Formal Execution Semantics for Asynchronous
Constructs of AADL

Jiale Zhou, Andreas Johnsen, Kristina Lundqvist
School of Innovation Design and Technology
Malardalen University, Vasteras, Sweden
{zhou.jiale, andreas.johnsen, kristina.lundqvist{@mdh.se

ABSTRACT

The Architecture Analysis and Design Language (AADL)
has been widely accepted to support the development pro-
cess of Distributed Real-time and Embedded (DRE) systems
and ease the tension of analyzing the systems’ non-functional
properties. The AADL standard prescribes the dispatching
and scheduling semantics for the thread components in the
system using natural language. The lack of formal semantics
limits the possibility to perform formal verification of AADL
specifications. The main contribution of this paper is a map-
ping from a substantial asynchronous subset of AADL into
the TASM language, allowing us to perform resource con-
sumption and schedulability analysis of AADL models. A
small case study is presented as a validation of the usefulness
of this work.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal Methods; D.2.11 [Software Engineering]:
Software Architectures— Languages

General Terms
Reliability, Verification

Keywords

AADL, TASM, verification, formal methods, formal seman-
tics

1. INTRODUCTION

Distributed Real-time and Embedded (DRE) systems de-
ployed for instance on avionics and aerospace platforms is
one of the most safety-critical categories of systems. Usually,
DRE systems consist of many local subsystems. Compared
with more traditional all-in-one systems, distributed systems
tend to have a larger number of non-deterministic aspects.
Therefore, designing distributed systems demands more con-
trol during the development phases and the use of rigorous

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
ACES-MB’12, September 30 2012, Innsbruck, Austria

Copyright 2012 ACM 978-1-4503-1800-6/12/09 ...$15.00.

methodologies. Moreover, ensuring that the produced sys-
tem conforms to all stringent functional and non-functional
requirements is a very complex and time consuming task.
For instance, one common headache with DRE systems is
how to, with a high degree of trust, analyze the impact of
event triggered aperiodic/sporadic threads to its local sub-
system and verify the functional and non-functional require-
ments of the local system under this circumstance. The
model- and component-based development approaches have
emerged as attractive options for the development of DRE
systems. The Architecture Analysis and Design Language
(AADL) [16] has been widely accepted to support the de-
velopment process of DRE systems and ease the tension of
analyzing the systems’ non-functional properties. However,
the lack of formal semantics limits the possibility to per-
form formal verification of AADL specifications. Although
efforts have been made towards specifying formal seman-
tics of AADL [1,3,7-11,17, 18] there are still some open
questions left. For instance, asynchronous interactions, i.e.,
aperiodic and sporadic threads, are to our knowledge not
covered. Within this context, we are motivated to consider
an asynchronous subset of AADL in our work of providing
a formal semantics of AADL.

We have chosen Timed Abstract State Machine (TASM)
[14] as the language to define the formal semantics. TASM is
a novel specification language, which has been shown the po-
tential to express formal semantics of AADL [15]. Especially,
two distinctive features make TASM stand out. Firstly,
TASM supports the specification of both functional and non-
functional behavior. The non-functional properties that can
be expressed include timing behavior and resource consump-
tion. Secondly, the TASM toolset provides procedures for
analysis of completeness, consistency, execution time and
resource consumption. Analysis of time-related properties
is provided through a translation into timed automata — the
input language for the UPPAAL model-checker [2].

The main contribution of this paper is a translation of
a chosen subset of AADL into TASM, allowing us to per-
form resource consumption and schedulability analysis. and
schedulability analysis of AADL models. A small case study
is presented to show how AADL models can benefit from
this work. The rest of the paper is organized using the fol-
lowing structure: Brief overviews of AADL and TASM are
presented in Section 2 and Section 3, respectively. Section
4 describes the formal semantics for the chosen subset of
AADL. Section 5 presents the corresponding transformation
rules. Section 6 shows a case study applying the translation
and performing the resource consumption and schedulability

analysis. Some concluding remarks can be found in Section
7.

2. A BRIEF OVERVIEW OF AADL

AADL was released and published as a Society of Au-
tomotive Engineers (SAE) Standard AS5506 in 2004 [16].
It is a textual and graphical language, which describes the
architecture of component-based systems as an assembly of
software components mapped onto components representing
the execution platform.

