
Integrating Independently Developed Real-Time
Applications on a Shared Multi-Core Architecture∗

Sara Afshar, Moris Behnam, Thomas Nolte
Mälardalen University, Västerås, Sweden

Email: {sara.afshar, moris.behnam, thomas.nolte}@mdh.se

ABSTRACT
The shift towards multi-core platforms has become inevitable from
an industry perspective, therefore proper techniques are needed to
deal with challenges related to this migration from single core ar-
chitectures to a multi-core architecture. One of the main concerns
for system developers in this context is the migration of legacy
real-time systems to multi-core architectures. To address this con-
cern and to simplify migration, independently-developed subsys-
tems are abstracted with an interface, such that when working with
multiple independently-developed subsystems to be integrated on a
shared platform, one does not need to be aware of information or
policies used in other subsystems in order to determine subsystem-
level schedulability. Instead schedulability can be checked through
their interfaces at the time of integration on a shared multi-core ar-
chitecture. In this paper we propose a solution for investigating the
system schedulability via providing interfaces for independently-
developed subsystems where some of them are distributed over
more than one processor and may share resources.

1. INTRODUCTION
Moving towards multi-core technology in industry has raised an
increased interest to investigate real-time scheduling policies and
system performance studies of multiprocessor subsystems in the
real-time community. One of the main concerns while shifting to
multi-core platforms is the existing subsystems. It is desirable that
existing subsystems can co-execute on a shared platform without
significant loss of performance.

A major challenge for integrating independently-developed subsys-
tems, for example legacy systems, into a shared multi-core platform
is how to integrate these subsystems with minor changes and how
to abstract their resource demands comprehensively such that each
subsystem is allowed to be unaware of the policies used in other
subsystems.

Integrating multiple independently-developed subsystems on a sha-
red multi-core platform, different alternatives may come up related
to allocation of the subsystems to processors. One scenario is that
each subsystem fits in one exclusive processor, i.e., no two sub-
systems share one core (processor), which has been studied in [1].
Another alternative is that one processor contains more than one
subsystem. For this scenario, the techniques for integrating sub-
systems on uniprocessors can be used, e.g., the methods presented
in [2] and [3]. These techniques abstract the timing requirements
of the internal tasks of each subsystem which, as a result abstracts
each subsystem as one (artificial) task. Therefore the problem of
∗This work is supported by the Swedish Foundation for Strategic
Research, via the research program PRESS.

integration becomes similar to the case of scheduling a set of tasks
running on a single processor. We can see that by reusing unipro-
cessor techniques for the second scenario it becomes similar to the
first alternative.

The third alternative represents the scenario when a subsystem is al-
located over more than one processor, which is also the focus of our
paper. The challenge here is to provide predictable co-execution
of the independently-developed subsystems, despite of how many
processors each subsystem may be distributed over, considering
that each subsystem may share resources.

In this paper we generalize the idea in [1] such that some subsys-
tems, which we will call applications in the remainder of the paper,
are allocated to more than one processor. The goal of the paper is
to provide a solution which enables the schedulability analysis of
integrated independently-developed applications which may be al-
located over more than one processor without the application level
scheduling knowledge. Targeting independently-developed appli-
cations allocated to more than one processor, we perform com-
positional schedulability analysis, i.e., we check schedulability of
the system by composing interfaces that abstract schedulability re-
quirements of each application [4]. Using compositional analy-
sis, the system integrator can investigate if the whole platform is
schedulable without any need to perform application level schedu-
lability analysis. This is significant since (i) the application de-
veloper does not need to have detailed knowledge of scheduling
policies or techniques used in other applications that are going to
be integrated with this application on a shared platform, and (ii) to
check the schedulability of the system, the system developer does
not need to know detailed information on the task level of each
application when integrating the applications.

In the context of multiprocessor scheduling there are two conven-
tional scheduling techniques: partitioned and global scheduling.
Under partitioned scheduling, each task is assigned to one proces-
sor and execute exclusively on that processor. On the other hand,
under global scheduling tasks are allowed to migrate among pro-
cessors and execute on any available processor. Semi-partitioned
scheduling is a third alternative, introduced by Anderson et al. in
[5] which extends partitioned scheduling by allowing a few tasks
to migrate among different processors and improves the schedula-
bility performance for independent task systems. Looking at the
challenges related to the applications requiring more than one pro-
cessor, we will look at semi-partitioned approach as an alternative
for partitioning since it utilizes the resources in a better way as
we will explain in Section 7. In this paper we investigate the par-
titioned and semi-partitioned approaches to partition applications



which do not fit on one processor, and we present techniques to ab-
stract and derive interfaces for applications under these alternatives.
The paper contributions are as follows:

• Targetting independently-developed applications that are al-
located to more than one processor, we extract an interface
for each application which abstracts the application resource
demands.

• We propose the semi-partitioned approach as an alternative
for partitioning the application on the processors/cores.

• We suggest the usage of multiple interfaces for different par-
titioning configurations, providing flexibility and better re-
source utilization.

The remainder of this paper is organized as follows: in Section 2 we
present related work and in Section 3 we define our system model.
We specify assumptions and rules of the synchronization protocol
that manages sharing of resources in Sections 4 and 5 respectively.
We perform subsystem analysis and abstract the timing requirement
of each application in Section 6. Finally we investigate the subsys-
tem abstraction by assuming partitioned and semi-partitioned ap-
proaches in Sections 7 and 8.

