
An Improved VSM-based Post-Requirements
Traceability Recovery Approach Using Context

Analysis

Jiale Zhou, Yue Lu, Kristina Lundqvist
Mälardalen Real-Time Research Centre, Mälardalen University, Västerås, Sweden

{zhou.jiale, yue.lu, kristina.lundqvist}@mdh.se

Abstract—Automatically generating traceability links between
software development artifacts existing throughout systems de-
velopment life cycle, is becoming ever more important for re-
quirements traceability. It remains an open software engineering
challenge, especially for legacy systems, when the demand for
minimizing human intervention is considered. The Vector Space
Model (VSM), a notably known information retrieval technique,
attempts to remedy the situation by reducing the required manual
effort. One limitation of VSM is its low-level performance in
practice, which can be improved by involving human intervention
in the requirements traceability process earlier. The contribution
of this paper is to present an improved VSM-based post-
requirements traceability recovery approach by using a novel
context analysis. This is done by firstly removing redundant
information in the search space of the artifacts wrt a requirement,
and then using both requirement and context queries to refine the
results given by the standard VSM. In this way, the subsequent
artifacts from the source requirement are more likely to be
retrieved in the recovery process. Our approach is evaluated by
using two chosen datasets (i.e., eTour and iTrust), of which results
show that the proposed approach can achieve better performance
in terms of discovering more true trace links and obtaining higher
quality lists of traceability links than the standard VSM.

Keywords—traceability links recovery; post-requirements trace-
ability; vector space model; situational and discoursal context
analysis; context query;

I. INTRODUCTION

Requirements Management (RM) is a critical activity for
system development. It should be carried out for all the phases
of systems development life cycle (or the software develop-
ment process in other words), other than a single phase. RM
assumes requirements elicitation, tracking and preservation of
integrity, and handles a large amount of existing software
development artifacts (i.e., the artifacts hereafter). The quality
of RM is in the importance of success in system development,
mattering to e.g., customers satisfaction, requirements cover-
age, efficient utilization of money, time and other resources,
the likelihood of generating errors and bugs. For development
of safety critical systems [1], whose failure could result in
loss of life, significant property damage, or damage to the
environment, the pertaining RM should be done as good as
possible.

The heart of RM is Requirements Traceability (RT), which
is defined as the ability to “describe and follow the life of
a requirement, in both forward and backward directions” [2].
RT provides critical support for system developers throughout

the entire life-cycle of the software development process.
Tracing requirements can help to determine whether or not the
developers have refined requirements into lower-level design
components, implemented components into executable sys-
tems, tested and maintained the systems effectively. Although
many efforts [3], [4], [5], [6] have been devoted to automatic
traceability creation, especially for legacy systems [7], with
limited human intervention, such creation working throughout
the entire system life cycle, remains a challenging issue which
prevents a wide-scale application of traceability in the software
engineering practice.

Automated Information Retrieval (AIR) techniques, no-
tably the algebraic model Vector Space Model (VSM) [8]
(referred to as the standard VSM hereafter), attempts to reduce
the manual effort of retrospectively building traceability. The
standard VSM produces ranking lists of candidate trace links
by computing the similarity between requirements and subse-
quent documents based on the occurrence of terms. Different
strategies are applied to prune undesired links, and finally,
the resulting trace lists are vetted by human analysts. One
problem with VSM is that human intervention is involved after
the candidate traceability links have already been retrieved
and ranked, often resulting in a low-level performance [9].
Topic modeling, a type of statistical model for discovering
the abstract “topics” that occur in a collection of documents,
are featured by latent semantic index [10], probabilistic latent
semantic indexing [11], latent dirichlet allocation [12]. Topic
modeling utilizes the context (or more precisely, the content)
of requirements to improve trace links retrieval automatically.
Later, the work about using prospective capture with topic
modeling [13] has been presented, which is efficient in search-
ing trace links and allows for the semantic categorization of
artifacts as well as the topical visualization of the software
systems. However, none of the mentioned work uses implicit
information given by requirements, e.g., title, footnote and
appendix, which may contribute greatly to improve the trace-
ability results.