Data, subprograms, threads, threads group and processes
collectively represent application software components. Pro-
cessor, memory, bus and device collectively represent the
execution platform. Execution platform components sup-
port the scheduling and execution of threads, the storage
of data and code, and the communication behavior between
processes. Systems are called compositional components.
They allow software and execution platform components to
be organized into hierarchical structures with well-defined
features. AADL offers an execution model that addresses
most of the runtime-needs of real-time systems: (1) a set of
execution model properties can be attached to each AADL
declaration; (2) the semantics of the execution model is also
described, namely, the execution semantics of AADL. How-
ever, most of it is defined using a natural or semi-formal
language. The absence of a precise mathematical semantics
makes any pretense of achieving formal verification mean-
ingless [11].

2.1 The Chosen Subset of AADL

The chosen subset includes AADL thread and processor
components. AADL thread component is the only com-
ponent with execution semantics in AADL. In the chosen
subset of AADL, an AADL thread can be periodic, aperi-
odic, or sporadic. Periodic thread dispatches are solely de-
termined by the time interval specified through the Period
property value. An aperiodic or sporadic thread dispatch is
triggered non-deterministically. But for sporadic threads, a
minimum interval time between successive dispatches has
to be specified through the Period property value. The
property Priority specifies the execution order when more
than one threads are ready to execute. The range property
Compute_Ezecution_Time defines the Best Case Execution
Time (BCET) and Worst Case Execution Time (WCET).
For brevity, we only consider WCET in the paper. AADL
processor component is an abstraction of the runtime envi-
ronment and execution platform, where a scheduler is im-
plicitly included. In this paper, we use the terms sched-
uler and processor interchangeably. The scheduler plays the
role in coordinating all thread executions on one proces-
sor as well as concurrent access to shared resources. Vari-
ous scheduling protocols can be specified according to the
Scheduling_Protocol property value. In this paper, we con-
sider a preemptive fixed-priority scheduler.

Definition 1. An AADL-specification A is a pair <Pr, T>
where:

e Pr is a processor, which is a triple <Ident, T_Bind,
Sch_Protocol>:

— Ident denotes the identifier of the processor, which
must be unique in the range of the specification.

— T_Bind denotes a set of threads bound to the pro-
cessor, where T_Bind C T.

— Sch_Protocol denotes the Scheduling_Protocol

property. We assume that the value of the prop-
erty is "preemptive fixed-priority”.

e T is a set of thread components. Let t range over T.
A thread ¢; is a pair <Id;, Sch_Prop;>:

— Id; denotes the identifier of the thread t; which
must be unique in the range of the specification.

— Sch_Prop; denotes a set of scheduling properties.
More specifically, Sch_Prop;= <Dispatch_Proto-
col;, Compute_Execution_Time;, Compute_De-
adline;, Priority;, Period; > of the form Property
i:= Identifier => Value. We assume that the
value of the Dispatch_Protocol can possibly be

P,

“aperiodic”, "sporadic”, and "periodic”.

3. A BRIEF OVERVIEW OF TASM

TASM ([14] was born at MIT, USA, and now the toolset
is being extended at Malardalen University, Sweden. TASM
is a formal language for the specification of embedded real-
time systems. The TASM language extends the Abstract
State Machine (ASM) [5] to enable the expression of timing
and resource consumption.

Definition 2. A TASM specification is a pair <E, ASM>
where:

e E is the environment, which is a triple <EV, TU, ER>:

— EV denotes Environment Variables, the global
variables that affect and are updated by machine
execution,

— TU denotes the Type Universe, a set of types that
includes real numbers, Integer, Boolean, and user-
defined types,

— ER denotes Environment Resources, a set of nam-
ed resources. More specifically, ER={(rn, rs) | rn
is the resource name, and r; is the resource size}.
Examples of resources include memory, power,
and bus bandwidth.

e ASM is the abstract state machine, which is a 4-tuple
<MV, CV, 1V, R>:

— MYV denotes Monitored Variables, the set of en-
vironment variables that affects the machine exe-
cution,

— CV denotes Controlled Variables, the set of envi-
ronment variables that the machine updates,

— IV denotes Internal Variables, the set of local vari-
ables and they are visible merely inside the ma-
chine,

— R denotes a set of Rules, R={<n,t,RR,;r> | n
is the rule name; t specifies the duration of a
rule execution, which can be a single value or a
range value [tmin, tmaz] Or the keyword nezt, the
next construct essentially states that time should
elapse until one of the other rules is enabled. Es-
pecially, the lack of a time annotation is assumed

to mean t = 0; RR is the resource consumption
during the rule execution. Similarly, the omission
of a resource consumption annotation is assumed
to mean zero resource consumption; r is a rule of
the form ”if guard then action”, where guard is
an expression depending on the monitored or in-
ternal variables, and action is a set of updates of
the controlled or internal variables. We can also
use the rule “else then action” which is enabled
merely when no other rules are enabled.}.