2. RELATED WORK
Vast amount of work has been done on the subject of integrating
independently-developed real-time subsystems in a shared open en-
vironment on uniprocessors [3, 6, 7, 2]. Hierarchical scheduling
techniques have been introduced and developed as a solution for
these subsystems. Hierarchical scheduling has also been studied
for multiprocessors [8, 9]. However, the subsystems studied in
these works are assumed to be independent and they do not sup-
port sharing of mutually exclusive resources. In the context of re-
source management of non-hierarchical multiprocessor systems, a
considerable amount of work has been done over the past decades.

Rajkumar et al. proposed the Distributed Priority Ceiling Proto-
col (DPCP) [10] for shared memory multiprocessors. In DPCP a
job access its local resources and execute its non-critical sections
on its assigned processor while it may access global resources on
processors other than its assigned processor. The Multiprocessor
Priority Ceiling Protocol (MPCP) was proposed by Rajkumar et
al. [10, 11], which is an extension of the Priority Ceiling Protocol
(PCP) [12] for multi-cores. In MPCP a task requesting a resource
is suspended if the resource is not available at the moment. The
Multiprocessor Stack Resource Policy (MSRP) is a resource shar-
ing protocol proposed by Gai et al. [13], which extends the Stack
Resource Policy (SRP) [14] for multiprocessors. Under MSRP
the task that requests a global resource that is already locked by
another task performs a busy wait denoted spin lock. The Flexi-
ble Multiprocessor Locking Protocol (FMLP) is a synchronization
protocol introduced by Block et al. [15] for both partitioned and
global scheduling, which later was extended to partitioned FMLP
by Brandenburg and Anderson [16]. Under FMLP, resources are
divided into long and short resources. Tasks that are blocked on
long resources are suspended in the same way as MPCP while tasks
that are blocked on short resources perform busy-wait similar to
MSRP. The O(m) Locking Protocol (OMLP) is another locking
protocol proposed by Brandenburg and Anderson [17] to handle
resource sharing in multiprocessors. However, the aforementioned
synchronization protocols for multi-core/ multiprocessors do not
support compositional analysis of independently developed appli-
cations. One of the semaphore-based synchronization protocols

that supports integration of independently developed applications
is the Multiprocessor Synchronization Protocol for Open Systems
(MSOS) by Nemati et al. [1]. Under MSOS applications/ sub-
systems are developed independently and abstracted in their inter-
faces, therefore they do not need to have any knowledge about the
scheduling algorithms and priority settings of other subsystems in
order to determine schedulability. However, in [1] an application is
assumed to be allocated to one core while in our work we relax this
assumption and assume that an application can be distributed over
multiple cores.

In the context of semi-partitioned scheduling, different allocation
mechanisms have been investigated in prior works [18, 19, 20, 21],
where Guan et al. have increased the utilization bound of task sets
to achieve the utilization bound of Liu and Layland’s Rate Mono-
tonic Scheduling (RMS) for an arbitrary task set [21]. In these
works, tasks are assumed to be independent, i.e., no resource shar-
ing is allowed between tasks.

Inspired by our previous work on supporting resource sharing un-
der semi-partitioned scheduling [22, 23], and based on the subsys-
tem abstraction presented in [1], we propose a new approach to
abstract independently-developed applications running on a multi-
core platform where the applications are potentially requiring more
than one core to be schedulable.

3. SYSTEM MODEL
In this section we present the system model used throughout this
paper. We assume that the multi-core platform, which we call plat-
form in the remainder of the paper, is composed of identical pro-
cessors with shared memory. An application consists of a task set
and a particular scheduling algorithm and tasks may request mutu-
ally exclusive resources. Some applications in the platform can fit
on one processor while others do not and must be allocated over
more than one processor. Note that applications do not share cores
(processors), i.e., for each core only a complete or a part of an
application can be allocated. The scheduling techniques for appli-
cations may differ between applications, e.g., one application may
use a Fixed Priority Scheduling (FPS) policy, while another appli-
cation may apply a dynamic priority scheduling policy (e.g., Ear-
liest Deadline First EDF). However, due to space limitations and
presentation clarity, in this paper we assume only the usage of FPS.
A task set of an application Ak is denoted by τAk and consists of
n sporadic hard real-time tasks τi(Ti,Ci,Di,ρi), where Ti identifies
the minimum inter-arrival time between two successive jobs of task
τi with worst-case execution time Ci and priority ρi. Di represents
the task’s deadline where Di ≤ Ti. We also assume that each task in
an application has a unique priority.

The tasks on application Pk share a set of resources RPk which are
protected using semaphores. The set of shared resources RPk con-
sists of two subsets of different types of resources; local and global
resources. Local resources are shared by the tasks on the same
processor while global resources are shared by tasks on more than
one processor by the same or different applications. We denote the
sets of local and global resources accessed by tasks on processor
Pk as RL

Pk
and RG

Pk
respectively, i.e., RPk = RL

Pk
∪RG

Pk
. We denote

Ci,q as the worst-case execution time of the longest critical section
in which a task τi requests the resource Rq. Nested critical sec-
tions are not supported in this paper which in turn will remove the
deadlock problem. However, tasks can access the same resource or
more than one global resource sequentially.