Our goal in this paper is to tackle the above mentioned
problem, by improving the accuracy of traceability results
of the standard VSM by using a novel context analysis. To
be specific, we consider to bring human judgment into an
earlier phase of the RT recovery process, by leveraging the
existing context of the requirements through the use of experts’
experience, and giving the subsequent artifacts of a source
requirement a higher chance to be retrieved in the process. In
particular, the technical contributions presented in this paper

are two-fold:

1) We introduce the VSM-based context analysis, which uses
two different context analysis methods to improve the
traceability results given by the standard VSM. By using
two novel context analysis methods, we firstly filter out
some redundant information in the scope of the artifacts
which are relevant to the source requirement, and then use
both requirement and context queries to refine the results
of the standard VSM.

2) We present our new approach which improves the trace-
ability results, in terms of discovering more true trace
links and obtaining more accurate ranking lists of the
subsequent artifacts toward a source requirement, compar-
ing the standard VSM. Specifically, such improvements
have been demonstrated by two chosen datasets from
one electronic tourist guide application and one medical
application.

The remainder of the paper is organized as follows. Sec-
tion II introduces the background theory and related work.
Section III firstly gives an overview of our analysis, and
then presents two proposed context analysis methods together
with the implementation of the algorithm in detail. Next,
Section IV that describes the evaluation setup, two chosen
datasets and implementation as well as evaluation results, and
finally, conclusions and future work are drawn in Section V.

II. BACKGROUND

This section firstly describes the background on the Vector
Space Model technique in Section II-A, followed by some
detailed introduction about context-based analysis as well as
some related work in Section II-B.

A. Vector Space Model

In Vector Space Model (VSM) [14], given the entire
collection of unique terms T = {t1, . . . , tn} in a document
collection with N documents, each document d is represented
as a vector d = {wd1, . . . , wdn} consisting of n unique terms
from the corpus with an assigned weight wdi using a certain
weighting scheme. Therefore, the similarity score, denoted as
sim(q, d), between the source query document q and the target
document d is calculated by using the cosine of the angle
between their vectors:

sim(q, d) =

∑n
i=1 wqi · wdi√∑n

i=1 w
2
qi ·

∑n
i=1 w

2
di

(1)

Moreover, here we introduce the term frequency - inverse
document frequency, i.e., tf-idf, which is also adopted as the
VSM weighting scheme of our proposed context analysis (to
be introduced in Section III):

wqi = tfi(q) · idfi, wdi = tfi(d) · idfi (2)

where tfi(q) and tfi(d) are measured by the number of times
the term ti occurs in the query document q and the target
document d respectively, and idfi is computed as log(N

dfi
),

where dfi is the number of documents containing the term ti.

The standard VSM described above has been applied to the
requirements tracing problem [8]. In requirements engineering,
a requirement is typically traced forward across all the artifacts
in systems development life-cycle. In this case, the document
collection would be the entire set of requirements and artifacts
(in this paper, we use the two terms documents and artifacts
interchangeably). In applying the standard VSM, we select
the requirement r (as the query q) and repeatedly calculate
the similarity score with every document in a collection of
documents. In this way, a descending-ordered ranking list of
candidate trace links to the requirement will be generated by
the VSM.

However, the performance of the standard VSM is not
always satisfactory [15]. From our viewpoint, it is easy to
understand the reason for its low-level performance in practice.
This is mainly because that the standard VSM only takes into
account the occurrence of terms in the documents as its inputs,
but not the quality of such inputs. Dekhtyar [9] also argues
that the accuracy of the initial traceability results is the most
important factor, impacting the accuracy of the final results. In
other words, if the inputs to the standard VSM can express the
intentions of the requirement more accurately by containing
more enhanced semantics, the better result of the standard
VSM can be achieved; otherwise the generated ranking list
of trace links will be at a very low accuracy of relevance to
the source requirement.

Clearly, one solution to the above problem is that if we
can improve the quality of inputs to the standard VSM, by
expressing the intentions of the source requirement as good as
possible and bringing human intervention to an earlier stage
of the requirements traceability process, a better performance
given by the standard VSM would be expected. This is like:
In a project or product development, the earlier some useful
and relevant information given by seniors, experts to (new)
developers, the better developers know their tasks, and the
more they can contribute at work.

