
Mälardalen University Licentiate Thesis
No.161

Mode switch for
component-based multi-mode

systems

Hang Yin

December 2012

School of Innovation, Design and Engineering
Mälardalen University

Västerås, Sweden



Copyright c© Hang Yin, 2012
ISBN 978-91-7485-088-8
ISSN 1651-9256
Printed by Mälardalen University, Västerås, Sweden



To Hongwan and my family





Abstract

Component-based software engineering is becoming a prominent solution to
the development of complex embedded systems. Since it allows a system to be
built by reusable and independently developed components, component-based
development substantially facilitates the development of a complex embedded
system and allows its complexity to be better managed. Meanwhile, parti-
tioning system behavior into multiple operational modes is also an effective
approach to reducing system complexity. Combining the component-based ap-
proach with the multi-mode approach, we get a component-based multi-mode
system, for which a key issue is its mode switch handling. The mode switch
of such a system corresponds to the joint mode switches of many hierarchi-
cally organized components. Such a mode switch is not trivial as it amounts to
the mode switch coordination of different components that are independently
developed.

Since most existing approaches to mode switch handling assume that mode
switch is a global event of the entire system, they cannot be easily applied
to component-based multi-mode systems where both the mode switch of the
system and each individual component must be considered, and where compo-
nents cannot be assumed to have global knowledge of the system. In this thesis,
we present a mechanism—the Mode Switch Logic (MSL)—which provides
an effective solution to mode switch in component-based multi-mode systems.
MSL enables a multi-mode system to be developed in a component-based man-
ner, including (1) a mode-aware component model proposed to suit the multi-
mode context; (2) a mode mapping mechanism for the seamless composition
of multi-mode components and their mode switch guidance; (3) a mode switch
runtime mechanism which coordinates the mode switches of all related compo-
nents so that the mode switch can be correctly and efficiently performed at the
system level; and (4) a timing analysis for mode switches realized by MSL. All
the essential elements of MSL are additionally demonstrated by a case study.
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Populärvetenskaplig
sammanfattning

Vi omges dagligen av inbyggda system; datorsystem som är inbyggda i an-
dra produkter. De finns i allt från smarta telefoner, skrivare, medicinska ap-
parater och industrirobotar till bilar och flygplan. På grund av den ökande
efterfrågan på funktionalitet, lägre kostnader och kortare tid till marknaden, ut-
gör programvaran en allt viktigare del av dessa inbyggda system. Den ökande
komplexiteten i programvaran ställer i sin tur krav på nya, mer effektiva och
skalbara metoder för programvaruutveckling.

En metod som introducerats för att hantera den ökande komplexiteten i pro-
gramvaran är att bygga programvarusystemen med hjälp av förutvecklade pro-
gramvarukomponenter; så kallad komponentbaserad programvaru-utveckling
som kan liknas vid att bygga med lego. Ett annat sätt att reducera komplex-
iteten är att dela upp systemet i olika driftlägen och hantera dessa oberoende av
varandra. Till exempel kan programvaran som styr ett flygplan vara uppdelad
i driftlägen så som taxi, start, flyg och landning. Om man kombinerar kompo-
nentbaserad utveckling med uppdelning av systemet i olika driftlägen, så får
man ett komponentbaserat system med multipla driftlägen. En central uppgift
för ett sådant system är att på ett effektivt och förutsägbart sätt växla mellan
systemets driftlägen utifrån växling av de ingående komponenternas driftlä-
gen. Befintliga metoder för växling av driftläge utgår från att växlingen är en
global händelse, vilket inte är förenligt med den grundläggande principen om
oberoende utvecklade komponenter som gäller för komponentbaserad utveck-
ling.

I denna avhandling presenterar vi en ny metod för växling av driftläge,
kallad Mode Switch Logic (MSL). MSL möjliggör driftlägesväxling på ett sätt
som är förenligt med oberoende utveckling av de komponenter som ingår i
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systemet . Vi har dessutom utvecklat en metod för att analysera hur lång tid det
tar att genomföra driftväxling. I en fallstudie illustrerar vi tidsanalysen och de
mekanismer vi utvecklat.



摘摘摘要要要

基于组件的软件工程逐渐在复杂嵌入式系统的开发中热门起来。由于它
可以用可重复利用的和独立开发的组件来构建系统，组件式开发可以很
大程度上提高复杂嵌入式系统的开发进程，并且系统的复杂性也更容易
管理。与此同时，将系统不同的功能划分为不同的操作模式也是一个降
低系统复杂度的有效办法。将基于组件的方法和多操作模式的方法结合
起来，我们就可以得到一种基于组件的多模式系统。这种系统的一个关
键问题就是对于它的不同模式转换的处理。这种系统的模式转换等同于
许多系统内部各个阶层的组件的模式转换。这种模式转换不容忽视，因
为不同组件的模式转换需要很好的相互协调。
目前大多数处理模式转换的方法都假设模式转换是整个系统的一种

全局事件，而对于基于组件的多模式系统来说，无论是系统的模式转换
还是每一个内部组件的模式转换都需要考虑，而且每个组件不允许了
解系统的全局信息，所以这些方法并不能简单的应用到基于组件的多
模式系统。本篇论文针对此类问题介绍了一种我们开发的模式转换逻
辑(MSL: Mode Switch Logic)。作为一种有效的手段来处理基于组件的多
模式系统的模式转换，MSL允许用基于组件的开发方式来开发多模式系
统，它包括 (1)一种适合多模式环境的有模式意识的组件模型; (2)一种
模式映射机制，这种机制使得多模式的组件可以无缝叠加，并且可以引
导多模式组件的模式转换; (3)一种实时模式转换机制，它可以协调所有
相关组件的模式转换从而保证整个系统能够正确而且高效的完成模式转
换; (4)对以MSL实现的模式转换进行时间分析。另外，MSL的所有关键
元素都在本论文中通过一个案例被演示出来。
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Chapter 1

Introduction

New techniques are demanded to manage the growing software complexity of
embedded systems. A common and effective approach to reducing such com-
plexity is to partition the system behavior into different operational modes.
Each mode implies a distinctive system behavior and the system can switch be-
tween different modes at runtime as required. This multi-mode approach has
already been successfully applied to real-world systems such as avionic and
multimedia systems. Meanwhile, Component-Based Software Engineering
(CBSE) is getting more and more attention by virtue of its approach to build-
ing a system by reusable software components. Since multi-mode and CBSE
are complementary in the way they handle software complexity, the combina-
tion of both strategies, i.e. to build a multi-mode system in a component-based
manner, is expected to bring added value for the development and execution of
embedded systems. A key challenge in such a combination is to guarantee a
correct and bounded mode switch. The prime aim of this thesis is to address
this challenge.

In this first chapter, the background and motivation of this thesis will be
introduced. We also identify our research challenges and sub-goals and sum-
marize our contributions.

1.1 Background and motivation

Embedded systems are playing a vital role in modern society. Our daily life
is full of embedded systems, from tiny portable electronic devices to huge air-
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crafts. Moreover, it has been witnessed in recent years that the never stopping
evolution of embedded systems gives rise to more advanced and innovative
functionalities. Unfortunately, an inevitable negative side effect is the rising
software complexity, which is potentially a huge impediment to system design,
as well as to system verification and validation. Obviously, traditional and clas-
sical software development methods become less and less appropriate for the
more complex software. New techniques are required in order to manage such
complexity.

A common approach in embedded system design is to partition the system
behavior into different operational modes. Each mode corresponds to a specific
system behavior. Some subsystems may run in all modes while there are also
mode-specific subsystems, which run only in selected modes. A multi-mode
system starts by running in a default mode and switches to another appropriate
mode when some condition changes. A representative multi-mode system is
the control software of an airplane, which could run in the modes taxi (the
initial mode), taking off, flight and landing. Different subsystems are running
in different modes. For instance, the subsystem for controlling the wheels only
runs in taxi mode whereas the navigation subsystem may run only in flight
mode.

There are various reasons motivating the use of multi-mode systems, in-
cluding:

1. Reducing software complexity, as is mentioned above. Once a system
behavior is partitioned into a number of modes, the associated software
in different modes will be loosely coupled, meaning that they essen-
tially can be independently developed, tested, analyzed and maintained.
Hence, for each mode the software will be less complex compared to a
monolithic system. Only the intermediate stage during a mode switch
deserves extra care.

2. Diversity of system functionality. A multi-mode system exhibits distinc-
tive functionalities in different modes. Therefore, it is usually easier for
a multi-mode system to provide more diversified services compared to a
single-mode system.

3. Multiple operational phases. The execution of many types of systems
follows a series of sequential operational phases. Apart from the air-
plane example introduced above, most autonomous robotic systems run
through different phases. For instance, an object-searching robot can
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start by running in the initialization phase. After that it enters the object-
searching phase, in which it moves and tries to detect any object. When
an object is detected, the robot enters the next phase that can be pre-
defined according to the system requirements, e.g. taking a photo of the
object and then transmitting the photo to the monitoring centre. For such
a multi-phase system, each phase is equivalent to a mode and the phase
transition could be regarded as mode switch.

4. Adaptivity. A multi-mode system can be considered as a special type
of adaptive system that actively adjusts its behavior and performance to
accommodate the new condition. This is rather common for multimedia
systems. For instance, an adaptive media player in an embedded device
with constrained resource may run in the degraded Quality of Service
(QoS) mode when the network bandwidth is becoming low and switch
to the standard playing mode when the network condition returns to nor-
mal.

5. Saving resource. Since some tasks of a system are only running in certain
conditions, a lot of resources would be wasted if all tasks are running all
the time. A more efficient design is to deactivate the tasks that are not
currently used in the system. The task running status can be taken as a
criterium to specify modes. A drastic change of the set of running tasks
is most likely to be a suitable instant for mode switch.

6. Fault-tolerance. Most safety-critical systems are guaranteed to be fault-
tolerant so as to prevent catastrophic consequences. A practical fault-
tolerant strategy is to define a Safe mode in case a fault occurs. This Safe
mode can minimize the impact from a fault, or even eliminate the fault
and guide the system to the normal running state.

7. More precise analysis of system properties. Many system properties, es-
pecially non-functional properties, are associated with a wide range of
values, however, the maximum and the minimum have extremely low
probability of occurrence. A typical example is the Worst-Case Execu-
tion Time (WCET) of a task in a real-time system. It is often the case
that this WCET is much larger than the average-case execution time.
For a single-mode system, the WCET calculation is typically rather pes-
simistic. In contrast, different modes can be defined based on the exe-
cution time distribution or variation of some important task. Then the
WCET of this task can be calculated or measured for each mode. For
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instance, for a multi-mode system running in mode m1, m2 and m3 and
the WCET of one of its running tasks τ can be 5 in modem1, 10 in mode
m2 and 15 in mode m3. Obviously, the use of modes gives more pre-
cise WCET analysis and thus improves schedulability. The same benefit
applies to other system properties as well.

8. Extensibility and scalability. For a single-mode system, adding a new
function risks polluting the software structure of the original system and
necessitates the test of the complete new system. Alternatively, a new
mode can be introduced for the new function. In this way, the system
behavior in existing modes will not be affected. Additional development
and test effort is limited to the new mode and the mode switch from or
to this new mode. This also implies good scalability of a multi-mode
system.

Of course, multiple modes and mode switch is not the sole technique for
managing software complexity. Another option is Component-Based Soft-
ware Engineering (CBSE) (also known as Component-Based Development
(CBD)) [12]. CBSE provides a promising design paradigm for the develop-
ment of complex embedded systems. The key idea of CBSE is to build a system
by reusable software components which can be independently developed and
reused in different applications. In other words, a system does not have to be
developed from scratch. Instead, some of its components or subsystems may
be directly obtained from a repository of pre-developed components. There-
fore, system development and component development become two separate
activities. CBSE boasts quite a number of appealing features, such as

• Reduced complexity. When a component is reused, there is no need to
know its internal details. The only information essential for its reuse is its
interfaces and provided/required services. Hence the developer can focus
more on how to compose components into a bigger system. Even though
component reuse may increase the size of software, software complexity
is reduced a lot thanks to the hierarchical structure and the abstraction at
each level.

• Shortened time to market. Usually, it takes much shorter time to reuse
a component than to develop its functionality from scratch. The more
components that are reused, the higher productivity, and thus the shorter
time to market.
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• Improved software quality. Reusing well tested and qualified compo-
nents increases the chance of building a more reliable system.

The success of CBSE is evident in several well-known component models,
such as Microsoft Component Object Model (COM) [9], Enterprise JavaBeans
(EJB) [43] and Open Services Gateway Initiative (OSGi) [3]. Compared with
desktop systems, component reuse in embedded systems is relatively more
challenging, but is getting more and more attention in the industry of embed-
ded systems, including component models such as Koala [47], Rubus [25], and
AUTOSAR [1].

With the ambition of getting the benefits from multi-mode systems and
CBSE, the target of this thesis is the combination of both approaches, which is
Component-Based Multi-Mode Systems (CBMMSs):

Definition 1. [Component-Based Multi-Mode System (CBMMS)]: A
Component-Based Multi-Mode System (CBMMS) is a system which supports
multiple operational modes and is built by reusable components.

One may wonder what such a system looks like. A vivid and impressive
representation is the Transformers toys, which are artificial but intuitive. The
leading character of Transformers is Optimus Prime who can switch between
the human mode and car mode. Optimus Prime is a CBMMS for two reasons:
(1) he supports two operational modes and the mode switch between them; (2)
he is composed by a vast number of (mostly hardware) components. Some
components can also be further decomposed into smaller components. For
instance, a tyre is the composition of the rubber part and the metal part. When
Optimus Prime switches mode, some of his components will be reconfigured,
e.g. by changing their physical layouts or shapes. Some components may
also alter their roles after a mode switch. For example, his four tires are not
used in the human mode, whereas in the car mode, the tires must be activated.
Component composition can be further demonstrated by another character of
the Transformers, Devastator, composed by six smaller Transformers. Each of
these six Transformers is a multi-mode component (supporting two modes, say
the human mode and the composition mode). All these six Transformers must
switch to their composition mode to construct Devastator.

The Transformer example provides a first impression of a CBMMS built by
hardware components. In reality, the behavior of these hardware components
must be realized by software components. Our focus is on software compo-
nents rather than hardware components. As a conceptual example, the left part
of Figure 1.1 illustrates the hierarchical component structure of a typical CB-
MMS. The system consists of three components: a, b and c. Component b is
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composed of two other components: d and e. With respect to the terminol-
ogy of CBSE, we distinguish two basic types of components: (1) a primitive
component, whose behavior is given directly by associated software, thus can-
not be further decomposed into other components; (2) a composite component
which is a composition of other components. In Figure 1.1, a, c, d, and e are
primitive components whereas Top and b are composite components. Since
the component hierarchy has a tree structure, a composite component and its
subcomponents have a parent-and-children relationship. For instance, b is the
parent of d and e, which in turn are the children of b. Moreover, the system, i.e.
Component Top, supports two modes: m1

Top and m2
Top . When the system is in

mode m1
Top , Component c is deactivated (i.e. not running), as the component

hierarchy in Figure 1.1 shows by not displaying c in mode m1
Top . In contrast,

when the system is in mode m2
Top , c is activated whilst e is deactivated. Be-

sides, Component a has different mode-specific behaviors represented by black
and grey colors in Figure 1.1. The right part of Figure 1.1, consistent with the
left part, presents the connections between these components. A component
is connected to another component via its input or output ports (squares in
Figure 1.1).

Figure 1.1: A component-based multi-mode system

The system in Figure 1.1 is able to switch between its supported modes
m1

Top and m2
Top . Figure 1.2 depicts its mode switch from m1

Top to m2
Top ,

starting at time t1 and ending at time t2. We call m1
Top and m2

Top stable
modes. During the mode switch within the interval [t1,t2], the system is in
an intermediate transition state, thus not running in any stable mode. From
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Figure 1.1, it can be observed that a CBMMS exhibits unique system behavior
in each mode reflected by particular configurations of its components at vari-
ous levels. The system mode switch is achieved by the joint mode switches of
components composed together to form the complete system. For instance, the
mode switch of the system from m1

Top to m2
Top in Figure 1.1 corresponds to

the following component mode switches:

• Component a changes its mode-specific behavior (indicated by the color
change from black to grey).

• Component e is informed to change its running status from "activated"
to "deactivated".

• Component b changes the running statuses and connections of its sub-
components (d and e) as well as the configuration of its ports (its second
output port becomes activated in the new mode).

• Component c is informed to change its running status from "deactivated"
to "activated".

• Component Top changes the running statuses and connections of its sub-
components as well as the configuration of its ports.

Figure 1.2: Mode switch illustration

We call this composable mode switch:

Definition 2. [Composable mode switch]: A composable mode switch is the
mode switch of an entire CBMMS or its subsystem represented by the joint
mode switches of its components at various hierarchical levels.

A successful composable mode switch not only relies on the successful
mode switch of each single component, but also relies on the correct synchro-
nization and coordination of the mode switches of different components. Un-
like the traditional mode switch problem, composable mode switch is novel.
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Traditional mode switch handling usually does not assume systems built by
reusable components, thus the mode switch is not composable and traditional
approaches cannot be directly applied to composable mode switch. Further-
more, traditional component-based systems usually do not consider multiple
operational modes and mode switch. In this thesis, we have presented a mode
switch mechanism, which we call the Mode Switch Logic (MSL). Parts and
preliminary versions of our MSL have been presented in [18] [19]. MSL does
not only allow the seamless composition of single-mode or multi-mode com-
ponents but is also capable of handling the composable mode switch of CB-
MMSs.

1.2 Problem description

1.2.1 Challenges of composable mode switch
The handling of composable mode switch is not trivial, as it poses multiple po-
tential problems and challenges. Many contributing factors need to be consid-
ered, such as component model, component hierarchy, component connection,
system architecture and component execution pattern. The following are the
major challenges that have to be addressed:

The component model

CBSE specifies that a software component must conform to a component
model. A large number of component models have already been proposed tar-
geting various application domains [13] [32]. Among these component models,
only a few have multi-mode support, e.g. COMDES-II [35], MyCCM-HI [8],
Rubus [25] and SaveCCM [26]. To compose multi-mode components in a CB-
MMS, traditional component models must be extended, since in a CBMMS a
component must be aware of its own modes which could be switched at run-
time. In our MSL, we propose a mode-aware component model taking into
account both the mode switch of a single component and the mode switch syn-
chronization between different components.

Multi-mode component composition

A CBMMS or multi-mode component can be composed of both single-mode
and multi-mode components. For a multi-mode component, its supported
modes should also be composable. Since reusable components typically are
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developed independently, it is very likely that the supported modes and the
number of supported modes differ between components. Hence, when a com-
posite component is built by reusable components, the supported modes of
each component are likely to be inconsistent with the desired modes of the
composed component. Therefore, the mapping between the modes of different
components must be defined during composition. In our MSL, this problem is
settled by our mode mapping mechanism [20].

The mode switch runtime mechanism

A composable mode switch must be carried out under the guidance of some
runtime mechanism that ensures correctness and efficiency. This is to a large
extent neglected by existing mode switch handling approaches. Such a runtime
mechanism includes many aspects, such as

• Mode switch propagation: A mode switch can be triggered by any
component and should be propagated to other components that also need
to change their modes as a consequence. Since a component has no
global knowledge of the system component hierarchy, a mode switch
event cannot simply be broadcast from one component to all the other
components. Instead, a stepwise propagation method is required. By
taking advantage of the hierarchical component structure, a mode switch
event can be directly or indirectly propagated to any related component.
Later we shall show how this can be achieved by our Mode Switch Prop-
agation (MSP) protocol1.

• The guarantee of consistent mode switch: The mode switch of a sys-
tem may correspond to the mode switches of many components. When
the system completes a mode switch, all its components must be in a
consistent state. For instance, components supposed to run in the new
mode must not run in the old mode after the system has completed a
mode switch. The MSP protocol plays a significant role in notifying dif-
ferent components of the mode switch event, however, additional rules
should be applied to guarantee the overall mode switch consistency. In
our MSL, we have defined a mode switch dependency rule that guaran-
tees a consistent mode switch.

• Mode switch and atomic execution: When a mode switch is triggered,
the CBMMS is supposed to stop running in the old mode and start its

1Our MSP protocol was previously [19] called MS propagation mechanism.
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mode switch as soon as possible. However, there could be ongoing exe-
cutions in one or a set of components that cannot be aborted by a mode
switch triggering. Our MSL handles such atomic component execution
by an extended MSP protocol [23].

• Conflict handling for multiple mode switch triggering: Normally, a
CBMMS performs a mode switch rather swiftly, yet not instantaneously.
Multiple mode switch triggering could happen either simultaneously or
within a short interval. Without proper treatment, an ongoing mode
switch could be compromised by the triggering of a new mode switch. In
our MSL, the initial solution is to use an arbitration mechanism managed
by a component with high authority to resolve the conflict [23]. Further
details and a more general in-depth solution are included in our future
work.

The timing analysis of a composable mode switch

Since most CBMMSs are also real-time systems, not only must the system
functionality be correct, but also the timing constraints must be satisfied. In
particular, the mode switch time must be bounded and analyzable. The mode
switch time highly depends upon the mechanism implementing the composable
mode switch.

1.2.2 Research goal
Since the composable mode switch of CBMMSs has been rarely exploited to
date, our research goal boils down to:

Development of a systematic and practical approach which not only effec-
tively and efficiently copes with the composable mode switch of CBMMSs,
but also is amenable to analysis and verification of timing and functional
correctness.

1.2.3 Research sub-goals
Our research goal is ambitious in the sense that it is the first attempt to realize
the seamless composition of multi-mode components into CBMMSs as well
as its mode switch handling. We decompose our research goal into a set of
major research sub-goals (SGs):
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SG1: To build a multi-mode system by single-mode or multi-mode components
in a composable manner.

SG2: To efficiently achieve a composable mode switch of a CBMMS.

SG3: To analyze the mode switch time of a CBMMS.

1.3 Thesis contributions
The contribution of this thesis realizes the research sub-goals formulated
above, including:

• A generic mode-aware component model which enables a multi-mode
component to support composable mode switch (for SG1).

• A mode mapping mechanism which can be easily implemented in each
composite component and overcome the mode incompatibility problem
during composition (for SG1).

• A mode switch runtime mechanism capable of efficiently handling a
composable mode switch (for SG2).

• The timing analysis of composable mode switch guided by our MSL (for
SG3).

1.4 Publications
This thesis stems from a number of publications. The following gives a brief
introduction of the publications contributing to the backbone of this thesis and
the complete list of publications can be found in "List of publications" at the
beginning of the thesis.

1. Composable mode switch for component-based systems, Yin Hang, Eti-
enne Borde, Hans Hansson, 3rd Workshop on Adaptive and Reconfigurable
Embedded Systems (APRES 2011), p 19-22, Editor(s): Sebastian Fischmeis-
ter, Linh TX Phan, April, 2011

Abstract: Component-Based Development (CBD) reduces development time
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and effort by allowing systems to be built from pre-developed reusable com-
ponents. A classical approach to reduce embedded systems design and run-
time complexity is to partition the behavior into a set of major system modes.
In supporting system modes in CBD, a key issue is seamless composition of
multi-mode components into systems.

In addressing this issue, we present a mode switch logic and algorithm
for component-based multi-mode systems. The algorithm implements seam-
less coordination and synchronization of mode switch in systems composed
of independently developed components. The paper provides formally defined
semantics covering aspects relevant for mode switch, together with algorithms
implementing mode switch rules for different types of components. The ap-
proach is illustrated by a simple example.

Thesis contribution: This paper proposes the initial version of our MSL, in-
cluding the mode-aware component model, mode switch propagation and the
mode switch dependency rule. It contributes to chapters 2 and 3.

My contribution: Yin Hang is the main contributor and main author of this
paper, inspired by the useful comments and suggestions from Etienne Borde
and Hans Hansson.

2. A mode mapping mechanism for component-based multi-mode systems,
Yin Hang, Hans Hansson, 4th Workshop on Compositional Theory and Tech-
nology for Real-Time Embedded Systems (CRTS 2011), p 38-45, Editor(s):
Robert I. Davis and Linh T.X. Phan, November, 2011

Abstract: Component-Based Development (CBD) reduces development time
and effort by allowing systems to be built from pre-developed reusable com-
ponents. A classical approach to reduce embedded systems design and run-
time complexity is to partition the behavior into a set of major system modes.
In supporting system modes in CBD, a key issue is seamless composition of
multi-mode components into systems. In addressing this issue, we previously
developed a Mode Switch Logic (MSL) for component-based multi-mode sys-
tems. Our MSL implements seamless coordination and synchronization of
mode switch in systems composed of independently developed components.
However, our original MSL is based on the, in a setting of reusable compo-
nents, unrealistic assumption, that all the components of a system support the
same modes. This considerably limits the feasibility of our MSL. In this paper
we lift this assumption and propose a mode mapping mechanism that enables
assembly of components supporting different sets of modes. We demonstrate
our mode mapping mechanism by a simple example application.
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Thesis contribution: This paper identifies the mode incompatibility problem
of composing multi-mode components and proposes a mode mapping mecha-
nism as the corresponding solution. It contributes to Chapter 4.

My contribution: Yin Hang is the main contributor and main author of this
paper. This work is carried out in close cooperation with Hans Hansson.

3. Towards mode switch handling in component-based multi-mode sys-
tems, Yin Hang, Jan Carlson, Hans Hansson, 15th International ACM SIG-
SOFT Symposium on Component Based Software Engineering (CBSE 2012),
p 183-188, Editor(s): Nenad Medvidovic and Magnus Larsson, June, 2012

Abstract: Component-Based Software Engineering (CBSE) is becoming a
prominent solution to the development of complex embedded systems. Mean-
while, partitioning system behavior into different modes is an effective ap-
proach to reduce system complexity. Combining the two, we get a component-
based multi-mode system, for which a key issue is its mode switch handling.
The mode switch of such a system corresponds to the joint mode switches of
many hierarchically organized components. Such a composable mode switch
is not trivial as it amounts to the mode switch coordination of different com-
ponents. In this paper, we identify the major challenges of the composable
mode switch handling and classify existing approaches with respect to how
they handle these challenges. We also provide a more detailed presentation of
the corresponding solutions included in our approach – the Mode Switch Logic
(MSL).

Thesis contribution: This paper identifies the major challenges of handling
the mode switch of a CBMMS and classifies a number of existing component
models in terms of their mode switch handling. Moreover, this paper also
revises the mode-aware component model, the MSP protocol and the mode
switch dependency rule of MSL. It contributes to chapters 1, 2 and 3.

My contribution: Yin Hang is the main contributor and main author of this
paper. This work is inspired by the intensive discussion with Jan Carlson and
Hans Hansson.

4. Timing analysis for mode switch in component-based multi-mode sys-
tems, Yin Hang, Hans Hansson, 24th Euromicro Conference on Real-Time
Systems (ECRTS 2012), p 255-264, Editor(s): Robert I. Davis, July, 2012.

