
Improved Handling of Soft Aperiodic Tasks in Offline Scheduled Real-Time
Systems using Total Bandwidth Server

Gerhard Fohler, Tomas Lennvall Giorgio Buttazzo
Mälardalen University Univerisity of Pavia

Västeras, Sweden Pavia, Italy
�gfr, tlv�@mdh.se giorgio@sssup.it

Abstract - Real-world industrial applications impose
complex constraints, such as distribution, end-to-end
deadlines, and jitter control on real-time systems. Most
scheduling algorithms concentrate on single or limited
combinations of constraints and requirements only. Off-
line scheduling resolves complex constraints, but pro-
vides only very limited flexibility. Online scheduling on
the other hand, supports flexibility, resource reclaiming,
and overload handling, but handling constraints such as
distribution or end-to-end deadline can be costly, if not
intractable.

In this paper, we propose a method to efficiently han-
dle soft real-time tasks in offline scheduled real-time sys-
tems using total bandwidth server. In a first step, the off-
line scheduler resolves complex constraints, reduces their
complexity, and provides for guaranteed available band-
width. The constructed schedule is translated into inde-
pendent tasks on single nodes with starttimes and dead-
line constraints only. These are then executed using ear-
liest deadline first, total bandwidth server scheduling at
runtime.

I Introduction

Real-world industrial applications impose complex con-
straints on real-time systems and their scheduling algorithms:
Even simple control problems for industrial plants or auto-
motive scenarios demand distribution, end-to-end deadlines,
jitter control, periodic and non periodic tasks, as well as effi-
ciency, cost effectiveness and more. In addition to these ba-
sic temporal constraints, a system has to fulfill complex ap-
plication demands which cannot be expressed as generally.
Control applications may require constraints on individual
instance, rather than periods. Reliability demands can en-
force allocation and separation patterns, or engineering prac-
tice may require relations between system activities, all of
which cannot be expressed directly with basic constraints.

Furthermore, the type and number of constraints rarely
remains fixed during the development of a system or prod-
uct line. Rather, new constraints, often beyond periods and
deadlines, are added during system construction or its main-
tenance.

Most scheduling algorithms presented concentrate on sin-
gle or limited combinations of constraints and requirements
only. Two main lines of algorithms, following the paradigms

of performing schedulingoffline, i.e., before the system run-
time, or online, excel at general constraints or flexibility,
resp. Offline scheduling is capable of constructing schedules
for distributed applications with complex constraints, such
as precedence, jitter, and end-to-end deadlines. As only a ta-
ble lookup is necessary to execute the schedule, runtime dis-
patching is very simple. The prerequisite knowledge about
all system activities and events may be hard or impossible
to obtain. The lack of flexibility prevents handling not com-
pletely specified events.
Online scheduling overcomes this shortcoming and provides
flexibility for partially or non specified activities. Feasibil-
ity tests determine whether a given task set can be feasibly
scheduled according to the rules of the particular algorithm
applied. Online scheduling allows to efficiently reclaim any
spare time coming from early completions and allows to han-
dle overload situations according to actual workload condi-
tions.

These feasibility tests typically apply to a fixed set of con-
straints; changes in the set of constraints often require de-
velopment of theory for tests. Handling constraints such as
distribution or end-to-end deadline can be costly, if not in-
tractable in the general case.

This disparity of capabilities of scheduling paradigms im-
poses the choice of choosing the benefits of either algorithm
at the expense of the other’s, between general constraints or
runtime flexibility. Rather, the application under considera-
tion should dictate constraints and properties, with the choice
of algorithm being only a secondary one.

In this paper, we propose a method to efficiently handle
soft real-time tasks in offline scheduled real-time systems
using total bandwidth server. It uses offline scheduling to
handle complex constraints and reduce their complexity by
transforming a constructed feasible schedule into indepen-
dent tasks on single nodes with start times and deadline con-
straints only. These are suited for flexible earliest deadline
first scheduling methods at runtime. Furthermore, the offline
scheduler guarantees that the resulting task set guarantees the
availability of a minimum bandwidth for use at runtime, ex-
tending the range of applicable methods and constraints. Via
transformed task set and bandwidth, our method provides
an interface to combine offline and online scheduling algo-
rithms.