According to the semi-partitioned approach some tasks are assigned
to exactly one processor – we identify these tasks as non-split tasks.
However, some tasks may be assigned to more than one processor
within the same application. We refer to these tasks as split tasks
since they are split among several processors. Each single part of a
split task is called subtask. From an analysis point of view, all sub-
tasks of each split task are assumed as normal separate tasks in the
application, however, each subtask of a split task should execute
prior to its successive subtask(s). We model this behavior using a
constant offset, in the sense that each subtask of a split task has a
constant offset according to its previous subtask.

We present each split task τs as a subset of l subtasks (τ1
i , ...,τ

l
i),

and each subtask is represented by (Ck
s ,Ts,Ds,ρs,Ok

s) where (k =
1, ..., l). Ok

i represent the constant offset of the kth subtask of split
task τs which is identified by the former subtask’s maximum re-
sponse time. The offset of the first subtask is zero, O1

i = 0. For the
subtasks of a split task τs, Ts, Ds and ρs are the same as τs [23].

The resource requests of split tasks can happen at any time during
the execution time of the task which means that it can happen in any
core and not in a certain core. Therefore a conservative assumption
from an analysis point of view is to assume that the critical sections
of split tasks may happen in all subtasks of the split task and thus
on different cores/processors. As the result, the resources requested
by split tasks are by definition global resources [23].

4. DEFINITIONS AND ASSUMPTIONS
In order to perform the system-level schedulability analysis, we de-
rive an interface for each application which reflects the scheduling
demands of all its tasks. Note that, the tasks in each application do
not need to be aware of any information about the tasks in other
applications, neither do they need to know about scheduling and
partitioning techniques used in other applications. We assume that
each application Ai is allocated over a set of l processors, where
l ≥ 1 (the solution presented in [1] is only applicable for the case
when l = 1). We denote the set of processors on which application
Ai is allocated as PAi . We first specify some definitions and terms
needed in this context.

4.1 Resource Hold Time
RHTq,k,i is the resource hold time and it defines the maximum time
duration that the global resource Rq can be held by τi executing
on Pk [1]. By definition, RHTq,k,i accounts for the longest critical
section in which τi accesses Rq as well as the possible interference
from other tasks accessing global resources other than Rq on pro-
cessor Pk.

We also introduce two other terms as processor and application
locking time for a specific global resource. Processor locking time
of a processor Pk for a global resource Rq presented by Zq,k is the
maximum duration of time that any task on processors other than
Pk requesting Rq is blocked by tasks on Pk. In other words, Zq,k
represents the impact of blocking on Rq introduced by Pk to all
other processors. Furthermore, application locking time of an ap-
plication Ai for a global resource Rq is denoted by Zq,Ai and is the
maximum duration of time that any task in applications other than
Ai requesting Rq can be blocked by tasks in Ai.

4.2 Resource Wait Time
The maximum time duration that any task on processor Pk which
requests global resource Rq may wait for the resource to be released

and become available for the processor is identified as the resource
wait time of processor Pk for global resource Rq and is presented by
RWTq,k. Similarly, the maximum duration of time that any task in
an application Ai has to wait for a global resource Rq to be available
is called resource wait time of application Ai for global resource Rq
and is denoted by RWTq,Ai .

4.3 Application Interface
An application Ai is abstracted by an interface IAi(QAi ,ZAi), where
QAi represents a set of requirements each extracted from a task in
the application which requests global resources. If all requirements
in the application are satisfied, then the application is implied to be
schedulable. We target hard real-time applications, i.e., with all ap-
plications in the platform schedulable, then the platform becomes
schedulable.

On the other hand, each application introduces different delays for
different global resources to other applications in the platform that
request those global resources. These delays are also abstracted in
the interface of each application along with the requirements. ZAi

in the interface of Ai represents these delays which is a set Zq,Ai for
each global resource Rq requested by Ai.

5. GENERAL DESCRIPTION
For each global resource in the system there is a unique FIFO queue
in which the applications having tasks requesting the resource are
enqueued. Note that, since the applications are independently de-
veloped, then the relative priority among tasks in different applica-
tions is not defined which makes the use of a FIFO queue prefer-
able.

(A1, τ1) 
 

(A1, τ2) (Ai, τi ) … … 

…
 

…
 

τ1 

τ2 

Pt 

A1 

…
 

…
 

τi 

Pk 

Ai 

…
 

…
 

τj 

Pr 

Rq (Ai, τj ) 

Figure 1: Resource queue management

Figure 1 shows a simple example of a system that consists of two
applications running on 3 cores. At a certain time, τi is requesting
a global resource and as the resource is not available the request is
queued in the related resource global FIFO queue as shown in the
picture. τi will be suspended since the request is not on the head
of the global FIFO queue. Pr, Pk and Pt shows the processors each
of which consists of a set of tasks assigned to them as illustrated in
the picture.

5.1 Resource Sharing Rules
Rule 1: Local resource requests are handled by uniprocessor syn-
chronization protocols such as PCP or SRP.