B. Context-based Analysis

Connolly [16] introduces that an important fact about com-
munication is that it always takes place in a context. Suppose
that we are interested in studying an intention of others, which
we denote as I . The context consisting of whatever surrounds
I , serves to facilitate the communication between speakers and
listeners. Furthermore, the intentions of people are usually
reflected by the context of the conversation between them,
based upon their understanding and interpretation.

Similarly, the intentions of the requirement are often indi-
cated by its context, which is comprised of discoursal context,
situational context and the content of the requirement in terms
of sub-flow information. To be specific, discoursal context
incorporates any relevant texts or statements that surround the
requirement intention, and hence is helpful to determine the
meaning of the requirement; while there is some objective
information which is usually associated with the requirement,
such as creators, recipients, creation time, modification time,
the place of communication, and so on. Such information is
situational in itself, and could contribute to study the intentions
of the requirement greatly. Note that the analysis of situational
context should be considered as a subjective analytical method,

since it is highly dependent on the understanding about the
requirement, resulting in the appropriate judgment given by
the persons involved, who are usually requirements analysts.

In order to have a better understanding about the idea
of using context-based analysis to improve the performance
of the standard VSM in terms of providing more precise
inputs to the latter, we give the following example of a
little boy buying ice cream: After the boy decided to buy an
ice cream, he wrote the words “ice cream” on his mother’s
shopping list. Later on, he updated the status of his social
networking website (e.g., Twitter [17]) with the statement “Ice
cream is my favorite dessert!”. In this case, we can consider
his intention “buying an ice cream” as the requirement, the
shopping list as the document A and his Twitter status as the
document B. Since the words “ice cream” occurred with the
same frequency in both documents, it is thereby very hard
to conclude which document has the higher similarity score
by using the standard VSM. Nevertheless, we have noticed
that although both documents A and B contain the term “ice
cream”, such terms exist in different context: The document
A is a shopping list which reminds the owner what she or he
needs to buy at the store, while the document B is a status
which shares the feeling of the boy. Furthermore, the document
A is also with the implicit expression about buying items in
a shop, granted by the discoursal context of the list, i.e., a
shopping list. Therefore, the document A is more relevant
to the requirement about buying an ice cream, when the
discoursal information about the title of the list is considered.
With the purpose of improving the performance of the standard
VSM in this case, such information about discoursal context
should be used in the analysis to provide precise inputs to the
standard VSM.

III. THE PROPOSED VSM-BASED CONTEXT ANALYSIS
APPROACH

A requirement is a singular documented physical and func-
tional need that a particular product or process must be able to
perform. It can also be regarded as one or a set of intentions,
of which the detailed interpretations are subsequent different
software development artifacts, e.g., design documents, source
code, testing and maintenance documents. Accordingly, the
traceability recovery process is about finding different relevant
interpretations of such intentions. In matters of interpretation,
it is very important for us to understand context. Since context
not only plays a significant role in influencing the way that the
intention is interpreted with a certain level of satisfaction, but
also is a rather experienced construct, which can help project
experts to improve the performance of traceability recovery
process. In this work, such useful requirements context is
extracted and used in the context, with the aid of experts’
experience.

In the following, we introduce the proposed VSM-based
context analysis for post-requirements traceability recovery
process in detail. Firstly, an overview of the analysis is given,
which is followed by the description of the situational context
analysis of software development artifacts (i.e., documents
in this work) as well as the discoursal context analysis of
requirements in Section III-B and III-C respectively. Also, in
this section the overall algorithm is presented in pseudo-code
format.

Situational
Context Analysis

Discoursal
Context Analysis

RequirementsSoftware Development
Artifacts (i.e., Documents)

The Final Ranking
List of Traceability
Links

Fig. 1. The work flow about our proposed VSM-based context analysis
approach.

A. Overview of Our VSM-based Context Analysis

The main idea of our proposed VSM-based context analysis
is: 1) to reduce the search space of documents by filtering
out some redundant artifacts using situational context analysis
based on experts’ experience, and 2) to fuse the results given
by the standard VSM using both a requirement query and a
new context query, in order to obtain more accurate traceability
links between the artifacts and the source requirement. To
be specific, the basic approach followed in this work is
summarized by the following three stages:

1) The first stage of our analysis is to apply situational
context analysis by using experts’ experience. At this step,
some non-related artifacts existing in the scope of the
software development process are filtered out by using
some objective information associated with the artifacts.
As the evaluation (to be introduced in Section IV-C2)
confirmed that by using situational context analysis, more
accurate traceability links are retrieved, which is also
in line with the thoughts, i.e., by involving the human
intervention to the early stage of requirements traceability
recovery process, the quality of the lists of traceability
links can improved.