The concrete offline scheduler used for this work [6] al-
lows for preemptive tasks with precedence constraints, end-
to-end deadlines, distribution, network scheduling and jitter



control. The transformation technique we present can be ap-
plied to a variety of other offline scheduling algorithms with
similar constraints, e.g., [10]. The inclusion of additional
constraints into an offline scheduler is typically straightfor-
ward, e.g., by including the constraint in a feasibility test ap-
plied during schedule construction.

Online scheduling is used to efficiently handle those activ-
ities that cannot be completely characterized offline in terms
of worst-case behavior, and hence cannot receivea priori
guarantee. Examples of these activities include soft aperi-
odic tasks (e.g., multimedia tasks) whose computation time
or interarrival times can have significant variation from in-
stance to instance. Moreover, online scheduling is used to re-
claim any spare time coming from early completion. A band-
width reservation technique [1] is used to isolate the temporal
behavior of the two schedules and prevent the event-driven
tasks to corrupt the off-line plan.

The MARS system [8] is an example of a system with
entire offline planning of all activities. On the other side of
the spectrum, SPRING [14] is using planning and global task
migration [16] for handling a variety of constraints online. Its
planning efforts are expensive; a dedicated scheduling chip
is suggested. In our approach, the online scheduling is very
simple as we only compute new deadlines.

The use of free resources in offline constructed schedules
for aperiodic tasks has been discussed in [11]. The resulting
flexibility is limited since aperiodic tasks are inserted into
the idle times of the schedule only. Slot shifting [7] analysis
offline schedules for unused resources and leeway, which is
represented as execution intervals and spare capacities. This
information is used at runtime to shift task executions, ac-
commodate dynamic tasks, and to perform online guarantee
tests. It provides increased flexibility, but focuses on hard
and firm tasks only.

From the online side, the integration of different schedul-
ing paradigms in the same system requires a resource reser-
vation mechanism to isolate the temporal behavior of each
schedule. In [9], Mercer, Savage, and Tokuda propose a
scheme based on processor capacity reserves, where a frac-
tion of the CPU bandwidth is reserved to each task. This
approach removes the need of knowing the worst-case com-
putation time (WCET) of each task because it fixes the max-
imum time that each task can execute in each period. Since
the periodic scheduler is based on the Rate Monotonic algo-
rithm, the classical schedulability analysis can be applied to
guarantee hard tasks, if any present.

In [5], Liu and Deng describe a two-level scheduling hi-
erarchy which allows hard real-time, soft real-time, and non
real-time applications to coexist in the same system. Accord-
ing to this approach, each application is handled by a dedi-
cated server, which can be a Constant Utilization Server [4]
for tasks that do not use nonpreemptable sections or global
resources, and a Total Bandwidth Server [13, 12] for the
other tasks. At the lowest level, all jobs coming from the dif-
ferent applications are handled by the EDF scheduling algo-
rithm. Although this solution can isolate the effects of over-
loads at the application level, the method requires the knowl-
edge of the WCET even for soft and non real-time tasks.

The use of information about amount and distribution of
unused resources for non periodic activities is similar to the
basic idea of slack stealing [15], [3] which applies to fixed
priority scheduling. Our method applies this basic idea in
the context of offline and EDF scheduling. Chetto and Chetto
[2] presented a method to analyze idle times of periodic tasks
based on EDF. Our scheme analyzes offline schedules, which
can be more general than strictly periodic tasks, e.g., for con-
trol applications.

The rest of this paper is organized as follows: First, we de-
fine terminology in section II. The techniques for integration
of offline and online are presented in section III. An example
in section IV illustrates the methods. We conclude the paper
with section VI.

