often quite troublesome and 

leads to costly delays, is greatly simplified.  

Note that all that need be added to implement the design 

is the task code, everything else is generated automatically. 

Finding 3:Use of the method increases the time spent in the 

design phase but shortens the implementation time. 

Motivation:  

The time to complete the design has increased in 

comparison with similar projects in which traditional 

informal techniques (such as structured analysis and design) 

have been used. This is not surprising since the development 

of a formal and detailed design requires more effort, 

compared with a design written in plain language only. 

However, the precise design has resulted in shorter time 

being spent in implementation, testing, and integration due 

to reasons described earlier. Aware of the difficulty of 

providing formal evidence for this claim, we remain 

confident that it is valid. Further, we believe that the time 

spent in implementation and testing will be reduced even 

more in future projects, when engineers become more 

familiar with the new approach.   

 We also believe that it will be much easier to maintain a 

system based on a precise design as compared with a 

traditional system. This is mainly due to two factors:  

1. Normally, the implementation and the design tend to 

diverge which makes it difficult to foresee the impact of 

changes or added functionality. One way to avoid this 

divergence is to use tools which enforce consistency by 

automatically, producing verified functionality from the 

design description. 

2. Even if there is a close match between the design 

documents and the implementation it is not easy to 

foresee the impact of changes or added functionality. 

Performing the changes in a consistent and formal 

design, several properties can be analyzed. Thus 

changes or add-ons which do not comply with the 

functionality already implemented will be detected at an 

early stage.  

Finding 4: Using execution time budgets to facilitate early 

schedulability analysis proved to be a feasible approach. 

Motivation: 

To be able to make an early capacity analysis of system 

resources such as processors and buses, each task must have 

an execution time budget. This budget states the amount of 

the processor capacity the task is permitted to utilize. 

Specifying this budget, i.e., relating functional requirements 

to the execution time of a task, can sometimes be difficult.  

In this project we were surprised that the budget 

estimations were so accurate. The reason for this, we 

believe, was that the engineers who specified these budgets 

had many years of experience in control system design and 

hardware-close programming.  

To verify that the implementation fulfils the requirements, 

the execution time for each task was measured and, in some 

cases calculated.  

4.2 Technology transfer 

Finding 5: Tools, education (courses, tutorials), carriers, 

and adapters are required to facilitate a successful transfer 

of real-time technology to industry. 

Motivation:  

Tools:  

When transferring a theory to industry, unless very simple 

[Bat99], it is necessary that the theory be encapsulated in a 

tool, demonstrating its practical use [Sch96]. A good 

example of a tool, which encapsulates advanced technology, 

is the traditional compiler.  

The first version of the tool, CC, was written in a high 

level language which was easy to adapt to new 

requirements. The handling of these up-coming 

requirements in an efficient way is important for success in 

the transfer, an operation in which the carrier, described 

below, plays a significant role. CC was later ported to a low-

level language resulting in an efficient implementation.  

Courses:  

We learned that an engineer requires at least two days of 

training to understand sufficient basic real-time theory and 

associated methods to be able to work in the design of new 

systems. In reality it will take an experienced engineer about 

a week including the training course to be productive, when 

using the model and methodology. 

Carrier: 

The success of this project has been mainly due to one 

member of the research group beginning to work as a 

consultant for TietoEnator ArosTech at VCE. Regardless of 

how many excellent reports are written, people are needed 

to carry the results [Dal94]. A related example is the 

development of the control system for Volvo S80 for which 

Ken Tindell and others carried the response time analysis 

for the CAN bus into a tool and implanted that tool in the 

Volvo Car Cooperation organization [Cas98, Mel98]. 

Citation: "Tech transfer is a contact sport. People, not 

papers, transfer technology" [Fol96]. 

Adapters: 

Even if we have carriers we need early adapters at the 

company to take the technology into the company and its 



 

organization. These people need to be authoritative to be 

able to sell the new technology in the organization. There is 

always a healthy conservatism in all organizations. 

Therefore one must find people ready to invest enough time 

and energy to determine if or not the technology is 

applicable and gives an added value to the development of 

their products [Ben96].  

Finding 6: The major problem when introducing real-time 

techniques in an organization is to change the requirements 

elicitation process to include temporal requirements.  