Rule 2: The priority of a task τi granting access to a global resource
is immediately boosted to the value equal to ρi +ρmax(Pk), where
ρmax(Pk) = max{ρi|τi ∈ Pk}. It means that the task can preempt all
higher priority tasks which do not use any global resource and all



lower priority tasks even if they are accessing a global shared re-
source. This cause the blocking times of tasks to become a function
of global critical sections (gcs) only.

Rule 3: When a task τi located on processor Pk related to an ap-
plication Ai requests a global resource, τi access the resource if the
resource is available (i.e., the global resource FIFO queue is empty)
otherwise, a request for τi associated to Ai is added to the resource
FIFO queue and τi is suspended.

Rule 4: When a global resource Rq becomes available to the ap-
plication Ai the eligible task at the head of the processor waiting
queue becomes ready to execute, and its priority is boosted.

Rule 5: When a task τi on processor Pk in application Ai releases
a global resource Rq, then the placeholder of Ai will be removed
from the resource queue and the resource becomes available to the
processor whose application is at the top of Rq’s queue. Also, the
priority of the task will return to its normal value.

6. APPLICATION ANALYSIS
Here we elaborate the resource hold time and resource wait time of
the tasks in the application level. We assume that applications use
partitioned scheduling and in Section 7 we will extend the analysis
for semi-partitioned scheduling.

In order for interfaces to enable the system schedulability analysis
test we need to consider the worst case response time analysis for
each task inside an application. Therefore we have to consider the
maximum interference imposed to tasks due to resource sharing.
The maximum time that an application Ai has to wait for Rq to be
available for Ai occurs when all other applications in the system
has requested Rq just before Ai and as a consequence are already
waiting in the FIFO queue of Rq. Therefore, the resource wait time
for Ai based on the interference from other applications Zq,A j is
calculated as follows:

RWTq,Ai = ∑
∀A j |A j 6=Ai

Zq,A j . (1)

According to Zq,Ai ’s definition along with the resource handling
queue structure which is FIFO based, the maximum blocking time
that Ai can introduce to any task τ j in an application other than Ai
occurs when all tasks in all processors of Ai that share Rq request Rq
just before τ j and their requests enqueued in the FIFO queue before
τ j’s request. Note that, the longest time that Rq can be locked by
processor Pk is Zq,k. Therefore the application locking time of Ai
on a global resource Rq is calculated as follows:

Zq,Ai = ∑
Pk∈PAi

Zq,k. (2)

As it can be seen, if Ai is allocated on one processor, then Zq,Ai

becomes similar to Zq,k.

Zq,k is the maximum blocking time imposed by all tasks τq,k that
share Rq and are located on Pk, on other tasks in other processors,
e.g., τx. The maximum Zq,k happens when these tasks τq,k request
Rq before τx. The maximum time that Rq can be locked by each el-
ement in τq,k is by definition RHTq,k,i. Thus the processor locking
time of Pk on Rq is calculated as follows:

Zq,k = ∑
τi∈τq,k

RHTq,k,i. (3)

On the other hand, the resource holding time of a global resource
Rq accessed by τi based on the definition in Section 4.1 is computed
as follows:

RHTq,k,i =Csi,q +Hi,q,k. (4)

where Hi,q,k denotes the interference from higher priority tasks,
which is calculated as follows [1]:

Hi,q,k = ∑
ρi<ρ j

∧ Rl∈RG
Pk
, l 6=q

Cs j,l .

6.1 Blocking Terms
In this section we describe the possible scenarios where a task τi
can be blocked by other tasks on the same or other processors.

6.1.1 Local blocking due to local resources
Each time a task τi is blocked on a global resource, it gives the
chance to a lower priority task τ j to lock a local resource, which
in turn may block τi when it resumes after it releases the global re-
source. We represent the number of gcs’s of τi by nG

i . The above
mentioned scenario can happen up to nG

i times. In addition, ac-
cording to local synchronization protocols such as PCP and SRP,
task τi can be blocked on a local resource by at most one critical
section of a lower priority task which has arrived before τi. On the
other hand, τ j can release a maximum of dTi/Tje jobs before τi’s
current job is finished. Furthermore, each job of τ j can block τi’s
current job at most nL

j (τi) times, where nL
j (τi) denotes the number

of critical sections in which τ j requests local resources with ceiling
higher than that of priority τi. Therefore, the blocking time on local
resources, which is denoted by Bi,1, upper bounds as follows:

Bi,1 =

min{nG
i +1, ∑

ρ j<ρi

dTi/TjenL
j (τi)} max

ρ j<ρi

∧ Rl∈RL
Pk

∧ ρi≤ceil(Rl)

{Cs j,l}, (5)

where ceil(Rl) = max{ρi| τi ∈ τl,k}.

6.1.2 Local blocking due to global resources
Each time τi suspends on a global resource, a lower priority task τ j
may access a global resource which subsequently can preempt τi
after it resumes and finishes its gcs in its non-gcs sections. This sit-
uation may also happen when τ j arrives sooner than τi. Therefore,
this blocking can happen as many times as τi are requesting global
resources up to nG

i times in addition to the case where τ j may arrive
sooner than τi, which causes a maximum of nG

i +1 times.

Similar to the previous case, τ j can release at most dTi/Tje jobs
before τi’s current job finishes. On the other hand, each job of τ j
can preempt τi’s current job a maximum of nG

j times.