Abstract: Component-Based Development (CBD) reduces development time
and effort by allowing systems to be built from pre-developed reusable compo-
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nents. Partitioning the behavior into a set of major operational modes is a clas-
sical approach to reduce complexity of embedded systems design and execu-
tion. In supporting system modes in CBD, a key issue is seamless composition
of pre-developed multi-mode components into systems. We have previously
developed a Mode Switch Logic (MSL) for component-based multi-mode sys-
tems implementing such seamless composition.

In this paper we extend our MSL to cope with atomic transactions, i.e.,
to handle sets of components that must not be aborted in the middle of the
processing of data. This is in contrast with our original MSL, in which
components are immediately aborted to perform a mode switch. Based on our
extended MSL, we provide analysis of the mode switch timing.

Thesis contribution: This paper extends MSL by taking atomic component
execution into account and performs the mode switch timing analysis for
MSL. A preliminary approach is also proposed to resolve the conflict due to
multiple mode switch triggering. It mainly contributes to chapters 5 and 7.

My contribution: Yin Hang is the main contributor and main author of this
paper. This work is carried out in close cooperation with Hans Hansson.

1.5 Research methodology
The methodology adopted in our research can be summarized as follows:

• Literature review is always a key preliminary step before a research goal
or sub-goal is established. Investigated works are mostly related to mode
switch problems, CBSE, and adaptive embedded systems.

• Once the research goal is identified, a couple of sub-goals are proposed.
A research sub-goal is usually further divided into a couple of sub-
problems which can be handled separately. We can simplify a problem
by initially making simplifying assumptions. Once we come up with a
solution, some assumptions will be lifted to yield a more realistic solu-
tion. This process may iterate several times as the solution is incremen-
tally developed.

• Each proposed solution is initially evaluated and verified via the mod-
eling of some representative conceptual examples which are helpful for
spotting potential design errors and the refinement and revision of the
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corresponding solution. Currently the evaluation is mostly based on the
extensive use of UPPAAL [38] modeling and verification. However, we
also intend to perform extensive evaluation in future.

• We publish our research results yielded at different stages. This dissem-
ination provides feedback and discussion that helps refine and shape our
research. For instance, reviewers’ feedback and discussions with fel-
low researchers at conferences is instrumental in identifying underlying
problems that we have overlooked, and could also suggest improvements
and relevant literature in neighboring areas.

The research methodology is further illustrated in Figure 1.3.

Figure 1.3: Research methodology

1.6 Thesis outline
This thesis is a monograph consisting of 10 chapters and the outline of the rest
of the thesis is organized as follows:

• Chapter 2 — The mode-aware component model: introduces the
mode-aware component model for both primitive and composite compo-
nents. The mode-aware component model is generic and can be applied
as a mode switch extension to many existing component models.

• Chapter 3 — The mode switch runtime mechanism: elaborates how
a composable mode switch is handled at runtime. The mode switch run-
time mechanism in this chapter includes the Mode Switch Propagation
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(MSP) protocol and the mode switch dependency rule. The MSP pro-
tocol propagates the mode switch request from a component to all other
related components. The mode switch dependency rule guarantees the
mode consistency between different components after each mode switch.

• Chapter 4 — Mode mapping: describes the mode mapping mechanism
of MSL for overcoming the mode incompatibility problem for compos-
ing multi-mode components. The purpose of mode mapping is twofold.
First, it maps the modes of different components during the composi-
tion. Second, it derives the new mode of each component at runtime in
cooperation with the MSP protocol.

• Chapter 5 — The handling of atomic component execution: extends
the MSP protocol by introducing the support for atomic component exe-
cution.

• Chapter 6 — Algorithms for the mode switch runtime mechanism:
implements the mode switch runtime mechanism as algorithms for prim-
itive components, non-composite components and the top component,
respectively.

• Chapter 7 — The composable mode switch timing analysis: per-
forms the mode switch timing analysis based on our MSL. Further-
more, a model-checking approach is devised to obtain the worst-case
atomic component execution time assuming the pipe-and-filter architec-
tural style.

• Chapter 8 — Case study–An Adaptive Cruise Control system:
demonstrates the usage of MSL in a case study, an Adaptive Cruise Con-
trol (ACC) system which is theoretically designed as a CBMMS in the
thesis.

• Chapter 9 — Related work: presents existing work related to our MSL
in various research domains such as component models, real-time sys-
tems and specification languages.

• Chapter 10 — Conclusions and future work: summarizes the thesis
and discusses the future work. Additionally, the evolution trace of MSL
is also provided.



Chapter 2

The mode-aware component
model

Traditionally, CBSE assumes the composition of single-mode components. In
addition to this, a CBMMS or a multi-mode component should allow the com-
position of both single-mode and multi-mode components. This imposes extra
requirement on the component model and the composition process. A mode-
aware (or multi-mode) component is different from traditional components in
terms of the interface, internal properties, and many other aspects. In this chap-
ter, we propose a mode-aware component model for both primitive and com-
posite components. This component model is rather generic, with emphasis on
modes and mode switch. It is not intended as a complete component model,
rather as a basis for mode-aware extensions of existing component models that
cover a more complete set of features.

2.1 The mode-aware component model and its
definition

Just like traditional port-based component models, both primitive and compos-
ite components in our component model have a set of ports to communicate
with neighboring components. Furthermore,

• Both primitive and composite components support one or more modes.
Each mode of a multi-mode component is associated with a unique mode

17
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identifier (ID).

• A primitive component has a dedicated mode switch port for the commu-
nication with its parent during a mode switch. A composite component
has an additional dedicated port for the communication with its subcom-
ponents/children.

• Both primitive and composite components have a separate configura-
tion in each mode. A component configuration is a collection of mode-
specific information such as the mode-specific functional behavior and
mode-related properties of a component, as well as mode-independent
information.

• A component starts to reconfigure itself by changing its configuration
to the configuration in the new mode during a mode switch. The mode
switch of a component is controlled by the runtime mechanism of MSL
integrated in the component.

Let PC denote the set of primitive components and CC denote the set of
composite components of a CBMMS. In the following, the formal definition of
the mode-aware component model will be given for primitive components and
composite components, respectively.

Definition 3. [Mode-aware primitive component]: A mode-aware primitive
component ci ∈ PC is a tuple:

< IP,OP, pMSX,B,MIP,MDEFP,m,MB,AIP,AOP,MS,MP,MSRM >

where IP is the set of input ports of ci; OP is the set of output ports of ci; pMSX /∈
(IP ∪ OP) is a dedicated bidirectional mode switch port for exchanging mode-
related information with the parent; B is the set of mode-specific behaviors
of ci; MIP is the set of mode-independent properties of ci (including M, the
set of supported modes of ci.); MDEFP is the set of mode-dependent Extra-
Functional Properties (EFPs) of ci; m is the current mode of ci; the function
MB : M → B defines the functional behavior of ci in each mode; the function
AIP : M → 2IP defines the set of activated input ports of ci in each mode;
the function AOP : M → 2OP defines the set of activated output ports of ci
in each mode; the function MS : M → {Activated, Deactivated} indicates
the running status1 (either activated or deactivated) of ci in each mode; the

1The running status of a component ci can be considered as a property in a specific mode, as
is defined here. Alternatively, the deactivated running status of ci may also be considered as a
dedicated mode.
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function MP : M×MDEFP→ Q assigns values to each mode-dependent EFP
of ci in each mode, where the set Q is such that for a mode m and a mode-
dependent EFP e, MP(m, e) ∈ dom(e)—the range of values of e; MSRM is
the mode switch runtime mechanism of ci.

Since pMSX is dedicated to mode switch, we separate it from IP and OP.
MSRM is used to control the mode switch of ci and will be defined in Chap-
ter 3. It should be noted that MSRM in the tuple above can be considered as an
internal controller of ci. When ci is used in a specific context, the MSRM of ci
should not be exposed like its mode information and EFPs. Besides,

Definition 4. The MIP of a mode-aware primitive component ci is another
tuple:

< M,m0,MIEFP >

where M as explained above is the set of supported modes of ci; m0 is the
initial mode of ci; MIEFP is the set of mode-independent EFPs of ci.

Actually, MIEFP and MDEFP of ci are two disjoint sets and their union is
EFP, i.e. the set of all EFPs of ci. EFP, sometimes also called non-functional
property, is a key concept in CBSE. An EFP is not related to the functional
aspect of a system. Instead, it covers aspects such as performance and de-
pendability. An EFP can be associated with one or more parameters. When
the parameter value(s) of an EFP is(are) mode-dependent, this EFP belongs
to MDEFP. Otherwise, it belongs to MIEFP. The following lists a couple of
typical EFPs:

• Resource consumption. This EFP defines the resource requirement of
a component. The resource here can be power, CPU cycles, memory,
bandwidth or others. If a multi-mode component consumes different
amount of resources in different modes, then resource consumption be-
longs to MDEFP.

• Atomicity. If the execution of a component is atomic, it cannot be in-
terrupted by any other event before completion. If the execution of a
component is non-atomic, then it can be interrupted by another event at
any time. In Chapter 5, atomic component execution will be revisited
and we shall present how it is handled in our MSL.

• Real-time properties, such as Worst-Case Execution Time (WCET), trig-
gering period, maximum and minimum time for the component to stay
in one mode, and even scheduling policy.
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Please note that it is possible to define the scheduling policy as an EFP for
a component which then can have its own scheduler. This is to some extent
congruous with hierarchical scheduling [14]. Compared with a primitive com-
ponent, the mode-aware component model of a composite component is more
complex, since a composite component must know the essential information of
itself, its subcomponents and how they are composed.

Definition 5. [Mode-aware composite component]: A mode-aware composite
component ci ∈ CC is a tuple:

<IP,OP, pMSX, pMSX
in ,SC,Con,MIP,MDEFP,m,

AIP,AOP,MS,ASC,DSC,ACon,MP,MSRM >

where IP, OP, pMSX, MDEFP, m, AIP, AOP, MS, MP and MSRM are defined
as in Definition 3; pMSX

in is a second dedicated mode switch port for exchanging
mode-related information with the children of ci; SC is the set the subcompo-
nents of ci; Con ⊆ (PSC ∪ IP ∪OP)× (PSC ∪ IP ∪OP) is the set of all inner
component connections of ci in all modes, where PSC is the set of ports of SC:

PSC =
⋃

∀cj∈SCci

IPcj ∪ OPcj ;

MIP is the set of mode-independent EFPs of ci as defined in Definition 6; the
function ASC : M→ 2SC indicates the activated subcomponents of ci in each
mode; the function DSC : M→ 2SC indicates the deactivated subcomponents
of ci in each mode; the function ACon : M→ 2Con defines the set of activated
inner component connections (connections in use) of ci in each mode.

Two dedicated mode switch ports are defined for a composite component
because a composite component must be able to communicate with both its
parent and children during a mode switch. It should be noted that some of the
elements in the tuple for ci ∈ CC are essential for the mode switch handling
of ci but should not be exposed for component reuse, including SC, Con, ASC,
DSC, ACon, and MSRM. Besides,

Definition 6. The MIP of a mode-aware composite component ci is another
tuple:

< M,m0,MSC,m
0
SC,mSC,MM,MIEFP >

where M, m0 and MIEFP are defined as in Definition 4; the function MSC :
SC→ 2M maps each subcomponent of ci to the corresponding set of supported
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modes (M is the set of all modes supported by ci and SCci ); the function
m0

SC : SC → 2M maps each subcomponent of ci to the corresponding initial
mode; the function mSC : SC → 2M maps each subcomponent of ci to the
corresponding current mode; MM is the mode mapping between ci and SCci
and will be further explained later in Chapter 4.

In the tuple for the MIP of ci ∈ CC, elements MSC, m0
SC, mSC, and MM

should not be exposed for component reuse. The MIEFP and MDEFP of ci ∈
CC can be exposed for component reuse because the EFPs of ci has been
derived based on the EFPs of its subcomponents.

Our mode-aware component model for primitive and composite compo-
nents are illustrated in figures 2.1 and 2.2, where the similarity and discrepancy
of primitive and composite components can be easily perceived. Generally
speaking, this component model assumes the pipe-and-filter type of communi-
cation and it is data-driven rather than control-driven [39]. Yet the model itself
should be able to support both data-driven and control-driven computation pat-
terns. In both figures, p0in · · · pmin denote the input ports and p0out · · · pnout denote
the output ports. pMSX and pMSX

in are the dedicated mode switch ports. A unique
configuration is defined for each mode k and the included elements for each
configuration are rather consistent with the aforementioned definitions.

Figure 2.1: The mode-aware component model for primitive components
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Figure 2.2: The mode-aware component model for composite components

2.2 An example

Our mode-aware component model can be used for the formal definition of a
multi-mode component. For instance, let’s formally define the primitive com-
ponent a and the composite component b in the example introduced in Fig-
ure 1.1. Figure 2.3 labels each component with its port names in red. Suppose
the set of supported modes of a is denoted by a.M = {m1

a,m
2
a} and the mode-

specific behavior of a is α in m1
a and β in m2

a. The behaviors α and β can, for
instance, be two different video decoding schemes for a multimedia applica-
tion. Component a has a mode-independent EFP, CPU consumption (denoted
by cpu) that is the same in both modes, e.g. cpu = 8, and a also has a mode-
dependent EFP, memory consumption (denoted by mem) that is different in
different modes, e.g. mem = 5 in m1

a and mem = 10 in m2
a. Then Compo-

nent a can be formally defined by the tuple,

<a.IP, a.OP, a.pMSX, a.B, a.MIP, a.MDEFP, a.m,

a.MB, a.AIP, a.AOP, a.MS, a.MP, a.MSRM >

where
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a.IP = {a.p0in}
a.OP = {a.p0out}
a.B = {α, β}
a.MDEFP = {mem}
a.m = m1

a

a.MB = {m1
a → α,m2

a → β}
a.AIP = {m1

a → {a.p0in},m2
a → {a.p0in}}

a.AOP = {m1
a → {a.p0out},m2

a → {a.p0out}}
a.MS = {m1

a → Activated,m2
a → Activated}

a.MP = {(m1
a,mem)→ 5, (m2

a,mem)→ 10}

In addition, a.MIP is another tuple,

< a.M, a.m0, a.MIEFP >

where

a.M = {m1
a,m

2
a}

a.m0 = m1
a

a.MIEFP = {cpu = 8}

Here a.MSRM cannot be simply presented in the tuple and it will be further
discussed in the next chapter. The dedicated mode switch port a.pMSX is the
same for all primitive components, thus there is no need to describe it further.

Figure 2.3: A CBMMS marked with port names

Suppose the set of supported modes of b is b.M={m1
b ,m

2
b}. Component b

has WCET (denoted as wcet) as its MDEFP such that wcet = 75 in m1
b and
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wcet = 50 in m2
b . Also, b has a mode-independent EFP, i.e. its activation

period T = 100 in all modes. As a composite component, b can be formally
defined by the tuple,

<b.IP, b.OP, b.pMSX, b.pMSX
in , b.SC, b.Con, b.MIP, b.MDEFP, b.m,

b.AIP, b.AOP, b.MS, b.ASC, b.DSC, b.ACon, b.MP, b.MSRM >

where there is no need to describe b.pMSX and b.pMSX
in , and b.MSRM will be

further discussed in the next chapter, and

b.IP = {b.p0in}
b.OP = {b.p0out, b.p1out}
b.SC = {d, e}
b.Con = {(b.p0in, d.p0in), (d.p0out, e.p0in), (d.p1out, e.pin1),

(e.p0out, b.p
0
out), (d.p

0
out, b.pout0), (d.p

1
out, b.p

1
out)}

b.MDEFP = {wcet}
b.m = m2

b

b.AIP = {m1
b → {b.p0in},m2

b → {b.p0in}}
b.AOP = {m1

b → {b.p0out},m2
b → {b.p0out, b.p1out}}

b.MS = {m1
b → Activated,m2

b → Activated}
b.ASC = {m1

b → {d, e},m2
b → {d}}

b.DSC = {m1
b → ∅,m2

b → {e}}
b.ACon = {m1

b → {(b.p0in, d.p0in), (d.p0out, e.p0in), (d.p1out, e.pin1),
(e.p0out, b.p

0
out)},m2

b → {(b.p0in, d.p0in), (d.p0out, b.pout0),
(d.p1out, b.p

1
out)}}

b.MP = {(m1
b , wcet)→ 75, (m2

b , wcet)→ 50}

In addition, b.MIP is another tuple,

< b.M, b.m0, b.MSC, b.m
0
SC, b.mSC, b.MM, b.MIEFP >

where b.MM presents the mode mapping of b and will be explained in Chap-
ter 4, and

b.M = {m1
b ,m

2
b}

b.m0 = m1
b

b.MSC = {d→ {m1
d}, e→ {m1

e,m
2
e}}

b.m0
SC = {d→ m1

d, e→ m1
e}

b.mSC = {d→ m1
d, e→ m2

e}
b.MIEFP = {T = 100}
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The formal definition of b can be further explained as follows:

• Each pair "(x, y)" in b.Con defines a connection with direction from port
x to port y. For instance, (b.p0in, d.p

0
in) defines the connection from port

p0in of b to port p0in of d.

• The initial mode of b is m1
b and the current mode of b is m2

b .

• As the subcomponents of b, d supports one mode m1
d and e supports two

modes m1
e and m2

e.

• The initial mode of d is m1
d which is also its current mode.

• The initial mode of e is m1
e and the current mode of e is m2

e.

All the elements included in a tuple together with their values in each mode
define a specific configuration of a component. The mode switch of a compo-
nent is equivalent to the change of its configuration, viz. reconfiguration. The
mode-aware component model in our MSL is not based on any existing com-
ponent model. Instead, it is rather generic and most existing component models
can be extended to be mode-aware guided by the principles of MSL.

2.3 Summary
In this chapter, we have introduced a mode-aware component model for both
primitive and composite components which can be formally defined as tuples.
Each multi-mode component has a unique configuration for each of its sup-
ported modes and can reconfigure itself when a mode switch occurs. Besides,
dedicated mode switch ports have been defined for the cross-level communica-
tion during a mode switch which is totally independent of system functionality.
The mode-aware component model itself does not serve as a complete compo-
nent model. Instead, it emphasizes the key features for a component to support
mode switch in general. In principle, many existing component models can be
extended to support mode switch by referring to the mode-aware component
model.
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Chapter 3

The mode switch runtime
mechanism

As the principal ingredient of our MSL, the mode switch runtime mechanism
synchronizes and coordinates the mode switches of different components to
achieve a correct mode switch at the system level. A mode switch starts when a
mode switch decision is made and is terminated when all involved components
have completed their mode switches. In this chapter, we first begin with a
description of the notations intensively used in the rest of this thesis and then
look into this runtime mechanism with regard to mode switch propagation and
the guarantee of mode consistency.

3.1 System model and notations
A CBMMS consists of a set of hierarchically organized components. Let PC
denote the set of primitive components and CC denote the set of composite
components of a CBMMS: PC ∩ CC = ∅. The top component is denoted
by Top. Let C̃C denote CC\{Top}. Consider a composite component ci
composed by a set of components Com = {c1j , c2j , · · · , cnj } (n ∈ N), ∀ckj ∈
Com(k = [1, n]), ci is the parent of ckj , denoted by Pckj . Reversely, Com is
the set of subcomponents of ci, denoted by SCci . For each mode m ∈ Mci ,
the set SCci can be divided into two disjoint parts: the set of subcomponents
ASCmci activated in m and the set of subcomponents DSCmci deactivated in m.
SCci = ASCmci ∪DSC

m
ci . Each component ci is associated with a depth level

27
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lci in the component hierarchy, with lTop = 0 and lcj = lci + 1 if cj ∈ SCci .
For two components ci and cj , lcj > lci , if cj is inside ci (i.e. ci is directly or
indirectly composed by cj), then ci is an ancestor of cj . If Acj denotes the set
of ancestors of cj , then ci ∈ Acj . Reversely, cj is a descendant of ci. If Dci

denotes the set of descendants of ci, then cj ∈ Dci . As a special case, ci = Pcj
when lcj = lci + 1. The sets of activated and deactivated descendants of ci in
m ∈Mci are denoted by ADm

ci and DDm
ci respectively.

3.2 Mode switch propagation
Generally speaking, a mode switch can be either time-triggered or event-
triggered. In this paper we mainly consider event-triggered mode switch, where
a mode switch is triggered by a mode switch event (e.g. when the value of a
sensor reaches a threshold). Time-triggered mode switch can be easily con-
sidered as a special case of event-triggered mode switch (by considering the
advancement of the time at a certain point to be an event). In practice, dif-
ferent mode switch events could be simultaneously detected, incurring a mode
switch conflict which must be resolved appropriately. In this thesis we assume
that such conflict never occurs.

A mode switch event is originally detected by a Mode Switch Source
(MSS):

Definition 7. [Mode Switch Source (MSS)]: For a component ci ∈ PC ∪CC
with the set of supported modes Mci . If ∃mci ∈ Mci such that ci can actively
detect a mode switch event in mci and intend to switch to a new mode mnew

ci 6=
mci , ci is called a Mode Switch Source (MSS) in mci .

An MSS ci is defined together with its mode(s). The same component
can be an MSS in different modes and a system can have multiple MSSs that
are predefined at design time. An MSS can trigger one or more mode switch
scenarios:

Definition 8. [Mode switch scenario]: A mode switch scenario is an event that
an MSS ck detects a mode switch event inmi

ck
and requests to switch frommi

ck
tomj

ck
(mi

ck
,mj

ck
∈Mck ). We will use "ck : mi

ck
→ mj

ck
" to denote this mode

switch scenario.

Although an MSS is the origin of a mode switch scenario, it may not have
the authority to trigger a mode switch. This is the duty of another special role:
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Definition 9. [Mode Switch Decision Maker (MSDM)]: For a mode switch
scenario ck : mi

ck
→ mj

ck
, if ∃cp in mq

cp ∈ Mcp such that cp either approves
the mode switch request from ck and triggers a mode switch or rejects the mode
switch request from ck, cp is called the Mode Switch Decision Maker (MSDM)
in mq

cp for this specific mode switch scenario.

Comparing the two special roles, i.e. MSS and MSDM, one can conclude
that an MSDM must have a higher authority than the corresponding MSS. In
a component-based system, a natural assertion is: the higher level (viz. lower
depth level) in the component hierarchy, the higher authority. Therefore, for
an MSS ci triggering the mode switch scenario ci : mp

ci → mq
ci , if cj is the

MSDM, then lci > lcj . If the top component happens to be the MSS of a mode
switch scenario, then it is also the corresponding MSDM.

In Chapter 1, the example in Figure 1.1 has reflected that the mode switches
of different components are not independent but correlated. This means that
the mode switch of a component may be accompanied by the mode switches
of some other components so as to achieve a correct mode switch at the system
level. For instance, if Component a is defined as an MSS in Figure 1.1, the
mode switch scenario triggered by a will force Component b to switch mode.
Yet, Component d stays unaffected. Therefore, we distinguish two types of
components for each mode switch scenario:

Definition 10. [Type A and Type B components]: For a mode switch scenario
ck : mi

ck
→ mj

ck
and any other component cp running in mq

cp , if cp must
switch to a new mode cnewcp 6= cqcp as a consequence, cp is a Type A component
inmq

cp for this scenario, denoted as Tcp = A. Otherwise, if cp keeps running in
mq
cp without being affected, cp is a Type B component in mq

cp for this scenario,
denoted as Tcp = B.

The identification of Type A and Type B components for each mode switch
scenario is realized by mode mapping which will be elaborated on in Chap-
ter 4. In this chapter, we assume Type A and Type B components are already
identified for each mode switch scenario. Then a key issue is how to prop-
agate a mode switch event to all the Type A components without affecting
Type B components. Mode switch propagation can be carried out in differ-
ent ways. Nevertheless, to achieve a satisfying propagation outcome, several
criteria should be met:

• Stepwise propagation. Since no component has the global knowledge of
the complete component hierarchy of a CBMMS, mode switch propaga-
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tion must be stepwise. In other words, a component is only allowed to
propagate a mode switch event to its parent or children.

• Precise coverage. A mode switch event is propagated to all Type A com-
ponents while no Type B components are disturbed.

• No redundant propagation. It suffices for the same Type A component
to be notified by a mode switch event just once. Redundant propagation
should be avoided.

• Bounded propagation time. Mode switch propagation time should be
bounded and as short as possible.

Taking all these criteria into account, we have developed a Mode Switch
Propagation (MSP) protocol, which can be considered as a distributed algo-
rithm. Thanks to the dedicated mode switch ports pMSX and pMSX

in introduced
in the mode-aware component model, there is clear separation between mode
switch propagation and a system’s functional behavior. In essence, mode
switch propagation is performed by sending and receiving primitives between
components at adjacent levels via their dedicated mode switch ports. We have
defined the following primitives that will be used by our mode switch runtime
mechanism:

• Mode Switch Request (MSR): An MSR is originally issued from an
MSS and it has to be transmitted from a component to its parent.

• Mode Switch Query (MSQ): An MSQ is originally issued from an
MSDM as an approval of the MSR from one subcomponent, and it has to
be transmitted from a composite component to its subcomponents.

• MSOK: A positive feedback from a component to its parent with re-
sponse to the MSQ, indicating the readiness for mode switch.

• MSNOK: A negative feedback from a component to its parent with re-
sponse to the MSQ, indicating the unreadiness for mode switch.

• Mode Switch Instruction (MSI): An MSI is originally issued from an
MSDM after it has received all expected primitives MSOK from its sub-
components. An MSI triggers a mode switch and has to be transmitted
from a composite component to its subcomponents.
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• Mode Switch Denial (MSD): An MSD is originally issued from an
MSDM who receives at least one MSNOK from its subcomponents. An
MSD aborts the mode switch to be triggered and has to be transmitted
from a composite component to its subcomponents.

• Mode Switch Completion (MSC): An MSC is transmitted from a com-
ponent to its parent after its mode switch completion. MSC is the only
primitive not used for mode switch propagation. Instead, it is used after
a mode switch is triggered as will be discussed later in this chapter.

Since the names of these primitives all begin with "MS", we shall use
"MSX" to represent a generic primitive and this is where the "MSX" of the
two dedicated mode switch ports pMSX and pMSX

in comes from. Next we shall
describe our MSP protocol in terms of three facets: the global interpretation,
primitive components and composite components.

