I mproved Handling of Soft Aperiodic Tasksin Offline Scheduled Real-Time
Systemsusing Total Bandwidth Server

Gerhard Fohler, Tomas Lennvall
Malardalen University
Vasteras, Sweden
{gfr, tiv}@mdh.se

Abstract - Real-world industrial applications impose
complex constraints, such as distribution, end-to-end
deadlines, and jitter control on real-time systems. Most
scheduling algorithms concentrate on single or limited
combinations of constraints and requirements only. Off-
line scheduling resolves complex constraints, but pro-
vides only very limited flexibility. Online scheduling on
the other hand, supports flexibility, resource reclaiming,
and overload handling, but handling constraints such as
distribution or end-to-end deadline can be costly, if not
intractable.

In this paper, we propose a method to efficiently han-
dle soft real-timetasksin offline scheduled real-time sys-
temsusing total bandwidth server. In afirst step, the off-
line scheduler resolvescomplex constraints, reducestheir
complexity, and provides for guaranteed available band-
width. The constructed schedule is trandated into inde-
pendent tasks on single nodes with starttimes and dead-
line constraints only. These are then executed using ear-
liest deadline first, total bandwidth server scheduling at
runtime.

| Introduction

Giorgio Buttazzo
Univerisity of Pavia
Pavia, Italy
giorgio@sssup.it

of performing schedulingffline, i.e., before the system run-
time, or online, excel at general constraints or flexibility,
resp. Offline scheduling is capable of constructing schedules
for distributed applications with complex constraints, such
as precedence, jitter, and end-to-end deadlines. As only a ta-
ble lookup is necessary to execute the schedule, runtime dis-
patching is very simple. The prerequisite knowledge about
all system activities and events may be hard or impossible
to obtain. The lack of flexibility prevents handling not com-
pletely specified events.

Online scheduling overcomes this shortcoming and provides
flexibility for partially or non specified activities. Feasibil-

ity tests determine whether a given task set can be feasibly
scheduled according to the rules of the particular algorithm
applied. Online scheduling allows to efficiently reclaim any
spare time coming from early completions and allows to han-
dle overload situations according to actual workload condi-
tions.

These feasibility tests typically apply to a fixed set of con-
straints; changes in the set of constraints often require de-
velopment of theory for tests. Handling constraints such as
distribution or end-to-end deadline can be costly, if not in-
tractable in the general case.

This disparity of capabilities of scheduling paradigms im-
poses the choice of choosing the benefits of either algorithm

Real-world industrial applications impose complex conat the expense of the other’s, between general constraints or
straints on real-time systems and their scheduling algorithmeantime flexibility. Rather, the application under considera-

Even simple control problems for industrial plants or autotion should dictate constraints and properties, with the choice
motive scenarios demand distribution, end-to-end deadlinesf algorithm being only a secondary one.
jitter control, periodic and non periodic tasks, as well as effi- In this paper, we propose a method to efficiently handle
ciency, cost effectiveness and more. In addition to these baoft real-time tasks in offline scheduled real-time systems
sic temporal constraints, a system has to fulfill complex apising total bandwidth server. It uses offline scheduling to
plication demands which cannot be expressed as generalyandle complex constraints and reduce their complexity by
Control applications may require constraints on individuatransforming a constructed feasible schedule into indepen-
instance, rather than periods. Reliability demands can egent tasks on single nodes with start times and deadline con-
force allocation and separation patterns, or engineering prastraints only. These are suited for flexible earliest deadline
tice may require relations between system activities, all dfrst scheduling methods at runtime. Furthermore, the offline
which cannot be expressed directly with basic constraints. scheduler guarantees that the resulting task set guarantees the

Furthermore, the type and number of constraints rarelgvailability of a minimum bandwidth for use at runtime, ex-
remains fixed during the development of a system or prodending the range of applicable methods and constraints. Via
uct line. Rather, new constraints, often beyond periods artdansformed task set and bandwidth, our method provides
deadlines, are added during system construction or its maian interface to combine offline and online scheduling algo-
tenance. rithms.