As an extension of ASM, TASM describes system behaviors
as the computing steps of an abstract machine with time
and resource annotations. The basic execution semantics of
a TASM machine is described as follows: In one step, it reads
the monitored variables, selects a rule of which guard is sat-
isfied, consumes the specified resources, and after waiting
for the duration of the execution, it applies the update set
instantaneously. If more than one rules are enabled at the
same time, it non-deterministically selects one to execute.
In TASM, time progresses in a fixed constant step called a
clock tick which is the minimum time quota. As a specifica-
tion language, TASM supports the concepts of hierarchical
composition, parallelism, communication and synchroniza-
tion. Hierarchical composition is achieved by means of aux-
iliary machines - function machines and sub machines. Par-
allelism is naturally supported, since TASM main machines
are executed in parallel. Communication and synchroniza-
tion between machines can be achieved by communication
channels [13] whose semantics is similar to the concept of
rendezvous in the Ada programming language.

4. FORMAL SEMANTICS FOR THE SUB-
SET OF AADL

In this section, the formal semantics for the chosen subset
of AADL is presented in TASM. Firstly, we present the for-
mal semantics for the AADL thread component, which can
be regarded as two subcomponents - Dispatcher and Thread.
For each sub-component, the formal semantics is described
in terms of the sub-component’s states and a corresponding
TASM main machine. Secondly, we present the formal se-
mantics for the scheduler in the form of its possible states
and a TASM main machine with several Auxiliary Machines
(AM).

4.1 AADL Thread

In AADL, periodic, aperiodic, and sporadic threads have
the same life cycle [4] but different dispatch protocols. There-
fore, we regard the thread component as Dispatcher and
Thread.

4.1.1 Dispatcher

As its name implies, Dispatcher represents the behavior
of a dispatch protocol which can be periodic, aperiodic, or
sporadic according to the Dispatch_Protocol property value.

Dispatcher can have two possible states - dispatch (ini-
tial state) and wait. The dispatch state denotes that a dis-
patch of the thread is triggered immediately (if the thread
is periodic) or after a non-deterministic time duration (if
the thread is aperiodic or sporadic). The wait state denotes
that Dispatcher is waiting for the elapse of a specified period
to send the next request. In the Dispatcher model, a state

variable, disState, is used to denote the current state of the
dispatcher. Its initial value is dispatch.

Dispatcher main machine consists of five rules, as shown
in Listing 1. Rule Dispatch changes the dispatcher state
from dispatch to wait and sends a dispatch request through
a global variable disFlag to Thread. We use a variable timer
to trace the elapsed time between dispatches. Rule NonDe-
terministic does nothing, but costs 1 clock tick. When the
modeled thread is aperiodic or sporadic, Rule NonDeter-
ministic and Rule Dispatch are always enabled or disabled
simultaneously. As a reminder, in TASM, if more than one
rules in the same machine are enabled simultaneously, solely
one of them will be non-deterministically selected to execute.
We introduce this inconsistency purposely to simulate the
non-deterministic scenario of dispatching aperiodic and spo-
radic threads. When the modeled thread is periodic, Rule
NonDeterministic is always disabled. Both Rule Waiting
and Rule WaitComplete cost 1 clock tick. They are used to
simulate the wait state of the dispatcher. For a periodic or
sporadic thread’s dispatcher, Rule Waiting is enabled when
the period of the corresponding thread does not elapse. On
the contrary, Rule WaitComplete is enabled when the pe-
riod has elapsed and updates its state to dispatch. For an
aperiodic thread’s dispatcher, the specified period is zero, so
both rules are always disabled. The last rule, Rule Else is
used to keep the machine alive, in case no other rules are
enabled.