Definition 11. [MSP protocol—the global interpretation]: Let ci be an MSS
and cj ∈ Aci be the corresponding MSDM, with CM as the set of vertically
intermediate components between ci and cj , while ∀ck ∈ CM , ck ∈ Aci ∩Dcj .
Mode switch propagation is taken in two phases. The first phase determines if a
detected mode switch event can trigger a mode switch, while the second phase
either performs the mode switch or aborts the mode switch. In the first phase,
a mode switch event is initially detected by ci which will trigger a mode switch
scenario by issuing an MSR to Pci . Then ∀ck ∈ CM , the MSR is forwarded
from ck to Pck . When cj receives the MSR, it makes a decision based on its
mode mapping and current state:

• cj approves the MSR. In order to ensure all related components are ready
for mode switch, cj will issue an MSQ to all ck ∈ SCcj , Tck = A. In the
same way, ∀cp ∈ Dcj (cp ∈ CC and Tcp = A), the MSQ is propagated
from cp to all cq ∈ SCcp , Tcq = A. Components receiving the MSQ are
required to send either MSOK or MSNOK back. Mode switch propagation
enters the second phase when cj has received all feedbacks. If cj receives
at least one MSNOK, it has to abort the mode switch to be triggered and
sends an MSD that is transmitted to all components having received the
MSQ, following the propagation trace of MSQ. Then cj resumes execution
in the current mode. If cj receives all expected MSOK, it will trigger a
mode switch by sending an MSIwhich also follows the propagation trace
of MSQ. Mode switch propagation is over when all Type A components
receive the MSD or MSI.
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• cj rejects the MSR by doing nothing.

Generally speaking, for an MSS ci triggering the mode switch scenario
ci : mp

ci → mq
ci , the corresponding MSDM cj , as well as the set CM of

vertically intermediate components between ci and cj , the MSP protocol can
result in one of the following scenarios:

1. cj directly rejects the MSR originating from ci by doing nothing and
mode switch propagation is terminated without entering the second
phase.

2. cj approves the MSR originating from ci by issuing an MSQ and later on
receives all expected MSOK. In the second phase, cj issues an MSI to
trigger the mode switch. The propagation trace of the MSI follows the
propagation trace of the MSQ.

3. cj approves the MSR originating from ci by issuing an MSQ and later
on receives at least one MSNOK. Consequently, in the second phase, cj
issues an MSD whose propagation trace follows the propagation trace of
the MSQ.

Figures 3.1-3.3 illustrate these three different scenarios respectively. The
red node is an MSS and the blue node is the MSDM, while all the other nodes
are Type A components. Please note that in Figure 3.3 the MSQ propagation
is terminated by the composite component first replying with MSNOK because
further MSQ propagation contributes nothing.

Figure 3.1: The global interpretation of the MSP protocol—Scenario 1
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Figure 3.2: The global interpretation of the MSP protocol—Scenario 2

The global interpretation of the MSP protocol specifies how different prim-
itives are exchanged between components during the mode switch propagation.
However, it is insufficient to address the behavior of each single component.
The other two facets of the MSP protocol provide the missing information:

Definition 12. [MSP protocol—primitive component]: If a component ci ∈
PC is not an MSS, the first primitive it can receive is an MSQ asking its readi-
ness for mode switch. First ci will stop running and check its current state. If
the current state of ci does not allow a mode switch, it will reply with MSNOK
and expects an MSD. Conversely, if the current state of ci allows a mode switch,
it will reply with MSOK and then expects either an MSI or MSD. Component ci
starts its mode switch upon receiving an MSI, and resumes execution in the
current mode upon receiving an MSD.

If ci is an MSS, it can actively send an MSR to Pci without stopping its
current execution.
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Figure 3.3: The global interpretation of the MSP protocol—Scenario 3

Definition 13. [MSP protocol—composite component]: If a component ci ∈
CC is not an MSS, the first primitive it can receive is either an MSQ from the
parent or an MSR from one subcomponent:

• If the first primitive ci receives is MSQ (ci 6= Top), it stops running in
the current mode and checks if its current state allows a mode switch.
If yes, then it propagates the MSQ to all cj ∈ SCci , Tcj = A and waits
for an MSOK or MSNOK from each one of them. Component ci sends an
MSOK back to Pci only when all cj have replied with the primitive MSOK.
Conversely, if the current state of ci does not allow a mode switch, it
will directly send an MSNOK back to Pci without propagating the MSQ
further. After sending an MSOK to Pci , ci expects either an MSI or MSD
from Pci . In contrast, after sending an MSNOK to Pci , ci only expects an
MSD. Upon receiving an MSI, ci will propagate the MSI to the same MSQ
recipients and start its mode switch. Upon receiving an MSD, if ci has
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replied with an MSOK, it will propagate the MSD to its MSQ recipients and
resume execution in the current mode. Otherwise, if ci has replied with
an MSNOK, it will immediately resume execution in the current mode.

• If the first primitive ci receives is MSR, ci refers to its mode mapping,
checks its current state, and makes one of the following decisions:

– If Tci = B, ci becomes the MSDM, stops its current execution, ap-
proves the MSR, and follows the global interpretation as an MSDM.

– If Tci = A, but the current state of ci does not allow a mode switch,
ci becomes the MSDM and rejects the MSR without stopping its
current execution.

– If Tci = A, ci 6= Top and the current state of ci allows a mode
switch, ci forwards the MSR to Pci without stopping its execution
and let Pci make further decisions. If ci = Top, ci becomes the
MSDM, stops its current execution, and approves the MSR, follow-
ing the global interpretation as an MSDM.

If ci is an MSS and ci 6= Top, it can actively send an MSR to Pci and
then behaves as a normal composite component. If ci = Top, it is also the
MSDM and can actively stop running and send an MSQ, following the global
interpretation.

What deserves extra explanation is that the propagation decision of a com-
posite component ci after receiving an MSR or MSQ is based on the mode map-
ping of ci which identifies which components among ci and SCci are of Type A
and which are of Type B. The thorough explanation of mode mapping can be
found in Chapter 4. The propagation of an MSI or MSD does not require mode
mapping because their propagation traces are exactly the same as the propaga-
tion trace of the preceding MSQ, which can be stored and retrieved.

All the three facets above are merged into the complete version of the MSP
protocol. For the sake of better illustration, an example is used to demonstrate
the MSP protocol. Figure 3.4 depicts a CBMMS with Component h as an MSS
and Component a as the MSDM for the mode switch scenario triggered by
h. Mode switch is a local event within a. Components filled with grey color
are Type A components while others are Type B components. Figures 3.5-3.7
demonstrate scenarios 1, 2 and 3 respectively. In figures 3.6 and 3.7, it can be
observed that the propagation traces of the MSQ, MSI and MSD are the same.
The only difference between Scenario 2 and Scenario 3 is that Component g
replies with an MSNOK in response to the MSQ in Scenario 3, leading to the MSD
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propagation instead of MSI. Actually, Scenario 3 in Figure 3.7 can be further
optimized by shortening the propagation time in the first phase. For instance,
when c receives the MSNOK from g, c can immediately send an MSNOK to a
without waiting for the response from h.

Figure 3.4: The MSS, MSDM and Type A components in a system

Figure 3.5: Mode switch propagation-Scenario 1

Next we shall prove the correctness and efficiency of the MSP protocol by
showing that it meets all the anticipated criteria, including (1) stepwise prop-
agation; (2) precise coverage; (3) no redundant propagation; and (4) bounded
propagation time. Here we assume that there is no conflict due to multiple
mode switch triggering and that the mode mapping of each composite compo-
nent is correct.

Theorem 1. The MSP protocol is distributed and stepwise, without violating
the key principle of CBSE that a component only has the knowledge of itself
and its immediate subcomponents.
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Figure 3.6: Mode switch propagation-Scenario 2

Figure 3.7: Mode switch propagation-Scenario 3

Proof. The MSP protocol is distributed among components. Its facet for prim-
itive components (Definition 12) indicates that all primitive components fol-
low the same propagation rules. Likewise, its facet for composite components
(Definition 13) indicates that all composite components follow the same prop-
agation rules. An MSS, MSDM or the top component have extra concerns, yet
they are already included in Definition 12 and Definition 13. Since a compo-
nent can only send a primitive to its parent or subcomponents, the MSP proto-
col is stepwise. A component sends a primitive to its parent via its pMSX port,
without needing to know the identity of its parent. When a composite com-
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ponent sends a primitive to its subcomponents, it can be guided by its mode
mapping to select the right receivers among its subcomponents. Therefore, the
MSP protocol conforms to the key principle of CBSE that a component only
has the knowledge of itself and its immediate subcomponents.

Theorem 2. The MSP protocol guarantees that the MSR/MSQ issued by an MSS
is propagated to all Type A components, without disturbing Type B components.
If no MSI is issued, no component will switch mode.

Proof. Considering a CBMMS with an MSS ci issuing an MSR, the corre-
sponding MSDM cj , as well as the set CM of vertically intermediate com-
ponents between ci and cj . Definition 11 actually indicates that all Type A
components belong to Dcj and a Type B component either belongs to Dcj or
is outside cj . When cj decides to trigger a mode switch by issuing an MSI, cj
must have approved the MSR from ci, and cj has received all expected MSOK
from SCcj . Since the MSI exactly follows the propagation trace of the MSQ,
the "precise coverage" property can be proved by showing that the MSQ from
cj must be propagated to all Type A components while no Type B compo-
nents will receive the MSQ. Again, Definition 11 states that the MSQ from cj is
always propagated to lower level components. Without considering mode map-
ping, the MSQ is able to reach all components belonging to Dcj . Mode map-
ping enables selective propagation of MSQ so that the MSQ is only propagated
to Type A components and no Type A components will miss the MSQ. Hence
Type B components belonging toDcj will not receive the MSQ. A Type B com-
ponent can also be outside cj . In this case, it will not receive any MSQ neither
because cj does not propagate the MSQ upwards. Therefore, this protocol guar-
antees that an MSQ or MSI is propagated to all Type A components without
disturbing Type B components. Besides, a special case is that cj is also the top
component. Consequently, MSR transmission is skipped, but this does not af-
fect the precise coverage of MSQ or MSI. This proves the first half of Theorem
2.

If cj does not issue any MSI, either Scenario 1 or 3 will take place. Since a
component will not switch mode until it issues/receives an MSI, no component
will switch mode. This proves the latter half of Theorem 2.

Theorem 3. For each mode switch scenario, the MSP protocol guarantees
that the same primitive from the same sender is never transmitted to the same
component more than one time.

Proof. Again, let’s consider the CBMMS with an MSS ci issuing an MSR,
the corresponding MSDM cj , as well as the set CM of vertically intermediate
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components between ci and cj . we can enumerate all the primitive types used
in the MSP protocol and prove the correctness of Theorem 3 for each primitive
type, including MSR, MSQ, MSI, MSD, MSOK and MSNOK:

• An MSR is issued from ci, forwarded by CM , and finally reaches cj . Ac-
cording to Definition 11, an MSR is always transmitted upstream, with
a single directional and non-cyclic propagation trace. In addition, ac-
cording to Definition 11, ci only issues an MSR once after detecting a
mode switch event, and ∀ck ∈ CM , ck forwards the MSR to Pck only
once. Therefore, the same MSR is transmitted to a component at most
once from the same sender.

• An MSQ is issued from cj and propagated downstream to all Type A
components. According to Definition 11 and the component hierarchical
structure, the propagation trace of an MSQ is a tree, with cj as its root and
spreading but non-interweaving branches. In addition, cj issues an MSQ
only once before it receives all the MSOK or MSNOK, and all Type A
components transmit the MSQ to its Type A subcomponents only once.
Due to the acyclic structure of the propagation trace of MSQ, the same
MSQ is transmitted from the same sender to a component at most once.
Furthermore, since an MSI or MSD has the same propagation trace as the
MSQ, this property holds also for an MSI or MSD.

• Referring to all facets of the MSP protocol (i.e. Definitions 11-13), we
are sure that each component will reply with an MSOK or MSNOK only
once for each MSQ. Since the same MSQ is propagated to the same com-
ponent only once, there is no redundant transmission of either MSOK or
MSNOK.

Since Theorem 3 holds for all types of primitives used in the MSP protocol,
Theorem 3 is proved.

Actually, Theorem 3 is related to efficiency rather than correctness. Assum-
ing no transmission error, avoiding redundant transmission plays a significant
role in lowering the communication overhead between different components
during the mode switch propagation.

Theorem 4. Assuming bounded primitive handling time, bounded primitive
transmission time and no primitive transmission error, the MSP protocol guar-
antees bounded propagation time.
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Proof. We still consider the CBMMS with an MSS ci issuing an MSR, the cor-
responding MSDM cj , as well as the set CM of vertically intermediate com-
ponents between ci and cj . Since both the primitive handling time and the
primitive transmission time are assumed to be bounded, we only need to prove
that the number of propagation steps is bounded. Let NMSR, NMSQ, NMSI ,
and NMSD denote the number of steps of the propagation of the correspond-
ing primitives. Also, let N(N)OK denote the number of steps of MSOK/MSNOK
collection. The proof can be split based on the three mode switch propagation
scenarios identified previously:

• Scenario 1: MSR is the only primitive being propagated. Since the prop-
agation trace of an MSR is a straight single directional path from ci to cj
with bounded length, NMSR, must be bounded.

• Scenario 2: The first phase consists of three non-overlapping sub-phases:
the upstream MSR propagation, the downstream MSQ propagation and the
upstream MSOK collection. The propagation time in the first phase is the
sum of all three sub-phases. It has been proved that NMSR is bounded
in the first sub-phase. In the second sub-phase, since the propagation
trace of an MSQ is a tree rooted in cj , NMSQ is in proportion to the
length of the longest branch, which is the maximum depth level differ-
ence between cj and a Type A component. Since the propagation tree
of an MSQ has bounded branch lengths, NMSQ is bounded. In the third
sub-phase, the MSOK collection can be considered as the reverse process
of the MSQ propagation, thus N(N)OK is also bounded. Therefore, the
number of propagation steps in the first phase is bounded. In the second
phase, due to the same propagation trace of an MSQ and the correspond-
ing MSI, NMSI is also bounded. The total number of propagation steps
in Scenario 2 is thus bounded.

• Scenario 3: According to Definition 11, the total number of propaga-
tion steps in Scenario 3 cannot be bigger than Scenario 2. Suppose there
exists a Type A composite component ck with at least one Type A sub-
component and the current state of ck does not allow a mode switch
when ck receives an MSQ. Then the MSQ will not be further propagated
from ck to its Type A subcomponents. This actually reduces the number
of propagation steps compared with Scenario 2. In the same manner, the
number of steps of the MSD propagation will thus be smaller than the
MSI propagation in Scenario 2. Since the total number of propagation
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steps in Scenario 2 is bounded, the total number of propagation steps in
Scenario 3 is also bounded.

Since all the three scenarios above imply bounded number of propagation
steps and since each step is assumed to be bounded, the propagation time must
always be bounded.

3.3 Guaranteeing mode consistency

As is stated before, a mode switch scenario is triggered by an MSS ci, which
issues an MSR (if ci ∈ C̃C) or an MSQ (if ci = Top). A mode switch will be
triggered when the MSDM decides to issue an MSI. This necessitates the sat-
isfaction of two conditions: (1) the MSDM approves the MSR; (2) the MSDM
receives all expected MSOK after issuing the MSQ. If ci = Top, only the second
condition must be met. When the MSDM triggers a mode switch by issuing
an MSI, the MSP protocol will propagate this MSI to all Type A components.
Each Type A component propagates an incoming MSI to its Type A subcom-
ponents and then start its mode switch. From the perspective of a single Type A
component cj , its mode switch is essentially equivalent to its reconfiguration,
i.e. changing its current configuration to the configuration in the new mode (see
Chapter 2). And the mode switch of cj should be completed when cj completes
its reconfiguration. Nevertheless, from the perspective of the entire system, its
mode switch is completed when all the Type A components have completed
their mode switches. A mode inconsistency anomaly will occur if one or more
Type A components are still running in the old modes or are in the process of
switching mode even after the mode switch completion of the system. To guar-
antee mode consistency, the reconfigurations of different Type A components
must be properly synchronized. To this end, we define the following mode
switch dependency rule:

Definition 14. [Mode switch dependency rule]: Any component receiving an
MSI from the parent must send a primitive Mode Switch Completion (MSC)
back to its parent as a feedback upon its mode switch completion. For a com-
ponent ci which starts its mode switch, the following applies

• If ci ∈ PC, its mode switch starts after receiving an MSI from Pci .
Component ci will send an MSC to Pci after its reconfiguration to indi-
cate mode switch completion.
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• If ci ∈ C̃C and ci is not the MSDM, its mode switch starts after receiving
an MSI from Pci and propagating the MSI to its Type A subcomponents.
The mode switch of ci is completed after the reconfiguration of ci and its
MSC collection from its Type A subcomponents. Then ci sends an MSC
to Pci after its mode switch completion. If ci is the MSDM, it does not
switch mode but expects an MSC from all its Type A subcomponents.

• If ci = Top and ci is the MSDM, then Tci = A or Tci = B. If Tci = A,
its mode switch starts after issuing an MSI to its Type A subcomponents.
The mode switch of ci is completed after the reconfiguration of ci and its
MSC collection from its Type A subcomponents. If Tci = B, it does not
switch mode but expects an MSC from its Type A subcomponents.

The system mode switch is completed when the MSDM ck completes its
mode switch (Tck = A) or when ck completes its MSC collection (Tck = B).

The mode switch dependency rule enforces a dependency of the mode
switch of a composite component on the mode switches of its Type A sub-
components. Therefore, a system mode switch is taken in a bottom-up manner,
ensuring the well synchronization between the mode switches of different com-
ponents and mode consistency. The mode switch dependency rule exhibits the
following property:

Lemma 1. Assuming bounded reconfiguration time of each component, the
mode switch dependency rule guarantees that any component will complete its
mode switch in bounded time.

Proof. A non-top component starts its mode switch by receiving an MSI and
the top component starts its mode switch by issuing an MSI. In Theorem 2, it
has been proved that an MSI is propagated to all Type A components without
disturbing Type B components. When a component ci starts its mode switch,
it has at most two things to do before its mode switch completion: reconfigu-
ration and MSC collection.

If ci ∈ PC, its mode switch equals its reconfiguration. Assuming the
bounded reconfiguration time of ci, ci will complete its mode switch in
bounded time.

If ci ∈ CC, its mode switch completion relies on the satisfaction of two
conditions: (1) ci completes its reconfiguration; (2) ci has received all expected
primitives MSC from cj ∈ SCci , Tcj = A. Since the reconfiguration time of
ci is always bounded, Condition (1) is satisfied. If Condition (2) is proved, ci
will be guaranteed to complete its mode switch as a composite component.
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Condition (2) can be proved by contradiction. Suppose ci expects an MSC
from cp ∈ SCci , Tcp = A which never sends the MSC, thus ci can never
complete its mode switch. The MSP protocol guarantees that cp must have
received an MSI from ci, thus the only reason why cp never sends the MSC
to ci is that cp expects at least one MSC from cq ∈ SCcp . As the depth level
grows (lcp = lci + 1 and lcq = lcp + 1), following the propagation trace of
the MSI, we will infer that ∃ck ∈ Dci , ck ∈ PC, which never sends an MSC
to Pck upon mode switch completion. This is in contradiction with the mode
switch dependency rule, according to which ck must send an MSC back to Pck
after its reconfiguration in response to the MSI. Therefore, Condition (2) is
also satisfied and ci ∈ CC will complete its mode switch in bounded time.

Since both primitive and composite components will complete the mode
switch in bounded time, Lemma 1 is proved.

Lemma 1 can further imply:

Lemma 2. Assuming bounded reconfiguration time of each component, the
mode switch time of a CBMMS is always bounded.

Proof. According to Definition 14, the mode switch of a CBMMS is completed
either when the MSDM ci completes its mode switch if Tci = A, or when the
MSDM ci has received an MSC from all cj ∈ SCci , Tcj = A if Tci = B. The
MSP protocol (Definition 11) indicates that the MSDM ci must exist for any
mode switch scenario ck : mp

ck
→ mq

ck
.

If Tci = A, then ci = Top. Otherwise if ci 6= Top, ci will forward the
MSR issued by ck to Pci and ci will not be the MSDM. It has been proven in
Lemma 1 that any component can complete its mode switch in bounded time,
including ci. Therefore, the system mode switch is also bounded.

If Tci = B, then ci may or may not be the top component. In either
case, ci does not switch mode and only expects to receive an MSC from all
cj ∈ SCci , Tcj = A. Then we only need to prove the MSC collection time of
ci is bounded. From Theorem 2, it is assured that all cj have received an MSI
from ci. Also, Lemma 1 assures that the mode switch time of all cj is bounded.
Then cj must send an MSC to ci in bounded time according to the mode switch
dependency rule. Hence the MSC collection time of ci must be bounded and
the system mode switch is also bounded.

The analysis of the two cases above suffices to prove Lemma 2.

Apart from bounded mode switch time, the mode switch dependency rule
satisfies the most important property—mode consistency:
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Theorem 5. The mode switch dependency rule guarantees that all Type A com-
ponents are running in their new modes after the mode switch completion of
the system.

Proof. Let ci be the MSDM for a specific mode switch scenario. Theorem 5
can be easily proved by contradiction. First, according to Lemma 2, there must
exist a time t1 when a system completes its mode switch. Suppose there exists
a Type A component cj not running in its new mode even after the mode switch
of the system at time t1. It is certain that cj 6= ci. Otherwise, if cj = ci, as the
MSDM and a Type A component, ci must be the top component and must have
already completed its mode switch according to Lemma 1. Also, cj ∈ Dci .
Otherwise, if cj /∈ Dci , cj cannot be a Type A component.

It can be implied that cj is either still running in its old mode or is in the
process of switching to its new mode at t1. If cj is still running in its old mode
at t1, the only possible reason is that cj has not received an MSI. According
to Theorem 2, this is impossible because an MSI must be propagated to all
Type A components.

If cj is still switching mode at t1, then according to Lemma 1, there must
exist a time t2 > t1 when cj completes its mode switch. And then according
to Definition 14, cj must send an MSC to Pcj at t2. Since cj ∈ Dci , it can
be implied that ci has not received an MSC from ck ∈ SCci at t2, ck ∈ Acj .
Therefore, it is concluded that the MSDM ci has not collected all the expected
primitives MSC at t2. That is to say, the mode switch of the system is not
completed at t2. Since t2 > t1, the system mode switch cannot be completed
at t1. This is against the assumption that the mode switch of the system is
completed at t1. Hence, the mode switch dependency rule guarantees that there
is no such Type A component which is not running in its new mode after the
mode switch completion of the system and Theorem 5 is proved.

Figure 3.8 demonstrates the mode switch dependency rule based on the
example in Figure 3.4 and its mode switch propagation—Scenario 2 in Fig-
ure 3.6. For the sake of avoiding redundant illustration, the first phase of the
mode switch propagation in Figure 3.6 is omitted in Figure 3.8. Each compo-
nent starts its reconfiguration after receiving an MSI and propagating the MSI
to its Type A subcomponents. Component reconfiguration is represented by
black bars. The length of each black bar specifies the reconfiguration time of
a component. Each primitive component (e.g. e, g and m) will send an MSC
to the parent after reconfiguration. Each composite component (e.g. b, c and
h) will not send an MSC to the parent until it completes its reconfiguration and
has received an MSC from all its Type A subcomponents. White bars imply
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that a composite component completes its reconfiguration earlier than its MSC
collection such that its mode switch is temporarily blocked by the MSC from
its subcomponents. When the MSDM a receives the MSC from both b and c,
the system mode switch is completed.

Figure 3.8: Demonstration of the mode switch dependency rule

3.4 Summary
In this chapter, a mode switch runtime mechanism is presented to handle the
composable mode switch of a CBMMS. The mode switch runtime mechanism
includes the MSP protocol and the mode switch dependency rule. The MSP
protocol is able to propagate the mode switch request initiated from an MSS
to all the components which must switch mode as a consequence. The mode
switch dependency rule is applied after a mode switch is triggered, guaran-
teeing the mode consistency between different components after each mode
switch. The correctness of the MSP protocol and the mode switch depen-
dency rule has been formulated into a number of properties which have all
been proven to be satisfied.
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Chapter 4

Mode mapping

In Chapter 3, we have identified Type A and Type B components for each mode
switch scenario. Type A components must switch mode as a consequence
while Type B components are not affected. Then another problem emerges:
How do we know which components are of Type A and which are of Type B?
In addition, even if Type A and Type B components are already identified, for
each Type A component, what is the new mode that it should switch to? In this
chapter, we propose a mode mapping mechanism that handles these problems.
Mode mapping plays a vital role in the composition of multi-mode compo-
nents and mode switch propagation at runtime. The mechanism presented here
was originally introduced in [20]; here we present an improved version of that
mechanism.

4.1 Mode mapping for component composition

Since a multi-mode component is assumed to be independently developed
without knowing the context in which it will be used/reused, the composi-
tion of multi-mode components may be subject to incompatibility between the
modes of composed components, as the modes of these components are not
well-matched. This mode incompatibility problem is illustrated by Table 4.1,
listing the components with the same hierarchy as in Figure 1.1 but with dif-
ferent component connections and different supported modes. Figures 4.1 and
4.2 illustrate how these components are connected in each mode after compo-
sition. It should be noted that Table 4.1 only lists the supported modes of each

47
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component for this particular composition. When a multi-mode component is
reused, either all or a subset of its supported modes can be selected for the par-
ticular context. For instance, Component c in Table 4.1 may originally support
several modes; still only m1

c is used for composing b in this context.

Component Supported modes
Top m1

Top , m2
Top

a m1
a, m2

a

b m1
b , m2

b , m3
b

c m1
c

d m1
d, m2

d, m3
d, m4

d

e m1
e

Table 4.1: The mode incompatibility problem

Figure 4.1: The inner component connection of Top

In order to tackle the mode incompatibility problem, the supported modes
of a composite component and its subcomponents must be properly mapped.
We have proposed a mode mapping mechanism for this purpose, based on the
following:

• A primitive component knows its supported modes, its initial mode and
its current mode, but knows nothing about the mode information of other
components in the system.

• A composite component knows the mode information (supported modes,
initial mode and current mode) of itself and its immediate subcompo-
nents, but knows nothing about the mode information of other compo-
nents in the system.
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Figure 4.2: The inner component connection of b

Mode mapping is always locally managed by a composite component ac-
cording to a set of local mode mapping rules. These mode mapping rules not
only consider the mode mapping in stable modes, but also the mode mapping
for each mode switch scenario at runtime. There is no need for a primitive
component to consider mode mapping in that it has no subcomponents. The
mode mapping between a composite component and its subcomponents in sta-
ble modes can be presented by a mode mapping table. Tables 4.2 and 4.3
present the mode mapping tables of Top and b, respectively, with regard to fig-
ures 4.1 and 4.2. Modes in the same column are mapped to each other. For
example, when Top is in m1

Top , among its subcomponents, a is in m1
a, b can be

in either m1
b or m3

b , and c is deactivated, i.e. not running in any mode.