Most scheduling algorithms presented concentrate on sin- The concrete offline scheduler used for this work [6] al-
gle or limited combinations of constraints and requirement®ws for preemptive tasks with precedence constraints, end-
only. Two main lines of algorithms, following the paradigmsto-end deadlines, distribution, network scheduling and jitter

control. The transformation technique we present can be ap- The use of information about amount and distribution of

plied to a variety of other offline scheduling algorithms withunused resources for non periodic activities is similar to the

similar constraints, e.g., [10]. The inclusion of additionalbasic idea of slack stealing [15], [3] which applies to fixed

constraints into an offline scheduler is typically straightforpriority scheduling. Our method applies this basic idea in

ward, e.g., by including the constraint in a feasibility test apthe context of offline and EDF scheduling. Chetto and Chetto

plied during schedule construction. [2] presented a method to analyze idle times of periodic tasks
Online scheduling is used to efficiently handle those actioased on EDF. Our scheme analyzes offline schedules, which

ities that cannot be completely characterized offline in term@an be more general than strictly periodic tasks, e.g., for con-

of worst-case behavior, and hence cannot receipeiori trol applications.

guarantee. Examples of these activities include soft aperi- The restof this paper is organized as follows: First, we de-

odic tasks (e.g., multimedia tasks) whose computation timiéne terminology in section Il. The techniques for integration

or interarrival times can have significant variation from in-of offline and online are presented in section Ill. An example

stance to instance. Moreover, online scheduling is used to r# section 1V illustrates the methods. We conclude the paper

claim any spare time coming from early completion. A bandwith section VI.

width reservation technique [1] is used to isolate the temporal

behavior of the two schedules and prevent the event-driven Il Terminology and assumptions

tasks to corrupt the off-line plan.

The MARS system [8] is an example of a system with \ye consider a system consisting of three types of tasks:

entire offline planning of all activities. On the other side of, 5.4 soft and non real-time tasks. Any taskconsists of a
the spectrum, SPRING [14] is using planning and global tasgequ'ence' of jobd

o) ; _ . i,j» Wherer; ; denotes the arrival time (or
migration [16] for handling a variety of constraints online. 'tsrequest time) of the** job of taskr;
o’

planning efforts are expensive; a dedicated scheduling chip 5 harq real-time task is characterized by two additional
i; suggested. In our approach, the on_Iine scheduling is VeB’arameters(,Ci, T;), whereC; is the WCET of each job and
simple as we only compute new deadlines. T; is the minimum interarrival time between successive jobs,

The use of free resources in offline constructed schedulgg thatr; j .1 > r;; + T;. The system must provide an a pri-
for aperiodic tasks has been discussed in [11]. The resultingi guarantee that all jobs of a hard task must complete before
flexibility is limited since aperiodic tasks are inserted intog given deadling; ;. In our model, the absolute deadline of
the_ idle times of the schedule only. Slot shifting [7] analysg_aach hard joby; ; is implicitly set at the valud; ; = r; ;+1T5.
offline schedules for unused resources and leeway, which is a soft real-time task is also characterized by the param-
represented as execution intervals and spare capacities. TE‘i@rs(Ci,Ti), however the timing constraints are more re-
information is used at runtime to shift task executions, adxzxed. In particular, for a soft task]; represents thenean
commodate dynamic tasks, and to perform online guarant@§ecution time of each job, whereBsrepresents theesired
tests._ It provides increased flexibility, but focuses on hargctiyation period between successive jobs. For each soft job
and firm tasks only. Ji.;, asoftdeadline is set attinag ; = r; ; +7;. Since mean