II Terminology and assumptions

We consider a system consisting of three types of tasks:
hard, soft, and non real-time tasks. Any task� � consists of a
sequence of jobs���� , where���� denotes the arrival time (or
request time) of the� �� job of task��.

A hard real-time task is characterized by two additional
parameters,���� ���, where�� is the WCET of each job and
�� is the minimum interarrival time between successive jobs,
so that������ � ���� � ��. The system must provide an a pri-
ori guarantee that all jobs of a hard task must complete before
a given deadline���� . In our model, the absolute deadline of
each hard job���� is implicitly set at the value���� � �������.

A soft real-time task is also characterized by the param-
eters���� ���, however the timing constraints are more re-
laxed. In particular, for a soft task,�� represents themean
execution time of each job, whereas�� represents thedesired
activation period between successive jobs. For each soft job
���� , a soft deadline is set at time���� � �������. Since mean
values are used for the computation time and minimum inter-
arrival times are not known, soft tasks cannot be guaranteed a
priori. In multimedia applications, soft deadline misses may
decrease the QoS, but do not cause critical system faults.

Tasks can be synchronized viaprecedence constraints,
forming execution chains with end-to-end constraints. Prece-
dence constraints and tasks, can be viewed as a directed
acyclic graph. Tasks are represented as nodes, precedence
constraints as edges. Tasks that have no predecessors are
calledentry tasks, tasks without successorsexit tasks. The
period of a precedence graph	
 is the time interval sepa-
rating two successive instances of	
 in the schedule.Dead-
line intervals are defined for the maximum execution of each
individual precedence graph. Entry tasks of instance� of a
precedence graph	
 become ready for scheduling at time
� � �
�����	
�. Exit tasks of instance� of a precedence
graph	
 have to be completed by time�� �
�����	
� �
�
�����
�	
�.

We consider adistributed system, i.e., one that consists
of severalprocessing nodes and communication nodes An
offline schedule is a sequence of slots, i.e., some time gran-
ules,����� � � �� � � � �N-�, � stands for the number of slots
in the schedule. For online schedules,� is typically equal
to the least common multiple (���) of all involved periods.



Communication nodes, i.e., the communication medium, are
slotted and pre scheduled as well. Protocols with bounded
transmission times, e.g., TDMA or token ring are applicable.

III Integration

A Rationale

The rationale of our method to provide for complex appli-
cation constraints and efficient runtime flexibility is to con-
centrate all mechanisms to handle complex constraints in the
offline phase, where they are transformed intosimple con-
straints suitable for earliest deadline first scheduling, which
is then used foronline execution. The offline determined
simple constraints serve as “interface” between offline prepa-
rations and online scheduling. Specifically, we use the offline
scheduler presented in [6]1, starttime, deadline pairs as sim-
ple constraints, and EDF based Total Bandwidth server [13]
and constant bandwidth server [1] as runtime algorithms.
The amount of desired flexibility can be set in this step as
well.

Our transformation technique can extract maximum flexi-
bility. By tightening start time and deadlines of certain tasks,
it is possible to constrain the execution of some tasks, e.g.,
for reasons of testing or reliability.

Our method works by reducing complexity (NP hard in
the case of distributed, precedence constrained executions
with end-to-end deadlines) offline by instantiating a set of in-
dependent tasks with starttimes, deadlines constraints on sin-
gle processors which fulfill application constraints and guar-
anteed bandwidth requirements. The issues of allocation to
nodes, subtask deadline assignment, fulfilling jitter require-
ments are resolved by the offline scheduler. This allows the
use of time intensive algorithms to resolve the constraints,
since they are performed offline, i.e., before the system is
deployed, and flexible scheduling at runtime.

Once tasks with starttime, deadline constraints have been
derived and analyzed, earliest deadline first scheduling is per-
formed on single nodes individually at runtime; the original
set of complex constraints, distribution, etc., remains hidden
from online scheduling.

The resulting instance of simple constraints will not gen-
erally be optimum. Since it is performed offline, however,
additional analysis can be performed, possibly resulting in
another instantiation with different simple constraints. Con-
sider a subtask deadline assignment which induces tight con-
straint on one node. Performance analysis may show a dif-
ferent, more relaxed setting to be more appropriated.