2) Next, the standard VSM is firstly adopted to generate
a ranking list of trace links between artifacts and the
source requirement. Then, our discoursal context analysis
extracts some useful information from the source require-
ment to generate a new context query, which will be used
again by the standard VSM to generate another ranking
list.

3) Finally, the two generated ranking lists are fused together
to give a final ranking list containing recalculated similar-
ity scores, based upon the rationale we proposed in this
work.

Figure 1 shows the detailed work flow of our approach.

B. Situational Context Analysis of Artifacts

As we briefly introduced previously, our proposed situ-
ational context analysis is responsible for selecting candi-
date artifacts out of any artifacts existing in the software
development process, in terms of extracting the situational
context. Examples of such situational context include, but
are not limited to the following: the type, location, creation

time, modification time, package/class information in object-
oriented programming, and other objective information associ-
ated with the artifacts. Moreover, in requirements engineering,
the permitted traceability relations between artifacts can be
defined according to some intended usage, e.g., a certain type
of relationships between artifacts can be required or ignored
intentionally in the requirements traceability recovery process.
In order to have a better understanding about the motive
for proposing situational context analysis, we give a simple
example here: Supposed that we want to build traceability links
of the Java source code files in two separate packages and one
requirement in a project. Further, such Java files particularly
describe two fruits orange and apple. The requirement here
is that to select the tasty apples. Moreover, the name of
two packages contains some keyword, e.g., orange or apple.
Therefore, in this case, we can refine the search space of the
subsequent Java code files toward the requirement by removing
the files in the package which is associated with orange. In
doing this, we have brought human intervention in the early
stage of requirements traceability recovery process, and clearly,
such situational context analysis (as a subjective context anal-
ysis approach) is helpful to avoid the cases for linking the
requirement to some irrelevant artifacts or mistakenly missing
the links to intended artifacts from a requirement. Some of its
other advantages are: we also save time and perform the post-
requirements traceability recovery process more efficiently. At
the current stage, we perform the situational context analysis
manually, and the implementation of the analysis is shown
in lines from 3 to 10 in Algorithm 1 (to be introduced
in Section III-D). Next we give the definition of situational
context in this work.

Definition 1. Situational context refers to some objective
information associated with artifacts (i.e., documents in this
work), of which examples can be authors, recipients, type,
location, creation time, modification time, package information
(in object-oriented programming) of the artifact. It is used to
reduce the search space of the documents toward the source
requirement in the post-requirements traceability recovery pro-
cess.

C. Discoursal Context Analysis of Requirements

Our discoursal context analysis is mainly working with
requirements. At its first step, we use the requirement r as
the query (i.e., the requirement query) and the document d
(i.e., one of the candidate documents obtained by using situa-
tional context analysis) as inputs to the standard VSM, which
generates a ranking list of trace links with similarity scores.
Next, we extract the discoursal context of the requirement r
to form a context query c, and then apply the VSM by using c
and d as inputs to get another ranking list. Finally, as shown in
Equation 3, we combine the similarity scores of two ranking
lists in order to calculate the final similarity score of document
d and requirement r, based on the following rationale:

1) The first term in Equation 3 implies that if a list is shorter
than the other one, the corresponding query matches more
a specific set of documents. Therefore, its score should
play a bigger role in the final similarity score sim vsm−
ca(r, c, d) in the equation.

2) The second term in Equation 3 indicates that the higher
rank of d has in the ranking list, the more likely the

candidate artifact has a true link toward the source re-
quirement. Hence, its score should play a more important
role in the final similarity score sim vsm− ca(r, c, d) in
the equation.

In other words, our discoursal context analysis in practice
provides the standard VSM with both the requirement query
and the context query. Typically, such a combination contains
more enhanced semantics, accurately representing the inten-
tions of the requirement. As a result, the performance of the
standard VSM toward finding true trace links can be improved.
One example of such discoursal context used in our evaluation
is shown by Figure 2, where the discoursal context is the title
of the use case. In the following, we give the definition of
discoursal context used in this work.