From the online side, the integration of different schedulvalues are used for the computation time and minimum inter-
ing paradigms in the same system requires a resource resgirival times are not known, soft tasks cannot be guaranteed a
vation mechanism to isolate the temporal behavior of eagbriori. In multimedia applications, soft deadline misses may
schedule. In [9], Mercer, Savage, and Tokuda propose @ecrease the QoS, but do not cause critical system faults.
scheme based on processor capacity reserves, where a fracTasks can be synchronized vimecedence constraints,
tion of the CPU bandwidth is reserved to each task. Thiforming execution chains with end-to-end constraints. Prece-
approach removes the need of knowing the worst-case comlence constraints and tasks, can be viewed as a directed
putation time (WCET) of each task because it fixes the maxacyclic graph. Tasks are represented as nodes, precedence
imum time that each task can execute in each period. Sing@nstraints as edges. Tasks that have no predecessors are
the periodic scheduler is based on the Rate Monotonic algealled entry tasks, tasks without successexst tasks. The
rithm, the classical schedulability analysis can be applied tgeriod of a precedence grapRG is the time interval sepa-
guarantee hard tasks, if any present. rating two successive instancesR(in the scheduleDead-

In [5], Liu and Deng describe a two-level scheduling hi-lineintervals are defined for the maximum execution of each
erarchy which allows hard real-time, soft real-time, and noindividual precedence graph. Entry tasks of instainoéa
real-time applications to coexist in the same system. Accorgirecedence grapRG become ready for scheduling at time
ing to this approach, each application is handled by a dedi-x period(PG). Exit tasks of instance of a precedence
cated server, which can be a Constant Utilization Server [4JraphPG have to be completed by timiex period(PG) +
for tasks that do not use nonpreemptable sections or globétadline(PG).
resources, and a Total Bandwidth Server [13, 12] for the We consider aistributed system, i.e., one that consists
other tasks. At the lowest level, all jobs coming from the dif-of severalprocessing nodes and communication nodes An
ferent applications are handled by the EDF scheduling alg@ffline schedule is a sequence of slots, i.e., some time gran-
rithm. Although this solution can isolate the effects of overules,slot; i = 0,...,N-1, N stands for the number of slots
loads at the application level, the method requires the knowin the schedule. For online schedul@é,is typically equal
edge of the WCET even for soft and non real-time tasks. to the least common multiplédm) of all involved periods.

Communication nodes, i.e., the communication medium, ar@nline aperiodic service. This means that, if a bandwidih
slotted and pre scheduled as well. Protocols with boundes reserved on a node, then for any interval f-], there must
transmission times, e.g., TDMA or token ring are applicablebe at leastt, —t,) U, time available for aperiodic processing.

A trivial approach is to replace the worst case execu-
tion time of each task WiﬂLLUS- No modifications to the
scheduler are required to guarantee a bandwidth@fThis
method, however, does not consider spare capacities in the
schedule for bandwidth reservation. Response times in the
resulting scheduling can thus be prohibitively long.

The rationale of our method to provide for complex appli- our bandwidth reservation method during offline sched-
cation constraints and efficient runtime flexibility is to con-yje construction analyzes the schedule for idle resources and
centrate all mechanisms to handle complex constraints in thgeir distribution. It maximizes flexibility by considering the
offline phase, where they are transformed istmple con- |eeway in the schedule, as per the specification constraints.
straints suitable for earliest deadline first SCheduling, Whichn particu'ar, the offline scheduler contains a function with
is then used foonline execution. The offline determined tests the feasibility of the schedule constructed so far; it is ex-

simple constraints serve as “interface” between offline prepgended by testing the availability of the specified bandwidth
rations and online scheduling. Specifically, we use the offlings well.

scheduler presented in f§]starttime, deadline pairs as sim-

ple constraints, and EDF based Total Bandwidth server [1% Transformation technique
and constant bandwidth server [1] as runtime algorithms.
The amount of desired flexibility can be set in this step as

well. oo ! ; k s
Our transformation technique can extract maximum ﬂexi1‘ormed into mdependenttasks with stgrttlmes, degdlme pairs.
Our method is based on the preparations for online schedul-

bility. By tightening start time and deadlines of certain tasks,” . ot shifti

it is possible to constrain the execution of some tasks, e.g"9 " S ot; ifting [7].