B Offline schedule construction and bandwidth reservation
strategies

As an additional requirement, the offline scheduler has to
create a schedule such that a desired fraction�� of the pro-
cessor utilization (i.e., a desired bandwidth) is reserved for

1This serves as example; a number of other offline scheduling algorithm
can be applied, e.g., the one presented in [10].

online aperiodic service. This means that, if a bandwidth� �

is reserved on a node, then for any interval [��, ��], there must
be at least (�������� time available for aperiodic processing.

A trivial approach is to replace the worst case execu-
tion time of each task with �

����
. No modifications to the

scheduler are required to guarantee a bandwidth of�	 . This
method, however, does not consider spare capacities in the
schedule for bandwidth reservation. Response times in the
resulting scheduling can thus be prohibitively long.

Our bandwidth reservation method during offline sched-
ule construction analyzes the schedule for idle resources and
their distribution. It maximizes flexibility by considering the
leeway in the schedule, as per the specification constraints.
In particular, the offline scheduler contains a function with
tests the feasibility of the schedule constructed so far; it is ex-
tended by testing the availability of the specified bandwidth
as well.

C Transformation technique

The feasible schedule with guaranteed bandwidth is trans-
formed into independent tasks with starttimes, deadline pairs.
Our method is based on the preparations for online schedul-
ing in slot shifting [7].

The offline scheduler allocates tasks to nodes and resolves
the precedence constraints. The scheduling tables list fixed
start- and end times of task executions, that are less flexi-
ble than possible. The only assignments fixed by specifica-
tion are starts of first and completion of last tasks in chains
with end-to-end constrains, and tasks sending or receiving
inter-node messages. The points in time of execution of all
other tasks may vary within the precedence order. We calcu-
late earliest start-times and latest finish-times for all tasks per
node based on this knowledge. As we want to determine the
maximum leeway of task executions, we calculate the dead-
lines to be as late as possible.

Let 
���	
� denote the end and������	
� the start of a
precedence graph	
 according to the schedule. The start of
an inter-node message transmission� is denoted��������,
the time it is available at all receiving nodes
�����. These
are the only fixed start times and deadlines, all others are
calculated recursively with respect to precedence successors.

These fixed constraints are derived first: Thedeadline of
task� , �
 , of precedence graph	
 in a schedule is:
If � is exit task in	
: �
 � ���	
�,
if � sends an inter-node message� : �
 � ��������.

Theearliest start time of task� , �
 , of precedence graph
	
 in a schedule is calculated in a similar way:
If � is entry task:�
 � ������	
�,
if � receives an inter-node message� : �
 � 
�����.

Next, constraints of predecessors and successors of tasks
with fixed constraints are derived:
A predecessor	 of a task� with fixed deadline is assigned
a deadline so as to be executed before� with EDF, i.e.,
�� � �
 � �
 .
A successor� of a task� with fixed starttime is assigned the
same starttime as� . An appropriate deadline and EDF with
ensure	 preceding� .



�� � �
 .
This step is applied recursively.

D Online scheduling

Once the transformation is performed off line and a band-
width �� is reserved on each processing node, on line
scheduling of aperiodic tasks can be handle by a Total Band-
width Server (TBS). This service mechanism was proposed
by Spuri and Buttazzo [12, 13] to improve the response time
of soft aperiodic requests in a dynamic real-time environ-
ment, where tasks are scheduled according to EDF.

The server works as follows: whenever an aperiodic re-
quest enters the system, the total bandwidth (in terms of cpu
execution time) of the server, is immediately assigned to it.
This is done by simply assigning a suitable deadline to the
request, which is scheduled according to the EDF algorithm
together with the periodic tasks in the system. The assign-
ment of the deadline is done in such a way to preserve the
schedulability of the other tasks in the system.