Motivation: 

Several independent sources confirm this finding (Volvo 

Car and Volvo Construction Equipment). All the 

engineering disciplines within a company must change their 

way of specifying electronics requirements at the same time. 

The main problem is that when a timing requirement for a 

high-level function has been accepted, it is not easy to 

reconsider it. Timing requirements become more firmly 

established the longer the timing constraint remains in force. 

This becomes apparent when a new function is added, 

resulting in a negative schedulability test. To add such a 

function, either execution time budgets that are too generous 

or timing requirements that are too strict need to be 

reconsidered. Assuming that the overestimation of execution 

times is negligible, the temporal requirements must be 

reconsidered. To be able to determine which temporal 

requirement to relax, there must exist a notion of confidence 

in the timing requirements. As an example, consider, in an 

application, the time until a lamp illuminates after operating 

the lamp switch. Assume that as a requirement, this time is 

specified as 200 ms. If it is subsequently found that the 

system cannot be scheduled, it must be decided which 

requirements can be relaxed to provide a feasible schedule. 

If confidence in the time specified, 200 ms, is low, relaxing 

of this requirement could be considered. 

The results from the requirements elicitation process must 

therefore be clearly expressed and well motivated since they 

will be used during the complete life cycle of the system.  

4.3 Technical issues 

Finding 7: The task model used (described in Section 2) is 

in some cases too restricted when handling control jitter for 

simple controllers and especially for multirate controllers. 

Motivation 

The limited expressiveness in the task model is related to the 

jitter problem and the multirate communication problem. 

Specifying release times and deadlines for the tasks 

involved in the computation can be used to satisfy, for 

example, jitter requirements. However, this is a problem 

since the engineer ends up with the burden of distributing 

the release times and deadlines to avoid overloading a 

specific time-window. This means that the engineer must act 

as a pre-scheduler, an inefficient procedure. The possibility 

of specifying relative timing constraints would be a 

preferable property of the task model. For example, a 

sampling task is required to run with a certain period with a 

specified tolerance (Period ± tolerance). Relative timing 

constraints could also be used for specifying latency 

constraints, e.g., the time between sampling and actuation. 

Furthermore, when a controller consists of several entities 

which run with different periods, i.e., multirate control, the 

possibility of specifying latency constraints would be 

desirable. A task model supporting this would simplify the 

specification of a system. Extending the task model is an 

easy task but developing automated tools scheduling such a 

system is not an easy task. 

Finding 8: Task model and scheduling techniques reported 

in literature must be extended to take real-world 

requirements into consideration. 

Motivation:  

In developing the scheduling tool, CC, for this task model, 

we had to take several important aspects into account to 

obtain efficient use of the target system. The two aspects we 

will cover here are schedule representation and the taking of 

interrupt overhead into account. 

Schedule representation. A common representation of a 

static schedule is a vector, one position in the vector 

representing a discrete point in time at which the execution 

of a task can begin. The resolution of time is determined by 

the frequency of the periodic clock which drives the task-

dispatcher. If the execution time of a task is less than this 

resolution, or if it exceeds a multiple of the resolution by a 

small fraction, the utilization of the CPU resource will 

decrease. This is because there will be time intervals which 

cannot be used to execute tasks. An apparent solution to this 

is to increase the frequency of the periodic clock. However, 

with a higher clock frequency, the dispatcher will use more 

of the CPU resources, since it will execute more often.  

Another way of representing a schedule is as a list of 

rows, where each row represents a point in time at which the 

dispatcher is to start the execution of a sequence of one or 

more tasks. The first task in this sequence, or chain, is 

started at the given point in time. All other tasks in the chain 

are started as soon as the preceding task in the sequence has 

completed its execution, without the need for the clock to 

trigger the dispatcher. This representation will allow several 

tasks to be executed during an interval less than the period 

of the dispatcher clock.  Hence, the dispatcher overhead can 

be kept low while the utilization of the CPU resources 

remains high. 

Interrupt overhead. Typically, pre-run-time schedulers 

do not take interrupts into account, assuming that their 

execution times can be ignored or incorporated into task 

execution. In many applications, the interrupts are, however, 

not negligible and their inclusion in task execution times is 

too conservative and inefficient, as in this case. 



 

Furthermore, as inter-arrival and execution times of 

interrupts are shorter than the resolution of the online 

dispatcher and the arrival times are unknown, interrupt-

handling routines cannot be modeled as pre-scheduled tasks. 