for reasons of testing or reliability. The offline scheduler allocates tasks to nodes and resolves
Our method works by reducing complexity (NP hard inthe precedence constraints. The scheduling tables list fixed

the case of distributed, precedence constrained executioff@!t @nd end times of task executions, that are less flexi-

with end-to-end deadlines) offline by instantiating a set of in2I€ than possible. The only assignments fixed by specifica-
jon are starts of first and completion of last tasks in chains

dependent tasks with starttimes, deadlines constraints on f

gle processors which fulfill application constraints and guar/ith end-to-end constrains, and tasks sending or receiving

anteed bandwidth requirements. The issues of allocation {Bter-node messages. The points in time of execution of all
nodes, subtask deadline assignment, fuffilling jitter require2ther tasks may vary within the precedence order. We calcu-

ments are resolved by the offline scheduler. This allows thlélte earliest start-times and latest finish-times for all tasks per

use of time intensive algorithms to resolve the constraint§0d€ based on this knowledge. As we want to determine the

since they are performed offline, i.e., before the system @aximum leeway of task executions, we calculate the dead-

deployed, and flexible scheduling at runtime. lines to be as late as possible.
Once tasks with starttime, deadline constraints have been Leténd(PG) denote the end andart(PG) the start of a

derived and analyzed, earliest deadline first scheduling is pdtrecedence graphG: according to the schedule. The start of
formed on single nodes individually at runtime; the original@" iNter-node message transmissldnis denotedstart(M),

set of complex constraints, distribution, etc., remains hiddeff€ time itis available at all receiving nodesd(M). These
from online scheduling. are the only fixed start times and deadlines, all others are

The resulting instance of simple constraints will not gen_caIcuIated_recursiver vyith respect_to prt_ecedence SuCCessors.
erally be optimum. Since it is performed offline, however, These fixed constraints are derived first: Teadline of

additional analysis can be performed, possibly resulting iffSK? dr, of precedence grapRG in a schedule is:

another instantiation with different simple constraints. Conlf 7 IS exittaskinPG: dr = dI(PG),

sider a subtask deadline assignment which induces tight cdfi 7’ Sends an inter-node message dr = start(M).
straint on one node. Performance analysis may show a dif- 1heearliest starttime of taskT', rr, of precedence graph

ferent, more relaxed setting to be more appropriated. PGin a schedule is calculated in a similar way:
If T is entry taskrr = start(PGQG),

if T receives an inter-node message rr = end(M).
Next, constraints of predecessors and successors of tasks
with fixed constraints are derived:

. . . A predecessoP of a taskT” with fixed deadline is assigned
As an additional requirement, the offline scheduler has t9 deadline so as to be executed befBraith EDE. i.e

create a schedule such that a desired fradtigrof the pro- dp = dp — Cyp
cessor utilization (i.e., a desired bandwidth) is reserved foA s '

[l Integration

A Rationale

The feasible schedule with guaranteed bandwidth is trans-

B Offline schedul e construction and bandwidth reservation
strategies

uccessob of a taskl" with fixed starttime is assigned the

LThis serves as example; a number of other offline scheduling algoritiR@Me starttime 5@ An appropriate deadline and EDF with
can be applied, e.g., the one presented in [10]. ensureP precedindl'.

rp = rr. by EDF to aperiodic requests never exceeds the server uti-

This step is applied recursively. lization Us. Since the processor utilization due to aperiodic
tasks is at most/s, the schedulability of a periodic task set
D Onlinescheduling in the presence of a TBS can simply be tested by verifying
the following condition:
Once the transformation is performed off line and a band- U, +U. <1

width U is reserved on each processing node, on line

scheduling of aperiodic tasks can be handle by a Total Bang¢hereU), is the utilization factor of the periodic task set. This
width Server (TBS). This service mechanism was propose@sults is proved by the following theorem.

by Spuri and Buttazzo [12, 13] to improve the response tim
of soft aperiodic requests in a dynamic real-time environ-
ment, where tasks are scheduled according to EDF.