Component Supported modes

Top m1
Top m2

Top

a m1
a m2

a

b m1
b m3

b m2
b

c Deactivated m1
c

Table 4.2: The mode mapping table of Top

The mode mapping table is straightforward and intuitive, although lacking
expressiveness. Mode mapping is not only essential for the composition of
multi-mode components, but also crucial for distinguishing Type A and Type B
components for each mode switch scenario and deriving the new modes of
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Component Supported modes
b m1

b m2
b m3

b

d m1
d m2

d m3
d Deactivated

e m1
e

Table 4.3: The mode mapping table of b

Type A components. In the latter case, mode mapping tables will be insufficient
to express the required set of mode mapping rules since it is hard to include
different mode switch scenarios in a mode mapping table. In the next section,
we shall propose a new and more expressive presentation of mode mapping.

4.2 Mode mapping at runtime
We have pointed out that mode mapping is not only crucial for the composition
of multi-mode components, but also essential for mode switch at runtime. Sec-
tion 3.2 has implied the intimate correlation between mode switch propagation
and mode mapping. Figure 4.3 further shows the relationship between the MSP
protocol and the mode mapping of a composite component. The MSP protocol
together with mode mapping can be regarded as a black box interacting with
the dedicated mode switch ports pMSX and pMSX

in . The mode mapping acts as
a function which can be called by the MSP protocol to return the right mode
mapping results. The type of primitive, the propagation direction and the cur-
rent state of the composite component determine whether the mode mapping
should be called or not.

The mode mapping of each composite component plays a predominant role
in determining the propagation trace of primitives. In Chapter 3, it has been
mentioned that only an MSR or MSQ requires mode mapping, as the propagation
trace of an MSI or MSD exactly follows the propagation trace of the MSQ. Each
MSR contains the identity of the sender, the current mode of the sender and its
desired new mode. According to the MSP protocol, the response of an MSR
receiver is based on its mode mapping and its current state. Different from
MSR, an MSQ contains the identity of the receiver and the derived new mode for
the receiver based on the mode mapping result of the MSQ sender. If a receiver
is supposed to be deactivated, this derived new mode will be replaced by a
deactivation mode or state. The mode mapping of a component is represented
by a set of mode mapping rules which can be divided into two parts: static
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mode mapping rules and dynamic mode mapping rules. Static mode mapping
rules define the mode mapping in stable modes and can essentially be presented
by mode mapping tables introduced in Section 4.1. Dynamic mode mapping
rules are complementary to static mode mapping rules and define the mode
mapping at runtime.

Figure 4.3: Mode switch propagation and mode mapping

The key purpose of dynamic mode mapping rules is to identify Type A
components for each mode switch scenario and derive the new mode of each
Type A component. This is beyond the description of the mode mapping table.
For instance, considering Table 4.3, when Component b is asked to switch from
m1
b to m2

b as it receives an MSI from Top, b is supposed to propagate this MSI
to its Type A subcomponents. According to the mode mapping table of b, d is a
Type A component and e is a Type B component. Moreover, d can switch from
m1
d to either m2

d or m3
d to satisfy the static mode mapping between b and d.

The problem is that the new mode of d is not uniquely defined by the table as
there are two candidates. One effective solution is to introduce the Dominant
Default Modes (DDMs):

Definition 15. [Dominant Default Mode (DDM)]: Let ci and cj be two com-
ponents so that either ci = Pcj , cj = Pci or Pci = Pcj (i.e. ci and cj are
siblings). If the mode switch of ci from mp

ci to mq
ci (mp

ci ,m
q
ci ∈ Mci ) implies

one and only one new mode mnew
cj of cj (mnew

cj ∈ Mcj ), then mnew
cj is called

the Dominant Default Mode (DDM) of cj for this mode switch scenario.

It is obvious that the DDM of a component is context-dependent. Different
mode switch scenarios may result in different DDMs for a component. The
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static mode mapping rules of a component may define a couple of DDM can-
didates for each component and it is the duty of the dynamic mode mapping
rules to specify all the DDMs of a composite component itself and its subcom-
ponents. Regarding the example in Table 4.3, either m2

d or m3
d can be defined

as a DDM of d when b switches from m1
b to m2

b for the sake of mode switch
predictability.

We have proposed the use of Mode Mapping Automata (MMAs)1 to ex-
press both static and dynamic mode mapping rules [20]. The mode mapping
of a component ci ∈ CC can be formally presented by a set of MMAs, which
consist of one Mode Mapping Automaton (MMA) of ci as the parent (denoted
as MMApci ) and one MMA of each subcomponent of ci (denoted as MMAccj ,
cj ∈ SCci ). Here we call MMApci a parent MMA and MMAccj a child MMA.
Each MMA can receive and emit internal or external signals. Internal signals
are used to synchronize the pair of the parent MMA and its child MMAs while
external signals interact with the MSP protocol. A parent or child MMA can
be formally defined as follows:

Definition 16. [Mode Mapping Automaton (MMA)]: An MMA is defined as
a tuple:

< S, s0,SI, expr(BV),T >

where S is a set of states; s0 ∈S is the initial state; SI=I∪E (I∩E= ∅) is
a set of signals received or emitted during a state transition, with I as the
set of internal signals and E as the set of external signals; BV is a set of
boolean variables and expr(BV) is a set of boolean expressions over BV; T =

S×SI×expr(BV)×2SI×S is a set of transitions of the MMA, where expr(BV)
must evaluate to true to enable a transition.

Based on Definition 16, we shall use s
si && cond/O−−−−−−−−−→ s′ to denote a tran-

sition (s, si, cond,O, s′) ∈ T . Please note that for a child MMA, BV= ∅.
Moreover, although the output of a transition is a set O of signals for both
parent and child MMAs, O always has a single element for a child MMA.

For better apprehension of the parent and child MMAs and their formal
semantics, we can use MMAs to describe the mode mapping of Component b
based on Table 4.3. Figure 4.4 illustrates the relation between the MSP pro-
tocol and the mode mapping of Component b. Compared with Figure 4.3,
Figure 4.4 additionally reveals the MMA structure of the mode mapping of

1In this thesis, a major revision has been taken for the MMAs, compared with the initial version
introduced in [20].
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b. There is one parent MMA (MMApb ) and two child MMAs (MMAcd and
MMAce). These MMAs are hierarchically organized in the same way as the
corresponding components. The only difference is that all these MMAs reside
in the parent Component b. Both MMAcd and MMAce are internally synchro-
nized with MMApb . Moreover, all three MMAs can directly communicate with
the MSP protocol.

Figure 4.4: Mode switch propagation and the mode mapping of Component b

Figures 4.5 and 4.6 provide the graphic presentations for MMApb and
MMAcd respectively. In general, the set of states of MMAci , corresponding to
the supported modes of ci, can be graphically presented by locations with cir-
cles, the location with double circles being the initial state which corresponds
to the initial mode of ci. Each transition s1 −→ s2 is presented by an arrow
starting from state s1 and ending in state s2. A transition can be associated
with input and output signals which can be either external or internal. These
signals are denoted by the following notations:

• x.I(y), an internal signal emitted by a parent MMA to the recipient
MMAcx, which is asked to change location to y.

• x.I(y → z), an internal signal emitted by MMAcx which actively
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changes location from y to z.

• x.E(y), an external signal asking MMAx, which is either a parent MMA
or a child MMA, to change location to y.

In addition, for a parent MMA, if multiple transitions share the same out-
put, starting and ending locations, they can be combined into one transition
where different input signals are connected by the notation "||". For instance,

MMApb in Figure 4.5 has two transitions m1
b

d.I(m1
d→m2

d)/{b.E(m2
b)}−−−−−−−−−−−−−−−−→ m2

b

and m1
b

d.I(m1
d→m3

d)/{b.E(m2
b)}−−−−−−−−−−−−−−−−→ m2

b , which are combined into one transition

m1
b

d.I(m1
d→m2

d) || d.I(m1
d→m3

d)/{b.E(m2
b)}−−−−−−−−−−−−−−−−−−−−−−−−−−→ m2

b . Actually the output of each
transition in MMApb defines the DDMs of b and SCb (i.e. d and e) for a spe-
cific mode switch scenario. For instance, when b receives an MSQ requesting
to switch from m1

b to m2
b , an external signal b.E(m2

b) will be injected into
MMApb as an input. Then the DDM of d, which can be either m2

d or m3
d, is

defined based on the boolean expressions, cond 1 and cond 2 marked in red in

Figure 4.5. According to the transition m1
b

b.E(m2
b) && cond 1/{d.I(m2

d)}−−−−−−−−−−−−−−−−−−−−→ m2
b ,

the DDM of d is defined as m2
d when cond 1 evaluates to true. Subse-

quently, the internal signal d.I(m2
d) will be synchronized with the transition

m1
d

d.I(m2
d)/{d.E(m2

d)}−−−−−−−−−−−−−→ m2
d of MMAcd depicted in Figure 4.6. Similarly, the

DDM of d is defined as m3
d when cond 2 evaluates to true. The boolean ex-

pressions cond 1 and cond 2 are abstracted from the system’s functional code
unrelated to mode switch. Serving as an interface linking mode mapping and
the functional behavior of a system, a boolean expression can be as simple as
a single boolean variable or a much more complex expression.

Please note that if a transition of a parent MMA produces no output, it is
denoted as ∅. Besides, Figure 4.6 implies that the deactivated running status
of a component can be treated as a separate location D in the corresponding
child MMA. Here we skip the illustration of MMAce which is simply a single
location m1

e without any transition.
Similarly, figures 4.7-4.10 display MMApTop , MMAca, MMAcb and MMAcc

which jointly present the mode mapping of Top in Table 4.2. MMApTop is the
parent MMA while the others are the child MMAs. What deserves particular
attention is the discrepancy between MMApb in Figure 4.5 and MMAcb in Fig-
ure 4.9, as the former is a parent MMA included in the mode mapping of b
whereas the latter is a child MMA included in the mode mapping of Top.

The MMAs of Top and b take all possible mode switch scenarios into ac-
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Figure 4.5: The parent Mode Mapping Automaton of b

Figure 4.6: The child Mode Mapping Automaton of d

count for the sake of better component reuse. In a specific system, only certain
components are defined as the MSSs and there are much fewer mode switch
scenarios, thus a parent MMA usually contains much fewer mode mapping
rules in a particular system.

It should be noted that it is not the obligation of a set of MMAs to distin-
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Figure 4.7: The parent Mode Mapping Automaton of Top

Figure 4.8: The child Mode Mapping Automaton of a

Figure 4.9: The child Mode Mapping Automaton of b
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Figure 4.10: The child Mode Mapping Automaton of c

guish different types of primitives. An MMA only needs to know if an input
signal is internal or external. An internal signal comes from another MMA
and an external signal comes from the MSP protocol. When a composite com-
ponent ci receives an MSR from a subcomponent cj , the MSP protocol will
translate the MSR into an external signal which is then sent to MMAccj . The
mode mapping result from the MMAs only tells which components are Type A
or Type B among ci or SCci \{cj} as well as the new modes of these identified
Type A components for this mode switch scenario. If Tci = B, then according
to the MSP protocol, ci is the MSDM and will approve the MSR. Otherwise, ci
will either reject the MSR or forward the MSR to Pci (if ci 6= Top), depending
on its current state. This decision is taken by the MSP protocol rather than the
set of MMAs of ci which never considers whether an MSR is rejected or not.

Moreover, the state transition of an MMA is not necessarily an evidence
of mode switch. For instance, when an MSR is rejected, state transitions must
have been completed in the set of MMAs of ci, yet no component will switch
mode. This inconsistency can be easily tackled by updating the MMAs after ci
makes a propagation decision. When ci makes a decision after having received
an MSR or MSQ, the MMAs of ci must be reset to the previous configuration.
This requires the support of at least a one-step rollback.

Another important issue is that ci must be able to tell if an incoming MSQ
is associated with an MSR that ci has just forwarded to Pci . If yes, then the
MSP protocol should not translate this MSQ into an external signal and send
it to the MMAs. Instead, it can simply perform a rollback of the MMAs and
refer to the mode mapping results based on the incoming MSR whose approval
by the MSDM results in this MSQ. This is because the MSR is considered as
an external signal injected into a child MMA whilst the MSQ is considered as
an external signal injected into the parent MMA. Consequently, the MSR and
the MSQ issued due to the approval of this MSR can trigger two different mode
switch scenarios, thus potentially producing different mode mapping results.
In this case, the mode mapping results in response to the MSR should be the
correct one and can be retrieved. Otherwise, if ci receives an MSQ without re-
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ceiving the corresponding MSR first, it will directly produce the mode mapping
result in response to the MSQ.

The interaction between the MSP protocol and the MMAs can be further
explicated by following a specific mode switch scenario. Suppose the current
mode of Top is m2

Top . Then given tables 4.2 and 4.3, the current modes of a, b,
c, d and e are m2

a, m2
b , m1

c , m2
d or m3

d, and m1
e, respectively. The mode switch

propagation can be described as follows:

1. Component a is assumed to be an MSS initiating an MSR from m2
a to

m1
a. As a consequence, MMAca, as part of the mode mapping of Top,

will receive an external signal a.E(m1
a). This triggers the transition

m2
a

a.E(m1
a)/{a.I(m

2
a→m1

a)}−−−−−−−−−−−−−−−−→ m1
a of MMAca.

2. To be synchronized with the transition of MMAca, MMApTop will un-

dergo the transition m2
Top

a.I(m2
a→m1

a)/{Top.E(m1
Top),b.I(m

1
b),c.I(D)}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
m1

Top . This means that Top, b and c are all Type A components for
this mode switch scenario, and m1

Top and m1
b are the DDMs of Top and

b, with c being deactivated.

3. Among the output set of the transition of MMApTop , the inter-
nal signals b.I(m1

b) and c.I(D) are synchronized with the tran-

sition m2
b

b.I(m1
b)/{b.E(m1

b)}−−−−−−−−−−−−→ m1
b of MMAcb and the transition

m1
c

c.I(D)/{c.E(D)}−−−−−−−−−−−→ D of MMAcc. All the external output signals, in-
cluding Top.E(m1

Top), b.E(m1
b) and c.E(D) will be send to the MSP

protocol.

4. The external signal Top.E(m1
Top) implies that Top is a Type A com-

ponent and it has to check its current state as the MSDM. Suppose Top
approves the MSR by issuing an MSQ based on the mode mapping result.
First all the MMAs of Top should be reset and save the new configuration
as the history configuration. Then Top decides to issue an MSQ. Since the
MSQ is associated with the MSR, Top will update the MMAs by retrieving
the history configuration without referring to the mode mapping.

5. The MSQ is propagated to a, b and c. According to the mode mapping
result of the MSR, Top will switch to m1

Top , with b switching to m1
b and

c becoming deactivated. Additionally, Top should also send the MSQ to a
which is the MSR sender, telling a to switch to m1

a, though this decision
is not explicitly stated in MMApTop .
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6. Let’s assume that both a and c reply with an MSOK. When b receives
the MSQ, it realizes that it has not forwarded any MSR associated with
this MSQ, thus it will refer to the mode mapping by sending an exter-
nal signal b.E(m1

b) to MMApb (see Figure 4.5), triggering the transition

m2
b

b.E(m1
b)/{d.I(m

1
d)}−−−−−−−−−−−−→ m1

b .

7. Suppose the current mode of d is m2
d. The internal signal

d.I(m1
d) produced by the transition of MMApb leads to the transition

m2
d

d.I(m1
d)/{d.E(m1

d)}−−−−−−−−−−−−−→ m1
d, indicating that m1

d is the DDM of d.

8. Component b propagates an MSQ to d without affecting e and resets its
MMAs.

9. Assuming d replies with an MSOK, b will also send an MSOK back to Top.
Since a, b and c all reply with an MSOK, Top will trigger a mode switch
by issuing an MSI which follows the propagation trace of the MSQ. The
MMAs of Top and b which have been reset will be updated to the new
configuration again. Mode switch propagation is completed when the
MSI arrives at all Type A components, i.e. a, b, c and d (the MSS a
and the MSDM Top are also Type A components for this mode switch
scenario).

4.3 MMA composition
In this section, we present MMA composition. In the below definition of MMA
composition, we assume that the elements of sets are indexed such that we by
the indexing can identify the MMA that a specific element is related to, and x[i]
will be used to denote the element of x indexed with i. We will furthermore
use

⊎
to denote a flattening union defined as the set containing all primitive

elements of its operands, e.g. {a, {b}}
⊎
{c, {d}} = {a, b, c, d}.

Definition 17. [MMA composition]: For a set A = {A0,A1, · · · ,An}(n ∈
N) of MMAs, where A0 =< S0, s

0
0,SI0, expr(BV0),T0 > corresponds to a

parent MMA and ∀k = [1, n], Ak =< Sk, s0k,SIk, expr(BVk),Tk > corre-
spond to the child MMAs synchronized with A0, the MMA composition of A is
an MMA defined by the tuple

< S, s0,SI, expr(BV),T >



60 Chapter 4. Mode mapping

where

S ⊆ S0 × S1 × · · · × Sn
s0 = (s00, s

0
1, · · · , s0n)

SI ⊆
⋃

i=[0,n]

Ei

expr(BV) = expr(BV0)

In defining T, two cases are considered based on the origin of an external
signal injected in A:

(1) An external signal from above. For an external signal es0 ∈ E0, if

∃s = (s0, s1, · · · , sn) ∈ S ∧ s0
es0 && cond/O0−−−−−−−−−−−→ s′0 ∈ T0

where cond ∈ expr(BV0) evaluates to true in state s0, then

s
es0 && cond/O−−−−−−−−−−→ s′ ∈ T ∧ s′ = (s′0, s

′
1, · · · , s′n) ∈ S

where O and s′k(k = [1, n]) are defined by the following

O =
⊎

k=[1,n]

Ok

where Ok and s′k are given by:

• If ∃sk
O0[k]/O

′
k−−−−−−→ s′′k ∈ Tk, then Ok = O′

k ∧ s′k = s′′k;

• Else Ok = ∅ ∧ s′k = sk.

(2) An external signal from below. For esi ∈ Ei(i = [1, n]), if

∃s = (s0, s1, · · · , sn) ∈ S ∧ si
esi/Oi−−−−→ s′i ∈ Ti ∧ s0

Oi && cond/O0−−−−−−−−−−→ s′0 ∈ T0

where cond ∈ expr(BV0) evaluates to true in state s0, then

s
esi && cond/O−−−−−−−−−−→ s′ ∈ T ∧ s′ = (s′0, s

′
1, · · · , s′n) ∈ S

where O and s′k(k = [1, n], k 6= i) are defined by the following

O = {O0[0]} ∪
⊎

k=[1,n],
k 6=i

Ok

where Ok and s′k are given by:
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• If ∃sk
O0[k]/O

′
k−−−−−−→ s′′k ∈ Tk, then Ok = O′

k ∧ s′k = s′′k;

• Else Ok = ∅ ∧ s′k = sk.

Definition 17 covers in total six scenarios:

1. An external signal comes from above and O0 = ∅. This corresponds
to the case when the mode switch of a composite component implies no
mode switch among its subcomponents.

2. An external signal comes from above and O0 6= ∅. This corresponds to
the case when the mode switch of a composite component implies the
mode switch of at least one of its subcomponents.

3. An external signal comes from below and O0 = ∅. This corresponds to
the case when the mode switch of a component implies no mode switch
among its parent and its siblings (two components are siblings if they
share the same parent).

4. An external signal comes from below and O0 only contains an external
signal es0. This corresponds to the case when the mode switch of a
component only implies the mode switch of its parent but not its siblings.

5. An external signal comes from below andO0 only contains a set of inter-
nal signals isk(k = [1, n]). This corresponds to the case when the mode
switch of a component only implies the mode switch of at least one of
its siblings but not its parent.

6. An external signal comes from below and O0 contains both es0 and
isk(k = [1, n]). This corresponds to the case when the mode switch
of a component not only implies the mode switch of its parent, but also
implies the mode switch of at least one of its siblings.

Next let’s demonstrate each scenario by a simple example, where a com-
posite component a has two subcomponents b and c. Scenario 1 can be demon-
strated in Figure 4.11, which includes the mode mapping table of a, the MMA
of each component and the MMA after composition. Suppose an external sig-
nal a.E(m2

a) arrives at MMAa (the parent MMA), triggering the transition

m1
a

a.E(m2
a)/∅−−−−−−−→ m2

a. Since this mode switch scenario does not imply the mode
switch of b or c, no state transition will occur for MMAb or MMAc. Let A be
the MMA after composition, with s1 as the state before the transition of MMAa
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and s2 as the state after the transition of MMAa. Then according to Definition

17, A will undergo the transition s1
a.E(m2

a)/∅−−−−−−−→ s2 where s1 = (m1
a,m

1
b ,m

1
c)

and s2 = (m2
a,m

1
b ,m

1
c).

Figure 4.11: MMA composition—Scenario 1

Figure 4.12 demonstrates both Scenario 2 and Scenario 6, based
on a mode mapping table different from that in Figure 4.11. Sce-
nario 2 occurs as an external signal a.E(m2

a) arrives at MMAa, trig-

gering the transition m1
a

a.E(m2
a)/{b.I(m

2
b),c.I(m

2
c)}−−−−−−−−−−−−−−−−−−→ m2

a. This leads to

the transition m1
b

b.I(m2
b)/{b.E(m2

b)}−−−−−−−−−−−−→ m2
b of MMAb and the transition

m1
c

c.I(m2
c)/{c.E(m2

c)}−−−−−−−−−−−−→ m2
c of MMAc. Then A will undergo the transi-

tion s1
a.E(m2

a)/{b.E(m2
b),c.E(m2

c)}−−−−−−−−−−−−−−−−−−−→ s2 where s1 = (m1
a,m

1
b ,m

1
c) and s2 =

(m2
a,m

2
b ,m

2
c).

Scenario 6 occurs as an external signal b.E(m1
b) arrives at MMAb, trig-

gering the transition m2
b

b.E(m1
b)/{b.I(m

2
b→m1

b)})−−−−−−−−−−−−−−−−→ m1
b . This leads to the tran-

sition m2
a

b.I(m2
b→m1

b) && cond/{a.E(m1
a),c.I(m

1
c)}−−−−−−−−−−−−−−−−−−−−−−−−−−−→ m1

a of MMAa, which fur-

ther leads to the transition m2
c

c.I(m1
c)/{c.E(m1

c)}−−−−−−−−−−−−→ m1
c of MMAc. Then A

will undergo the transition s2
b.E(m1

b) && cond/{a.E(m1
a),c.E(m1

c)}−−−−−−−−−−−−−−−−−−−−−−−−−→ s1 where
s2 = (m2

a,m
2
b ,m

2
c) and s1 = (m1

a,m
1
b ,m

1
c).

Figure 4.13 demonstrates Scenario 3. Suppose an external signal b.E(m2
b)

arrives at MMAb, triggering the transition m1
b

b.E(m2
b)/{b.I(m

1
b→m2

b)}−−−−−−−−−−−−−−−−→ m2
b .

This leads to the transitionm1
a

b.I(m1
b→m2

b)/∅−−−−−−−−−−→ m1
a of MMAa without affecting

MMAc. Then A will undergo the transition s1
b.E(m2

b)/∅−−−−−−−→ s2 where s1 =
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Figure 4.12: MMA composition—Scenarios 2 and 6

(m1
a,m

1
b ,m

1
c) and s2 = (m1

a,m
2
b ,m

1
c).

Figure 4.13: MMA composition—Scenario 3

Figure 4.14 demonstrates Scenario 4. Suppose an external signal c.E(m2
c)

arrives at MMAc, triggering the transition m1
c

c.E(m2
c)/{c.I(m

1
c→m2

c)}−−−−−−−−−−−−−−−−→ m2
c .

This leads to the transition m1
a

c.I(m1
c→m2

c)/{a.E(m2
a)}−−−−−−−−−−−−−−−−→ m2

a of MMAa without

affecting MMAb. ThenAwill undergo the transition s1
c.E(m2

c)/{a.E(m2
a)}−−−−−−−−−−−−−→ s2
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where s1 = (m1
a,m

1
b ,m

1
c) and s2 = (m2

a,m
1
b ,m

2
c).

Figure 4.14: MMA composition—Scenario 4

Finally, Figure 4.15 demonstrates Scenario 5. Suppose an ex-
ternal signal c.E(m2

c) arrives at MMAc, triggering the transi-

tion m1
c

c.E(m2
c)/{c.I(m

1
c→m2

c)}−−−−−−−−−−−−−−−−→ m2
c . This leads to the transition

m1
a

c.I(m1
c→m2

c) && cond 1/{b.I(m2
b)}−−−−−−−−−−−−−−−−−−−−−−−→ m1

a of MMAa, which further leads

to the transition m1
b

b.I(m2
b)/{b.E(m2

b)}−−−−−−−−−−−−→ m2
b . Then A will undergo the

transition s1
c.E(m2

c) && cond 1/{b.E(m2
b)}−−−−−−−−−−−−−−−−−−−−→ s2 where s1 = (m1

a,m
1
b ,m

1
c) and

s2 = (m1
a,m

2
b ,m

2
c).

4.4 Summary
This chapter reveals the mode incompatibility problem for composing multi-
mode components and the demand for mode mapping for a CBMMS. A mode
mapping mechanism is proposed as the corresponding solution. The mode
mapping should always be locally handled by each composite component
which contains a set of mode mapping rules which are either static or dynamic.
Static mode mapping rules can be intuitively represented by mode mapping
tables for component composition. However, dynamic mode mapping rules,
referred to the MSP protocol at runtime, are beyond the description of the
mode mapping table. Therefore, we suggest the usage of a more powerful
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Figure 4.15: MMA composition—Scenario 5

presentation, Mode Mapping Automata (MMA), for expressing both static and
dynamic mode mapping rules. Two types of MMAs can be distinguished, i.e.
the parent MMA and the child MMA. The formal semantics of both types have
been provided. The relation between the MSP protocol and a set of MMAs
is explained. Furthermore, we formally define MMA composition which is
demonstrated by a simple example based on six scenarios.
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Chapter 5

The handling of atomic
component execution

Until now we have assumed that the current execution of a component can be
immediately aborted to perform a mode switch. However, on many occasions,
a component can have executions which cannot be aborted before its comple-
tion. Such atomic execution is quite common in real-world applications. For
instance, each transaction of the online transfer system of a bank is typically
atomic. The transaction should be either successfully completed or aborted in
such a way that the system remains in the same state as before the transaction.
If the transaction is aborted midway, the transferred money may not arrive at
the receiver’s account even after it has already been deducted from the sender’s
account. This is certainly not desirable for the bank and its customers. For
a CBMMS with atomic component execution, the mode switch handling be-
comes more challenging as the atomic execution of a component should not
be interrupted by any mode switch event. In this chapter, we extend our MSP
protocol to cope with atomic component execution, assuming a pipe-and-filter
execution pattern for the CBMMS.
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5.1 The pipe-and-filter CBMMS model with
atomic component execution

Our mode-aware component model introduced in Chapter 2 implicitly assumes
the pipe-and-filter execution pattern. A component has a number of input and
output ports. All components follow the same execution pattern of a pipe-and-
filter system: wait for the input data, process the data, and produce the output
data. The example introduced in Figure 1.1 at the very beginning of this thesis
is a typical pipe-and-filter CBMMS. Our mode-aware component model and
the mode switch runtime mechanism also work for other software architectures.
The reason why we particularly focus on the pipe-and-filter architecture is that
a pipe-and-filter system is very suitable to demonstrate the problem of atomic
execution. Likewise, atomic component execution can be easily demonstrated
in a pipe-and-filter component-based system.