Thus, this kind of blocking introduced by τ j to τi denoted by Bi,2
can happen at most min{nG

i +1,dTi/TjenG
j } times which is upper

bounded as follows:

Bi,2 =

∑
ρ j<ρi

∧ {τi,τ j} ⊆ τPk

(
min{nG

i +1,dTi/TjenG
j } max

Rq∈RG
Pk

{Cs j,q}
)
. (6)



6.1.3 Remote blocking
When a task τi is blocked on a global resource which is already
locked by a task on another processor, it is implied as remote block-
ing of task τi on that global resource. Based on our system de-
sign, when a task τi on processor Pk belonging to application Ai is
blocked on a global resource Rq, it is added to the FIFO of Rq and it
waits until it will be selected. To account for the maximum remote
blocking that can be introduced to τi, we should assume that all
applications have requested the same global resource that τi has re-
quested before τi. At the same time, we should also assume that all
tasks located on other cores within the same application as τi also
requested the same global resource before the task. This scenario
can happen each time τi requests Rq, i.e., up to nG

i,q times where nG
i,q

is the number of τi’s gcs in which it requests Rq. To calculate the
total remote blocking we should calculate this type of blocking for
any global resource request of τi. Therefore, the remote blocking
is calculated as follows:

Bi,3 = ∑
Rq∈RG

Pk∧ τi∈τq,k
∧ Pk∈PAi

nG
i,q(RWTq,Ai + ∑

Pl∈PAi
∧ Pl 6=Pk

zq,l). (7)

We can rewrite Equation 7 as follows:

Bi,3 = ∑
Rq∈RG

Pk∧ τi∈τq,k
∧ Pk∈PAi

αi,q(RWTq,Ai + ∑
Pl∈PAi
∧ Pl 6=Pk

zq,l), (8)

where αi,q = nG
i,q.

Based on all three blocking terms introduced to a task τi in the
system, the total blocking time of τi is as follows:

Bi = Bi,1 +Bi,2 +Bi,3. (9)

According to Equation 8, it can be seen that the remote blocking
of a task is a function of resource waiting time of its related ap-
plication, i.e., the total blocking of a task is a function of resource
waiting times of its corresponding application. Therefore we can
rewrite Equation 9 as follows:

Bi = γi + ∑
Rq∈RG

Pk∧ τi∈τq,k
∧ Pk∈PAi

αi,q(RWTq,Ai +δi), (10)

where δi = ∑
Pl∈PAi
∧ Pl 6=Pk

zq,l and γi = Bi,1 +Bi,2.

We note that δi and γi are only dependent on application internal
parameters.

6.2 Requirements extraction for the applica-
tion interface

In this section we extract the requirements QAi for the interface of
an application Ai from the schedulability analysis.

Each requirement in QAi specifies a criteria of maximum resource
wait times of one or more global resources from applications other
than Ai in the system. We denote mtbti as the maximum blocking
time that τi can tolerate without missing its deadline. By definition,
τi (scheduling according to FPS) is schedulable if:

0 < ∃t ≤ Di rbfFP(i, t)≤ t, (11)

where rbfFP(i, t) identifies the maximum cumulative execution re-
quests that can be generated from the time that τi is released up to
time t, which is implied as the request bound function of task τi and
is computed as follows:

rbfFP(i, t) =Ci +Bi + ∑
ρi<ρ j

(dt/TjeC j). (12)

The maximum total blocking time that can be imposed on τi with-
out missing its deadline is called mtbti and it can be calculated us-
ing Equation 12 and substituting Bi by mtbti as shown below:

mtbti = max
0<t≤Ti

(t− (Ci + ∑
ρi<ρ j

(dt/TjeC j))). (13)

Note that, it is not required to test all possible values for t in Equa-
tion 13, and only a bounded number of values for t that change
rbfFP(i, t) should be considered (see [24] for more details). The
total blocking time of task τi is a function of maximum resource
wait times of the global resources accessed by tasks in its related
application Ai. According to Equations 10 and 13 we can extract
the requirement related to task τi as follows:

γi + ∑
Rq∈RG

Pk∧ τi∈τq,k
∧ Pk∈PAi

αi,q(RWTq,Ai +δi)≤ mtbti.
(14)

therefore the related requirement to task τi will be as follows:

ri ≡ ∑
Rq∈RG

Pk∧ τi∈τq,k
∧ Pk∈PAi

αi,q RWTq,Ai ≤ mtbti− γi−θi.

(15)

where θi = ∑
Rq∈RG

Pk
∧ τi∈τq,k∧ Pk∈PAi

αi,qδi.

During the integration phase of applications, the schedulability of
each application is tested using its requirements. An application Ai
is schedulable if all the requirements in QAi are satisfied. Note that
in the requirements in QAi the maximum resource wait time of Ai,
RWTq,Ai , for any global resource that is accessed by tasks within
Ai, is calculated based on Equation 1.