The server works as follows: whenever an aperiodic r
guest enters the system, the total bandwidth (in terms of cpu
execution time) of the server, is immediately assigned to it.
This is done by simply assigning a suitable deadline to the The implementation of the TBS is straightforward, since
request, which is scheduled according to the EDF algorithito correctly assign the deadline to a new request, we only
together with the periodic tasks in the system. The assigmeed to keep track of the deadline assigned to the last aperi-
ment of the deadline is done in such a way to preserve thmlic requestd;_1). Then, the request can be inserted into
schedulability of the other tasks in the system. the ready queue and treated by EDF as any other periodic

In particular, when thek-th aperiodic request arrives at instance. Hence, the overhead is practically negligible.
timet = ry, it receives a deadline

Theorem 1 (Spuri and Buttazzo, 96). Given a set of n pe-
riodic tasks with processor utilization U, and a TBS with
eprocr utilization Uy, the whole set is schedulablelf and
nIy if
Up+Us <1.

o IV Example
dy = max(rg,dy—1) + 7’“,
s In this section, we will illustrate our methods with an ex-
whereCy is the execution time of the request aliig is the ample. The system consists of two processing nodes; for the
server utilization factor (i.e., its bandwidth). By definition simplicity of the example, we assume that the sending of a
do = 0. The request is then inserted into the ready queue dfiessage takes one time unit. There are 7 tasks to be offline
the system and scheduled by EDF, as any periodic or sporadigheduled:A, B,C, D, E,Y, Z, A — E form a precedence
instance. Note that the maximum betwegnandd,_, is constrained execution chain, with the following precedence
needed to keep track of the bandwidth already assigned eonstraints:A — B,B — C,B - E,C — D,C — E.

previous requests. The global precedence graph is shown in Figure 2.
Figure 1 shows an example of schedule produced with a

TBS. The first aperiodic request, arrived at time= 6, is a

assigned a deadling = r, + & = 6 + ;5= = 10, and

sinced; is the earliest deadllne in the system, the aperiodic

activity is executed immediately. Similarly, the second re- @ %

quest receives the deadlide = r, + £ = 21, but it is

not serviced immediately, since at tlme: 13 there is an

active periodic task with a shorter deadline (18). Finally, the

third aperiodic request, arrived at time= 18 receives the @
deadlineds = max(rs,ds) + C3 =21+ = 25 and is

serviced at time = 22.

- (z)

025

T

-

1, ‘ e ‘ e ‘ e ‘ Figure 2: Precedence graph for the tasks of the example.
14 ; 2 ; TasksA, B, E are allocated to node 0 add D to 1. Task
: l T /i T l M l A has a jitter requirement: the variation in execution has to
= e "a.. g2 %a be less than or equal 1 for two succeeding instances. The
0 1 2 s 4 s s 7 s 910 112 18 14 15 15 17 18 10 w22 29 24 2 starttime of the execution chain is 0, the end-to-end dead-
line, i.e., the maximum time interval betweeturt(A) and
Figure 1: Total Bandwidth Server example. maz(end(D),end(E) 11.Y, allocated to node 0, has start-

time of 4 and deadline 9, and on node 1 of 0 and 6, resp.
Intuitively, the assignment of the deadlines is such that iVorst case execution timesi = 2,B = 1,C = 1,D =
each interval of time, the fraction of processor time allocated, £ = 1,Y = 2, Z = 2. The required bandwidttig = %

A Transformation into ssimple B Online Scheduling
constraints

The available bandwidtl/;, = 1/3 reserved by the off-
The task schedule together with the original constraints 1€ algorithm, can be exploited by a Total Bandwidth Server
transformed into independent tasks on single nodes with stdBS) to efficiently handle online aperiodic requests. In the
time, deadline pairs (denoted ag d;). First, it identifies €xample, arequest with computation ime’; = 1 arrives
constraints due to end-to-end, internode communication, aih Node 0 at timeé = 1. Hence, the TBS assigns it a dead-

jitter: lined, =t+ C;/Us; = 4. As a consequencd, is executed
End-to-end constraints: before taSkB, Sinced1 < dB.