Figure 5.1 (A) presents a pipe-and-filter component-based system. The in-
put data is processed by different components of the system, starting from a
and going out through the output of g and i. There are diverging and converg-
ing branches that enable more complex data flow structure. In practice, even
feedback loops can be used for more advanced data flow control. A real-world
example of such a pipe-and-filter component-based system is a fuel gauge on a
car’s dashboard [39]. Actually, the pipe-and-filter interaction paradigm is fairly
common in multimedia systems and telecommunications systems. Concurrent
data processing is a typical advantage of such type of systems in that different
data can be processed simultaneously by different components.

Atomic component execution in a pipe-and-filter component-based system
can be specified by Atomic Execution Groups (AEGs):

Definition 18. [Atomic Execution Group (AEG)]: An Atomic Execution
Group (AEG) is a single component or a group of horizontally contiguous com-
ponents with atomic execution. For an AEG G, a component ck ∈ G, and an
input port pi of G, there must exist a sequence of connections ρ through which
any input data from pi can reach ck without flowing out of G.

Figure 5.1 (B) specifies two AEGs for the system in Figure 5.1 (A). Com-
ponent e is defined as an AEG alone, i.e. AEG 1. Components h and i are
together defined as the other AEG, i.e. AEG 2. This example suggests that it is
possible to define multiple AEGs within a composite component. Yet multiple
AEGs should not overlap. Otherwise, two overlapping AEGs become contigu-
ous and should be considered as a single bigger AEG. It is also allowed to have
an AEG included by a bigger AEG, which then absorbs the smaller one.
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Figure 5.1: Atomic component execution in a pipe-and-filter component-based
system

AEGs in a pipe-and-filter CBMMS can be defined in the same fashion. The
extra concern is that an AEG can be mode-dependent. Figure 5.2 extends the
example in Figure 5.1 (B) into a pipe-and-filter CBMMS. The system (Com-
ponent Top) supports two modes: m1

Top and m2
Top . In m1

Top , the system con-
figuration is the same as the system in Figure 5.1 (B). In m2

Top , the internal
behavior of Component a is changed and Component c becomes deactivated.
Moreover, AEG 1 and 2 are not valid any more in m2

Top . Instead, a new AEG
(AEG 3) is defined, including a, b, e and f. This reveals the fact that an AEG
can consist of components with mixed-granularity, since the subcomponent of
b, i.e. d also belongs to AEG 3, yet at a lower level of the component hierar-
chy. Different from d, c is deactivated when Top is in m2

Top , and thus does not
belong to any AEG. Generally speaking, if ci ∈ CC is an AEG in mode m,
then ∀ck ∈ ADm

ci (i.e. all the activated descendants of ci) must be in the same
AEG as well.

In our mode-aware component model, AEGs can be defined as mode-
dependent or mode-independent EFPs, e.g. atomicity which could be either
atomic or non-atomic for a given mode. A primitive multi-mode component
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can expose its atomicity property in each mode when it is reused. A composite
multi-mode component not only exposes its own atomicity property in each
mode, but also has the knowledge of the AEG specification among its subcom-
ponents. The AEG specification is not constrained by the atomicity property, as
even non-atomic components can be included in an AEG and become atomic
in the context where it is reused. The following defines the atomicity prop-
erty and AEGs of Top in the system in Figure 5.2 based on the mode-aware
component model:

Top.Atomicity = {m1
Top → Non-atomic,m2

Top → Non-atomic}
Top.AEG = {m1

Top → {{e}, {h, i}},m2
Top → {{a, b, e, f}}}

According to the definition above, Atomicity is a function mapping each
supported mode of Top to either atomic or non-atomic; AEG is another func-
tion mapping each supported mode of Top to the specified AEGs among the
subcomponents of Top. These two functions are preserved in the component
configuration of Top. This definition also works for all the other components.
For a primitive component, the function AEG is omitted.

Figure 5.2: Atomic component execution in a pipe-and-filter CBMMS



5.2 The handling of atomic component execution 71

5.2 The handling of atomic component execution

Atomic component execution inevitably imposes additional challenge on the
mode switch handling of a CBMMS in the sense that an ongoing atomic ex-
ecution cannot be interrupted to perform a mode switch. The MSP protocol
requires that a component must stop running in the current mode immediately
when it receives an MSQ, or when it actively issues an MSQ as both the top
component and an MSS, whereas this requirement may not be met if an MSQ is
sent to an AEG. This indicates that the atomic component execution problem
should be handled during the mode switch propagation. The mode mapping
mechanism and the mode switch dependency rule do not need to be altered.
The handling of atomic component execution could be handled by revising the
MSP protocol. The question is how the MSP protocol can be extended with
minimum modification.

The basic idea of extending the MSP protocol to cater for the handling of
atomic component execution is to avoid MSQ transmission to the Type A com-
ponents in an AEG with ongoing atomic execution. If components belonging
to an AEG receive an MSQ while the AEG has no ongoing atomic execution,
these components can still follow the original MSP protocol, since they can
abort their execution in the current mode just like other components excluded
from any AEG. Evidently, this idea should be applied to a non-atomic compos-
ite component with at least one AEG as its subcomponent(s) whilst all the other
components can simply disregard the handling of atomic component execution.
Since MSQ propagation is in the first phase of the mode switch propagation, the
focus of the extended MSP protocol should also be on the first phase. In the
second phase, all Type A components have stopped running in the current mode
(i.e. without ongoing execution) and await either an MSI or MSD, thus AEGs
do not require special treatment.

For a non-atomic composite component ci containing at least one AEG, in
order to send an MSQ to its Type A subcomponents in each AEG at the proper
time, we assume that ci is able to distinguish the presence or absence of any
ongoing atomic execution of any AEG composed by its subcomponents. Here
we introduce the concept Data Processing Status (DPS):

Definition 19. [Data Processing Status (DPS)]: The Data Processing Status
(DPS) of an AEG in a pipe-and-filter CBMMS reflects if there is any data being
processed within the AEG. The existence of data being processed in the AEG
indicates the presence of atomic execution and the DPS of the AEG returns
"Processing". Otherwise, the DPS of the AEG returns "Not processing".



72 Chapter 5. The handling of atomic component execution

Once ci is able to monitor the DPS of each of its AEG(s), it will avoid MSQ
transmission to its Type A subcomponents in an AEG whose DPS is "Process-
ing". In other words, ci can delay its MSQ transmission to those components
until the DPS of the corresponding AEG becomes "Not processing". Besides,
when ci decides to propagate an MSQ" to an AEG, it should freeze the input of
the AEG so that no new input data will enter the AEG. Without this action, the
input data flow of the AEG may never cease and the DPS of the AEG could
potentially never change status to "Not processing". Conversely, ci must be
able to unfreeze (to allow the input data to enter the AEG) the input of an AEG
whose input has been frozen after the MSC collection of ci or after ci receives
at least one MSNOK.

The extended MSP protocol still retains the essence of the original MSP
protocol, ergo we shall only present what has been extended and revised com-
pared with the original MSP protocol:

Definition 20. [The supplement to the MSP protocol considering atomic
component execution]: Let ci ∈ CC be a non-atomic component, con-
taining a number of AEGs denoted as the set AEGci = {G1, G2, · · · , Gn}
(n ∈ N) and a number of non-atomic subcomponents denoted as the set Hci ,
AEGci ∪Hci = SCci and AEGci ∩Hci = ∅. When ci decides to propagate
an MSQ, it immediately sends the MSQ to all ch ∈ Hci , Tch = A. Mean-
while, ∀Gk(k = [1, n]), ci checks the DPS of Gk and freezes its input. If the
DPS of Gk returns "Not processing", ci will immediately send the MSQ to all
cg ∈ Gk, Tcg = A. If the DPS of Gk returns "Processing", ci will delay its
MSQ transmission to all cg till the DPS ofGk becomes "Not Processing". Com-
ponent ci unfreezes the input of Gk to accept new input data either after the
MSC collection of ci or after ci receives at least one MSNOK.

The extended MSP protocol does not exclude the case when an AEG is
included in a bigger AEG. Since the parent of the outer AEG freezes its input
and does not propagate the MSQ until all data within it have been processed, the
DPS of the enclosed AEG is always "Not processing" when its parent is ready
to propagate an MSQ.

Comparing the original and the extended MSP protocols, one can safely
conclude that the key difference is the MSQ propagation delay to the Type A
components in an AEG. Therefore, all the correctness and safety properties
formulated for the original MSP protocol also hold for the extended version,
which only prolongs the mode switch time for a bounded delay.

The extended MSP protocol can be demonstrated by the example in Fig-
ure 3.4. The entire mode switch process of the system in Figure 3.4 has been



5.2 The handling of atomic component execution 73

demonstrated by figures 3.6 and 3.8. We shall introduce an AEG to this system
for another round of its mode switch demonstration so as to expose the impact
of atomic component execution upon the mode switch process. Figure 5.3 dis-
plays the component connections of the system in Figure 3.4 when the MSS
h issues an MSR. Component b is defined as an AEG. Component m is deac-
tivated, yet it is a Type A component as it will be activated in the new mode.
The complete mode switch process of this system is illustrated in Figure 5.4.
Represented by the grey bar, the atomic execution of the AEG b stems from
the data processing time of its subcomponents e and f. As is indicated in Fig-
ure 5.4, a has the responsibility of sending an MSQ to the AEG b at the right
instant. When a decides to propagate the MSQ, it sends the MSQ to its non-
atomic subcomponent c right away. Additionally, a freezes the input of b and
checks its DPS, which returns "Processing". Consequently, a reserves the MSQ
for b, keeping track of the DPS of b. When the DPS of b is changed to "Not
processing" (this corresponds to the termination of the grey bar in Figure 5.4),
a will send the MSQ to b, which thereafter will be treated as a normal compos-
ite component. When a receives the MSC from b, a will unfreeze the input of
b. From the comparison between the entire mode switch process of the system
with or without atomic component execution, the impact of atomic component
execution can be perceived without too much effort. An AEG potentially pro-
longs the mode switch propagation time in the first phase, however, the rest of
the mode switch process remains intact.

Figure 5.3: The inner component connections of Component a in its current
mode based on the system in Figure 3.4

It is worthy to mention that we have not addressed how a parent should
freeze or unfreeze the input of an AEG composed by its subcomponents, or
how the parent keeps track of the DPS of the AEG. Of course, the communi-
cation between the parent and the AEG can be established by primitives such
as an MSQ and an MSOK, but too many new primitive types may complicate
the understanding of the essence of the MSP protocol. For that reason, it is
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Figure 5.4: The mode switch process with atomic component execution

assumed that freezing or unfreezing the input of an AEG and monitoring the
DPS of the AEG can be directly and instantaneously handled by the system.
This is rather application-dependent and is out of the scope of this thesis.

5.3 Summary
This chapter is devoted to the handling of atomic component execution during
a mode switch. Although such handling belongs to the mode switch runtime
mechanism, we use a separate chapter to discuss this specific problem. In MSL,
atomic component execution is defined as Atomic Execution Groups (AEGs)
which potentially affect the mode switch propagation. The MSP protocol is
extended to cater for the presence of AEGs. Compared with the original MSP
protocol described in Chapter 3, the extended version can delay an MSQ propa-
gation to an AEG with ongoing atomic execution. In this chapter, the pipe-and-
filter architecture of a CBMMS is assumed in that it presents atomic component
execution well. However, our handling of atomic component execution should
work for other software architectures as well.



Chapter 6

Algorithms for the mode
switch runtime mechanism

The mode switch runtime mechanism of our MSL can be easily implemented
for each component of a CBMMS. We distinguish three types of components:
(1) primitive component; (2) non-top composite component; (3) the top com-
ponent1. The mode switch runtime mechanism of components of the same type
is exactly the same, yet different from the other two types. Additionally, any
component can be an MSS and this must be taken into account. In this chapter,
the mode switch runtime mechanism of MSL is implemented as algorithms for
all these types of components.

6.1 Implementing MSL in a primitive component
Algorithm 1 implements the mode switch runtime mechanism of ci ∈ PC. As
a primitive component, the mode switch behavior of ci is quite simple. If ci
is not an MSS in is current mode, the only primitive that it can receive is an
MSQ, which makes ci stop running in the current mode and reply with either an
MSOK or an MSNOK depending on its current state. If ci replies with an MSOK,
it will expect either an MSI or MSD. Component ci starts its reconfiguration
after receiving an MSI. After reconfiguration, ci sends an MSC back and starts

1In principle, the top component can be either primitive or composite. However, if it is prim-
itive, it makes not any sense to call it a component-based system because the system itself is just
one single component. Therefore, in this thesis, we assume the top component must be composite.
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running in the new mode. If ci receives an MSD after replying with an MSOK, it
can resume its execution in its current mode. In opposition, if ci replies with an
MSNOK, it will only expect an MSD. Furthermore, if ci is an MSS in its current
mode, when it detects a mode switch event, it can actively issue an MSR to Pci
without stopping its current execution. Since ci has no subcomponents, there
is no need to consider mode mapping or communication with components at
lower levels. A few points deserve further explanation in the algorithm:

• pMSX is the dedicated mode switch port of ci for the communication with
Pci . More details can be found in the description of the mode-aware
component model in Chapter 2.

• Wait(A,B) and Signal(A,B) are used for receiving and sending a primi-
tive. The parameter "A" is the dedicated mode switch port through which
a primitive is sent or received while the parameter "B" specifies the prim-
itive type. An MSQ/MSI/MSD is sent via pMSX

in and received via pMSX; an
MSR/MSOK/MSNOK/MSC is sent via pMSX and received via pMSX

in .

• MSR(ci,mci ,m
new
ci ) represents an MSR associated with the mode switch

scenario: ci : mci → mnew
ci . Subsequently, MSX(ci,mnew

ci ) (MSX can
be MSQ, MSI, MSD or MSC) represents the primitive from or to ci in the
same mode switch scenario.

• Reconfiguration(ci,mci ,m
new
ci ) is a function for the reconfiguration of

ci from its current mode mci to its new mode mnew
ci .

• Stop_running(ci,mci) means ci stops running in its current mode mci .
Similarly, Resume(ci,mci) means ci resumes its execution in its cur-
rent mode and Start_running(ci,mnew

ci ) means ci starts to run in its new
mode.

• MS_event_detected is a boolean variable set to true when ci detects a
mode switch event as an MSS; MS_ready is a boolean variable set to
true when the current state of ci allows a mode switch in response to
an MSQ. The current state checking of ci is realized by the function
Check_state(ci,mci).
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Algorithm 1 MS_Handling(ci ∈ PC)
loop

if ci = MSS then
if MS_event_detected then

Derive_new_mode;
Signal(pMSX,MSR(ci,mci ,m

new
ci ));

end if
end if
Wait(pMSX,MSQ(ci,m

new
ci ));

Stop_running(ci,mci);
Check_state(ci,mci);
if MS_ready then

Signal(pMSX,MSOK(ci,m
new
ci ));

Wait(pMSX,MSI(ci,mnew
ci ) ∨MSD(ci,m

new
ci ));

if MSI then
Reconfiguration(ci,mci ,m

new
ci );

Signal(pMSX,MSC(ci,m
new
ci ));

Start_running(ci,mnew
ci );

else
Resume(ci,mci);

end if
else

Signal(pMSX,MSNOK(ci,m
new
ci ));

Wait(pMSX,MSD(ci,m
new
ci ));

Resume(ci,mci);
end if

end loop
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6.2 Implementing MSL in a non-top composite
component

Algorithm 2 implements the mode switch runtime mechanism of a non-top
composite component ci ∈ C̃C. Since ci interacts with both Pci and SCci ,
its mode switch handling is much more complex than a primitive component.
Algorithm 2 additionally calls Algorithm 3 which will be explained later. Al-
gorithms 2 and 3 rigorously adhere to the MSP protocol, mode mapping, the
mode switch dependency rule and the handling of atomic component execution
discussed in previous chapters. Further details are explained as follows:

• Apart from pMSX , the port pMSX
in is the other dedicated mode switch port

of ci for the communication with SCci . More details can be found in the
description of the mode-aware component model in Chapter 2.

• ModeSwitch(ci,MSDM,Top) is a function (i.e. Algorithm 3) dealing
with the mode switch of ci since ci is ready to propagate an MSQ. MSDM
is a boolean variable set to true when ci is the MSDM for a specific mode
switch scenario; Top is a boolean variable set to true when ci = Top.

• ModeMapping is a function which returns the mode mapping result of
ci.

• Hci denotes the set of SCci which do not belong to any AEG, as is in-
troduced in the extended MSP protocol; AEGci denotes the set of AEGs
defined among SCci and Gk denotes one specific AEG in AEGci .

• FreezeInput(Gk) and UnfreezeInput(Gk) freeze and unfreeze the input
of AEG Gk. The reason derives from the extended MSP protocol.

• Check_DPS(Gk) is used when ci checks the DPS of its AEG Gk, i.e.
DPSGk whose value is either "Processing" or "Not processing".

• MSOKNOK_Collection is used when ci collects the feedback (MSOK or
MSNOK) from its Type A subcomponents. The result is expressed by the
boolean variable all_MSOK which is set to true if all the Type A subcom-
ponents of ci reply with an MSOK. In a similar fashion, MSC_Collection
is a function for collecting the MSC from SCci and all_MSC is a boolean
variable set to true when the MSC collection of ci is done.
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Algorithm 2 MS_Handling(ci ∈ C̃C)
loop

if ci = MSS then
if MS_event_detected then

Derive_new_mode;
Signal(pMSX,MSR(ci,mci ,m

new
ci ));

end if
end if
Wait(pMSX ∨ pMSX

in ,MSR(co ∈ SCci ,mco ,m
new
co ) ∨MSQ(ci,m

new
ci ));

if MSR then
ModeMapping;
if mnew

ci = mci then
ModeSwitch(ci, true, false);

else
Check_state(ci,mci);
if MS_Ready then

Signal(pMSX,MSR(ci,mci ,m
new
ci ));

end if
end if

else
Stop_running(ci,mci);
Check_state(ci,mci);
if MS_Ready then

ModeMapping;
ModeSwitch(ci, false, false);

else
Signal(pMSX,MSNOK(ci,m

new
ci ));

Wait(pMSX,MSD(ci,m
new
ci ));

Resume(ci,mci);
end if

end if
end loop
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Algorithm 3 ModeSwitch(ci ∈ CC,MSDM,Top)

Signal(pMSX
in ,MSQ(cp,m

new
cp ))→ ∀cp ∈ Hci , Tcp = A;

∀Gk ∈ AEGci : FreezeInput(Gk);
repeat
∀Gk ∈ AEGci : Check_DPS(Gk);

until DPSGk = ¬Processing
Signal(pMSX

in ,MSQ(ck,m
new
ck

))→ ∀ck ∈ Gk, Tck = A;
MSOKNOK_Collection;
if all_MSOK then

if MSDM || Top then
Signal(pMSX

in ,MSI(cj ,mnew
cj ))→ ∀cj ∈ SCci , Tcj = A;

if Tci = A then
Reconfiguration(ci,mci ,m

new
ci );

end if
repeat

MSC_Collection;
until all_MSC
∀Gk ∈ AEGci : UnfreezeInput(Gk);
if Tci = A then

Start_running(ci,mnew
ci );

else
Resume(ci,mci);

end if
else

Signal(pMSX,MSOK(ci,m
new
ci ));

Wait(pMSX,MSI(ci,mnew
ci ) ∨MSD(ci,m

new
ci ));

if MSI then
Signal(pMSX

in ,MSI(cj ,mnew
cj ))→ ∀cj ∈ SCci , Tcj = A;

Reconfiguration(ci,mci ,m
new
ci );

repeat
MSC_Collection;

until all_MSC
Signal(pMSX,MSC(ci,m

new
ci ));

∀Gk ∈ AEGci : UnfreezeInput(Gk);
Start_running(ci,mnew

ci );
else

Signal(pMSX
in ,MSD(cj ,m

new
cj ))→ ∀cj ∈ SCci , Tcj = A;

∀Gk ∈ AEGci : UnfreezeInput(Gk);
Resume(ci,mci);

end if
end if
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else
if MSDM || Top then

Signal(pMSX
in ,MSD(cj ,m

new
cj ))→ ∀cj ∈ SCci , Tcj = A;

∀Gk ∈ AEGci : UnfreezeInput(Gk);
Resume(ci,mci);

else
Signal(pMSX,MSNOK(ci,m

new
ci ));

Wait(pMSX,MSD(ci,m
new
ci ));

Signal(pMSX
in ,MSD(cj ,m

new
cj ))→ ∀cj ∈ SCci , Tcj = A;

∀Gk ∈ AEGci : UnfreezeInput(Gk);
Resume(ci,mci);

end if
end if

6.3 Implementing MSL in the top component

Algorithm 4 implements the mode switch runtime mechanism of the top com-
ponent, which can be treated as a special composite component without parent.
Compared with a normal composite component, the mode switch handling of
the top component is simpler. Since the top component has no parent, it can
never receive an MSI/MSQ/MSD nor forward an MSR upwards. Therefore, Al-
gorithm 4 can be regarded as a pruned-version of Algorithm 2. However, ex-
tra attention must be paid when the top component actively issues an MSQ as
an MSS. Another special case is when the top component is an AEG. Usu-
ally if a single component is defined as an AEG, its parent has the duty to
freeze/unfreeze its input and monitor its DPS. Nevertheless, if the top compo-
nent itself is an AEG, it must be able to freeze/unfreeze its input and monitor
its own DPS. Algorithm 4 also calls Algorithm 3 with the parameters MSDM
and Top always set to true.

6.4 Summary

In this chapter, the mode switch runtime mechanism of MSL is implemented as
algorithms (pseudo code) for primitive components, non-top composite com-
ponents and the top component. This reflects the decentralized feature of our
MSL. There is no such component which can coordinate the mode switches
of all the other components. These algorithms are utterly congruous with the
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Algorithm 4 MS_Handling(ci = Top)

loop
if ci = MSS && MS_event_detected then

Derive_new_mode;
ModeMapping;
if ci = AEG then

FreezeInput(ci);
repeat

Check_DPS(ci);
until DPSci = ¬Processing

end if
Stop_running(ci,mci);
ModeSwitch(ci, true, true);
UnfreezeInput(ci);

else
Wait(pMSX

in ,MSR(cj ∈ SCci ,mcj ,m
new
cj ));

ModeMapping;
Check_state(ci,mci);
if mnew

ci = mci || MS_Ready then
if mnew

ci 6= mci then
Stop_running(ci,mci);

end if
if ci = AEG then

FreezeInput(ci);
repeat

Check_DPS(ci);
until DPSci = ¬Processing

end if
ModeSwitch(ci, true, true);
UnfreezeInput(ci);

end if
end if

end loop
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related theories spread over previous chapters, including the MSP protocol, the
mode switch dependency rule, the mode mapping mechanism, and the han-
dling of atomic component execution. Since the algorithms are quite close to
real codes, it should be rather easy to implement MSL in practice. In fact,
these algorithms have been successfully tested in UPPAAL modeling and veri-
fication via a couple of small but representative examples. Extensive evaluation
of the algorithms is considered to be our future work.
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Chapter 7

The composable mode switch
timing analysis

In previous chapters, our mode switch runtime mechanism has been thoroughly
elaborated for handling the composable mode switch of a CBMMS. Much ef-
fort has been put into guaranteeing the correct mode switch behavior of each
individual component and the system as a whole, whereas less attention was
paid to the timing of a composable mode switch. The timing analysis of a
CBMMS is however important since we believe that most CBMMSs are also
real-time systems, whose correctness not only depends on the correctness of
the computing result, but also on the time when the result is delivered [57]. A
classic example of real-time systems is the airbag of a car. When a collision
occurs, the airbag must be inflated at the proper time. Either too early or too
late inflation of the airbag is considered as a failure. Therefore, a real-time sys-
tem must meet both the functional and timing requirements. The satisfaction
of the timing constraints is typically verified by timing analysis. The timing
analysis of a multi-mode system is even more complex as the system must be
schedulable both in each stable mode and during a mode switch. The schedu-
lability assurance in a stable mode can be analyzed by taking the advantage of
the schedulability of a single-mode system, since the timing analysis in differ-
ent modes is independent. Such analysis is a well-researched problem outside
the scope of this thesis. However, the timing analysis during a mode switch is
inevitably related to the mode switch handling. The worst-case mode switch
time must be derived so as to guarantee schedulability during a mode switch.

The timing analysis of a CBMMS is equally important, yet requires a dif-
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ferent methodology. In this chapter, we present a timing analysis for the com-
posable mode switch of CBMMSs which implement our MSL.

7.1 The mode switch timing analysis for MSL
According to the mode switch runtime mechanism of MSL, a mode switch
starts from the mode switch propagation, after which the MSDM decides
whether to trigger a mode switch or not. Once a mode switch is triggered,
all components follow the mode switch dependency rule. It has been proven
that both the MSP protocol and the mode switch dependency rule guarantee
bounded mode switch propagation time, and bounded mode switch time since
the MSDM issues an MSI. Hence the complete mode switch time must also
be bounded. Next we shall ascertain that this mode switch time is not only
bounded but also composable and analyzable. Let α denote an MSS triggering
a specific mode switch scenario and β denote the corresponding MSDM, with
CM as the set of vertically intermediate components between α and β, while
∀ck ∈ CM , ck ∈ Aα ∩ Dβ . The following lists some key timing factors and
notations:

• ci.tmsr, ci.tmsq , ci.tok, ci.tnok, ci.tmsi, ci.tmsd, ci.tmsc: the transmis-
sion time of each primitive between ci and SCci . We assume that the
transmission time of the same primitive between ci and its different sub-
components is the same.

• α.msdt: the Mode Switch Detecting Time (MSDT) of the MSS α, i.e.
the time required to issue an MSR since α detects a mode switch event.
The major activities include analyzing the mode switch event and deriv-
ing the new mode of α.

• ci.pht: the Primitive Handling Time (PHT) of ci ∈ CC, i.e. the time
required for a composite component to make a decision upon receiving
a primitive. Mode mapping should be the most time-consuming activity,
thus ci.pht is only considered for an MSR and MSQ which evokes the
mode mapping of ci.

• ci.sct: the State Checking Time (SCT) of ci, i.e. the time required to
check the current state and respond to an MSQ.