Definition 2. Discoursal context of the requirement r refers
to its title, footnote and appendix. Such information is used
as a context query, together with the requirement query, to
form a combination which contains more enhanced semantics
and expresses more accurate intentions of the requirement r,
compared with the requirement query itself.

D. Algorithm Description

The precise description of the algorithm using pseudo-code
is outlined in Algorithm 1, which takes three parameters and
returns a final ranking list of trace links in the end of its
execution.

Parameters:
D: list - the collection of documents D
r: string - the requirement query r
c: string - the context query c of the requirement r

Returns:
LISTvsm−ca: list - the final ranking list containing the final

similarity score of the document d, the requirement r and the
context query c, in the descending order of relevance to the
requirement r.

Algorithm 1 V SM − CA(D, r, c)

1: success← false,m← 0, l← 0
2: D ← d1, d2, ..., dn−1, dn
3: for all i such that 1 ≤ i ≤ n do
4: if relevanttoRequirement(di, r) == 0 then
5: D

′ ← d
′

i ← di
6: m← m+ 1, success← true
7: else
8: success← false
9: end if

10: end for
11: c← discourse(r)
12: for all d

′

i such that 1 ≤ i ≤ m do
13: LISTr ← V SM(r, d

′

i)
14: LISTc ← V SM(c, d

′

i)
15: l← l + 1
16: end for
17: for all d

′

i such that 1 ≤ i ≤ l do
18: LISTvsm−ca ← sim vsm− ca(r, c, d′i)
19: end for
20: return LISTvsm−ca

sim vsm−ca(r, c, d) = len(c)

len(r) + len(c)
∗ len(r)− rankr(d)

len(r)
∗sim(r, d)+

len(r)

len(r) + len(c)
∗ len(c)− rankc(d)

len(c)
∗sim(c, d) (3)

where len(c) and len(r) are the lengths of the ranking list of the context query c and the requirement query r respectively;
rankc(d) and rankr(d) are the ranks of the document d in both ranking lists, corresponding to c and r separately; sim(r, d)

and sim(c, d) are the similarity scores obtained by using the standard VSM.

IV. EVALUATION

This section is split into three parts: Section IV-A in-
troduces the setup of the evaluations performed in this case
study, including interesting evaluation properties as well as
performance and correctness measure. Section IV-B outlines
the two chosen datasets and some implementation details.
Finally, Section IV-C presents the results and improvements
over the standard VSM.

A. Evaluation Setup

In the evaluation of the proposed method, we are interested
in the number of true trace links, some improvements over the
standard VSM, given by both our situational context analysis
and the proposed VSM-based context analysis as a whole, as
well as computing time of our algorithm. Note that in order
to validate the quality of the generated list of trace links, we
compare the results with some known answer sets, i.e., the lists
of the known true trace links for the chosen datasets which can
be determined manually in advance.

There are many different measures for evaluating the per-
formance of Information Retrieval (IR) systems. In our case,
for correctness and improvement measures of the experimental
data, we present the precision score [18] of each individual
requirement in the two chosen datasets (i.e., on the individual
requirement level), and Mean Average Precision (MAP) [19] of
every chosen dataset (i.e., on the dataset level). To be specific,
for precision score, it is the fraction of the documents retrieved
that are relevant to our source requirement, which can be
expressed by the following equation:

precision =
|Drel ∩Dret|
|Dret|

(4)

where Drel represents the collection of documents which are
relevant to the source requirement, and Dret is the collection
of retrieved documents.

MAP, as one of the most frequently used IR measures,
considers the rank of the retrieved links, meaning that the
higher the MAP score is, the better quality of the retrieved
ranking list of trace links is in terms of requirements relevance.
In particular, given a collection of queries Q, a set of related
documents Da contained in the answer set, the MAP score of
the ranking list L of retrieved documents for the given query
q, is defined as below:

MAP =
1

|Q|

Q∑
q=1

1

|Da|

Da∑
d=1

SCORErank(d, L) (5)

where SCORErank(d, L) represents the rank score of the
document d in the list L. The higher the rank of d is, the
larger rank score the document has.