ra=0,dp =dp = 11. At time ¢t = 5, another request; with computation time
Internode communication: dp = 5,r¢ = 6,dc = 8,rp = C> = 2 arrives on Node 0. This time, the request is assigned
9. a deadlinael, = t + Cy /U, = 11, which is the same as the
Jitter: dy = ra +weet(A) — jitter = 3. Qeadline of taskz. However, since deadline ties are broken
Next, constraints for successors and predecessors of thddavor of the server/, executes beforé&.
tasks are derived: On Node 1, a requesk with computation timeC’s = 2
rp=14=0,7p = rc =6, arrives at timet = 1. Hence, according to the TBS rule, it

A, B cannot start before the starttime of the execution chaifS assigned a deadling = ¢ + C3/Us = 7. Attime ¢ = 5,

thus they are assigned the same deadline. Since we use Egitother request, arrives before deadliné;. In this case,

der. dy = mazx(t,ds) + C2/Us; = 10, since the bandwidtlV,
Y, Z are constrained by their original constraints: was already assigned t up to timeds. As a result, since
ry =4.dy =9:77 =0.dy = 6. ds < dp, the execution of/, precedes that of task.

Table 3 summarizes the derived constraints. The integrated schedule is shown in Figure 5

task| r; d; A fg ry e
A 0 3
e o o e
D 6 11 0 1 2 3 :4 5 :6 :7 :8:9:10:11:12:13: 14
E 9 11 Node 0 da dg dy dg
Y |4 9 ms b1 2
Z 0 6 1 m l 2
0 1 2 3 :4 5 :6 .7 :8:9:10:11:12:13: 14

Figure 3: Derived simple constraints. p
2

These simple constraints comprise the original constraints
as per the offline constructed schedule and guarantee a band-
width Us = £.

The resulting EDF schedule on the transformed task set is 7] % % J
depicted in Figure 4. Tt

Node 1 d

e] b fu | e |

T T T T
3..4..5..6..7.:.8.:9.10.11.12
dg d,

T T
7 8/ 9 10 11 12 13 14 0.1.2 1314

de

Figure 5: Schedule produce by EDF using the integrated ap-
l proach.

Node 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

dp V Simulations

Figure 4. Schedule produced by EDF on the offline trans- We implemented and simulated the described algorithm.
formed task set. All the offline and soft aperiodic tasks were randomly gener-
ated, and the load of the offline tasks is varied betwikand

0.9, and the soft aperiodic task load is varied between threghanges and additions to the set of constraints can be incor-

different levels over the lcm. porated into an offline scheduler relatively easy, our method
The simulation length for each run wag000 slots, and also provides for variations and modifications in task con-
the soft aperiodic tasks arrived during that length. straints, as, e.g., induced by industrial design processes and

We have studied the average response times of the séftstem life cycles.
aperiodic tasks, and compared our algorithm against back-
ground scheduling. We also check what happens with the References
soft tasks when the offline load is increased. When the off-

line load is equal td only TBS is running. [1] L. Abeni and G. Buttazzo,“Integrating Multimedia Ap-
task sets were run with both background scheduling and our - of the |EEE Real-Time Systems Symposium, Dec. 1998.
method, and the response times are measured in slots.

[2] H. Chetto and M. Chetto, “Some Results on the Earliest
% Deadline Scheduling AlgorithmTEEE Transactionson
Software Engineering, 15(10), Oct. 1989.

50

[3] R.I. Davis, K.W. Tindell, and A. Burns. Scheduling slack
time in fixed priority pre-emptive systemsn Proceed-
ings of the Real-Time Symposium, Dec. 1993.

s
&

@
5

[4] Z.Den, J. W. S. Liu, and J. Sun, “A Scheme for Schedul-
ing Hard Real-Time Applications in Open System Envi-
ronment”, In Proceedings of the 9-th Euromicro Work-
shop on Real-Time Systems, June 1997.

average response time in slots

N
8

0 [5] Z. Deng and J. W. S. Liu, “Scheduling Real-Time Appli-

offine tization cations in Open Environmentl'n Proceedings of |EEE
Real-Time System Symposium, Dec. 1997.