4.1.2 Thread

Thread is responsible for modeling the execution seman-
tics of AADL threads once they are dispatched. Within the
AADL context, the complete AADL thread execution model
incorporates complex functional and non-functional behav-
iors. For brevity and simplicity, our model solely focuses
on basic functional behaviors - thread dispatching, thread
scheduling and execution, but ignores mode transition, re-
mote subprogram, data communication and error recovery.
However, these behaviors are subjects for future work.

The possible undergoing thread states can be simplified
into awaiting_dispatch (initial state), compute, and complete.
The awaiting_dispatch state denotes that a thread is await-
ing a dispatch request. The compute state denotes a thread
is currently computing. The complete state denotes a thread
completes its computation and returns to the awaiting_dispa-
tch state. More detailed, the compute state can be further
refined into two states - ready and running. The ready state
denotes that a thread is awaiting the allocation of neces-
sary resources for performing the upcoming execution, such
as memory or CPU-time. The running state denotes that
a thread is currently occupying the CPU and being exe-
cuted. In the Thread model, two hierarchical state variables
are used - thdState and thdCmpState which respectively de-
scribe the current thread state and the current refined com-
pute state. The initial value of thdState is awaiting_dispatch.
The initial value of thdCmpState is none which merely de-
notes the thread is not being executed.

The execution semantics of a thread is expressed as a main
machine with six rules, as is shown in Listing 2. Rule Wasit-
Dispatch is enabled when Thread is in the awaiting_dispatch
state and a dispatch request is received. It changes the state
of Thread from awaiting_dispatch to compute, and updates
the thdCmpState variable to be the ready state. Rule Com-
puteReady blocks the Thread machine until a signal through

runThd channel is received from Scheduler that also updates
the Thread machine to the running state. A thread within
the compute state may be subjected to preemption, where
its time and resource consumption must be stalled. TASM
does not allow a rule execution to be interrupted by any
other rule. In order to model the behavior of preemption,
Rule ComputeRunning and ComputeComplete are defined.
Both Rule ComputeRunning and ComputeComplete cost 1
clock tick. When the thread is in the running state, Rule
ComputeRunning is enabled repeatedly when the amount
of elapsed clock ticks is less than WCET-1. Rule Com-
puteComplete is enabled when the amount of elapsed clock
ticks is equal to WCET-1, and then changes thread state
to the complete state. Rule Complete is used to complete
the current dispatch of the thread. Currently this rule solely
changes the thread state back to the awaiting_dispatch state,
but will be used to implement additional actions of data
communication and shared resources in future work. Rule
WaitNextDispatch is used to model the idle time between
dispatch requests.

4.2 Scheduler

A scheduler grants Thread to execute on the processor
based on the specified priority scheme. It ensures that only
one thread is being executed on a particular processor. If
no thread is in the ready state, the scheduler is idle until
at least one thread enters the ready state. A thread will
remain in the running state until it completes execution of
the dispatch or until a thread with higher priority enter-
ing the ready state preempts it. The execution semantics
varies according to its scheduling protocol. In this section,
we present the execution semantics of a preemptive fixed-
priority scheduler.

A scheduler has three possible states - wait_thread (initial
state), sche_thread, and run_thread. The wait_thread state
denotes that the scheduler is awaiting until a thread en-
ters the ready state. The sche_thread state denotes that the
scheduler selects one thread with the highest priority from
the set of threads in the ready state. The run_thread state
denotes the scheduler grants the selected thread to execute.
In the Scheduler model, a state variable designated schState
traces the state of Scheduler.

The Scheduler main machine makes use of five auxiliary
machines, both sub machines and function machines, as is
shown in Table 1. Due to limited space, we do not present
them in detail in this paper. The execution semantics of
a scheduler is modeled as a main machine with five rules,
as shown in Listing 3. Rule WaitThread is enabled when
at least one new thread enters the ready state or if there
is any thread left in the ready state when the processor is
released. Then it updates the scheduler to the sche_thread
state. Rule ScheThread is enabled when the scheduler is in
the sche_thread state. It selects the thread with the high-
est priority from the set of threads in the ready state. Rule
PreemptThread is enabled if the selected thread has a higher
priority than the currently running thread. And the sub ma-
chine RUNNEXTTHD() is called to execute. On the con-
trary, Rule RunThread is enabled if the running thread has a
higher priority. This rule changes the Scheduler machine to
the wait_thread state. Rule Idle is used to keep the machine
alive when no other rules are enabled.