• AEGi : the atomic execution time of an AEG Gi.
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• ci.qrt: the Query Response Time (QRT) of ci, i.e. the time required to
respond to an MSQ with MSOK or MSNOK. If ci ∈ PC, ci.qrt = ci.sct;
if ci ∈ CC, ci.qrt ≥ ci.sct, because ci may also wait for the reply from
SCci . Nevertheless, if ci ∈ CC replies with an MSNOK, then ci.qrt =
ci.sct because ci will not propagate the MSQ further and wait for any
feedback.

• ci.rct: the reconfiguration time of ci.

• ci.mst: the Mode Switch Time (MST) of ci since the start of its recon-
figuration. If ci ∈ PC, ci.mst = ci.rct; if ci ∈ CC, ci.mst ≥ ci.rct,
because ci may also wait for the MSC from SCci .

All the timing factors above are for the worst case and can be mode-
dependent. A CBMMS is guaranteed to satisfy all the timing constraints for its
mode switch only when the worst-case mode switch times of the system itself
and all its components meet the specified requirements. These timing factors
can be considered as mode-dependent or mode-independent EFPs of a compo-
nent. If a timing factor is a mode-dependent EFP, its value must be different
in different modes. For instance, the atomic execution time of the same AEG
may be changed after a mode switch. Sometimes, a mode-dependent EFP may
also depend on the current mode and the target mode. For instance, suppose ci
supports three modes: m1

ci , m
2
ci and m3

ci . The reconfiguration time from m1
ci

to m2
ci can be different from the reconfiguration time from m1

ci to m3
ci .

In addition, all scheduling effects are assumed to be included in the val-
ues of these timing factors. Since our focus is on the mode switch coordina-
tion of different components, the consideration of scheduling will compromise
the mode switch timing analysis, making it much less comprehensible. Issues
such as the hardware platform, the scheduling policy, the possibility of paral-
lel execution, shared resources and execution dependencies between different
components inevitably expel our mode switch timing analysis from being un-
derstandable. For example, in a fully parallel system, the reconfiguration of
different components can be taken without interfering with each other. Yet for
a single-processor system, the reconfiguration of different components must be
taken by turns, following a specific scheduling policy. As a consequence, the
reconfiguration time of some components can be longer due to the preemption
of other components. For that reason, we resort to abstract all the scheduling
effects and integrate them in the values of the timing factors. After that, the
system can be treated as a fully parallel system. Still, a more detailed timing
analysis, also including scheduling and other aspects, would be of interest in
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obtaining tighter (and possibly also safer) worst-case timing estimates. Such
analysis is however outside the scope of this thesis.

In Chapter 3, three scenarios have been identified in the mode switch prop-
agation process (see figures 3.5-3.7). Among these scenarios, only Scenario 2
triggers a mode switch. Our mode switch timing analysis is thus based on Sce-
nario 2. The mode switch propagation process in Scenario 2 has been divided
into two phases. The first phase starts when an MSS issues an MSR and ends
after the MSOK/MSNOK collection of the MSDM. The second phase starts when
the MSDM issues an MSI and ends when the MSI is propagated to all Type A
components. This phase division idea is also adopted in the mode switch tim-
ing analysis. The complete mode switch process of a CBMMS starts when
an MSS detects a mode switch event and ends after the MSDM completes its
mode switch or after the MSC collection of the MSDM. We divide the complete
mode switch process into three phases:

• Phase 1: MSR propagation. Phase 1 starts when an MSS detects a mode
switch event and ends when the MSDM receives the MSR originally is-
sued by this MSS.

• Phase 2: MSQ propagation. Phase 2 starts when the MSDM decides to
issue an MSQ to its Type A subcomponents and ends when the MSDM
receives all the replies, which must be MSOK in order to trigger a mode
switch.

• Phase 3: MSI propagation and mode switch. Phase 3 starts when the
MSDM decides to issue an MSI to its Type A subcomponents. If the
MSDM is both the top component and a Type A component, Phase 3
ends when the MSDM completes its mode switch. Otherwise, Phase 3
ends after the MSC collection of the MSDM.

The timing analysis in these three phases can be performed separately with-
out disturbing each other.

7.1.1 The timing analysis in Phase 1—MSR propagation
Phase 1 only exists when the MSS is not the top component. For a CBMMS
with α as an MSS and β as the MSDM, together with CM as the set of the
vertically intermediate components between α and β, Phase 1 is simply the
upstream MSR propagation from α to β. Figure 7.1 illustrates Phase 1 by a
small example, where a is an MSS (α); d is the MSDM (β); b and c are the
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intermediate components (CM ). When a detects a mode switch event, it spends
a.msdt time units analyzing this event, deriving the proper new mode, and
determining to issue an MSR. After b.tmsr, the MSR arrives at b, which spends
another b.pht referring to its mode mapping and deciding to forward the MSR
to c. Since all components in CM treat the MSR equally, c.tmsr and c.pht can
be explained in the same manner. When d receives the MSR, Phase 1 is over.
Let T1 denote the duration of Phase 1, then T1 in Figure 7.1 can be easily
calculated as

T1 = a.msdt+ b.tmsr + b.pht+ c.tmsr + c.pht+ d.tmsr (7.1)

Generalizing (7.1), we get

T1 = α.msdt+
∑

ck∈CM

(ck.tmsr + ck.pht) + β.tmsr (7.2)

Figure 7.1: The mode switch timing analysis—Phase 1

7.1.2 The timing analysis in Phase 2—MSQ propagation
Phase 2 is dedicated to MSQ propagation and MSOK/MSNOK collection. Atomic
component execution is also handled in this phase. The timing analysis in
Phase 2 is essentially realized by the composition of the QRT (Query Response
Time) of each Type A component. Figure 7.2 illustrates the behavior of a
composite component in Phase 2 by a small example assuming a system with
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no AEG. As an ordinary Type A composite component, a receives an MSQ
from the parent and propagates the MSQ to its Type A subcomponents, i.e. b,
c and e in Figure 7.2, where Tci tells whether ci is of Type A or Type B. Yet
two preliminary tasks (represented by the grey bar and black bar in Figure 7.2)
must be fulfilled before its MSQ propagation. Component a must first check its
current state and readiness for a mode switch (the required time is a.sct). If the
current state of a indicates that a is not ready to switch mode, a will directly
reply an MSNOK to the parent without further MSQ propagation. In Figure 7.2,
a is ready to switch mode and then refers to its mode mapping to derive its
Type A subcomponents (the required time is a.pht). When b, c and e receive
the MSQ, they will respond after some time (denoted by linear gradient bars).
In this example, they all reply with an MSOK and a finally sends an MSOK to its
parent. Here the most interesting timing factor is the QRT of a, a.qrt, which on
the one hand is used to determine the QRT of the parent of a, and on the other
hand is dependent on the QRT of b, c and e. More precisely, a.qrt depends on
a.sct, a.pht and the longest response from b, c and e:

a.qrt =a.sct+ a.pht+max{a.tmsq + b.qrt+ a.tok, a.tmsq + c.qrt+ a.tok,

a.tmsq + e.qrt+ a.tok}
(7.3)

Figure 7.2: The mode switch timing analysis—Phase 2 (without AEG)

The example in Figure 7.2 assumes no atomic component execution. Fig-
ure 7.3 extends Figure 7.2 by defining b and c as an AEG G1. As a result, the



7.1 The mode switch timing analysis for MSL 91

MSQ propagation from a to b and c is delayed by AEG1
(represented by the

frameless grey bars), which is the atomic execution time of G1. AEG1 may
vary depending on when a starts to check the DPS of G1. AEG1 is by default
assumed to be the worst-case value here. In the worst case, the atomic execu-
tion of G1 just starts when a starts to check its DPS. In the best case, there is
no ongoing atomic execution inG1 when a starts to check its DPS and the MSQ
propagation to b and c will not be delayed. Taking G1 into account, a.qrt can
be calculated as

a.qrt =a.sct+ a.pht+max{AEG1 + a.tmsq + b.qrt+ a.tok, AEG1+

a.tmsq + c.qrt+ a.tok, a.tmsq + e.qrt+ a.tok}
(7.4)

Figure 7.3: The mode switch timing analysis—Phase 2 (with AEG)

Combining both cases in figures 7.2 and 7.3, in general, ∀ci ∈ PC, Tci =
A, the QRT of ci must be equal to its SCT as ci does not propagate the MSQ
further, thus

ci.qrt = ci.sct (7.5)

and ∀ci ∈ CC, ci 6= β, Tci = A,AEGci = ∅,
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ci.qrt = ci.sct+ ci.pht+max
ck∈SCci ,
Tck=A

{ci.tmsq + ck.qrt+ ci.tok} (7.6)

and ∀ci ∈ CC, ci 6= β, Tci = A,AEGci 6= ∅,

ci.qrt =ci.sct+ ci.pht+max
cj∈Hci ,
ck∈Gk,

Gk∈AEGci ,
Tcj=Tck=A

{ci.tmsq + cj .qrt+ ci.tok,

AEGk + ci.tmsq + ck.qrt+ ci.tok}

(7.7)

By composing the QRT of each Type A component, the QRT of the sub-
components of the MSDM β can be obtained. β does not receive any MSQ,
hence β.sct = 0. What β needs to do in Phase 2 is to approve an MSR, issue
an MSQ to SCβ based on the mode mapping and then wait for the reply. Let T2
denote the duration of Phase 2. If AEGβ = ∅, then

T2 = β.pht+max
ck∈SCβ ,
Tck=A

{β.tmsq + ck.qrt+ β.tok} (7.8)

If AEGβ 6= ∅, then

T2 =β.pht+max
cj∈Hβ ,
ck∈Gk,

Gk∈AEGβ ,
Tcj=Tck=A

{β.tmsq + cj .qrt+ β.tok,

AEGk + β.tmsq + ck.qrt+ β.tok}

(7.9)

7.1.3 The timing analysis in Phase 3—MSI propagation and
mode switch

The timing analysis in Phase 3 resembles Phase 2. β issues an MSI whose
propagation trace is exactly the same as the MSQ, thereby Type A composite
components do not need to refer to the mode mapping again. Atomic com-
ponent execution, which is handled in Phase 2, can be ignored in Phase 3 as
well. The MSC collection is also akin to the MSOK/MSNOK collection in Phase
2. Figure 7.4 illustrates Phase 3 based on the same example in Figure 7.2. No
SCT is considered in this phase because all Type A components have already
checked their current states. Also, the propagation of MSI implies all Type A
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components are ready to switch mode. The MSP protocol specifies that a com-
ponent must stop running when its current state allows a mode switch after it
receives an MSQ. This prevents the anomaly that the same component keeps
running and enters a new state which prohibits a mode switch when it receives
an MSI. Since no mode mapping is required to propagate an MSI, a.pht = 0
and that is why it is excluded in Figure 7.4. As a Type A component, a must
reconfigure itself after propagating the MSI to b, c, and e. Therefore,

a.mst =max{a.rct, a.tmsi + b.mst+ a.tmsc, a.tmsi + c.mst+ a.tmsc,

a.tmsi + e.mst+ a.tmsc}
(7.10)

Generalizing Equation (7.10), ∀ci ∈ PC, Tci = A, ci.mst must be equal
to its reconfiguration time ci.rct in that ci does not propagate the MSI further,
thus

ci.mst = ci.rct (7.11)

and ∀ci ∈ CC, ci 6= β, Tci = A,

ci.mst = max
ck∈SCci ,
Tck=A

{ci.rct, ci.tmsi + ck.mst+ ci.tmsc} (7.12)

By composing the MST of each Type A component, the MST of the sub-
components of the MSDM β can be obtained. Let T3 denote the duration of
Phase 3. Then the calculation of T3 depends on two conditions: (1) Tβ = B,
then β will not reconfigure itself after MSI propagation; (2) Tβ = A, then β
must be the top component and will reconfigure itself after MSI propagation.
Based on the two conditions, T3 is calculated as follows:

If Tβ = B,

T3 = max
ck∈SCβ ,
Tck=A

{β.tmsi + ck.mst+ β.tmsc} (7.13)

Otherwise, if Tβ = A,

T3 = max
ck∈SCβ ,
Tck=A

{β.rct, β.tmsi + ck.mst+ β.tmsc} (7.14)
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Figure 7.4: The mode switch timing analysis—Phase 3

7.1.4 The composition of three phases

Let T denote the complete mode switch time of a CBMMS. Due to the fact
that the three identified phases are absolutely sequential without mutual inter-
ference, T is purely the summation of the duration of all phases:

T = T1 + T2 + T3 (7.15)

Our mode switch timing analysis for a CBMMS based on the MSL can be
illustrated by the example introduced in Figure 3.4 together with the illustration
of its component connections in Figure 5.3. The complete mode switch process
of this system has been demonstrated in Figure 5.4. Additionally, a number
of timing factors with values are assigned to this system, given in Table 7.1,
including MSDT, PHT, SCT and RCT. The mode switch timing analysis based
on Figure 5.4 and Table 7.1 is depicted in Figure 7.5, in which the transmission
time of each primitive is constantly 1 for the sake of simplicity. Moreover, the
atomic execution time of the AEG b, i.e. AEb, is 8, We assume some data just
enters b when a starts to check the DPS of b. The data is first processed by e
for 4 units and then processed by f for another 4 units. The data transmission
time from e to f is assumed to be 0. The three phases are lucidly highlighted on
the rightmost part of Figure 7.5, which shows that the complete mode switch
time is 40.

Next we shall calculate the complete mode switch time based on the given
values of these timing factors. Since α = h and β = a, CM = {c}. According
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Component MSDT PHT SCT RCT
a – 3 – –
b – 2 2 6
c – 2 3 7
e – – 2 3
g – – 2 4
h 3 2 1 5
m – – 3 6

Table 7.1: Timing factors assigned to the system in Figure 5.4

Figure 7.5: The timing analysis of a complete mode switch
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to Equation (7.2),

T1 = h.msdt+ (c.tmsr + c.pht) + a.tmsr = 3 + (1 + 2) + 1 = 7 (7.16)

In order to derive T2, the QRT of Type A primitive components can be first
calculated based on Equation (7.5):

e.qrt = e.sct = 2 (7.17)

g.qrt = g.sct = 2 (7.18)

m.qrt = m.sct = 3 (7.19)

Once e.qrt is known, guided by Equation (7.6), the QRT of b can also be
worked out:

b.qrt = b.sct+b.pht+(b.tmsq+e.qrt+b.tok) = 2+2+(1+2+1) = 8 (7.20)

Likewise,

h.qrt = h.sct+h.pht+(h.tmsq +m.qrt+h.tok) = 1+2+ (1+3+1) = 8
(7.21)

Using Equation (7.6), g.qrt and h.qrt,

c.qrt = c.sct+ c.pht+max{c.tmsq + g.qrt+ c.tok, c.tmsq + h.qrt+ c.tok}
= 3 + 2 +max{1 + 2 + 1, 1 + 8 + 1} = 15

(7.22)
By composing b.qrt and c.qrt, guided by Equation (7.9), T2 can be calcu-

lated. Due to the atomic execution of the AEG b, the MSQ propagation from a
to b is delayed by AEb = 8. Therefore,

T2 = a.pht+max{AEb + a.tmsq + b.qrt+ a.tok, a.tmsq + c.qrt+ a.tok}
= 3 +max{8 + 1 + 8 + 1, 1 + 15 + 1} = 21

(7.23)
The calculation of T3 starts with the MST of primitive Type A components

by using Equation (7.11):
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e.mst = e.rct = 3 (7.24)

g.mst = g.rct = 4 (7.25)

m.mst = m.rct = 6 (7.26)

Then the MST of the parent of e and m can be computed by Equation (7.12):

b.mst = max{b.rct, b.tmsi + e.mst+ b.tmsc} = max{6, 1 + 3 + 1} = 6
(7.27)

h.mst = max{h.rct, h.tmsi +m.mst+ h.tmsc} = max{5, 1 + 6 + 1} = 8
(7.28)

After using Equation (7.12) one more time,

c.mst = max{c.rct, c.tmsi + g.mst+ h.tmsc, c.tmsi + h.mst+ c.tmsc}
= max{7, 1 + 4 + 1, 1 + 8 + 1} = 10

(7.29)
After that, T3 can be computed by Equation (7.13):

T3 = max{a.tmsi + b.mst+ a.tmsc, a.tmsi + c.mst+ a.tmsc}
= max{1 + 6 + 1, 1 + 10 + 1} = 12

(7.30)

Finally, applying Equation (7.15), the complete mode switch time T is:

T = T1 + T2 + T3 = 7 + 21 + 12 = 40 (7.31)

This result is exactly the same as the complete mode switch time provided
in Figure 7.5.

As a final remark, our mode switch timing analysis does not assume the
global knowledge of all timing factors, thanks to the compositional feature of
the QRT and MST of each component, which can be explicitly exposed as EFPs
during the composition. However, for a given mode switch scenario, the MSS
and MSDM must be known and the set of vertically intermediate components
CM between the MSS and the MSDM should also be known for deriving T1.
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7.2 Deriving the worst-case atomic execution time
of an AEG

From the mode switch timing analysis of the example in the last section, one
may notice that AEb, i.e. the worst-case atomic execution time of the AEG
b, is the only one timing factor that is related to component connections and
the functional behavior of a system which the other timing factors have no di-
rect relation to. Since b has only two subcomponents which are sequentially
connected, AEb can be easily computed by summing the worst-case execution
time of e and f. However, for a general AEG Gk, there is a need for a sys-
tematic approach to the derivation of AEGk , which can be affected by many
contributing factors such as the component hierarchy, component connections,
and data flow. In this section, we provide a model-checking approach as the
solution to calculate the worst-case atomic execution time of an AEG.

7.2.1 The AEG model
The modeling of an AEG requires a clear specification of the AEG execution
semantics. Our target is a pipe-and-filter CBMMS, whose execution semantics
is consistent with the pure data flow component described in [39]. Each AEG
of such a system can also be considered as a smaller CBMMS with the same
execution semantics.

In Section 5, it has been mentioned that a component has a number of input
and output ports in a pipe-and-filter CBMMS. The input data is first read by
a component, which will process the data and then produce the output data.
Furthermore,

• We assume that primitive components have data going through all its
input and output ports, i.e. input data has to be available at all input
ports before processing can start and output data must be sent via all
output ports. Whenever a primitive component receives new data at an
input port, the data is first queued in a corresponding input buffer. While
a primitive component is processing data, new arriving data must wait in
its input buffers and cannot be processed until the component completes
its current data processing.

• As opposed to a primitive component, a composite component does not
buffer its input data. Whenever it receives new data, it will simply prop-
agate the data to its subcomponents. Similarly, whenever it receives out-
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put data from its subcomponents, it will immediately forward the data
via its corresponding output port(s).

We also make the following restrictions (assumptions) on an AEG com-
posed by components that follow the execution semantics above:

• An AEG should have only one input port. The reason is that the parent
of an AEG is responsible for freezing its input before checking its DPS.
If an AEG has multiple input ports, it may receive data from different
input ports at different times. Consequently, input freezing becomes a
complex issue, which is out of the scope of this thesis.

• There is no cyclic connection, i.e. feedback loop, in an AEG. Feedback
loops complicate the data flow within an AEG, thus making it more chal-
lenging to derive AEGk .

• Data transmission between different components within an AEG is in-
stantaneous. An AEG is most likely to reside in the same physical
(sub)system, therefore, compared with component execution time, data
transmission time can be considered negligible (or included in the com-
ponent execution time).

7.2.2 An illustrative example of AEG
Our model-checking approach can be demonstrated by an illustrative exam-
ple. Figure 7.6 depicts an AEG Gk consisting of primitive components a-f.
The ports of Gk and its composing primitive components are marked in red.
Composite components or deactivated components in the AEG are not shown
because they do not affect AEGk . We assume that the data processing time of
each component ci ∈ PC inGk is bounded by a timing interval [Cminci , Cmaxci ],
and that the incoming data rate of the AEG is within the interval [Rmin, Rmax].
To ensure that AEGk is bounded and that our calculations terminate, we will
enforce a maximum number of data elements in Gk. Depending on the incom-
ing data rate and data processing times of different components, this bound
may or may not be reached. In fact, the bound could be used as a modeling
artifact (further details in Section 7.2.4), but could also be a mechanism in the
real system. The timing factors and their values in Gk are as follows:

• Incoming data rate R = [7, 8].

• Data processing time C of components a-f : Ca = [4, 5], Cb = [7, 8],
Cc = [6, 7], Cd = [5, 6], Ce = 5, Cf = [7, 8].
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• Maximum number of data elements in Gk N = 5.

Figure 7.6: An illustrative example of AEG

To calculate AEGk , we propose a model-checking approach based on UP-
PAAL [38]. UPPAAL is a model-checking tool which is widely used to model,
simulate and verify real-time systems. In particular, since version UPPAAL
4.1.3, there is a "sup" operator able to find out the maximal value of a variable
or clock. If an AEG Gk is properly modeled by UPPAAL, we can use "sup"
to obtain AEGk . In this way, the focus is moved from AEGk derivation to the
UPPAAL modeling of Gk. Please note that we do not consider any scheduling
effect on AEGk which will be included in our future work.

7.2.3 UPPAAL modeling
By using UPPAAL, we first model the execution and mode switch behavior of
Gk and then deriveAEGk via its property verification. No matter how complex
an AEG Gk is, we can divide its UPPAAL model into four parts:

1. Data source: generates data at a flexible rate.

2. AEG: receives data from Data source, processes it and deposits the re-
sults at its output port(s). Furthermore, it ensures that the number of data
elements n in the AEG is within the bound N . Data source is turned off
when n = N . If Gk is not involved in any mode switch, Data source
is turned on again when n decreases. When the AEG receives an MSQ,
Data source will also be turned off as the parent of Gk freezes its input.
AEGk is equivalent to the maximal data processing time to reach n = 0.
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3. Data forwarder: forwards data between components without the sender
knowing the identity of the receiver. This simplifies the modeling, since
when some connections are changed, or a component is removed or
added, only component connection definitions referred to by Data for-
warder need to be updated.

4. Primitive components: modeled by a UPPAAL template for each of
them. Though the number of components can be arbitrary, a parame-
terized generic model applying to all components can be used.

The full UPPAAL model of the example in Figure 7.6 is available in [24].
Here we will only focus on modeling the AEG Gk itself and its enclosed prim-
itive components.

Figure 7.7 models the AEG Gk in Figure 7.6. When a new data enters Gk,
Gk will propagate this data to its enclosed components through the dataOut!
channel. dataCounter counts the number of data within Gk. In the function
shutDS(), Gk compares dataCounter with the threshold N . If the threshold
is reached, the data source will be turned off in shutDS(). When dataCounter
decreases and no MSQ arrives, the data source is turned on in function dataN-
Control(). The model has two major states: Waiting and Processing. In state
Waiting, no data is within Gk. The MSQ from the parent of Gk will not be de-
layed because there is no ongoing atomic execution inGk. In state Processing,
at least one data is in Gk. The MSQ is modeled by the channel MSQ?. Clock
z plays a significant role in that the maximal possible value of z in its State
Processing corresponds to AEGk .

Figure 7.7: UPPAAL model: AEG Gk
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The primitive components in Gk can be categorized into four types: (1)
a component with single input and output; (2) a component with single input
and multiple outputs; (3) a component with multiple inputs and single output;
(4) a component with multiple inputs and outputs. Figure 7.8 illustrates the
model of Component f, which has multiple inputs and outputs. Actually the
model of f is generic in the sense that all the other components in Gk from
Figure 7.6 can be modeled in the same way. When not processing any data, f
is in state nonProcessing. When processing data, it is in state Processing. The
invariant x <= 8 and guard x > 7 define the interval of its data processing
time, i.e. Cf = [7, 8]. Component f receives data through the channel dataIn?
and sends output data through the channel dataOut!. Component f recognizes
new data by the guard target == fi1 || target == fi2 where fi1 and fi2
are its input ports. When all input buffers are non-empty, the boolean vari-
able readyToProcess is set to true and f will switch to location Processing by
the urgent channel Go!. Data is processed by the function processData(), thus
representing mode-specific behavior of a primitive component. After process-
ing the data, f immediately sends its output data through all its output ports.
This is modeled by the sequential and atomic output data generation from its
output ports. The two committed states Temp1 and Temp2 guarantee atom-
icity. outputCounter records how many output ports have sent out the data.
When the output data is sent through all its output ports, f goes back to state
nonProcessing and checks its buffer status again.

Figure 7.8: UPPAAL model: Component f
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Component f belongs to Type (4) in terms of its ports. Similarly, compo-
nents of the other three types can be modeled by following the same pattern.
Figures 7.9-7.11 illustrate the models of a(Type (2)), b(Type (1)) and e(Type
(3)), respectively. The model structure of all these components are the same,
despite the variation of some parameters. If a component has only one output
port, the model can be simplified by removing state Temp2 and outputCounter.

Figure 7.9: UPPAAL model: Component a

7.2.4 Verification and evaluation
Some interesting results including AEGk can be obtained by verifying the fol-
lowing properties of the UPPAAL model:

• A[] not deadlock: no deadlock will occur in the model.

• sup{AEG.Processing}: AEG.z: returns the maximal value of the clock z
of AEG in state Processing. This equals AEGk .

• E<> AEG.Processing && AEG.z==AEGk : there is a scenario in which
the clock z reachesAEGk when AEG is in state Processing. OnceAEGk
is derived, this property searches the worst-case scenario, and using the
"Diagnostic Trace" function of UPPAAL, the worst-case scenario can be
displayed as an execution trace.
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Figure 7.10: UPPAAL model: Component b

Figure 7.11: UPPAAL model: Component e

• sup: dataCounter: returns the maximal number of data items that can be
simultaneously processed in Gk. If N is only a modeling artifact, then
for the validity of the calculated AEGk , this value must be less than N .
In other cases, validity requires a mechanism in the deployed system that
keeps n within the bound N .
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• sup: Component.bufferN[Index]: returns the maximal number of ele-
ments in one buffer of a component.

Using UPPAAL, all properties have been verified. In addition, the verifica-
tion results show that for R = [7, 8], the maximal number (i.e. n) of data items
in Gk is 5, meaning that the threshold N can be reached. In the worst-case,
AEGk = 40.

Moreover, the verification results show that R and Cci (ci ∈ PC is acti-
vated in Gk) have substantial influence on the property verification time. The
differences are related to variations in the number and length of executions
leading up to the worst-case scenario. We repeated the verification of the same
set of properties for different data rates. The most important results are sum-
marized in Table 7.21.

An interesting side effect of our modeling is that we can use the last prop-
erty above to obtain the maximal buffer usage (i.e. required buffer sizes) for
the component input buffers. These values are for the considered data rates
presented in Table 7.3. For instance, the maximal usage of the buffer associ-
ated with port ei2 in Figure 7.6 is 1 when R = [10, 12], 2 when R = [8, 10],
and 4 when R = [6, 8].