7. APPLICATION PARTITIONING
One important challenge for the application developer is to partition
the application on a given number of cores/processors. For resource
constrained systems, the number of cores assigned for the system
can be limited and it is required to use as few cores as possible. We
propose semi-partitioned scheduling approach as an alternative for
application-level partitioning. The motivation behind suggesting
the semi-partitioned approach as a design choice for partitioning is
shown by a simple example as follows:

Example. Assume a processor P1 in a system where tasks are iden-
tified by the (Ci,Ti) model. Assume two tasks τ1 and τ2 with ex-
ecution time and period of (C+ ε,2C) where ε is an infinitesimal
value (less than 1) and (C,2C) respectively. The utilization of τ1 is
50%+ ε while the utilization of τ2 is 50%. If we allocate τ1 to P1,
then we can not allocate τ2 to P1 as well, since P1’s utilization ex-
ceeds 1. Therefore we have to add another processor, P2 to which
we can allocate τ2. Now if we want to have another task τ3 with
similar execution and period of task τ1, we can fit it on neither of
the P1 and P2 processors due to the same reason. Hence, if we use
the partitioned approach, then we should add a new processor to
allocate τ3. However with the semi-partitioned approach we can
split the task in two parts and fit τ3 on the combination of P1 and
P2.

By the example above, it can be seen that the semi-partitioned ap-
proach may utilize the resources in a better way compared to the
partitioned approach. However, without knowing the impact of
resource sharing from other applications on an application under
development, we can not decide how to allocate/partition the ap-
plication such that all tasks will meet their deadlines. Also, de-
pending on the system parameters, it might be enough to use the
partitioned scheduling instead of the semi-partitioned approach so
that the application is schedulable. On the other hand, selecting
semi-partitioning as the design choice for the allocation algorithm
and the choice which tasks should be split and how much should
be split makes the search space very huge. Therefore, to increase
the possibilities of finding a solution we suggest to use multiple
interfaces for each application due to the possible use of both parti-
tioned and semi-partitioned approaches for applications and we in-
vestigate the impact that the respective partitioning technique will
have in the application interface.

As illustrated above, the semi-partitioned approach may utilize re-
sources in a better way, but to provide more flexibility for the sys-
tem designer we provide interfaces for both partitioned and semi-
partitioned designs. As explained previously, there can be many
different options to use the semi-partitioned approach as an alter-
native for application partitioning. We call each possible option,
a configuration which will be discussed in Section 8.2. Each con-
figuration can generate a different interface as will be seen later.
However, the system developer will not know which configuration
is better in terms of global system-level schedulability before the
integration phase since the remote blocking from other applications
is not available beforehand. Therefore, we propose to provide mul-
tiple interfaces for each application. The developer of the multi-
processor system can then select among the suggested interfaces,
which have been extracted according to different partitioning de-
signs, for the one that makes the whole platform schedulable.

8. MULTIPLE INTERFACE CONFIGURA-
TION

For the sake of presentation simplicity and clarity, we use a simple
case of an application allocated on two processors to illustrate the
different interface configurations. Next we investigate the needed
updates for an application interface according to different partition-
ing designs.

…
 

τj 

Pr 

Ai 

…
 

τi 

Pk 

τ1 
τi+1 

Figure 2: Application partitioning based on the partitioned ap-
proach

8.1 Partitioned Interface
As it can be seen in Figure 2, the task set τAi related to an applica-
tion Ai has been partitioned on processors Pk and Pr, such that a set
of (τ1, ...,τi) tasks is allocated to Pk and a set of (τi+1, ...,τ j) tasks
is allocated to Pr. For the sake of presentation simplicity and clar-
ity, we assume that τi is the highest priority task on Pk and that τ j is
the highest priority task on Pr and both processors share the same
set of global resources: (R1, ...,Ru). Based on these assumptions,
the elements of Ai’s interface, assuming the partitioned scheduling
approach, as IAi(QAi ,ZAi) are specified as follows:

QAi = {Q1, ...,Qτi ,Qτi+1 , ...,Qτ j} (16)

ZAi = {Zq1,k, ...,Zqu,k,Zq1,r, ...,Zqu,r} (17)

8.2 Semi-Partitioned Interface
Based on the semi-partitioned approach, two scenarios might be
considered for the above mentioned example of two processors, as
it can be seen in Figure 3 and Figure 4, where the highest priority
task of each processor in the partitioned approach in Section 8.1
are the tasks that are split between two processors in each scenario.
The reason of selecting the highest priority task to be split is that
it has a great effect on the schedulability of all lower priority tasks
within the systems. As it can be seen in Figure 3, τi is the task that
is split on Pk and Pr such that τ1

i fills the capacity of Pk up to the
allowed limit and τ2

i , which has the remainder execution of τi, is
located on Pr, [22, 23].

…
 

τj 

Pr 

Ai 

…
 

Pk 

τ1 

τi
1 

τi
2 

Figure 3: First scenario for application partitioning based on
the semi-partitioned approach



Another scenario is where τ j is the task that is split on Pk and Pr

such that τ1
j fills the capacity of Pr up to the allowed limit, while τ2

j
is located on Pk, as it can be seen in Figure 4.