AM Type Description
. . . return true if a new thread
isNewReadyExist | Function becomes ready, else false
. . return true if the CPU is
isCPUFree Function currently free, else false
. . . return true if there is any
isReadyFxist Function ready thread, else false
return the highest priority
scheduleThreads | Function | thread among the threads
in the ready state
. return true if the running
Preemptted Function thread is preemptted
suspend the running
RUNNEXTTHD Sub thread and execute the
next thread

Table 1: The Auxiliary Machines (AM) Used by the
Scheduler Main Machine

t; =
LET TASM_Dispatcher(i) =
LET Egisp =
LET TUgisp = DisState := {dispatch, wait};
ThdType := {periodic, aperiodic, sporadic};
IN <EVdisp, TUdisps ERdisp>
AND ASMg;sp =
LET Raisp =
Dispatch{ if disState;=dispatch then disState;
1= wait; disFlag;:= dispatched; timer:= 0;}
NonDeterministic{ t:=1; if disState; = dispatch
and disProtocol; != periodic then skip;}
Waiting{t:=1; if disState; = wait and timer<(
thdPeriod;-1) then timer := timer +1;}
WaitComplete{t:=1; if disState;=wait and timer
=(thdPeriod;-1) then timer := timer +1;
disState; := dispatch;}
Else{ t:=next; else then skip;}
IN <Mvdisp s CVdisp s Ivdisp s Rdisp>
IN <Egisp, ASMgisp>

Listing 1: Transformation Rule of AADL Thread

5. TRANSFORMATION TO TASM

Based on the definition of AADL and TASM presented in
Section 2 and Section 3 and the formal semantics presented
in Section 4, we define two transformation rules for AADL
thread and processor component. For the sake of the lim-
itation of pages, we solely show the main part of the rules
in Listing 1, 2, 3. The transformation rules are expressed in
the form of the LET-IN construction:

o entity =
LET element: = body:
AND elements = bodys ...
IN <elementi, elements, ...>
END entity

where the elements between the angle brackets conform to
the formal definition of entity.

6. CASE STUDY

In order to illustrate how AADL models can benefit from
our formal semantics, we present a case study of the verifica-
tion of an adapted version of the follower spacecraft guidance
system (FSGS) example presented in [6].

AND TASM_Thread(i) =
LET Ethread =
LET TUihread = DisPatchFlag := {none, WithOutRes,
WithRes}; ThreadState:= {awaiting_dispatch
, compute, complete}; ThreadComputeState :=
{none, ready, running};
AND ERtpreqq = power := [POWER_SIZE]; memory
= [MEM_SIZE];
IN <EVihreads TUthread> ERthread™>
AND ASMthrcad =
LET Rthread =
WaitDispatch{ if thdState;=awaiting_dispatch
and disFlag;=dispatched then thdState;:=
compute; thdCmpState;:= ready; disFlag;:=
notdispatched; cmpTime:= 0;}
ComputeReady{ if thdState;=compute and
thdCmpState;=ready then runThd;?;}
ComputeRunning{ t:= 1; power:=POWER_
CONSUMPTION ; memory:=MEM _
CONSUMPTION ; if thdState;=compute and
thdCmpState;=running and cmpTime<thdWCET;
-1 then cmpTime:=cmpTime+1;}
ComputeComplete{ t:= 1; power:= POWER_
CONSUMPTION ; memory:=MEM _
CONSUMPTION ; if thdState;=compute and
thdCmpState;=running and cmpTime=thdWCET;
-1 then thdState;:=complete; cmpTime:=
cmpTime+1; thdCmpState;:=complete;}
Complete{ if thdState;=complete then thdState;
:=awaiting_dispatch; thdCmpState;:=none;}
WaitNextDispatch{ t:= next; else then skip;}
IN <Mvth7‘ead > Cvthread) Ivth'read > Rthread>
IN <Ethreads ASMthread>
IN TASM_Dispatcher(i) || TASM_Thread(i)
END t;

Listing 2: Transformation Rule of AADL Thread
(cont’d from Listing 1)

Pr =
LET TASM_Processor =

LET Ep’I‘OCESSOT =

LET TUprocessor = ScheState := {wait_thread,
sche_thread, run_thread};