In particular, when the�-th aperiodic request arrives at
time � � ��, it receives a deadline

�� � ��	���� ����� �
�

�

��
�

where�

� is the execution time of the request and�� is the

server utilization factor (i.e., its bandwidth). By definition
�� � �. The request is then inserted into the ready queue of
the system and scheduled by EDF, as any periodic or sporadic
instance. Note that the maximum between�� and���� is
needed to keep track of the bandwidth already assigned to
previous requests.

Figure 1 shows an example of schedule produced with a
TBS. The first aperiodic request, arrived at time� � 
, is
assigned a deadline�� � �� �

��

��
� 
 � �

����
� ��, and

since�� is the earliest deadline in the system, the aperiodic
activity is executed immediately. Similarly, the second re-
quest receives the deadline�� � �� �

��

��
� ��, but it is

not serviced immediately, since at time� � �� there is an
active periodic task with a shorter deadline (18). Finally, the
third aperiodic request, arrived at time� � �
, receives the
deadline�� � ��	���� ��� �

��

��
� �� � �

����
� �� and is

serviced at time� � ��.

22

τ 1

τ 2

Us = 1/4

r 1 d 1 r 2 r 3 d 3d 2

0 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 23 24 2521 2610

1 2 1

Figure 1: Total Bandwidth Server example.

Intuitively, the assignment of the deadlines is such that in
each interval of time, the fraction of processor time allocated

by EDF to aperiodic requests never exceeds the server uti-
lization��. Since the processor utilization due to aperiodic
tasks is at most��, the schedulability of a periodic task set
in the presence of a TBS can simply be tested by verifying
the following condition:

�� � �� � ��

where�� is the utilization factor of the periodic task set. This
results is proved by the following theorem.

Theorem 1 (Spuri and Buttazzo, 96). Given a set of � pe-
riodic tasks with processor utilization �� and a TBS with
processor utilization ��, the whole set is schedulable if and
only if

�� � �� � ��

The implementation of the TBS is straightforward, since
to correctly assign the deadline to a new request, we only
need to keep track of the deadline assigned to the last aperi-
odic request (����). Then, the request can be inserted into
the ready queue and treated by EDF as any other periodic
instance. Hence, the overhead is practically negligible.

IV Example

In this section, we will illustrate our methods with an ex-
ample. The system consists of two processing nodes; for the
simplicity of the example, we assume that the sending of a
message takes one time unit. There are 7 tasks to be offline
scheduled:����������  � !, � � � form a precedence
constrained execution chain, with the following precedence
constraints:� � ��� � ��� � ��� � ��� � �.
The global precedence graph is shown in Figure 2.

A B C

D

E

Y

Z

Figure 2: Precedence graph for the tasks of the example.

Tasks����� are allocated to node 0 and��� to 1. Task
� has a jitter requirement: the variation in execution has to
be less than or equal 1 for two succeeding instances. The
starttime of the execution chain is 0, the end-to-end dead-
line, i.e., the maximum time interval between�������� and
��"�
������ 
����� 11.  , allocated to node 0, has start-
time of 4 and deadline 9, and! on node 1 of 0 and 6, resp.
Worst case execution times:� � �� � � �� � � �� � �
�� � � ��  � �� ! � �. The required bandwidth�	 � �

�
.



A Transformation into simple
constraints

The task schedule together with the original constraints is
transformed into independent tasks on single nodes with start
time, deadline pairs (denoted as��� ��). First, it identifies
constraints due to end-to-end, internode communication, and
jitter:
End-to-end constraints:

�� � �� �� � �� � ��.
Internode communication: �� � �� �� � 
� �� � 
� �� �
�.
Jitter: �� � �� � #�
���� � ����
� � �.
Next, constraints for successors and predecessors of these
tasks are derived:
�� � �� � �, �� � �� � 
.
��� cannot start before the starttime of the execution chain,
thus they are assigned the same deadline. Since we use EDF
for online scheduling,�� $ �� ensures the precedence or-
der.

 � ! are constrained by their original constraints:
�� � �� �� � �� �� � �� �� � 
.