B. The Chosen Datasets and Implementation

We apply our method to analyze two chosen datasets
eTour [20] and iTrust [21], which are one electronic tourist
guide application and one medical application, separately
developed at Center of Excellence for Software Traceability
and North Carolina State University in United States. Each
of the datasets consists of requirements, testing documents,
source code, and a traceability matrix which is comprised of
308 (for eTour) and 139 (for iTrust) pre-determined true trace
links between requirements and source code, individually.

In the two chosen datasets, the requirements are introduced
as use cases, of which one example is shown in Figure 2. In
this work, there are 57 and 44 use cases in eTour and iTrust
respectively. Our target is to build trace links from the sub-
flows of each use case to the source code files, by using
the context of the use case. In this work, we assume that
the sub-flows in the same use case have the same discoursal
context, which is the title of the use case. Before applying the
standard VSM, we should also pre-process all the documents
in a pipelined fashion by using tokenizer, stop-words remover
and stemmer, as introduced by Kong in [5]. According to the
situational context analysis, the Java code files of iTrust can be
divided into two categories, i.e., “action” and “DAO”, which
gives two types of search space of the documents. However,
for eTour, we cannot perform the situational context analysis,
due to the lack of clear information available that should be
given by well-structured source code files (while it is not the
case based on the current implementation of eTour). We also
use the Lucene library [22] in our implementation, which is
the well-known VSM with tf-idf weighting scheme, and has
been considered as the default IR model by many work [].

Our testbed is running Mac OS X, version 10.6.8, and
the computer is equipped with the Intel Core Duo CPU i7
processor, 4GB RAM and a 256KB L2 Cache. The processor
has four cores and one frequency level: 2.2 GHz.

C. Evaluation Results

In this section, we discuss the evaluation results, by firstly
presenting the improvement from the perspective of the re-
trieved true trace links, which is followed by the improvement
in the ranking lists of traceability links given by our VSM-
based context analysis and experiments summary.

1) Improvement in True Trace Links Retrieved: Here we
evaluate the improvement in our VSM-based context analysis
method in terms of the number of obtained true trace links,
comparing the number derived with the standard VSM. In
Table I, the values in Column True trace links, VSM, VSM-
SA and VSM-CA are the values of the number of the true trace
links for each chosen dataset, the number of the true trace links
retrieved by the VSM, our situational context analysis and the

1 UC Authenticate Users Use Case
2 Sub-flows:
3 [S1] If the security question/answer has been set (it is not null), present security question and obtain answer.
4 [S2] If answer to security question is correct, allow user to change their password. An email notification is sent.

Fig. 2. An example shows one use case in ITrust.

TABLE I. OUR PROPOSED VSM-BASED CONTEXT ANALYSIS CAN
RETRIEVE MORE TRUE TRACE LINKS, COMPARING THE STANDARD VSM,

IN TERMS OF HAVING THE 3.01% INCREASE AT MOST.

Dataset True trace links VSM VSM-SA VSM-CA Imprv. VSM-CA

eTour 308 290 – 290 0%
iTrust 139 133 137 137 3.01%

VSM-based context analysis methods. In Column Imprv. VSM-
CA, the inherent improvement over the standard VSM given by
our method is expressed as percentages which are calculated in
the following way, i.e., Linksvsm−∗−Linksvsm

Linksvsm
× 100%, where

vsm − ∗ represents either the VSM-based situational context
analysis or the VSM-based context analysis (as a whole).
As shown in the table, the results given by our method can
find at most 3.01% more true trace links compared with the
standard VSM. Recall that we cannot perform the situational
context analysis of the dataset eTour, due to the lack of clear
information caused by the not well-structured source code
files based upon its current implementation. Therefore, such
improvement is not applicable in Table I.

It is also interesting to note that after looking at the result
of eTour, though there are no more true trace links given by
our method comparing the standard VSM, our method can still
guarantee that such true trace links retrieved by the standard
VSM, can also be discovered in the requirements traceability
recovery process.