IN <Evprocessor B TUpTocessor 3 ERprocessor >

AND ASMp'r'ocessor =
LET Rp'rocesso'r =

WaitThread{ if scheState = wait_thread and (
isNewReadyExist () or (isCPUFree() and
isReadyExist())) then scheState :=
sche_thread;}

ScheThread{ if scheState = sche_thread then
scheState := run_thread; nextRunThread :=
scheduleThreads() ;}

PreemptThread{ if scheState = run_thread and
Preemptted() then scheState := wait_thread;

RUNNEXTTHD () ;}

RunThread{ if scheState = run_thread and !
Preemptted() then scheState := wait_thread;

nextRunThread := none;}

Idle{ t:= next; else then skip;}

IN <Mvp”’OC€SSOT‘ E] CVPT‘OC@SSOT H] varocessor E] Rp?"ocessor >

IN <EPTDC€SSDT 3 AS
IN TASM_Processor
END Pr

Mp’V‘OCESSO’I‘ >

Listing 3: Transformation Rule of Scheduler

Thread | Period | WCET | Priority | Power | Memory
Receiver| 100 10 high 20 20
Reader 100 20 middle 30 10
Watcher | 100 30 low 50 30

Table 2: Parameters of Threads in FSGS

6.1 Follower Spacecraft Guidance System

FSGS consists of three threads. A sporadic thread (Re-
ceiver) receives position data which is sent periodically from
the leader spacecraft, updates its own position data, and
sends the position data to the Reader thread. A Reader
thread reads periodically the position value from the Re-
cetver thread and stores it in a protected object. A Watcher
thread ”watches and reports” the object to the earth ob-
servation station. This model is a typical sub system of
a distributed system, with a sporadic thread to exchange
data and a set of periodic threads devoted to process data.
We assume that all the threads need resources - power and
memory, which is shown in Table 2.

6.2 TASM model

The Scheduler machine schedules the execution order of
threads based on fixed-priority scheduling protocol. All the
threads are hard real-time threads, that is, a missed deadline
is regarded as a system failure. The model of the periodic
threads Reader and Watcher are respectively expressed by
two main machines (Dispatcher and Thread) with the pa-
rameters listed above. Although a sporadic thread can the-
oretically be triggered at any time after a minimum period,
we assume a maximum period within which the Receiver
thread will be triggered at least once. The maximum period
can be the hyper-period of the periodic threads or any other
reasonable value. This assumption is reasonable, because
as long as the follower spacecraft does not deviate from the
leader spacecraft, the FSGS will receive the position data
within a maximum period.

6.3 Verification and Validation

6.3.1 Resource Consumption

We use the TASM toolset to analyze resource consump-
tion of the FSGS system. As depicted in Figure 1, the graph
shows the aggregate resource consumption in the first period
of the FSGS system for each resource - power (upper) and
memory (lower), versus the horizontal time axis. Three dis-
tinctive high levels represent the resource consumption of
the corresponding threads. Because the FSGS system does
not contain any parallelism consumption of resources, the
minimum and maximum amounts of resources consumed will
correspond to the minimum and maximum amounts con-
tained in an individual thread.

6.3.2 Timing Properties

The TASM machines can easily be translated into Timed
Automata through the transformation rules defined in [12].
The transformation enables the use of the UPPAAL model
checker to verify the schedulability of the FSGS system.
In addition, deadlock freedom is an essential property that
should be satisfied, which also is a prerequisite for schedula-
bility analysis. Table 3 shows the queries of the properties
and the corresponding results.

50

a5

a0

£

power

201

15

10

o
0.0
275

250
225
200
175
150

memory

Figure 1: Resource Consumption (resources on the
Y-axes and time on the X-axes)

Property Query Result
Deadlock Freedom | A[] not deadlock Satisfied
Afl not
o Reader. MissDeadline .
Schedulability or Watcher.MissDeadline Satisfied
or Receier. MissDeadlin
Table 3: Deadlock Freedom and Schedulability

Analysis for FSGS

7. CONCLUSION AND FUTURE WORK

We present an approach to provide formal resource con-
sumption and schedulability analysis for AADL models of a
local subsystem of a DRE system. The approach is to trans-
late the execution semantics of AADL components into rule
machines in the TASM language. Periodic, aperiodic and
sporadic threads and a preemptive fixed-priority scheduler
are covered. We purposely introduce inconsistent rules into
the translated TASM machine in order to model the non-
deterministic aspects. A small case study is conducted to
show how to perform resource consumption and schedula-
bility analysis. Resource consumption analysis is enabled
by using the TASM toolset. Schedulability analysis of the
translated TASM model is carried out by mapping the TASM
model into timed automata.