Table 3 summarizes the derived constraints.

task �� ��
A 0 3
B 0 5
C 6 8
D 6 11
E 9 11
Y 4 9
Z 0 6

Figure 3: Derived simple constraints.

These simple constraints comprise the original constraints
as per the offline constructed schedule and guarantee a band-
width�	 � �

�
.

The resulting EDF schedule on the transformed task set is
depicted in Figure 4.

rB

d A d B d E

rErYrA

rZ rC rD

d Z d Dd C

d Y

Node 0

Node 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Z C D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A EB Y

Figure 4: Schedule produced by EDF on the offline trans-
formed task set.

B Online Scheduling

The available bandwidth�� � �%� reserved by the off-
line algorithm, can be exploited by a Total Bandwidth Server
(TBS) to efficiently handle online aperiodic requests. In the
example, a request�� with computation time�� � � arrives
on Node 0 at time� � �. Hence, the TBS assigns it a dead-
line �� � �� ��%�� � �. As a consequence,�� is executed
before task�, since�� $ �� .

At time � � �, another request�� with computation time
�� � � arrives on Node 0. This time, the request is assigned
a deadline�� � � � ��%�� � ��, which is the same as the
deadline of task�. However, since deadline ties are broken
in favor of the server,�� executes before�.

On Node 1, a request�� with computation time�� � �
arrives at time� � �. Hence, according to the TBS rule, it
is assigned a deadline�� � � � ��%�� � �. At time � � �,
another request�� arrives before deadline��. In this case,
the TBS rule states that the deadline has to be computed as
�� � ��"��� ��� � ��%�� � ��, since the bandwidth��

was already assigned to�� up to time��. As a result, since
�� $ ��, the execution of�� precedes that of task�.

The integrated schedule is shown in Figure 5

rZ rC rD

r3 r4

d 3 d 4

d Dd Cd Z

TBS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C DZ

3 4

rB

d A d E

rErYrA

d Yd B

r1 r2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
d 2d 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A EYB

TBS

1 2

Node 0

Node 1

Figure 5: Schedule produce by EDF using the integrated ap-
proach.

V Simulations

We implemented and simulated the described algorithm.
All the offline and soft aperiodic tasks were randomly gener-
ated, and the load of the offline tasks is varied between� and



���, and the soft aperiodic task load is varied between three
different levels over the lcm.

The simulation length for each run was����� slots, and
the soft aperiodic tasks arrived during that length.

We have studied the average response times of the soft
aperiodic tasks, and compared our algorithm against back-
ground scheduling. We also check what happens with the
soft tasks when the offline load is increased. When the off-
line load is equal to� only TBS is running.

Figure 6 shows the result of the simulation. The same
task sets were run with both background scheduling and our
method, and the response times are measured in slots.

0

10

20

30

40

50

60

0 0,3 0,5 0,7 0,9

offline utilization

a
v

e
ra

g
e

 r
e

s
p

o
n

s
e

 t
im

e
 i

n
 s

lo
ts

off+tbs

background

Figure 6: Response times for the soft aperiodic tasks.

Due to high offline load, many soft aperiodic tasks did not
finish before the simulation ended and therefore the response
times became higher with increased load. Even when the
offline load was� some soft aperiodic tasks were not able to
finish because the ready queue was overloaded.

VI Conclusion

In this paper, we presented a method to efficiently handle
soft aperiodic tasks in offline scheduled systems, to handle
real-world constraints such as distribution, end-to-end dead-
lines, jitter control, periodic and non periodic tasks, as well
as efficiency, cost effectiveness and more.

We propose using an offline scheduler to handle complex
constraints, reduce their complexity, and provide for guaran-
teed available bandwidth. In order to apply standard earliest
deadline first scheduling during system operation, we pre-
sented a technique, which transforms the schedule and orig-
inal constraints into independent tasks with starttime, dead-
line constraints on single nodes only. Consequently, the run-
time mechanisms are very simple, flexible, and efficient.