7.2.5 Generalization

Apart from R, verification time also depends on the number of components in
the AEG, the number of connections and output ports of an AEG, the threshold
N and the data processing time of each component. Regardless of the verifi-
cation time, the way that we model the system does not change. Although we
have only demonstrated how to derive AEGk for a simple example, our UP-
PAAL models are generic. We conjecture that for any AEG that is in line with
our system and component models, we are able to make transformation rules,
based on which the corresponding UPPAAL models can be automatically gen-
erated. Since the UPPAAL verification is based on generating and exploring
the global state space, it is subject to state explosion while modeling a too
complex system. However, we do not expect this to be a limitation in practice,
since the complexity of an AEG typically is rather low.

1Verification is performed on MacBook Pro, with 2.66GHz Intel Core 2 Duo CPU and 8GB
1067 MHz DDR3 memory.
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Property/Value R = [6, 8] R = [7, 8] R = [8, 10] R = [10, 12]

No deadlock 28.64s 5.617s 0.139s 0.108s
Maximal n 5 5 4 3

Deriving AE 45.667s 4.36s 0.1s 0.069s
AE 40 40 25 25

Worst-case 36.716s 4.576s 0.013s 0.016sscenario

Table 7.2: Property verification results for different data rates

Buffer Index R = [6, 8] R = [7, 8] R = [8, 10] R = [10, 12]

ai1 1 1 1 1
bi1 3 3 1 1
ci1 2 1 1 1
di1 1 1 1 1
ei1 3 3 2 1
ei2 4 4 2 1
ei3 3 3 1 1
fi1 3 3 1 1
fi2 3 3 1 1

Table 7.3: Maximal buffer usage for different data rates

7.3 Summary
In this chapter, the mode switch time of a CBMMS is analyzed based on
MSL. The entire mode switch process of a system is divided into three non-
overlapping phases: (1) MSR propagation; (2) MSQ propagation; and (3) MSI
propagation and mode switch. We provide the calculation of the time spent in
each phase and the total mode switch time is the summation of all three phases.
Furthermore, a model-checking approach is presented to derive the worst-case
atomic execution time of an AEG, which may prolong the mode switch time.
This model-checking approach is explained based on an example modeled in
the model-checker UPPAAL. We also demonstrate how the worst-case atomic
execution time of an AEG can be derived from the property verification in UP-
PAAL.



Chapter 8

Case study–An Adaptive
Cruise Control system

In this chapter, the main principles of our MSL is applied to a case study: an
Adaptive Cruise Control (ACC) system [2]. An ACC system is typically used
as a subsystem of a car to automatically maintain both the desired speed and
the safe distance from the vehicle ahead. The desired speed can be obtained by
information from the driver or by speed-limit regulations, e.g. from road signs
or road map information together with the GPS. The presence and distance of
a preceding vehicle can be detected by a radar or laser sensor mounted at the
front of the car. The detected distance must be sufficiently far to avoid rear-
end collisions. When the distance is changed due to the speed discrepancy
of the preceding vehicle and the car where the ACC system resides, the ACC
system will automatically accelerate or decelerate to keep the distance as per
a pre-defined value without the driver’s interference. In addition, when the
preceding vehicle suddenly brakes or an obstacle abruptly appears in front, a
brake-assist function will be activated for a more aggressive braking in such
extreme situations.

8.1 The system description

An ACC system can be developed as a CBMMS. Figure 8.1 shows the compo-
nent hierarchy of the ACC system:
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• Speed Limit (SL): deriving the desired speed based on the speed-limit
regulations.

• Object Recognition (OR): detecting the presence of a preceding car and
calculating the relative speed between two cars.

• ACC Controller (ACC): controlling the speed by adjusting the throttle
lever in order to maintain both the speed and distance, as the core of the
ACC system. It consists of two subcomponents: Distance Controller and
Speed Controller.

• Brake Assist (BA): Assisting the driver to brake in extreme situations.

• HMI Output (HMI): Displaying information related to the ACC system
to the driver.

• Distance Controller (DC): providing the distance information to the
Speed Controller.

• Speed Controller (SC): controlling the vehicle speed.

Figure 8.1: The component hierarchy of an ACC system

Furthermore, the ACC system can run in three different modes:

• CC mode: the traditional cruise control mode, in which the ACC system
only maintains the desired speed regardless of the preceding vehicle. In
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this mode, components OR and BA are deactivated and the ACC Con-
troller equals a CC Controller, i.e. it maintains the desired speed regard-
less of obstacles and speed limits. The connections between the sub-
components of the ACC system in this mode are depicted in Figure 8.2.
The ACC system can be manually controlled via two input ports: "Ped-
als" and "CC/ACC switch". The driver can regulate the vehicle speed
through "Pedals", and manually switch its running mode between CC
mode and ACC mode through "CC/ACC switch".

• ACC mode: the normal adaptive cruise control mode, in which the ACC
system maintains both the desired speed and distance. Compared with
CC mode, this mode activates Component OR, however, Component BA
is still deactivated. The connections between the subcomponents of the
ACC system in this mode are depicted in Figure 8.3.

• EMERGENCY mode: a mode in which Component BA is activated to
help the driver with the braking process. The connections between the
subcomponents of the ACC system in this mode are depicted in Fig-
ure 8.4.

Figure 8.2: The ACC system in CC mode

The ACC Controller supports the same modes as the ACC system: Cc, Acc
and Emergency (lowercase letters are used to distinguish them from the modes
supported by the ACC system). The component connections within the ACC
Controller are depicted in Figure 8.5 where the port names of ACC and its sub-
components SC and DC are marked in red. Component DC is deactivated when
the ACC Controller is in Cc mode, and activated when the ACC Controller is
in Acc or Emergency mode. As is indicated by white, black and grey colors,
Component SC has three different behaviors which correspond to its supported
modes Basic, Advance and Brake.
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Figure 8.3: The ACC system in ACC mode

Figure 8.4: The ACC system in EMERGENCY mode

Let α, β and γ denote the mode-specific behaviors of SC in Basic, Advance
and Brake, respectively. Suppose SC has a mode-dependent EFP: WCET, de-
noted as wcet such that SC.wcet = 50 when SC is in Basic; SC.wcet = 75
when SC is in Advance; and SC.wcet = 100 when SC is in Brake. Also
suppose SC has a mode-independent EFP: memory consumption, denoted as
mem = 40 in all modes. As a primitive component, SC can be formally de-
fined by the tuple,

<SC.IP,SC.OP,SC.pMSX,SC.B,SC.MIP,SC.MDEFP,SC.m,
SC.MB,SC.AIP,SC.AOP,SC.MS,SC.MP,SC.MSRM >

where SC.MSRM can be implemented by the algorithms described in Chapter 6
and
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Figure 8.5: ACC Controller in different modes

SC.IP = {SC.p0in,SC.p1in,SC.p2in,SC.p3in}
SC.OP = {SC.p0out,SC.p1out,SC.p2out}
SC.B = {α, β, γ}
SC.MDEFP = {mem}
SC.m = Basic
SC.MB = {Basic→ α,Advance→ β,Brake→ γ}
SC.AIP = {Basic→ {SC.p0in,SC.p1in,SC.p2in},

Advance→ {SC.p0in,SC.p1in,SC.p2in,SC.p3in},
Brake→ {SC.p1in,SC.p2in,SC.p3in}}

SC.AOP = {Basic→ {SC.p0out,SC.p1out},
Advance→ {SC.p0out,SC.p1out,SC.p2out},
Brake→ {SC.p0out,SC.p1out,SC.p2out}}

SC.MS = {Basic→ Activated,Advance→ Activated,
Brake→ Activated}

SC.MP = {(Basic, wcet)→ 50, (Advance, wcet)→ 75,
(Brake, wcet)→ 100}
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In addition, SC.MIP is another tuple,

< SC.M,SC.m0,SC.MIEFP >

where

SC.M = {Basic,Advance,Brake}
SC.m0 = Basic
SC.MIEFP = {mem = 40}

Furthermore, ACC has a mode-dependent EFP: CPU consumption, denoted
as cpu such that ACC.cpu = 60 when ACC is in Cc; ACC.cpu = 120 when
ACC is in Acc; and ACC.cpu = 150 when ACC is in Emergency. ACC also has
a mode-independent EFP: activation period, denoted as T such that ACC.T =
200 in all modes. As a composite component, ACC can be formally defined by
the tuple,

<ACC.IP,ACC.OP,ACC.pMSX,ACC.pMSX
in ,ACC.SC,ACC.Con,ACC.MIP,

ACC.MDEFP,ACC.m,ACC.AIP,ACC.AOP,ACC.MS,ACC.ASC,ACC.DSC,

ACC.ACon,ACC.MP,ACC.MSRM >

where ACC.MSRM can be implemented by the algorithms described in Chap-
ter 6 and

ACC.IP = {ACC.p0in,ACC.p1in,ACC.p2in,ACC.p3in,ACC.p4in}
ACC.OP = {ACC.p0out,ACC.p1out,ACC.p2out}
ACC.SC = {SC,DC}
ACC.Con = {(ACC.p0in,SC.p0in), (ACC.p1in,SC.p1in),

(ACC.p2in,SC.p2in), (SC.p0out,ACC.p0out),
(SC.p0out,ACC.p1out), (SC.p1out,ACC.p2out),
(SC.p2out,DC.p2in), (DC.p0out,SC.p3in),
(ACC.p3in,DC.p0in), (ACC.p4in,DC.p1in)}

ACC.MDEFP = {cpu}
ACC.m = Cc
ACC.AIP = {Cc→ {ACC.p0in, ACC.p

1
in,ACC.p2in},

Acc→ {ACC.p0in,ACC.p1in,ACC.p2in,ACC.p3in,
ACC.p4in},Emergency→ {ACC.p1in,ACC.p2in,
ACC.p3in,ACC.p4in}}
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ACC.AOP = {Cc→ {ACC.p0out,ACC.p1out,ACC.p2out},
Acc→ {ACC.p0out,ACC.p1out,ACC.p2out},
Emergency→ {ACC.p0out,ACC.p1out,ACC.p2out}}

ACC.MS = {Cc→ Activated,Acc→ Activated,
Emergency→ Activated}

ACC.ASC = {Cc→ {SC},Acc→ {SC,DC},Emergency→ {SC,DC}}
ACC.DSC = {Cc→ {DC},Acc→ ∅,Emergency→ ∅}
ACC.ACon = {Cc→ {(ACC.p0in,SC.p0in), (ACC.p1in,SC.p1in),

(ACC.p2in,SC.p2in), (SC.p0out,ACC.p0out),
(SC.p0out,ACC.p1out), (SC.p1out,ACC.p2out)},
Acc→ {(ACC.p0in,SC.p0in), (ACC.p1in,SC.p1in),
(ACC.p2in,SC.p2in), (SC.p0out,ACC.p0out),
(SC.p0out,ACC.p1out), (SC.p1out,ACC.p2out),
(SC.p2out,DC.p2in), (DC.p0out,SC.p3in),
(ACC.p3in,DC.p0in), (ACC.p4in,DC.p1in)},
Emergency→ {(ACC.p1in,SC.p1in), (ACC.p2in,SC.p2in),
(SC.p0out,ACC.p0out), (SC.p0out,ACC.p1out),
(SC.p1out,ACC.p2out), (SC.p2out,DC.p2in),
(DC.p0out,SC.p3in), (ACC.p3in,DC.p0in),
(ACC.p4in,DC.p1in)}}

ACC.MP = {(Cc, cpu)→ 60, (Acc, cpu)→ 120,
(Emergency, cpu)→ 150}

In addition, ACC.MIP is another tuple,

< ACC.M,ACC.m0,ACC.MSC,ACC.m0
SC,ACC.mSC,ACC.MM,ACC.MIEFP >

where ACC.MM will be presented as a set of MMAs in the next section. Fig-
ure 8.5 indicates that DC is running in the same mode when ACC is in Acc
and Emergency while it is deactivated otherwise. Let ON_DC be the mode
supported by DC, and then

ACC.M = {Cc,Acc,Emergency}
ACC.m0 = Cc
ACC.MSC = {SC→ {Basic,Advance,Brake},DC→ {ON_DC}}
ACC.m0

SC = {SC→ Basic, e→ Deactivated}
ACC.mSC = {SC→ Basic, e→ Deactivated}
ACC.MIEFP = {T = 200}
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8.2 Mode mapping for the ACC system
Since the supported modes of the components in Figure 8.1 are different, mode
mapping is required for the composition of these components. Table 8.1 and
8.2 present the mode mapping tables for the ACC system (also called Top here)
and the ACC Controller (ACC). It can be noticed that SL, OR, HMI, BA and
DC are all single-mode components. SL and HMI are mode-independent com-
ponents which always run in the same mode, while OR, BA and DC can be
deactivated in certain circumstances. The modes of Component SC, i.e. Basic,
Advance and Brake are mapped to Cc, Acc and Emergency of ACC.

Component Supported modes
ACC System (Top) CC ACC EMERGENCY
Speed Limit (SL) ON_SL

Object Recognition (OR) Deactivated ON_OR
HMI ON_HMI

ACC Controller (ACC) Cc Acc Emergency
Brake Assist (BA) Deactivated ON_BA

Table 8.1: The mode mapping table of the ACC system

Component Supported modes
ACC Controller (ACC) Cc Acc Emergency

Distance Controller (DC) Deactivated ON_DC
Speed Controller (SC) Basic Advance Brake

Table 8.2: The mode mapping table of the ACC Controller

The system has two MSSs. One is Top which can request to switch between
CC and ACC based on the driver’s command. When Top is in EMERGENCY,
it can only switch to CC manually. The other MSS is ACC which requests to
switch between Acc and Emergency by sending an MSR to its parent Top which
will decide whether to approve it or not. When ACC is in Acc, if the distance
from the preceding vehicle or an obstacle in front is closer than a threshold,
ACC will request to switch to Emergency. Similarly, when this distance returns
to normal after a successful braking process, ACC will request to switch back
to Acc. It should be noted that both Top and ACC may trigger a mode switch
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when Top is in EMERGENCY, potentially giving rise to a mode switch conflict.
In this thesis we assume such a conflict will never occur; we intend to address
this issue in our future work.

Figures 8.6 and 8.7 illustrate the parent MMA of Top and the child MMAs
of OR, ACC, BA, SL and HMI, which jointly define the mode mapping of
Top. At one level down, figures 8.8 and 8.9 illustrate the parent MMA of ACC
and the child MMAs of DC and SC, which jointly define the mode mapping
of ACC. All MMAs of the ACC system comply with the formal semantics in
Section 4.2. For complexity reasons, these MMAs only consider application-
specific mode switch scenarios where only Top and ACC are the MSSs.

Figure 8.6: The parent MMA of Top

8.3 Mode switch at runtime
To demonstrate our mode switch runtime mechanism in the ACC system, a
mode switch scenario is illustrated in Figure 8.10. It is assumed that ACC is in
Acc and requests a mode switch to Emergency as an MSS by sending an MSR
to Top, which approves the MSR as the MSDM by issuing an MSQ to its Type A
subcomponents, i.e. ACC and BA, which are asked to switch to Emergency and
ON_BA respectively. ACC checks its current state which allows a mode switch
and then propagates the MSQ to its Type A subcomponent SC that is asked to
switch to Brake. When Top receives all replies which are all MSOK, it will
trigger a mode switch by issuing an MSI that follows the propagation trace of
the MSQ. Each component will start its reconfiguration upon receiving an MSI
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Figure 8.7: The child MMAs of OR, ACC, BA, SL and HMI

and is expected to send an MSC upon mode switch completion. This procedure
strictly follows the mode switch dependency rule described in Section 3.3.

In fact, the ACC system has been previously studied by many existing
works. What is most interesting to compare our MSL with is the ACC case
study designed as a CBMMS in the SaveCCM component model [2]. In
SaveCCM, a special connector called "switch" is used to select the right out-
going components in different modes. This idea is widely adopted to deal
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Figure 8.8: The parent MMA of ACC

Figure 8.9: The child MMAs of DC and SC

with mode switch in a component-based framework, nonetheless, it is rather
rudimentary in that it lacks a systematic logic and cannot properly handle the
mode correlation between different components. The "switch" connector must
be manually implemented wherever a connection change is required. As a
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Figure 8.10: A mode switch scenario of the ACC system

consequence, it becomes an arduous task for complex component connections.
Moreover, many "switch" connectors must be revised when the component
hierarchy or component connection is changed. By contrast, our MSL can ef-
ficiently manage the complex procedures of a composable mode switch. A
major part of our MSL can be automated while being implemented. For exam-
ple, the external connection change of a component during a mode switch is
simply taken care of by its parent during the reconfiguration. Only the mode
mapping needs to be manually designed and it can be easily updated. In com-
parison with existing approaches to the handling of composable mode switch,
the advantage of our MSL becomes substantial as the complexity of a CBMMS
rapidly grows.

8.4 Mode switch timing analysis

Now let’s perform the mode switch timing analysis for the ACC system based
on the mode switch scenario illustrated in Figure 8.10. To simplify the prob-
lem, we assume no atomic component execution and that the transmission time
of each primitive is always 1 time unit. Besides, Table 8.3 shows the mode
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switch timing factors of the ACC system. Since ACC is the MSS and Top is
the MSDM, the time spent in the first phase is

T1 = ACC.msdt+ Top.tmsr = 2 + 1 = 3 (8.1)

Component MSDT PHT SCT RCT
Top – 3 – 6
ACC 2 2 2 5
BA – – 3 2
SC – – 3 4

Table 8.3: Mode switch timing factors of the ACC system

In order to derive T2, the QRT of Type A primitive components, i.e. BA
and SC, can be calculated first:

BA.qrt = BA.sct = 3 (8.2)

SC.qrt = SC.sct = 3 (8.3)

Then BA.qrt can be used to derive the QRT of its parent ACC:

ACC.qrt = ACC.sct+ACC.pht+ (ACC.tmsq + SC.qrt+ACC.tok)

= 2 + 2 + (1 + 3 + 1) = 9
(8.4)

Using the results from equations (8.2) and (8.4), we get

T2 = Top.pht+max{Top.tmsq +ACC.qrt+ Top.tok, T op.tmsq+

BA.qrt+ Top.tok} = 3 +max{1 + 9 + 1, 1 + 3 + 1} = 14
(8.5)

The calculation of T3 starts with the MST of BA and SC:

BA.mst = BA.rct = 2 (8.6)

SC.mst = SC.rct = 4 (8.7)

Then the MST of ACC can be obtained:
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ACC.mst = max{ACC.rct, ACC.tmsi + SC.mst+ACC.tmsc}
= max{5, 1 + 4 + 1} = 6

(8.8)

Using the results from equations (8.6) and (8.8), we get

T3 = max{Top.rct, Top.tmsi +ACC.mst+ Top.tmsc, T op.tmsi+

BA.mst+ Top.tmsc} = max{6, 1 + 6 + 1, 1 + 2 + 1} = 8
(8.9)

Finally, the complete mode switch time of the ACC system for this mode
switch scenario is

T = T1 + T2 + T3 = 3 + 14 + 8 = 25 (8.10)

The mode switch timing analysis above is also illustrated in Figure 8.11
which also indicates that the total mode switch time is 25.

8.5 Summary
In this chapter, we design an Adaptive Cruise Control (ACC) system by fol-
lowing the principles of MSL presented in previous chapters. As an exemplary
CBMMS, the ACC system is composed of both single-mode and multi-mode
components. All its multi-mode components comply with the mode-aware
component model. The mode mapping of the ACC system has been presented
by MMAs. The MSP protocol and the mode switch dependency rule have been
demonstrated by a specific mode switch scenario in the system. Furthermore,
the mode switch timing analysis is performed based on this mode switch sce-
nario.
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Figure 8.11: The mode switch timing analysis of the ACC system
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Chapter 9

Related work

This chapter presents and discusses some existing work related to mode switch.
Mode switch has been widely studied in many different research areas. What
we have investigated most is mode switch in component-based systems and
real-time systems. Due to the lack of standard terminology and the limitation
of our survey, we may fail to cite some valuable mode switch publications.
Nonetheless, we believe that the most well-known and influential works on
mode switch are covered here.

9.1 The extended MECHATRONICUML for structural
reconfiguration

To the best of our knowledge, the extended MECHATRONICUML [27] by Chris-
tian et al. is currently the most closely related work to our MSL. Inspired by
UML 2, the original MECHATRONICUML [6] is introduced to model the software
of mechatronic systems. It focuses on the development of distributed systems
and the ability of dynamic reconfiguration. The extended MECHATRONICUML
aims at enabling the reconfiguration of hierarchical components. Although
operational modes are not considered, the structural reconfiguration in the ex-
tended MECHATRONICUML is similar to our composable mode switch.

Both the extended MECHATRONICUML and our MSL intend to separate re-
configuration behavior and functional behavior without breaking component
encapsulation. Just like our model-aware component model, in the extended
MECHATRONICUML, each component has an additional reconfiguration port,
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which is bidirectional and resembles pMSX and pMSX
in in our mode-aware com-

ponent model. According to our mode-aware component model, the configura-
tion in each mode is pre-defined. In contrast, the extended MECHATRONICUML
does not explicitly address what the target configuration looks like after recon-
figuration.

Within each composite MECHATRONICUML component, reconfiguration is
locally managed and executed by two dedicated components: the Manager
and Executor. Figure 9.1 [27] illustrates such a composite MECHATRONICUML
component. The Manager is connected to both the parent and its subcompo-
nents via their reconfiguration ports (represented by "R" in Figure 9.1). Also,
the Manager and Executor are connected to each other via their reconfigura-
tion ports. Reconfiguration messages can be propagated between a composite
component and its Manager, or between its Manager and its subcomponents,
or from its Manager to its Executor when this composite component decides
to perform reconfiguration. A reconfiguration message plays the same role as
the MSI in our MSL. However, the information conveyed by a reconfigura-
tion message highly relies on the system functionality while an MSI is only
related to mode, thus enabling better separation of reconfiguration and func-
tional behaviors. The Manager controls the reconfiguration process, e.g. re-
configuration propagation and decision to make reconfiguration. The Executor
encapsulates reconfiguration rules and execute reconfiguration upon receiving
the reconfiguration command from the Manager at the same nested level. The
pair of Manager and Executor is comparable with the mode switch runtime
mechanism of our MSL, particularly the MSP protocol. Nonetheless, the prop-
agation criteria of a Manager is still not clear due to the fact that the propaga-
tion rules of different Managers can be different and they are highly related to
the system functionality. In contrast, thanks to the mode mapping mechanism,
in our MSL, the propagation of any primitive is predictable and all composite
components have the same propagation criteria.

The extended MECHATRONICUML is also aware of the real-time properties
by providing a preliminary analysis of the reconfiguration time. The essential
idea of this reconfiguration timing analysis is similar to our mode switch tim-
ing analysis, yet still rather preliminary due to the simple reconfiguration prop-
agation scheme. Besides, the mode switch timing analysis of MSL considers
atomic component execution which has not been addressed by the extended
MECHATRONICUML.

Moreover, the extended MECHATRONICUML suggests that system reconfig-
uration should be performed bottom-up, which is in line with our mode switch
dependency rule. Both the extended MECHATRONICUML and our MSL agree on
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Figure 9.1: A reconfigurable component in the extended MECHATRONICUML

the correctness of reconfiguration (or mode switch), i.e. the configuration (or
mode) consistency between different components.

To a large extent, the development of our MSL has been done in-
dependently of MECHATRONICUML, although we did get inspiration from
MECHATRONICUML in defining the voting for reconfiguration: an idea origi-
nating from the 2-phase commit protocol for distributed databases [7]. Upon
receiving a reconfiguration voting message, if the current condition of a com-
ponent does not allow reconfiguration, it will report this to its parent and re-
configuration will be cancelled. In our MSL, the MSQ propagation implements
the voting phase. A positive voting result entails an MSI propagation while a
negative voting result leads to an MSD propagation. In addition, the extended
MECHATRONICUML provides the formal modeling of reconfiguration based on
component story diagrams [61], which is a formal specification of structural
transformations. In contrast, MSL focuses on the mode switch synchronization
of different components rather than the mode switch of a single component.

9.2 The oracle-based mode change approach with
property networks

Tomas et al. propose an oracle-based approach [53] to handle composable
mode switch. The basic idea is to abstract the behavior of each component into
a local property network, constructed by a set of properties and the transitions
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between different properties, associated with property functions. A property
represents a particular feature of a component and can be either functional or
non-functional. The component mode can be mapped from a specific set of
its properties and their valuations. In fact, the component mode itself is also
modeled as a property. The local property networks of different components
at various levels can be interconnected and jointly become a global property
network. A mode switch event is initially detected by the valuation change of
a property in the global property network. Just like our mode switch propa-
gation, a subsequent network re-calculation will be discharged in a transitive
fashion. The network is stabilized when there is no property that changes its
valuation. Mode switch is treated as an additional step, possibly after each
global property network update. The update of component modes is achieved
by a top-down inspection that calls the mapping function of each component
from properties to component mode.

The oracle-based approach is also aware of real-time issues such as the
time required to update the property network. Due to the strong dependency
upon the number of properties and the number of their possible valuations, the
network stabilizing time is unpredictable. The solution presented in [53] is to
offline construct an oracle, i.e. a finite-state machine. Each state in the oracle
represents the stable state of the property network, including the valuation of all
properties. Since all intermediate states (when the property network is not sta-
bilized) are excluded from the oracle, the property network update can always
be referred to as a single transition of the oracle, with constant time. However,
the downside of using an oracle is that it breaks component encapsulation by
assuming that the global property networks are given. When a component pro-
vided by a third party is reused, its local property network is most likely not
visible. Consequently, the oracle construction becomes impossible to use.

Furthermore, a multi-mode component model is informally defined. For
instance, in each mode, a composite component is identified by a set of run-
ning subcomponents, their bindings (i.e. connections) and a set of attributes.
All of these elements are already included in the component configuration of
our mode-aware component model, which also considers other aspects such
as the mode-specific behavior. Additionally, the oracle-based approach allows
communication between a parent and its children during the propagation of a
triggering event in the property network. Each component must have a ded-
icated interface for this vertical propagation. This dedicated interface is not
explicitly specified in [53], whereas in [48] two such dedicated interfaces are
defined: setModeProperty and getModeProperty.

In [48], Matěj et al. discuss the mode hierarchy and represent it by Hier-
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archical Mode Automaton (HMA), which resembles our Mode Mapping Au-
tomata (MMA). HMA provides the static mode mapping the modes of a parent
and its subcomponents which are determined by the mapping from the local
property network. Nevertheless, to the best of our knowledge, HMA has not
taken the dynamic mode mapping into account. MMA allows the specification
of dynamic mode mapping rules by defining the DDMs of each component for
all possible mode switch scenarios.