2) Improvement Given by the VSM-based Context Analysis:
Here we firstly evaluate the performance of the proposed
method, in terms of introducing the improvement (as percent-
ages) in the obtained precision score of each individual use
case, comparing the standard VSM. Typically, the percent-
ages of such improvements (i.e., Precisionvsm−∗−Precisionvsm

Precisionvsm
,

where vsm − ∗ is either the VSM-based situational context
analysis or the VSM-based context analysis as a whole) are
shown in Figure 3 and 4. As we can see from both figures, for
the most of the use cases of the two chosen datasets, our VSM-
based context analysis can obtain higher precision scores with
the maximum improvement 360.54% and 1 900% for eTour
and iTrust respectively, compared with the standard VSM. In
addition, for the situational context analysis of iTrust, such
improvement is 1 037.88%.

Next we present the improvement of our method con-
cerning the MAP score of two chosen datasets, in response
to the standard VSM. Typically, the percentages of such
improvement (i.e., MAPvsm−∗−MAPvsm

MAPvsm
, where vsm − ∗ has

the same meaning as we introduced previously) are shown
in Column Imprv. VSM-SA and Imprv. VSM-CA in Table II.
As shown in the table, the significant improvements made by
our method, compared with the ones obtained by the standard
VSM, are 35.04% and 62.51% increase in finding higher MAP
scores for eTour and iTrust separately.

Fig. 3. The improvement (as percentages) in the precision score of each use
case in eTour given by our VSM-based context analysis method, comparing
the standard VSM.

Fig. 4. The improvement (as percentages) in the precision score of each use
case in iTrust given by our VSM-based context analysis (as a whole) and its
VSM-situational context analysis methods, comparing the standard VSM.

3) Experiments Summary: Summarizing the above obser-
vations, our evaluation results have confirmed the following
points:

• Our proposed VSM-based context analysis method for
post-requirements traceability recovery process, corre-
sponding to two different chosen datasets in practice, can
retrieve more true trace links (at most 3.01% increase) and
obtain higher MAP scores (in terms of 62.51% higher at

TABLE II. COMPARED WITH THE STANDARD VSM, OUR PROPOSED
VSM-BASED CONTEXT ANALYSIS CAN OBTAIN THE HIGHER MAP SCORES

OF THE GENERATED RANKING LIST OF TRACEABILITY LINKS, IN TERMS
OF HAVING 35.04% AND 62.51% INCREASE FOR ETOUR AND ITRUST

RESPECTIVELY.

MAP VSM VSM-SA Imprv. VSM-SA VSM-CA Imprv. VSM-CA
eTour 0.24 – – 0.33 35.04%
iTrust 0.36 0.57 59.72% 0.58 62.51%

most), compared with the standard VSM.
• The true trace links that are discovered by the standard

VSM, have also been retrieved by our VSM-based context
analysis.
• The computing time required by the trails of our method,

on average took only a few minutes to compute. This is
an important step toward handling real life-scale require-
ments traceability problems, exhibiting high degrees of
variability.
• It is interesting to note that for some use cases, our

proposed VSM-based context analysis method cannot
achieve higher precision scores. More investigation on
this is considered as part of our future work, which could
be improved by employing some more advanced context
extraction approach in the method.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a new Vector Space Model
(VSM)-based technique which uses a novel context analysis
to build trace links between requirements and other software
development artifacts (i.e., documents in this work) retrospec-
tively. Specifically, our approach uses both the situational and
discoursal context analysis methods, to refine the search scope
of the documents at first, and then improve the results obtained
through the standard VSM by using both requirement and
context queries. We have evaluated the approach by using
two chosen datasets eTour and ITrust, through which the
experiment results have shown that our approach can achieve
better performance of finding more true trace links between
requirements and documents as well as obtaining better quality
of the retrieved list of traceability links, compared with the
standard VSM technique.

For future work, we will investigate the reason why our
method cannot obtain higher precision scores for some use
cases in the chosen datasets, and improve the method e.g.,
by employing some advanced context extraction method as
the hoped solution. We are also interested in discussing how
the context of requirements and subsequent artifacts would
impact the performance of VSM-based methods systematically.
The comparison between our VSM-based context analysis and
other automated information retrieval techniques, from the
perspective of effective estimate of context similarity, as well
as the completion of some extensive evaluation by using more
datasets are also highly appreciated on our good side.

ACKNOWLEDGEMENTS

This work was partially supported by the Swedish Research
Council (VR), and Mälardalen Real-Time Research Centre,
Mälardalen University.