We have shown how these resulting simple constraints
can be used by the standard total bandwidth server algorithm
for flexible and efficient execution, resource reclaiming, and
overload handling.

Instead of different feasibility tests for different types of
constraints, our method caters for a variety of constraints
with only minor modifications in the offline scheduler. Since

changes and additions to the set of constraints can be incor-
porated into an offline scheduler relatively easy, our method
also provides for variations and modifications in task con-
straints, as, e.g., induced by industrial design processes and
system life cycles.

References

[1] L. Abeni and G. Buttazzo,“Integrating Multimedia Ap-
plications in Hard Real-Time Systems”,In Proceedings
of the IEEE Real-Time Systems Symposium, Dec. 1998.

[2] H. Chetto and M. Chetto, “Some Results on the Earliest
Deadline Scheduling Algorithm”,IEEE Transactions on
Software Engineering, 15(10), Oct. 1989.

[3] R.I. Davis, K.W. Tindell, and A. Burns. Scheduling slack
time in fixed priority pre-emptive systems.In Proceed-
ings of the Real-Time Symposium, Dec. 1993.

[4] Z. Den, J. W. S. Liu, and J. Sun, “A Scheme for Schedul-
ing Hard Real-Time Applications in Open System Envi-
ronment”,In Proceedings of the 9-th Euromicro Work-
shop on Real-Time Systems, June 1997.

[5] Z. Deng and J. W. S. Liu, “Scheduling Real-Time Appli-
cations in Open Environment”,In Proceedings of IEEE
Real-Time System Symposium, Dec. 1997.

[6] G. Fohler. Analyzing a pre run-time scheduler and prece-
dence graphs. Research Report 13/92, Institut f¨ur Tech-
nische Informatik, Technische Universit¨at Wien, Sep.
1992.

[7] G. Fohler. Joint scheduling of distributed complex pe-
riodic and hard aperiodic tasks in statically scheduled
systems.In Proceedings Real-Time Systems Symposium,
Dec. 1995.

[8] H. Kopetz, G. Fohler, G. Gr¨unsteidl, H. Kantz,
G. Pospischil, P. Puschner, J. Reisinger, R. Schlatter-
beck, W. Sch¨utz, A. Vrchoticky, and R. Zainlinger.
The distributed, fault-tolerant real-time operating system
MARS. IEEE Operating Systems Newsletter, 6(1), 1992.

[9] C. W. Mercer, S. Savage, and H. Tokuda, “Processor
Capacity Reserves for Multimedia Operating Systems”
In Proceedings of the IEEE International Conference on
Multimedia Computing and Systems, May 1994.

[10] K. Ramamritham. Allocation and scheduling of com-
plex periodic tasks. In 10th Int. Conf. on Distributed
Computing Systems, 1990.

[11] K. Ramamritham, G. Fohler, and J.-M. Adan. Issues in
the static allocation and scheduling of complex periodic
tasks.In Proceedings 10th IEEE Workshop on Real-Time
Operating Systems and Software, May 1993.

[12] M. Spuri and G.C. Buttazzo, “Efficient Aperiodic Ser-
vice under Earliest Deadline Scheduling”,In Proceed-
ings of IEEE Real-Time System Symposium, Dec. 1994.



[13] M. Spuri and G.C. Buttazzo, “Scheduling Aperiodic
Tasks in Dynamic Priority Systems,”In Real-Time Sys-
tems, 10(2), Dec. 1996.

[14] J. A. Stankovic and K. Ramamritham. The Spring ker-
nel: A new paradigm for real-time operating systems.In
IEEE Software, May 1991.

[15] S. R. Thuel and J.P. Lehoczky. Algorithms for schedul-
ing hard aperiodic tasks in fixed-priority systems using

slack stealing.In Proceedings of the Real-Time Sympo-
sium, Dec. 1994.

[16] W. Zhao, K. Ramamritham, and J. A. Stankovic. Pre-
emptive scheduling under time and resource constraints.
In IEEE Transactions on Computers, C-36(8):949–960,
Aug. 1987.