…
 

τi 

Pr 

Ai 

…
 

Pk 

τi+1 

τj
1 

τj
2 

Figure 4: Second scenario for application partitioning based on
the semi-partitioned approach

We assume that İAi(Q̇Ai , ŻAi) and ÏAi(Q̈Ai , Z̈Ai) are the interfaces of
application Ai under scenario 1 and scenario 2 respectively:

Q̇Ai = {Q̇1, ..., Q̇τ1
i
, Q̇

τ2
i
, ..., Q̇τ j} (18)

ŻAi = {Żq1,k, ..., Żqu,k, Żq1,r, ..., Żqu,r} (19)

and

Q̈Ai = {Q̈1, ..., Q̈τi , ..., Q̈τ1
j
, Q̈

τ2
j
} (20)

Z̈Ai = {Z̈q1,k, ..., Z̈qu,k, Z̈q1,r, ..., Z̈qu,r} (21)

The presented analysis to evaluate the interface of each application
for the case of the partitioned scheduling should be adapted when
using semi-partitioned scheduling. Note that for the tasks that are
allocated statically and are not split, they will not have further effect
on the analysis that we presented in the previous section. However,
the split tasks will have an impact on the analysis. The reason is
that when a task in a subsystem is split, all its resource requests
become global. It means that when using semi-partitioning the set
of global resources requested by an application may change. Based
on this, the resource hold time of tasks can vary, Equation 4, which
results in changing the application locking time for each of its re-
quests presented in the application interface. Furthermore, splitting
a task, its execution time is also split in the corresponding cores
which can affect the resulting interface of their applications. In ad-
dition, as mentioned above a critical section may occur at any time
during the split task execution, therefore it may happen that a sub-
task which is within its global critical section has to migrate to its
next processor, while locking the resource. However, we want to
prevent this case to keep the same analysis as the analysis of the
partitioned scheduling presented in this paper to find applications
interfaces. This is done by letting the split tasks to overrun until
they release the global resource then they are allowed to migrate to
the next core [22, 23]. The overrun part should be considered in
Equation 13.

To investigate the effect of partitioning on the interface parameters,
we investigate how the split tasks affect the interface parameters.
According to the first scenario, the subtask τ2

i is added to processor

Pr while τi decreases its value of execution time in τ1
i on Pk. In

Pk, all requirements will be affected by decreasing the execution
time of task τi to τ1

i , since in Equation 13 τ1
i as a higher priority

task will affect mbtb of any task with priority lower than that of
τi, and in this case include all tasks on Pk except τi itself. How-
ever, the requirement of task τi also changes, since the execution
time of τi according to Equation 13 differs (in this case decreases).
Subsequently, a change in Equation 13 results in a change of the
requirement, due to Equation 14.

Similar changes happens also on Pr, since one task τ2
i is added to

the processor which will affect mbtb of any task which is of lower
priority than that of τ2

i , as well as adding one extra requirement for
τ2

i .

Similar results can also be concluded under the second scenario
with the difference that τ j is decreasing to τ1

j on Pr, while τ2
j is

added as an extra task to Pk. Therefore, we can conclude that:

Q1 6= Q̇1, ...,Qτi 6= Q̇
τ1

i
6= Q̇

τ2
i
, ...,Qτ j 6= Q̇τ j (22)

Q1 6= Q̈1, ...,Qτi 6= Q̈τi , ...,Qτ j 6= Q̈
τ1

j
6= Q̈

τ2
j

(23)

The key challenge in interface extraction in the semi-partitioned
approach is the requirement extraction, since some tasks are split
among processors such as τi and τ j in the first and second scenario.
In order to extract the requirement of any task in the system we
first have to specify the value of mbtb according to Equation 13 and
then, by applying it in Equation 14, we extract the requirement. For
the split task model, the deadline in Equation 13 for each subtask
is the summation of the maximum response times of the previous
subtasks [22, 23]. However, the worst-case response time of a task,
requires the knowledge of the total blocking time duration, that is
not provided during the application development. Therefore, for
extracting the requirement for a subtask, we can assume explicitly
the value of the deadline of each subtask of the split task. One
possible way to do this can be by dividing the deadline of the task
to equally for all subtasks, i.e., Di/m, where Di is the deadline of
the original split task τi and m is the number of cores that τi is split
among. This design choice helps the developer of the application to
be able to abstract an application allocated to multiple processors
under a semi-partitioned approach. Other options can be through
using some weight based on the execution time of each subtask
and/or the load in each core.

9. CONCLUSIONS AND FUTURE WORK
In this paper, we develop a solution to integrate independently-
developed real-time applications which may require more than one
core/processor to be schedulable on a shared multi-core platform.
We abstract each application resource demand including sharing
mutually exclusive resources such that all internal tasks are schedu-
lable via an interface. Therefore, by utilizing the information from
the interfaces of other applications in the system, the schedulability
of an application can be determined without performing schedula-
bility analysis in task level. We have also suggested two design
choices of partitioned and semi-partitioned techniques for applica-
tion partitioning among processors. These suggested partitioning
techniques provide a design method based on multiple interfaces
for each application for better exploring the possibilities to find fea-
sible solutions for application integration.



In the future, we plan to elaborate the addressed concerns related
to the semi-partitioned approach to explore better solutions for ap-
plication abstraction. Furthermore, we want to extend the solution
for the case where applications can share processors/cores.

10. REFERENCES
[1] F. Nemati, M. Behnam, and T. Nolte,

“Independently-developed real-time systems on multi-cores
with shared resources,” in 23rd Euromicro Conference on
Real-Time Systems (ECRTS’11), Jul. 2011, pp. 251–261.