Consequently we had to develop a method for handling 

interrupts in an efficient manner. The method developed 

combines a tree search algorithm with response time 

analysis, see the paper by Sandström et al [San98].  

Finding 9: To make a pre-run-time scheduler tool really 

useful, the user must be provided with feedback when the 

system is not schedulable. 

Motivation 

When applying scheduling in industrial projects, engineers 

are faced with a problem which has only to a very limited 

degree been addressed by the real-time research community, 

namely how to provide the user with constructive feedback 

when a feasible schedule cannot be found.  

Specification file Schedules

Happy

designer

Pre run-time

scheduler
feasible

system

unfeasible system

NULLConfused

designer

  

Figure 3: Pre-run-time scheduling: present situation 

This limited feedback problem leads to confused 

designers, as illustrated in Figure 3, who more or less at 

random must optimize and modify the specification. 

However, to help the designer to provide a specification for 

which the pre-run-time scheduler can find a feasible 

schedule, there is a need for heuristics which analyze the 

specification for semantic problems and return constructive 

feedback to the user. That is, the user should be provided 

with suggested means of solving the problem, i.e., how to 

modify the specification to enable the generation of a 

feasible schedule.  

We have developed a method for providing feedback to 

the user by calculating a load function for the system. By 

identifying bottlenecks in the system specification we can 

guide the designer in modifying the input to the pre-run-time 

scheduler. The underlying hypothesis is that there is a 

correlation between the points in time when the load 

function has a high value, and the locality of the bottlenecks 

in the specification which lead to an non-feasible schedule 

[All96].  

Finding 10: Incremental scheduling is needed to minimize 

the verification effort when only minor updates have been 

performed on the application. 

Motivation 

When an application has been tested and used successfully 

in a vehicle for some time, the application is accepted and 

released. If some new functionality is subsequently added, 

as much as possible of the execution sequence in the 

application should be retained to avoid major re-verification 

efforts. 

This is not possible today, because the addition of new 

functionality to the application requires the generation of a 

completely new schedule. The major drawback of this 

approach is that the application verification and validation 

must be repeated to guarantee the functionality.  

A desirable feature of a scheduler would be the possibility 

of adding new tasks incrementally to the application without 

affecting the sequence and timing of the tasks already 

scheduled to minimize the re-verification effort. A scheduler 

which accepts both the updated design specification and the 

previously verified schedule as input could solve this 

problem. The scheduler could try to find space in the old 

schedule for the new tasks or otherwise to minimize the 

number of changes necessary.  

We believe that it is more important to retain the sequence 

than the exact start times of tasks if the timing requirements 

are fulfilled. We believe this because there are often margins 

in execution windows for tasks while a change of sequence 

could have severe impact on, for example multirate 

transactions, which are often sensitive to data age.  

5 Conclusion and Future research 

In the real-time community, which scheduling strategy 

should be used is often debated [Xu00]. For embedded 

systems there appear to be two schools of thought: the pre-

run-time scheduling school and the Fixed Priority 

Scheduling (FPS) school. Our experience indicates that we 

could have used FPS instead of pre-run-time scheduling 

since the scheduling strategy is only a small part of the 

development of a system, see Figure 1.  The important 

factors are the possibilities of specifying the system on a 

high level, of facilitate automated analysis and of automatic 

mapping to a resource structure.  

We believe that the project presented has been successful 

in transferring real-time techniques from a university 

research laboratory to an industrial partner. As a result, the 

industrial partner has adopted a more systematic and 

formalized design process which has shortened the overall 

development cycle in comparison with similar previous 

projects while achieving the product quality specified. 

The use of a formal design language permits early analysis 

and error detection. Further, the language used has made it 

possible to generate code automatically. The language has 

also forced the development team to produce a complete 

and verified design which is consistent with the 

implementation. The language does not only simplify the 



 

design but also simplifies the maintenance of the 

application.  

Technology has been transferred in both directions, 

industry providing relevant new challenges for academia 

such as the interrupt and limited feedback problems.  

To implement research results they must be encapsulated 

in tools and extended to handle real-world requirements. 

Further, there must be early adapters and carriers of the 

technology. Let us conclude the paper with the observation 

“tech transfer is a contact sport, people, not papers, transfer 

technology”! 
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