REFERENCES

[1] K. Lundqvist and L. Asplund, “A Ravenscar-Compliant Run-Time
Kernel for Safety-Critical Systems,” The International Journal of Time-
Critical Computing, vol. 24, pp. 29–54, 2003.

[2] O. C. Z. Gotel and A. C. W. Finkelstein, “An Analysis of the
Requirements Traceability Problem,” in Proceedings of the 2nd IEEE
International Requirements Engineering Conference (RE’ 94), 1994, pp.
94–101.

[3] N. Ali, Y.-G. Gueheneuc, and G. Antoniol, “Trust-Based Requirements
Traceability,” in Proceedings of the 19th International Conference on
Program Comprehension (ICPC’ 11), 2011, pp. 111–120.

[4] C. Fautsch and J. Savoy, “Adapting the tf-idf Vector-Space Model to
Domain Specific Information Retrieval,” in Proceedings of the 25th
Symposium On Applied Computing (SAC’ 10), 2010, pp. 1708–1712.

[5] W.-K. Kong and J. H. Hayes, “Proximity-based Traceability: An Em-
pirical Validation using Ranked Retrieval and Set-based Measures,” in
Proceedings of the 1st International Workshop on Empirical Require-
ments Engineering (EmpiRE’ 11), 2011, pp. 45–52.

[6] A. Mahmoud, N. Niu, and S. Xu, “A semantic relatedness approach for
traceability link recovery.” in Proceedings of the 20th IEEE Interna-
tional Conference on Program Comprehension (ICPC’ 12), 2012, pp.
183–192.

[7] J. Kraft, Y. Lu, C. Norström, and A. Wall, “A Metaheuristic Approach
for Best Effort Timing Analysis targeting Complex Legacy Real-Time
Systems,” in Proceedings of the 14th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS’ 08), 2008.

[8] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and E. Merlo,
“Recovering Traceability Links between Code and Documentation,”
IEEE Trans. Software Eng., vol. 28, no. 10, pp. 970–983, 2002.

[9] A. Dekhtyar, O. Dekhtyar, J. Holden, J. H. Hayes, D. Cuddeback, and
W.-K. Kong, “On human analyst performance in assisted requirements
tracing: Statistical analysis,” in Proceedings of the 19th IEEE Interna-
tional Requirements Engineering Conference (RE’ 11), 2011, pp. 111–
120.

[10] S. Deerwester, S. Dumais, T. Landauer, G. Furnas, and L. Beck,
“Improving information retrieval with latent semantic indexing,” in
Annual Meeting of the American Society for Info. Science 25, 1988.

[11] T. Hofmann, “Unsupervised learning by probabilistic latent semantic
analysis,” Machine Learning, no. 42(1), pp. 177–196, 2001.

[12] D. Blei, A. Ng, and M. Jordan, “Latent Dirichlet Allocation,” Journal
of Machine Learning Research, no. 3, pp. 993–1022, 2003.

[13] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor, “Software Trace-
ability with Topic Modeling,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering (ICSE’ 10), 2010,
pp. 95–104.

[14] G. Salton, A. Wong, and C. S. Yang, “A vector space model for
automatic indexing,” Communications of the ACM, vol. 18, no. 11, pp.
613–620, Nov. 1975.

[15] C.-H. Jane, G. Orlena, and Z. Andrea, Software and Systems Traceabil-
ity. Springer, 2012.

[16] J. H. Connolly, “Context in functional discourse grammar,” Alfa :
Revista de Linguı́stica, vol. 51, pp. 11–33, 2009.

[17] Twitter, https://twitter.com, 2013-02-20.
[18] D. POWERS, “Evaluation: From Precision, Recall and F-measure to

ROC, Informedness, Markedness and Correlation,” Journal of Machine
Learning Technologies, vol. 2(1), pp. 37–63, 2011.

[19] Wikipedia, http://en.wikipedia.org/wiki/Information retrieval, 2013-02-
20.

[20] Center of Excellence for Software Traceability, http://www.coest.org,
2013-02-20.

[21] N. C. S. University, http://agile.csc.ncsu.edu/iTrust/wiki/doku.php,
2013-02-20.

[22] E. Hatcher, O. Gospodnetic, and M. McCandless, Lucene in Action,
2nd ed., 2010.