[2] I. Shin and I. Lee, “Periodic resource model for
compositional real-time guarantees,” in Real-Time Systems
Symposium, 2003. RTSS 2003. 24th IEEE, dec. 2003, pp. 2 –
13.

[3] M. Behnam, I. Shin, T. Nolte, and M. Nolin, “SIRAP: a
synchronization protocol for hierarchical resource sharing in
real-time open systems,” in Proceedings of the 7th ACM &
IEEE conference on Embedded software (EMSOFT’07),
October 2007, pp. 279–288.

[4] A. Easwaran, M. Anand, and I. Lee, “Compositional analysis
framework using EDP resource models,” in Real-Time
Systems Symposium, 2007. RTSS 2007. 28th IEEE
International, dec. 2007, pp. 129 –138.

[5] J. Anderson, V. Bud, and U. Devi, “An EDF-based
scheduling algorithm for multiprocessor soft real-time
systems,” in 17th Euromicro Conference on Real-Time
Systems (ECRTS’05), Jul. 2005, pp. 199–208.

[6] X. Feng and A. Mok, “A model of hierarchical real-time
virtual resources,” in Real-Time Systems Symposium, 2002.
RTSS 2002. 23rd IEEE, 2002, pp. 26 – 35.

[7] G. Lipari and S. Baruah, “Efficient scheduling of real-time
multi-task applications in dynamic systems,” in Real-Time
Technology and Applications Symposium, 2000. RTAS 2000.
Proceedings. Sixth IEEE, 2000, pp. 166 –175.

[8] J. Calandrino, J. Anderson, and D. Baumberger, “A hybrid
real-time scheduling approach for large-scale multicore
platforms,” in 19th Euromicro Conference on Real-Time
Systems (ECRTS’07), Jul. 2007, pp. 247–258.

[9] I. Shin, A. Easwaran, and I. Lee, “Hierarchical scheduling
framework for virtual clustering of multiprocessors,” in
2008. ECRTS ’08. 20th Euromicro Conference on Real-Time
Systems, july 2008, pp. 181 –190.

[10] R. Rajkumar, L. Sha, and J. Lehoczky, “Real-time
synchronization protocols for multiprocessors,” in Real-Time
Systems Symposium (RTSS’88), Dec. 1988, pp. 259–269.

[11] R. Rajkumar, “Real-time synchronization protocols for
shared memory multiprocessors,” in 10th International
Conference on Distributed Computing Systems, may/jun
1990, pp. 116–123.

[12] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance
protocols: an approach to real-time synchronization,”
Computers, IEEE Transactions on, vol. 39, no. 9, pp. 1175
–1185, sep 1990.

[13] P. Gai, M. Di Natale, G. Lipari, A. Ferrari, C. Gabellini, and
P. Marceca, “A comparison of MPCP and MSRP when
sharing resources in the Janus multiple-processor on a chip
platform,” in IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS’03), May 2003, pp.
189–198.

[14] T. Baker, “Stack-based scheduling of real-time processes,”
Journal of Real-Time Systems, vol. 3, no. 1, pp. 67–99, 1991.

[15] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson, “A

flexible real-time locking protocol for multiprocessors,” in
13th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications
(RTCSA’07), Aug. 2007, pp. 47–56.

[16] B. Brandenburg and J. Anderson, “An implementation of the
PCP, SRP, D-PCP, M-PCP, and FMLP real-time
synchronization protocols in LITMUSRT ,” in 14th IEEE Intl.
Conf. on Embedded and Real-Time Computing Sys. and
Applications (RTCSA’08), Aug. 2008, pp. 185–194.

[17] ——, “Optimality results for multiprocessor real-time
locking,” in 31st IEEE Real-Time Systems Symposium
(RTSS’10), Dec. 2010, pp. 49–60.

[18] S. Kato and N. Yamasaki, “Portioned static-priority
scheduling on multiprocessors,” in Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE International
Symposium on, april 2008, pp. 1 –12.

[19] ——, “Semi-partitioned fixed-priority scheduling on
multiprocessors,” in 15th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS’09), Apr.
2009, pp. 23–32.

[20] K. Lakshmanan, R. Rajkumar, and J. Lehoczky, “Partitioned
fixed-priority preemptive scheduling for multi-core
processors,” in 21st Euromicro Conf. on Real-Time Sys.
(ECRTS’09), Jul. 2009, pp. 239–248.

[21] N. Guan, M. Stigge, W. Yi, and G. Yu, “Fixed-priority
multiprocessor scheduling with Liu and Layland’s utilization
bound,” in 16th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS’10), Apr. 2010, pp.
165–174.

[22] S. Afshar, F. Nemati, and T. Nolte, “Towards resource
sharing under multiprocessor semi-partitioned scheduling,”
in 7th IEEE International Symposium on Industrial
Embedded Systems (SIES’12), Work-in-Progress (WiP)
session, Jun. 2012.

[23] ——, “Resource sharing under multiprocessor
semi-partitioned scheduling,” in 18th IEEE International
Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA’12), Aug. 2012.

[24] E. Bini and G. Buttazzo, “The space of rate monotonic
schedulability,” in Real-Time Systems Symposium, 2002.
RTSS 2002. 23rd IEEE, 2002, pp. 169 – 178.