The runtime architecture of the oracle-base approach is presented in [48].
The property network update and mode switch is realized by three specific
components: Mode Property Storage, Mode Property Reactor and Mode Re-
configurator. Mode Property Storage stores the current values of all properties
and it is connected to the dedicated interfaces setModeProperty and getMod-
eProperty of each common component. A new event can be triggered after the
value change of a property and then this event is sent to Mode Property Reac-
tor where the pre-computed oracle resides. Mode Property Reactor produces
new property values and a new configuration of the system. Finally, based
on the new configuration, Mode Reconfigurator carries out the reconfiguration
of each component, e.g. enabling/disabling components or connections. This
centralized runtime mechanism is easy to implement, however, two drawbacks
are exposed. One is that the oracle breaks component encapsulation. The other
is a scalability problem. The complexity of the three particular components is
in direct proportion to the number of components in the system. In contrast,
in our MSL, encapsulation is a key property and no component has the global
knowledge of the entire system, hence it scales quite well.

9.3 Component models supporting mode switch
There are numerous component models, some of which have already been ana-
lyzed, compared and classified [13] [32]. Among existing component models,
very few consider the mode switch problem. Here we make a non-exhaustive
but representative presentation of component models supporting mode switch,
including BlueArx, COMDES-II, Koala, MyCCM-HI, Rubus and SaveCCM.

BlueArx

BlueArx [36] is a component model developed by Bosch1 particularly for auto-
motive applications with constrained resources. BlueArx supports multi-mode

1http://www.bosch.com/
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applications built by BlueArx software components. Mode is regarded as a type
of semantic context information. Different modes imply different scheduling
or different control strategies. The mode definition is integrated in the com-
ponent specification and can be imported or exported from component ports.
An additional analytic interface is introduced to refer to modes for specify-
ing semantic or other context dependencies such as hardware features or tool
chains.

Bosch has come up with a heuristics approach to determine the supported
modes of different components. The heuristics provides reasonable mode can-
didates for each component by exploring various control conditions that dra-
matically influence system behavior and performance. This approach has been
implemented in the XGen tool. Unlike our MSL, the mode of a BlueArx com-
ponent is not explicitly defined until a multi-mode system is completely built.
In our MSL, the supported modes of a multi-mode component are well-defined
right after it is developed.

The major purpose of defining modes for the BlueArx component model is
more precise prediction of system properties, such as WCET. The mode switch
problem is barely addressed.

COMDES-II

COMDES-II (COMponent-based design of software for Distributed Embedded
Systems-version II) employs a hierarchical model to specify system architec-
ture [35]. A multi-mode component is treated as a pair of state machine Func-
tion Block (FB) and modal FB. The original objective for jointly using state
machine FBs and modal FBs is to specify the system sequential behavior (i.e.
control flow) by avoiding non-deterministic state transitions. A state machine
FB contains the state transition rules of a component and the corresponding
modal FB executes the control actions associated with the current state. In a
similar way, a state machine can define the mode transition graph of a compo-
nent and a modal FB includes the component configurations in different modes.
A state machine FB can trigger a mode switch based on its input. After receiv-
ing the mode switch command from the state machine FB, the modal FB will
switch to the configuration in the new mode. COMDES-II allows the compo-
sition of multi-mode components so that a pair of state machine FB and modal
FB can be included in another modal FB.
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Koala and SaveCCM

Koala [47], a component model developed by Philips2, is dedicated to man-
aging software complexity in consumer electronics. Koala does not explicitly
deal with mode switch. Instead, it proposes some primitive but practical solu-
tions to efficiently handle diversity. First, it introduces diversity interfaces for
components with multiple configurations. A component can change its con-
figuration based on the input values from a diversity interface. In addition,
Koala uses a special construct, the switch, to realize the structural diversity of a
component. The motivation comes from the frequent occurrence of this design
pattern. A switch is able to divert an incoming data flow to different outgoing
branches according to different conditions being evaluated at runtime. Both di-
versity interface and switch can be effectively implemented and they are easy
to manipulate. However, a major disadvantage is that the system functionality
is polluted by the diversity management. In our MSL, the system functionality
and the mode switch handling are completely orthogonal issues.

The SaveCCM component model [26] is designed specifically for the ve-
hicular domain, with its focus on predictability and analysability. Regarding
mode switch, SaveCCM adopts the same methodology as Koala, i.e. by us-
ing a dedicated component or connector switch with the same semantics as
the switch in Koala. Just like Koala, SaveCCM integrates the mode switch
handling mechanism into the functional behaviors of each component, con-
sequently preventing clear separation between system functionality and mode
switch management.

MyCCM-HI

MyCCM-HI (Make Your Component-Container Model-High Integrity) is a
component framework for critical, distributed, real time and embedded soft-
ware [8]. Software components and their behaviors are described by the in-
put architecture description language COAL (Component-Oriented Architec-
ture Language), which supports enumerating different operational modes of the
system and of each component. Each multi-mode component has an associated
mode automaton that implements its mode switch mechanism. Mode automata
components can interact with their sibling components or components at adja-
cent levels during a mode switch. This establishes the foundation for the mode
switch propagation among different parts of the system. MyCCM-HI provides
one of the most advanced frameworks among existing component models with

2http://www.philips.com/



130 Chapter 9. Related work

respect to mode switch handling.

Rubus

Rubus [25] is an industrial component model jointly developed by Arcticus
systems3 and Mälardalen University targeting embedded control systems for
ground vehicles. In Rubus, mode is essentially a system-level concept (for a
single node, i.e. Electronic Control Unit (ECU)) as different modes are typi-
cally defined at the top level through a mode/state transition diagram. In each
mode, there is a system-wide static configuration of components. A mode
switch of the system corresponds to the switch between different such config-
urations. Individual components have no sense of mode, i.e., are not mode-
aware and it is up to the system integrator to integrate them into a multi-mode
system. There is no published information about the Rubus mode switch han-
dling at runtime.

The above presented component models use different mechanisms to han-
dle the mode switch of CBMMSs, however, in contrast with our MSL, none
of them provide any systematic strategy to cope with the coordination of the
mode switches of different components. Besides, they also assume indepen-
dent mode switches between different components. Our MSL circumvents the
issues unexplored by these component models by focusing on the management
of interdependent mode switches between components.

9.4 Mutli-mode real-time systems and mode
switch

The research on mode switch in the real-time systems domain has been con-
ducted for decades. In the real-time literature, mode switch is also called "mode
change". There are miscellaneous topics studying multi-mode real-time sys-
tems and mode switch. Among them, topics that have been investigated most
are the design of mode switch protocols and the schedulability analysis during
a mode switch. For a multi-mode real-time system, a mode is typically repre-
sented by a set of running tasks, and a mode switch amounts to the suspension
of tasks running in the old mode but not in the new mode, and the activation
of tasks running in the new mode but not in the old mode. Sometimes, the

3http://www.arcticus-systems.com/
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parameters (e.g. the execution time or period) of tasks executing in both the
old mode and the new mode are changed when changing modes. An extensive
survey and classification of some basic mode switch protocols can be found
in [54].

In general, five types of tasks have been distinguished: (1) old-mode
aborted task that runs in the old mode and aborts its execution when a mode
switch is triggered; (2) old-mode completed task that runs in the old mode and
needs to complete its current execution before switching mode (this can be
compared to the component with atomic execution discussed in our MSL); (3)
changed task that runs in both the old and new modes but changes its parame-
ter in the new mode; (4) wholly new-mode task that only runs in the new mode
and is activated after a mode switch; (5) unchanged task that is always running
without being affected by any mode switch. A mode switch protocol can be
classified driven by two criteria. With respect to the treatment of unchanged
tasks, two categories can be identified: (1) protocols with periodicity which
does not affect the execution of unchanged tasks during a mode switch; (2)
protocols without periodicity which changes the activation of unchanged tasks
during a mode switch. Currently most mode switch protocols belong to the sec-
ond type, however, the first type has been proposed in recent years [44] [45].
With respect to the co-execution permission of old and new mode tasks, there
are (1) synchronous protocols where new mode tasks are never released until all
old mode tasks complete their last activation in the old mode; (2) asynchronous
protocols where old and new mode tasks are allowed to be executed at the same
time during a mode switch. Synchronous protocols, such as the Idle Time pro-
tocol [62], Maximum-Period Offset protocol [5] and Minimum Single Offset
protocol [54], do not cause temporal overload during a mode switch. There-
fore, no schedulability analysis is required during a mode switch. However,
synchronous protocols are notorious for its long mode switch latency which is
often intolerable to meet the timing constraints of real-time systems, thus more
efforts have been paid on asynchronous protocols, which enable swift mode
switch but require additional schedulability analysis during a mode switch.

A mode switch protocol is highly dependent on many contributing factors
such as the task model, the scheduling policy, and the hardware platform. Dif-
ferent combinations of these factors call for different mode switch protocols.
One of the earliest publications related to mode switch for real-time systems is
by Sha et al. [56], who develop a simple mode switch protocol in a prioritized
preemptive scheduling environment (Rate Monotonic (RM) scheduling) guar-
anteeing short and bounded mode switch latency. This protocol is improved by
Tindell et al. [63] who consider Deadline Monotonic (DM) scheduling instead
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of RM scheduling and introduce offsets for wholly new mode tasks to enhance
schedulability. Pedro and Burns [49] further extend the protocol in [63] by in-
troducing offsets for all new mode tasks. Real and Crespo [54] proposes a new
asynchronous mode switch protocol together with the calculation of necessary
offsets. M. Holenderski et al. [31] develop a mode switch protocol where mode
switch is carried out by a dedicated mode switch task with highest priority. An
old mode task can be aborted to perform a mode switch at pre-defined ter-
mination points to achieve swift mode switch. The above referenced works
are based on static scheduling policies. In addition, the mode switch prob-
lem has also been considered in conjunction with dynamic scheduling policies
such as Earliest Deadline First (EDF) [4] [58]. Moreover, Gerhard [17] pro-
vides a mode switch schedulability analysis in the context of offline scheduling.
While all the aforementioned works deal with uniprocessor system, the focus
is gradually being shifted onto multiprocessor platforms. For instance, two
protocols [46] (synchronous and asynchronous) are presented for symmetrical
multiprocessor platforms and they are further extended to uniform multipro-
cessor platforms [64]. Another mode switch protocol is developed for identical
multiprocessor platforms [45]. Compared with [46], mode independent tasks
are particularly considered in [45]. In [28], the mode switch timing analysis is
performed for distributed systems. Also, M. Negrean et al. [44] extend the con-
tribution in [28] by concerning communicating tasks and the recurrent effect
of a mode switch in distributed systems.

Temporal isolation in real-time scheduling has also been intensively inves-
tigated in multi-mode real-time systems. The de facto approach for tempo-
ral isolation is the use of servers. The dynamic reconfiguration of servers at
runtime can be regarded as a mode switch. Reconfigurable servers are sug-
gested for adaptive resource reservation [59] [55]. A more recent work [37]
replaces the TDMA server used in [59] by CBS server and finds that CBS
is more suited to reconfigurations than TDMA. Another interesting work on
temporal isolation and mode switch is by N. Fisher and M. Ahmed [16], who
take both application-level and resource-level mode switches into account. Al-
though [16] is based on Explicit-Deadline Periodic (EDP) resource model that
does not support dynamic reconfiguration, it provides sufficient schedulability
analysis of a sequence of mode switches with pseudo-polynomial time com-
plexity and good scalability. In addition, Phan et al. extend the traditional Real-
Time Calculus to handle multi-mode [50], and present a multi-mode automaton
model for modeling multi-mode applications, together with an interface-based
technique for compositional analysis [51] and a semantic framework for mode
switch protocols [52].
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The mode switch handling in the above approaches from the real-time lit-
erature is rather complementary to our MSL. On the one hand, in the real-time
community, the top concern of a mode switch is real-time tasks and schedu-
lability which is not really considered by MSL. On the other hand, MSL pays
more attention to the mode switches of reusable components rather than tasks,
which requires a different handling than the mode switch of a monolithic multi-
mode real-time system.

9.5 Languages supporting mode switch
The mode switch problem has also been covered by some programming and
specification languages, such as AADL, Giotto, TDL, the extended Darwin,
Modechart and Mode-automata.

AADL

The Architecture Analysis & Design Language (AADL) [15], is a model-
ing language that supports analyses of a system’s architecture with respect
to performance-critical properties at the component level. AADL represents
modes as states within a state machine abstraction, where each state corre-
sponds to a distinct mode and the transition between different states represents
mode switch. The initial mode of a component must be explicitly declared.
For each component, a mode switch is triggered by a predefined mode switch
event arriving at its input event port(s). A component can also spontaneously
trigger a mode switch from its output event port(s). In each mode, the running
components and their connections are strictly defined. Furthermore, mode-
specific properties of a component can also be defined to distinguish its al-
ternative behaviors in different modes. For instance, a component may have
different worst-case execution time in different modes. AADL focuses on the
mode switch of an individual component, thus the relation between the mode
switches in different components is not explicitly specified.

Giotto and TDL

Apart from AADL, Giotto [29] and TDL [60] also support multi-mode and
mode switch. Giotto is a time-triggered language for embedded programming.
It considers a mode as the periodic invocation of a fixed set of tasks. The time-
triggered nature of Giotto makes it suitable for safety-critical applications, yet
at the sacrifice of flexibility. Compared with Giotto, TDL is different with
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respect to the mode declaration and mode switch conditions, but it suffers from
the same limitation as Giotto due to its time-triggered nature.

The extended Darwin

Dan et al. [30] introduce modes to software architectures. Mode is regarded as
a new element of architectural descriptions. They also incorporate the notion
of mode to an existing Architecture Description Language: Darwin [40]. To be
aware of modes, Darwin is extended by adding a mode attribute to each com-
ponent indicating its current mode. They identify that the mode of a composite
component is directly related to the modes of its subcomponents, i.e. the need
of mode mapping. Yet they provide no solution that can be compared with
our mode mapping mechanism. The variation of the software architecture and
different components in different modes is illustrated by an automotive case
study, where a mode switch can imply the change of the component running
status, functionality and connections. This is rather consistent with our MSL.
The mode switch handling is not considered in [30].

Modechart

Modechart [34] is a specification language for real-time systems. The seman-
tics of Modechart is based on Real Time Logic (RTL) [33]. Modechart focuses
on the specification of absolute timing properties as well as modes and mode
transitions. Just like components, a mode can also be hierarchical in Mod-
echart. There are primitive or compound modes that are classified in the same
way as primitive and composite components. Moreover, both serial and parallel
mode relations are defined. Actually, the mode concept in Modechart is more
general than the mode in our MSL or most other related works, since some-
times even concurrent running threads are considered as parallel modes. Mod-
echart assumes instantaneous mode transition and does not aim for component-
based systems.

Mode-automata

Mode-automata [41] [42] is a programming model proposed as an extension of
the synchronous language Lustre [11]. Devoted to the description of running
modes of reactive systems, mode-automata allows a collection of execution
states to be considered as a mode, and the complete behavior of a complex
system is a sequence of modes. A program can be projected onto a given mode
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so that the behavior restricted to this mode can be obtained. Moreover, paral-
lel and hierarchical compositions of mode-automata are also supported. This
enables a hierarchical mode structure just like Modechart. Mode-automata not
only enhances the program readability of Lustre, but also improves the qual-
ity of the generated code. The hierarchical mode structure of mode-automata
resembles the hierarchical component structure in a component-based system.
However, the mode decomposition of mode-automata is based on the system
behavior rather than reusable components.

Compared with MSL, most of these languages regard mode switch as a sys-
tem concept. AADL and the extended Darwin consider the mode switch of a
component, however, AADL assumes independent mode switch between com-
ponents. The extended Darwin is aware of the mode mapping between com-
ponents, yet provides no mode switch handling at runtime. Actually, MSL can
benefit from some new specification languages, which can, for instance, define
primitive components and composite components according to the mode-aware
component model and the mode mapping rules of a composite component that
are represented by MMA.
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Chapter 10

Conclusions and future work

Mode switch for Component-Based Multi-Mode Systems (CBMMSs) is to
date an emerging research problem that has been barely explored. The main
contribution of our work, Mode Switch Logic (MSL), provides a theoretical
framework for the development of CBMMSs and the handling of its compos-
able mode switch. As the closure of this thesis, this chapter summarizes our
research results. Moreover, we shed some light on the evolution trace of MSL,
which has been subject to frequent modification since its initial version in [18].
Actually, MSL is further revised so aggressively in this thesis that it looks quite
different from the MSL presented in any of our previous publications. Finally,
we discuss some open issues in our research area and our future work.

10.1 Summary

This thesis is originally motivated by two underlying technologies: mode
switch and Component-Based Software Engineering (CBSE), both of which
offer effective tactics for the development of complex embedded systems. As
is introduced in Chapter 1, we, after combining both technologies, study the
composable mode switch of CBMMSs. As the output of our research, an MSL
has been developed to overcome the major challenges identified of such a com-
posable mode switch. Our MSL comprises a mode-aware component model,
a mode mapping mechanism and a mode switch runtime mechanism. Further-
more, the mode switch runtime mechanism consists of the MSP protocol and
the mode switch dependency rule. Described in Chapter 2, the mode-aware
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component model distinguishes itself from traditional component models in
three aspects:

• It allows a multi-mode component to have unique configurations in dif-
ferent modes.

• It introduces dedicated mode switch ports to each multi-mode compo-
nent for mode-dedicated communication between components.

• It distributes the mode switch runtime mechanism to each component to
control its mode switch behavior.

Since the mode-aware component model only focuses on mode switch and
it is defined in a generic fashion, it should be able to guide many existing
component models to become mode-aware.

The mode switch runtime mechanism is spread over chapters 3 and 5.
Chapter 3 explains the MSP protocol and the mode switch dependency rule
assuming no atomic component execution. The MSP protocol is essentially a
distributed algorithm which functions like a communication protocol. A cou-
ple of types of primitives have been defined. Then following the MSP protocol,
each component emits and receives different types of primitives and behaves
accordingly during the mode switch propagation. Once a mode switch is trig-
gered as a consequence of the mode switch propagation, certain components
will switch mode while following the mode switch dependency rule that en-
forces the mode switch completion order among different components.

The MSP protocol actually cannot fulfill its duty alone, as it requires the
assistance of mode mapping which is elucidated in Chapter 4. Mode mapping
is required for the composition of multi-mode components and for determining
which components must switch mode as well as their new modes for each pos-
sible mode switch scenario. Chapter 4 presents the mode mapping mechanism
of MSL. Each composite component defines a set of mode mapping rules pre-
sented by Mode Mapping Automata (MMA) for the mode mapping between
the modes of itself and its subcomponents.

Chapter 5 uncovers a new problem for a composable mode switch: atomic
component execution, which cannot be interrupted by the primitives transmit-
ted during the mode switch propagation. This problem is tackled by slightly
extending the MSP protocol for certain components, without altering the mode
switch dependency rule and the mode mapping mechanism.

Integrating all the elements of MSL presented before, Chapter 6 provides
algorithms implementing the mode switch runtime mechanism for primitive



10.2 The evolution trace of MSL 139

components, non-top composite components and the top component, respec-
tively. These algorithms establish the foundation for applying MSL to a real-
world system in future.

We consider not only the correctness of MSL but also its timing effects. A
key real-time metric of a multi-mode system is its mode switch time. Chapter 7
focuses on how to calculate the mode switch time of a CBMMS and its com-
ponents for MSL. In addition, a model-checking approach is also proposed to
obtain atomic component execution time.

Moreover, we also demonstrate the key elements of MSL in a case study: an
Adaptive Cruise Control (ACC) system in Chapter 8, which contributes extra
value to the pracaticability of MSL.

10.2 The evolution trace of MSL

By comparing the thesis and our previous publications, one shall witness the
remarkable evolution of our MSL. The reason is that the lack of preceding
works gives rise to the tentative development of MSL. As our understanding
of this research problem goes deeper, the flaws and limitations of old ideas
proposed before may be spotted and thus replaced by new ideas.

The initial version of MSL can be found in [18], which includes the mode-
aware component model, the MSP protocol and the mode switch dependency
rule. The mode-aware component model introduces a single dedicated mode
switch port for both primitive components and composite components. A com-
ponent can define a unique configuration in each mode, however, only a few
factors included in a configuration are identified. The initial version of the
MSP protocol is called The MSR propagation mechanism. MSR is the only one
primitive used for mode switch propagation. No mode mapping is considered,
therefore, it is assumed that the MSR issued by an MSS will lead to the mode
switches of all the other components. Since there is no MSDM, an MSR can
never be rejected and it immediately aborts the current execution of the receiver
which will then start to switch mode. The original mode switch dependency
rule in [18] is dependent on the data flow of a system. For two components
ci and cj with the data flow from ci to cj , it requires that ci must complete its
mode switch before cj to avoid the case that cj running in the new mode still
receives the data from ci running in the old mode. In some situations, this is
desired. Nevertheless, this may not be necessary for other types of systems.
Besides, the bottom-up mode switch dependency is addressed in [18]. There-
after, the mode switch timing analysis based on the initial version of MSL is
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provided in [21], yet with the unrealistic assumption that there is no atomic
component execution.

Mode mapping is first emphasized in [20], where it is addressed that a
mode switch can be a local activity within some composite components instead
of always being a global activity. The MSP protocol is further extended by
only propagating an MSR to the components which need to switch mode. Both
the mode mapping table and Mode Mapping Automata (MMA) are presented
to express mode mapping rules. The original MMA must recognize an MSR
that is treated as an external signal. Besides, deactivated components are not
considered in any MMA.

The mode switch dependency rule is first extended in [22]. Compared with
the original version, the extended version removes the mode switch completion
dependency between sibling components. A composite component only needs
to collect the mode switch completion signals from its subcomponents. MSC
is called ms_done for this extended version. Apart from the extended mode
switch dependency rule, its correctness and the correctness of the original MSR
protocol are also proved in [22]. Another revision of MSL in [22] is the mode-
aware component model where two dedicated mode switch ports are used for
a composite component.

The atomic component execution problem is first addressed and handled
in [23]. The MSP protocol is revised in the sense that an MSR can be either ap-
proved or rejected by the MSDM. If an MSR is approved, the MSDM will issue
an MSI to trigger a mode switch. It is assumed in [23] that an Atomic Execu-
tion Group (AEG) (see Chapter 5) is an individual component. Under such an
assumption, the handling of atomic component execution is achieved by delay-
ing the MSI propagation from an AEG component to its subcomponents. The
mode switch timing analysis is also updated in [23] based on the revised MSP
protocol, including the model-checking approach used to obtain the worst-case
atomic execution time of an AEG. Paper [23] also provides a preliminary ap-
proach in order to resolve the conflict due to multiple mode switch triggering.
This is not included in the thesis and the in-depth solution will be included in
our future work.

The latest version of MSL before the thesis is in [19]. The mode-aware
component model is extended by further considering atomicity as an EFP in
component configuration. The cooperation of the MSP protocol revised in [23]
and mode mapping is highlighted in [19].

Finally, we would like to outline the additional changes of MSL in this
thesis:
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• A more complete definition of the mode-aware component model.
More items included in component configuration are identified, such
as activated input and output ports, mode-dependent EFPs and mode-
independent EFPs.

• The introduction of the voting phase in the MSP protocol. This prevents
the case that a component is forced to switch mode even if its current
state does not allow a mode switch.

• The formulation of key properties associated with the correctness of the
revised MSP protocol and the mode switch dependency rule, as well as
the proofs of the correctness of these properties.

• The updated MMA and the clear separation between the MSP protocol
and the MMA. An MMA does not need to care about the primitive type
of an external signal. And deactivated components are also considered
in the MMA.

• A more general model of the AEG, which is not limited to an individual
component as is assumed in [23] but can also include multiple compo-
nents. The handling of atomic component execution is moved from an
AEG component to a non-AEG component with AEG(s) among its sub-
components.

• The mode switch timing analysis based on the revised mode switch run-
time mechanism. Besides, more timing factors are considered making
the calculation result more reasonable.

Apart from the major changes above, the case study: the ACC system in
Chapter 8 has never been published before. And myriads of new concepts and
minor changes can also be found in the thesis.

10.3 Future work
Currently, the least attention in our work is paid to the verification and eval-
uation of MSL. When we come up with some new ideas, our initial attempt
is to implement these ideas in UPPAAL by modeling a number of small but
representative examples and check the correctness by verifying some proper-
ties formulated from the UPPAAL models. Since UPPAAL tends to succumb
to state explosion, the notorious problem for all model-checking approaches,
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the size of the system being modeled in UPPAAL cannot be too big. As a
consequence, positive verification results from the examples modeled in UP-
PAAL is insufficient to be convincing in general. Even though the correctness
of the mode switch runtime mechanism has been proved in the thesis, we are
still in need of the extensive simulation and evaluation of MSL. Our goal is to
develop a tool where a CBMMS can be automatically generated with regard
to some pre-defined parameters such as the maximum number of components,
the maximum number of children of a composite component and the maximum
depth level in the system. The system should be visualized and the primitive
transmission in the process of mode switch can be monitored. The algorithms
described in Chapter 6 are implemented in the generated components. A mode
switch scenario can be either automatically generated or manually defined as
the stimuli of the system. Then the behavior of each component for this mode
switch scenario can be observed. By repeating the simulation of a variety of
systems with random parameters, we can assert if our MSL works properly
for most CBMMSs. Then the positive evaluation result would make a closer
step towards the implementation of MSL in a real-world CBMMS in future.
Another alternative is to resort to theorem proof techniques to prove the cor-
rectness of MSL. Theorem proving is relatively less intuitive and more difficult
to grasp, whereas it can produce a more convincing result.

In this thesis, we have made an unrealistic assumption that no mode switch
is triggered when a system is switching mode. In practice, multiple MSSs
can be defined and they may trigger two different mode switch scenarios that
interfere with each other. According to the preliminary approach in [23], an
arbitration mechanism can be applied to the top component to resolve such
conflict. However, the top component cannot always be the MSDM and thus
a more in-depth approach (one of our ongoing works) is required. Another
ongoing work is to implement MSL in the ProCom [10] component model. It is
our ambition to add mode switch support to ProCom and other well-developed
component models.

According to the MSP protocol, a lot of primitives need to be transmit-
ted during mode switch propagation. A primitive often has to be forwarded
many times to reach the final destination. Conceptually, this is the right strat-
egy. However, it does not have to be implemented in this way for systems with
stringent timing constraints. For a statically configured system, it should be
possible to pre-define all the possible mode switch scenarios and pre-calculate
the recipients of each primitive. In this way, all the pre-calculated results before
runtime can be stored in a particular component which has the global knowl-
edge of the entire system and is able to communicate with all the other compo-
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nents. The MSP protocol can be replaced by the multicast of primitives from
that component. Once the system is built and ready to run, the overall per-
formance of a system becomes more important than adhering to the principles
of CBSE. Therefore, we may consider the practical optimization of MSL at
runtime in future.
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[12] I. Crnković and M. Larsson. Building reliable component-based software
systems. Artech House, 2002.
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