Figure 6: Response times for the soft aperiodic tasks. [6] G. Fohler. Analyzing a pre run-time scheduler and prece-

)) o) dence graphs. Research Report 13/92, InstituTéch-
Due to high offline load, many soft aperiodic tasks did ot hische Informatik. Technische UnivestitWien Sep.
finish before the simulation ended and therefore the response 1ggo.

times became higher with increased load. Even when the

offline load wad) some soft aperiodic tasks were not able td7] G. Fohler. Joint scheduling of distributed complex pe-

finish because the ready queue was overloaded. riodic and hard aperiodic tasks in statically scheduled
systemsln Proceedings Real-Time Systems Symposium,

. Dec. 1995.
VI Conclusion

[8] H. Kopetz, G. Fohler, G. Gmisteidl, H. Kantz,
G. Pospischil, P. Puschner, J. Reisinger, R. Schlatter-
beck, W. Schtz, A. Vrchoticky, and R. Zainlinger.
The distributed, fault-tolerant real-time operating system
MARS. | EEE Operating Systems Newsl etter, 6(1), 1992.

In this paper, we presented a method to efficiently handle
soft aperiodic tasks in offline scheduled systems, to handle
real-world constraints such as distribution, end-to-end dead-
lines, jitter control, periodic and non periodic tasks, as well

as efficiency, cost effectiveness and more. [9] C. W. Mercer, S. Savage, and H. Tokuda, “Processor
We propose using an offline scheduler to handle complex Capacity Reserves for Multimedia Operating Systems”
constraints, reduce their complexity, and provide for guaran- |n Proceedings of the | EEE International Conference on

teed available bandwidth. In order to apply standard earliest Multimedia Computing and Systems, May 1994.
deadline first scheduling during system operation, we pre-

sented a technique, which transforms the schedule and orig0] K. Ramamritham. Allocation and scheduling of com-
inal constraints into independent tasks with starttime, dead- Pplex periodic tasks.In 10th Int. Conf. on Distributed
line constraints on single nodes only. Consequently, the run- Computing Systems, 1990.

time mechanisms are very simple, flexible, and efficient. %1] K. Ramamritham, G. Fohler, and J.-M. Adan. Issues in

V\f haV((aj ;hct);vn ?OV\(; thgfet rles ult(ijng_ ds;ir:nple conlstra_itr;] the static allocation and scheduling of complex periodic
]E:anﬂ e.ltj)lse g ﬁ(_—:t_s a? ar (:. albandwi serlvgr aigor dm tasks.In Proceedings 10th | EEE Workshop on Real-Time
or flexible and efficient execution, resource reclaiming, an Operating Systems and Software, May 1993.

overload handling.
Instead of different feasibility tests for different types of[12] M. Spuri and G.C. Buttazzo, “Efficient Aperiodic Ser-

constraints, our method caters for a variety of constraints vice under Earliest Deadline Schedulingt, Proceed-

with only minor modifications in the offline scheduler. Since ings of IEEE Real-Time System Symposium, Dec. 1994.

[13] M. Spuri and G.C. Buttazzo, “Scheduling Aperiodic slack stealing.In Proceedings of the Real-Time Sympo-
Tasks in Dynamic Priority Systemdr Real-Time Sys- sium, Dec. 1994.

tems, 10(2), Dec. 1996.))
[16] W. Zhao, K. Ramamritham, and J. A. Stankovic. Pre-

[14] J. A. Stankovic and K. Ramamritham. The Spring ker- emptive scheduling under time and resource constraints.

nel: A new paradigm for real-time operating systems. In |EEE Transactions on Computers, C-36(8):949-960,
|EEE Software, May 1991. Aug. 1987.

[15] S. R. Thueland J.P. Lehoczky. Algorithms for schedul-
ing hard aperiodic tasks in fixed-priority systems using