Future work on this approach will cover a larger subset
of AADL components, such as, additional components, the
Behavioral Annex, mode change, data communication, the
Error Annex, etc. Additional scheduling protocols will be
incorporated for analysis and evaluation.

Acknowledgement

This work was partially supported by the Swedish Research
Council (VR), and Mélardalen Real-Time Research Centre
(MRTC)/Milardalen University.

8. REFERENCES

[1] T. Abdoul, J. Champeau, P. Dhaussy, P. Y. Pillain,
and J.-C. Roger. AADL Execution Semantics
Transformation for Formal Verification. In ICECCS
08, pages 263—-268. IEEE Computer Society, 2008.

[2] G. Behrmann, R. David, and K. G. Larsen. A tutorial
on UPPAAL. pages 200-236. Springer, 2004.

[3] B. Berthomieu, J.-P. Bodeveix, C. Chaudet, S. Zilio,
M. Filali, and F. Vernadat. Formal Verification of
AADL Specifications in the Topcased Environment. In
Ada-FEurope 09, pages 207-221, Berlin, Heidelberg,
2009. Springer-Verlag.

[4] J.-P. Bodeveix, R. Cavallero, D. Chemouil, M. Filali,
and J.-F. Rolland. A mapping from AADL to
Java-RTSJ. In Proceedings of the 5th international
workshop on Java technologies for real-time and
embedded systems, JTRES ’07, pages 165-174. ACM,
2007.

[5] E. Borger and R. F. Stirk. Abstract State Machines.
A Method for High-Level System Design and Analysis.
Springer, 2003.

[6] M. Y. Chkouri and M. Bozga. Prototyping of
Distributed Embedded Systems Using AADL. In
ACES-MB 09, pages 65—79, October 2009.

[7] M. Y. Chkouri, A. Robert, M. Bozga, and J. Sifakis.
Models in Software Engineering. chapter Translating
AADL into BIP - Application to the Verification of
Real-Time Systems, pages 5-19. Springer-Verlag,
Berlin, Heidelberg, 2009.

[8] E. Jahier, N. Halbwachs, P. Raymond, X. Nicollin,
and D. Lesens. Virtual execution of AADL models via
a translation into synchronous programs. In EMSOFT
07, pages 134-143, 2007.

[9] A. Johnsen. An Architecture-based Verification
Technique for AADL Specifications. Technical Report,
Malardalen University, January 2012.

[10] D. Monteverde, A. Olivero, S. Yovine, and
V. Braberman. VTS-based Specification and
Verification of Behavioral Properties of AADL Models.
In Model Based Architecting and Construction of
Embedded Systems, 2008.

[11] P. C. Olveczky, A. Boronat, and J. Meseguer. Formal
Semantics and Analysis of Behavioral AADL Models
in Real-Time Maude. In FMOODS/FORTE ’10, pages
47-62, 2010.

[12] M. Ouimet. A formal framework for specification-based
embedded real-time system engineering. MIT, Dept. of
Aeronautics and Astronautics, 2008.

[13] M. Ouimet and K. Lundqvist. The TASM Toolset:
Specification, Simulation, and Formal Verification of
Real-Time Systems. In Computer Aided Verification,
volume 4590, pages 126-130. Springer Berlin /
Heidelberg, 2007.

[14] M. Ouimet and K. Lundqvist. The Timed Abstract
State Machine Language: An Executable Specification
Language for Reactive Real-Time Systems. In RTNS
07, 2007.

[15] L. Pi, Z. Yang, J.-P. Bodeveix, M. Filali, K. Hu, and
D. Ma. A Comparative Study of FIACRE and TASM
to Define AADL Real Time Concepts. In ICECCS 09,
pages 347-352, 2009.

[16] SAE. Architecture Analysis & Design Language
(AADL). SAE Standards AS5506, November 2004.

[17] O. Sokolsky, I. Lee, and D. Clarke. Schedulability
analysis of AADL models. In IPDPS ’06, 2006.

[18] Z. Yang, K. Hu, D. Ma, and L. Pi. Towards a formal
semantics for the AADL behavior annex. In DATE
09, pages 1166-1171, 2009.

